
Acta Informatica (2007) 43:451–476
DOI 10.1007/s00236-006-0035-7

O R I G I NA L A RT I C L E

Hybridization methods for the analysis of nonlinear
systems

Eugene Asarin · Thao Dang · Antoine Girard

Received: 25 March 2006 / Accepted: 15 December 2006 /
Published online: 20 January 2007
© Springer-Verlag 2007

Abstract In this article, we describe some recent results on the hybridization methods
for the analysis of nonlinear systems. The main idea of our hybridization approach
is to apply the hybrid systems methodology as a systematic approximation method.
More concretely, we partition the state space of a complex system into regions that
only intersect on their boundaries, and then approximate its dynamics in each region
by a simpler one. Then, the resulting hybrid system, which we call a hybridization,
is used to yield approximate analysis results for the original system. We also prove
important properties of the hybridization, and propose two effective hybridization
construction methods, which allow approximating the original nonlinear system with
a good convergence rate.

1 Introduction

Hybrid systems, that is, systems exhibiting both continuous and discrete dynamics,
have proven to be a useful mathematical model for various physical phenomena and
engineering systems. One typical example is a chemical batch plant where a com-
puter is used to supervise complex sequences of chemical reactions, each of which
is modeled as a continuous process. In addition to discontinuities introduced by the
computer, most physical processes admit components (e.g. switches, valves) and phe-
nomena (e.g. collision, emptying of tanks) whose most useful models are discrete.

E. Asarin
Université Paris 7, LIAFA, 2 pl. Jussieu, 75251 Paris, Cedex 5, France
e-mail: Eugene.Asarin@liafa.jussieu.fr

T. Dang (B)
VERIMAG, 2 ave. de Vignate, 38610 Gieres, France
e-mail: Thao.Dang@imag.fr

A. Girard
Université Joseph Fourier, LMC, B.P. 53, 38041 Grenoble Cedex 9, France
e-mail: Antoine.Girard@imag.fr

452 E. Asarin et al.

Hybrid system models arise in many applications, such as chemical process control,
avionics, robotics, automobiles, and most recently in molecular biology.

Due to the safety critical features of many such applications, formal analysis is
a topic of particular interest. The goal of formal verification is to prove that the
(designed) system satisfies a property, and the goal of controller synthesis is to control
the system (in other words to design a controller) so that the system satisfies a desired
specification. Due to the complexity and scale of real-life applications, automatic anal-
ysis is very desirable. This is a motivation to adopt the algorithmic approach which
consists in building software tools that can analyze automatically all the behaviors of
a given system. Although the research on the algorithmic analysis of hybrid systems
has achieved considerable results in the development of theoretical foundations and
tools, their applications to real-life problems are still limited. A major component
in any algorithm for analyzing hybrid systems is an efficient method to handle their
continuous dynamics described by differential equations (since their discrete dynam-
ics can be handled using well-developed verification methods in computer science).
While many well-known properties of affine or piecewise affine systems and other sim-
pler systems (such as systems with piecewise constant derivatives) can be exploited
to design relatively efficient methods, nonlinear systems are much more difficult to
analyze.

In this paper, our object of study is a complex system (that could be hybrid or
not), and we apply the hybrid systems methodology as a systematic approximation
method. More concretely, we propose an approach to study a complex system (with
nonlinear dynamics for example) by approximating it with a simpler system, for which
well-developed analysis tools exist. To this end, we partition the state space of the
system into regions that only intersect on their boundaries and then approximate
locally its dynamics in each region by a simpler dynamics. Globally, the dynamics
of the approximate system changes when moving from one region to another. Due
to these switchings, the approximate system behaves like a hybrid system and we
thus call this approximation process hybridization. Then, the resulting system is used
to yield approximate analysis results for the original system. The usefulness of this
approach (in terms of accuracy and computational tractability) depends on the choice
of the approximate system. We consider two classes of approximate systems: piece-
wise affine and piecewise multi-affine. We show that the use of these classes allows
approximating the original nonlinear system with a good convergence rate.

The essence behind the hybridization approach is not new. However, the novelty
in our work is that our approximation method is “systematic” in the sense that given a
complex system, the method can automatically compute a system which approximates
the original system with a guaranteed error bound and thus preserves the properties
of interest. In addition, the approximate system can be studied using available tools
for the formal analysis of hybrid systems.

The paper is organized as follows. In Sect. 2, we discuss the model we use for
describing hybrid systems. We then discuss some common properties of hybrid sys-
tems and briefly review the existing results on their algorithmic analysis. This section
includes the basic definitions and notations neccessary for subsequent discussions. In
Sect. 3, we describe the main principles of our hybridization approach. In Sect. 4, we
prove important properties of the method and present a comparison of our method
with previous results. In Sect. 5, we show two effective methods for constructing
hybridizations: one produces affine hybridizations and the other produces multi-affine
hybridizations. The last section contains some examples illustrating our approach.

Hybridization methods for the analysis of nonlinear systems 453

2 Hybrid systems framework

2.1 Hybrid model

A hybrid system is a system whose evolution consists of successions of continuous
phases and discrete events. Various hybrid systems models have been proposed and
this remains an active research area [14,37]. In this paper, we use the following model,
which is a variant of the hybrid automaton proposed in [1]. The reason we choose this
model is that it can capture naturally a wide range of hybrid behaviors and, moreover,
provides a framework suitable for the problems we tackle in this work.

Definition 1 A hybrid system H = (L, n, p, E, F, Inv, G, R) consists of:

• A set of discrete locations L.
• An integer n, the dimension of the continous state space.
• An integer p, the dimension of the continuous input.
• A set of discrete transitions E ⊆ L × L.
• A collection of continuous vector fields F = {Fl| l ∈ L}. For each location l ∈ L,

Fl = (Ul, fl) where Ul ⊂ R
p is a set of inputs and fl : R

n × Ul → R
n. We assume

that the vector fields fl are Lipschitz continuous.1 The admissible input functions
are piecewise continuous.

• A collection of invariants Inv = {Invl| l ∈ L}. For each location l ∈ L, Invl ⊆ R
n.

• A collection of guards G = {Ge| e ∈ E}. For each discrete transition e = (l, l′) ∈ E,
Ge ⊆ Invl.

• A collection of reset relations R = {Re| e ∈ E}. For each discrete transition
e = (l, l′) ∈ E, Re ⊆ Ge × Invl′ .

The hybrid state space of H is S = ⋃
l∈L{l}× Invl. Then, the state of the hybrid system

is a pair (l, x) where the discrete state is l ∈ L and the continuous state is x ∈ Invl. A
hybrid system can be thought as the interaction between a discrete and a continuous
process. The discrete part of the system is described by an automaton (L, E) whose
transitions are triggered when the continuous variable reaches the associated guard.
Between two transitions, the continuous process evolves according to the continu-
ous vector field associated with the active discrete state. In the following, we define
formally the notion of traces of a hybrid system.

Definition 2 Let L be a set of discrete locations and n ∈ N, a hybrid trajectory on
L × R

n is a triple (I, Q, X) where

• I = {Ik| 0 ≤ k ≤ N} is a sequence of intervals (we can have N = +∞) such that
• If N = +∞, then for all k ∈ N, Ik = [tk, t′k] with t′k = tk+1.
• If N < +∞, then IN = [tN , t′N] or IN = [tN , +∞) and for all 0 ≤ k ≤ N − 1,

Ik = [tk, t′k] with t′k = tk+1.
• In both cases, the initial time is t0 = 0.

• Q = {qk| 0 ≤ k ≤ N} is a sequence of locations.
• X = {xk| 0 ≤ k ≤ N} is a sequence of continuous, piecewise differentiable func-

tions. For all 0 ≤ k ≤ N, xk : Ik → R
n. The dotted function ẋk denotes the

derivative of xk.

1 This requirement is needed for existence of continuous trajectories as well as for error estimation.

454 E. Asarin et al.

If N < +∞ and IN = [tN , t′N] then the hybrid trajectory is said to be finite. If N = +∞
and limk→+∞ tk < +∞ then the hybrid trajectory is said to be Zeno. Otherwise, it is
said to be infinite.

It should be noted that for simplicity, the functions xk are assumed to be continu-
ous and piecewise differentiable. However, it is possible to consider larger and thus
more expressive classes of functions, such as absolutely continuous functions (see for
instance [11]).

Intuitively, the intervals Ik represent the time intervals where the hybrid system
evolves continuously according to a differential equation satisfied by the function xk.
The time point t′k is the instant where a discrete transition occurs to switch from the
location qk to the location qk+1. More formally, the evolution of a hybrid system is
described by the notion of hybrid traces.

Definition 3 Let H = (L, n, p, E, F, Inv, G, R), a hybrid trajectory τh = (I, Q, X) on
L × R

n is a hybrid trace of the hybrid system H if the following conditions hold:

• continuous evolution: For all 0 ≤ k ≤ N, there exists a piecewise continuous input
uk such that for all t ∈ Ik, xk(t) ∈ Invqk , uk(t) ∈ Uqk and at each time t where uk is
continuous:

ẋk(t) = fqk(xk(t), uk(t)).

• discrete evolution: For all 0 ≤ k ≤ N − 1, ek = (qk, qk+1) ∈ E, xk(t′k) ∈ Gek and
(xk(t′k), xk+1(tk+1)) ∈ Rek .

The set of hybrid traces of H is denoted by Th(H). The subset of Th(H) consisting of
the infinite hybrid trajectories is denoted by T ∞

h (H).

We remark that the continuous dynamics of a hybrid system are described by differ-
ential equations with inputs which might not be control inputs, and in this case they
must be thought as disturbances or uncertainties. Hence, a hybrid system is in general
non-deterministic (though non-stochastic) in the sense of admitting more than one
trajectory (in fact, uncountably many trajectories) from a given initial state. In this
paper, we are mainly interested in the evolution of the continuous state of the hybrid
system. We thus introduce the following notion of continuous traces.

Definition 4 A continuous trace of the hybrid system H is a pair τc = (I, x) consisting
of an interval I and a piecewise C1 function2 x : I → R

n such that there exists at
hybrid trace (I, Q, X) of H satisfying:

• I = ⋃k=N
k=0 Ik.

• For all 0 ≤ k ≤ N, for all t ∈ (tk, t′k), x(t) = xk(t).
• For all 0 ≤ k ≤ N − 1, x(t′k) = (xk(t′k) + xk+1(tk+1))/2.

The set of continuous traces of H is denoted Tc(H). If I = [0, +∞), τc is said to be
infinite. The set of infinite continuous traces of H is denoted T ∞

c (H).

Let us remark that at the continuous time point τ = t′k = tk+1, which is the (k + 1)th
switching time, a hybrid trajectory takes on two (possibly distinct) continuous values:

2 A function with k continuous derivatives is called a Ck function. Thus, a continuously differentiable
function is a C1 function.

Hybridization methods for the analysis of nonlinear systems 455

the value xk(t′k) before the switch, and the value xk+1(tk+1) after the switch. In the
definition of a continuous trace, we arbitrarily choose to take the average of these two
values. As we will see later, in the systems generated by the hybridization process,
all the reset relations are given by the identity map restricted to the guard sets, and
hence the above definition of x(t′k) implies the continuity of the function x because
x(t′k) = xk(t′k) = xk+1(tk+1).

We can now introduce the notion of continuous reachable set. Let X0 ⊆ R
n be a set

of continuous initial states. The continuous reachable set of H from X0 within the time
interval J is denoted by Reachc(H, X0, J) and defined as follows. An element y ∈ R

n

is in Reachc(H, X0, J) if and only if there is a continuous trace τc = (I, x) ∈ Tc(H)

with x(0) ∈ X0 such that there exists t ∈ I ∩ J : x(t) = y. The reachable set for the time
interval [0, +∞) is denoted by Reachc(H, X0) for short.

2.2 Properties of hybrid systems

Hybrid systems have been mainly studied by researchers from computer science and
control theory, who focus on different properties and approaches reflecting their
background and view of hybrid systems. Control engineers are often interested in
properties which are important in the design of a control system, such as stability,
attraction, controllability, optimality... Computer scientists are interested in “sequen-
tial” properties expressed in some temporal logics, such as linear temporal logic (LTL)
and computation tree logic (CTL) (see for example [24,43]). We will mention here
some of the properties of hybrid systems that have been subject to investigation
recently.

Stability and attraction. Roughly speaking, stability means that applying small
perturbations on the system only results in small deviations in its responses. Depend-
ing on what is defined as perturbations and responses, this gives rise to a number of
notions of stability. Stability of points is a widely used notion. Essentially, it requires
that the state of the system remains in the neighborhood of some point under some
small perturbations in the initial state. Given a hybrid system as in Definition 1, the
(general) stability of a point x∗ ∈ R

n can be defined as follows (see e.g. [51]):

∀ ε > 0, ∃δ > 0, ∀ τc = (I, x) ∈ Tc(H) :

||x∗ − x(0)|| < δ ⇒ ∀ t ∈ I : ||x∗ − x(t)|| < ε.

where || · || denotes a norm on R
n. Asymptotic stability of x∗ additionally requires that

∃δ > 0, ∀ τc = (I, x) ∈ T ∞
c (H) : ||x∗ − x(0)|| < δ ⇒ lim

t→+∞ x(t) = x∗.

The geometric meaning of the stability of x∗ is that for any neighborhood Nr of the
point x∗, there exists a neighborhood Np of the initial state such that no pertubation
of the initial state in Np makes the system’s response leave Nr. In control theory,
this stability of points for deterministic systems is often called Lyapunov stability.
Stability is naturally one of the most important properties of control systems, since it
guarantees that the system’s evolution always stays close to some points representing
the desired behaviors or the reference operation modes.

Besides stability, attraction is also of interest. For example, one can expect that the
system not only stays close but also returns to the desired points (or trajectories), and
this involves attraction properties. Intuitively, attraction of a point means that every
neighborhood of the point must be reached after a finite amount of time. A set of such

456 E. Asarin et al.

points is called attractor and is formally defined as follows. An attractor A is a subset
of the continuous state space R

n that satisfies the following two conditions [52]:

1. The set A is invariant:

∀ τc = (I, x) ∈ T ∞
c (H) : x(0) ∈ A ⇒ ∀ t ≥ 0 : x(t) ∈ A.

2. The set A attracts a neighborhood B of itself (i.e. A ⊂ B ⊆ R
n):

∀ τc = (I, x) ∈ T ∞
c (H) : x(0) ∈ B ⇒ lim

t→+∞ d(x(t), A) = 0.

The first condition means that if the continuous state is in A, then it stays in A forever.
In the second condition, the distance d(y, A) from the point y to the set A is defined
as d(y, A) = infx∈A ||y − x||, and the set B is said to be in the basin of attraction of
the attractor A. Two simple examples of attractors are the asymptotically stable fixed
point and the asymptotically stable limit cycle. Note that stability and attraction are
two closely related notions. Indeed, we can see that a point x∗ is asymptotically stable
if and only if it is stable and it is an attractor.

On the other hand, computer scientists approach the study of hybrid systems by
applying the methodology of formal description and verification. They consider prop-
erties that can be formally described in some mathematical logics. As mentioned
earlier, temporal logic is a popular formalism to describe properties involving the
behavior of a system over time. In the following we briefly describe safety and even-
tuality properties, which are the most elementary classes of such properties.

Safety and eventuality. Safety properties, and in particular invariance properties,
have gained most of the attention in hybrid systems research. Intuitively, a safety
property expresses that nothing “bad” will happen. Invariance properties are the sim-
plest form of such properties, and an invariance property of the hybrid system H is of
the form:

Starting from some set X0 of initial states, all the continuous traces of H remain
in a subset XI of the continuous state space R

n.

This is equivalent to a reachability property: The reachable set Reachc(H, X0) is
included in XI . Therefore, invariance properties can be checked using reachable set
computations. In temporal logic, the above invariance property is often expressed
by the formula �P where � is the temporal quantifier always, and P is a predicate
(formula) describing the set XI . General safety properties are expressed by more
complicated temporal logic formulae, but it is possible to express most interesting
safety properties as invariance properties.

Eventuality properties assert that something “good” must happen. An example of
such properties is:

Starting from some set X0 of initial states, all the continuous traces of H eventually
reaches a subset XF of the continuous state space R

n.

Note that a safety property is violated in finite time (since any infinite trace violating
the property has a finite prefix that is “bad”). Hence, considering finite traces allow
disproving safety properties. However, finite traces do not allow to disprove an even-
tuality property since there might be a finite trace that can be extended so that the
resulting infinite trace satisfies this property.

Hybridization methods for the analysis of nonlinear systems 457

2.3 Hybrid systems analysis: a brief review

Stability and attraction properties are mainly analyzed using various hybrid exten-
sions of tools for continuous systems in control theory, such as Lyapunov functions
[51], Poincaré maps [34]. It is well-known that the stability of a hybrid system is not
guaranteed by the stability of all its continuous components, and one possible solu-
tion is to search for a global Lyapunov function in some fixed form, such as piecewise
quadratic [21,35] or more general piecewise polynomial functions [47]. Stability of
switched systems (which are systems consisting of a family of continuous dynamics
and a rule to switch between them) has also been thoroughly studied in a number of
publications (see [42] and references therein). The application of Poincaré maps to
hybrid systems has also been explored, for example, in [59].

Formal analysis of hybrid systems is known to be a very difficult task due to the
complexity and scale of the systems. Concerning specification, some temporal logics
for hybrid systems have been developed (see for example [4,20]). Concerning verifica-
tion, one is interested in designing an algorithm which, for a given hybrid system and
a desired property, can answer after a finite number of steps whether the system satis-
fies the property. The decidability question is important in the algorithmic verification
of hybrid systems, due to their infinite state space. A lot of research effort has been
been devoted to the question of identifying the classes of hybrid systems and proper-
ties for which the verification problem is decidable. Temporal logic model-checking
problems are not decidable for most general hybrid systems. However, decidability
results have been proven for some particular classes of hybrid systems (see [4,54] for
a survey). These classes must be restricted either in continuous dynamics (e.g. systems
with piecewise constant derivatives [1,3,10,33]), or in discrete dynamics (e.g. [5,40]).
Based on these results, various verification tools have been implemented, such as
Kronos [60] and Uppaal [41] for timed automata, HyTech [32] for linear hybrid auto-
mata3 and Requiem [40] for hybrid systems where linear differential equations have
special eigenstructure and discrete dynamics can only have memoryless resets. The
basis of these tools is a procedure for exactly characterizing and manipulating the set
of all possible trajectories (using computer algebra tools for example).

However, this is no longer possible for more general hybrid systems. Indeed, even
to prove simple safety properties, there exists no general exact reachable set com-
putation method. For this reason, there has been growing interest in developing
methods for the approximate representation and computation of sets of states and
system traces, in particular with a focus on reachable set computation. These meth-
ods can be roughly classified into two categories. The methods of the first category
try to approximate reachable sets as accurately as possible by tracking their evo-
lution under the continuous flows using some set represention (such as polyhedra,
ellipsoids, level sets). This results in a variety of approximation schemes (such as
[6,13,15,17,19,27,28,36,39,44,57]), and implemented by a number of tools such as
Coho[28], CheckMate [15], d/dt [7], VeriShift [13], HYSDEL [58], MPT [45], HJB tool-
box [44]. Since accurate reachable set approximations are computationally expensive,
the methods of the second category seek approximations that are sufficiently good
to prove the property of interest (such as barrier certificates [46], polynomial invar-
iants [56]). Abstraction methods for hybrid systems are also close in spirit to these

3 In linear hybrid automata, continuous dynamics are described by linear constraints on the deriva-
tives, such as Aẋ ≤ b. They should not be confused with hybrid systems where continuous dynamics
are described by linear differential questions.

458 E. Asarin et al.

methods. Indeed, their main idea is to start with a rough (and conservative) discrete
approximation of a hybrid system and then iteratively refine it.4 This refinement is
often local in the sense that it uses the previous analysis results to determine where
the approximation error is too large to prove the property (see for example [2,16,55]).

The literature on hybrid systems analysis is vast; for more details the reader is
referred to recent proceedings of the conference HSCC (Hybrid Systems: Computa-
tion and Control). We finish this brief review by remarking that while many well-known
properties of affine differential equations can be exploited to design relatively effi-
cient algorithms, systems with nonlinear differential equations are much more difficult
to analyze. For these systems, the existing tools can only handle a small number of
continuous variables. This motivated us to search for a method to deal with nonlinear
systems using tools available for simpler systems.

3 Principles of hybridization

Intuitively, the main idea of hybridization is to approximate the complex contin-
uous dynamics of a system by a collection of simpler continuous dynamics. Here,
by “simpler” we mean the types of dynamics that can be analyzed more easily and
efficiently. For example, we can approximate a nonlinear continuous dynamics by
a piecewise affine dynamics. The collection of simpler continuous dynamics indeed
defines a hybrid system. Then, the analysis of the resulting hybrid system can provide
knowledge about the behavior of the original system. Hence, one can see another
utility of hybrid systems: they can be used not only as a mathematical model but also
as an approximation method.

For simplicity of presentation, we explain the principle of the hybridization
approach for continuous, autonomous (i.e. without inputs) dynamical systems.
However, the approach can be extended to handle continuous dynamical systems
with inputs as well as hybrid systems, which will be discussed later in this section.
We consider a nonlinear continuous dynamical system D that is defined on a domain
� ⊆ R

n by a differential equation of the form:

ẋ(t) = f (x(t)), x(t) ∈ �, t ≥ 0.

This continuous dynamical system can be seen as a hybrid system with a unique
location (denoted by ω) and no discrete transition:

D = ({ω}, n, 0, ∅, {(∅, f)}, {�}, ∅, ∅).

As mentioned earlier, the idea of hybridization consists in approximating the non-
linear vector field f by a hybrid system with a collection of simpler (e.g. constant or
affine) vector fields. To do so, the domain � of the dynamical system D is split into
several regions that form a mesh of �. Then, with each element of this mesh, we
associate a simple approximate vector field. This defines a global approximate vector
field all over the domain �, that we call composite vector field . In particular, in order
for this approximation to be useful in terms of preserving properties of interest, we
want it to be a conservative approximation of the original vector field f . The reasons
for this will become clear in the next section. This composite vector field corresponds

4 Most proofs of decidability result for certain classes of hybrid systems are often based on the
existence of a finite discrete abstraction (see [4]).

Hybridization methods for the analysis of nonlinear systems 459

to a hybrid system, which we call5 a hybridization of D. Let us now formalize these
notions.

Definition 5 (Mesh) A mesh of the domain � is a collection M = {Ml| l ∈ L} of
closed subsets of � such that

• ⋃
l∈L Ml = �.

• For all l �= l′ ∈ L, Ml ∩ Ml′ = ∂Ml ∩ ∂Ml′ , where ∂Ml denotes the boundary of
the set Ml.

The size of the mesh is defined as:

σ(M) = sup
l∈L

sup
x,x′∈Ml

||x − x′||

where || · || denotes the infinity norm and is defined as follows: for a n-dimensional
vector y, ||y|| = maxi∈{1,2,...,n} |yi|.
The first condition guarantees that the domain � is covered by the mesh. The second
condition indicates that the elements of the mesh have disjoint interiors. It should
be noted that in the above definition we use the infinity norm, but the reasoning
throughout the paper can work with any norm.

Definition 6 (Composite vector field) A composite vector field on the domain � is a
collection F = {(Ml, Ul, fl)| l ∈ L} where M = {Ml| l ∈ L} is a mesh of � and for all
l ∈ L, Ul ⊆ R

n and fl : R
n → R

n.

A composite vector field F = {(Ml, Ul, fl)| l ∈ L} on the domain � implicitly
defines a hybrid system H(F) = (L, n, n, E, F, M, G, R) where

• the set of discrete locations is L.
• the dimension of the continuous state space is n.
• the dimension of the continuous input is n.
• the set of discrete transitions is given by

(l, l′) ∈ E ⇐⇒ ∂Ml ∩ ∂Ml′ �= ∅.

• the collection of vector fields F = {Fl| l ∈ L} where Fl = (Ul, f ′
l) with f ′

l defined
as: f ′

l (x, u) = fl(x) + u.
• the invariants are the domains of the mesh elements Ml.
• the guards are given by

∀ e = (l, l′) ∈ E, Ge = ∂Ml ∩ ∂Ml′ .

• the resets relations are the identity map restricted to the guard sets:

∀ e ∈ E, Re = {(x, x)| x ∈ Ge}.
Such a composite vector field is used to approximate the vector field f of an auton-
omous system, and the role of the input is to model the error between values of f in
each mesh cell Ml and its approximation fl in that cell.

5 In this paper we use the term hybridization to mean the approximate system and sometimes the
approximation process as well.

460 E. Asarin et al.

Definition 7 A composite vector field F = {(Ml, Ul, fl)| l ∈ L} on the domain � is a
conservative approximation of the vector field f if

∀ l ∈ L, x ∈ Ml, ∃u ∈ Ul, f (x) = fl(x) + u.

If F is a conservative approximation of the vector field f then the hybrid system H(F)

is said to be a hybridization of the system D. The precision of the hybridization is
given by:

π(F , f) = sup
l∈L

(

sup
x∈Ml , u∈Ul

‖fl(x) + u − f (x)‖
)

.

Extension to continuous systems with input and to hybrid systems. It is straight-
forward to extend the above definitions to continuous systems with input by choosing
appropriately the sets Ul of the hybridization, which allows taking into account the
effect of the input of the system. As an example, we consider a continuous system with
input of the form ẋ(t) = f (x(t)) + v(t) where v(t) ∈ V. Let F = {(Ml, Ul, fl)| l ∈ L}
be a hybridization of the corresponding autonomous system ẋ(t) = f (x(t)). Then, the
hybridization of the system with input can be defined as F = {(Ml, Ul, fl)| l ∈ L}
where the input set Ul = Ul ⊕ V, and ⊕ denotes the Minkowski sum.

Regarding hybrid systems, the global approximate system can be obtained by a
composition of the hybridizations of the continuous dynamics in each location. The
hybridization process can also be partial in the sense that it is used only in some
locations.

4 Approximation properties of hybridizations

In order for a hybridization to be a useful approximation, a question that arises is
whether the hybridization preserves the properties of interest. In the following we
show several important approximation properties of the hybridization defined in the
previous section. We also discuss how these results can be used in the analysis of
complex continuous and hybrid systems. Let us make the following assumption:

Assumption 1 (Finite Variability [12])For all continuous trace (I, x) ∈ Tc(D), for all
interval of finite length J ⊆ I, the function x can move from one cell of the mesh M to
another only a finite number of times during time interval J.

As we will see, this assumption is necessary so that the corresponding continuous
traces of the hybridization do not exhibit a Zeno behaviors. This assumption is nec-
essary for our approach but also for all discrete abstraction processes based on a
partition of the state space [2,4,16,55]. Let us remark that in practice, the finite var-
iability assumption generally holds. An interesting investigation is to determine the
conditions that the vector field f must satisfy so that the finite variability assumption
holds. This is not done here as it would require complex mathematical considerations
and it is preferable to focus our attention on the main scope of the paper.

4.1 Trace inclusion and approximation

The first approximation property involves the conservativeness of the hybridization
in terms of sets of traces.

Hybridization methods for the analysis of nonlinear systems 461

Theorem 1 Let H(F) be a hybridization of the dynamical system D. Then, the set of
continuous traces of D is included in the set of continuous traces of H(F), that is

Tc(D) ⊆ Tc(H(F)).

Proof Let (I, x) ∈ Tc(D). We assume that I is of the form [0, T], and the situation
where I = [0, +∞) can be handled in a similar way. Since

⋃
l∈L Ml = �, there exists

a piecewise constant function q : I → L such that

∀ t ∈ I, x(t) ∈ Mq(t).

Let t0 = 0 and let {tk| 1 ≤ k ≤ N} be the sequence of instants at which the value of the
function q changes. From the finite variability assumption, we have that necessarily
N is finite. For 0 ≤ k ≤ N, qk denotes the constant value of q(t) on the open interval
(tk, tk+1). Given an interval Ik = [tk, tk+1], the function xk : Ik → R

n is such that for
all t ∈ Ik, xk(t) = x(t). We now show that ({Ik| 0 ≤ k ≤ N}, {qk| 0 ≤ k ≤ N}, {xk| 0 ≤
k ≤ N}) is a hybrid trace of H(F).

For 0 ≤ k ≤ N and for all t ∈ (tk, tk+1), x(t) ∈ Mqk . By continuity of x and closed-
ness of Mqk , it then follows that: for all t ∈ Ik = [tk, tk+1], x(t) ∈ Mqk . We define an
input function uk : Ik → R

n as:

∀ t ∈ Ik, uk(t) = f (xk(t)) − fqk(xk(t)).

Note that since the composite vector field F is a conservative approximation of f ,
uk(t) ∈ Uqk for all t ∈ Ik. Moreover,

∀ t ∈ Ik, ẋk(t) = f (xk(t)) = fqk(xk(t)) + uk(t).

Furthermore, xk(tk+1) ∈ Mqk ∩Mqk+1 , thus ek = (qk, qk+1) ∈ E and xk(tk+1) ∈ Gek . In
addition, since xk(tk+1) = x(tk+1) = xk+1(tk+1), we have that (xk(tk+1), xk+1(tk+1)) ∈
Rek . Hence, ({Ik| 0 ≤ k ≤ N}, {qk| 0 ≤ k ≤ N}, {xk| 0 ≤ k ≤ N}) is in the set Th(H(F))

of hybrid traces of H(F). We end the proof by remarking that (I, x) is the continu-
ous trace of H(F) associated with the hybrid trace ({Ik| 0 ≤ k ≤ N}, {qk| 0 ≤ k ≤
N}, {xk| 0 ≤ k ≤ N}). ��
Let us remark that the hybridization H(F) is indeed a simulation of the original system
D. An important consequence of this theorem is that the hybridization H(F) can be
used to check safety and eventuality properties of the continuous dynamical system
D [9,25,33]. Indeed, if these properties hold for the set of all continuous traces of the
hybridization H(F), then it follows from the inclusion relation that they hold for the
set of all continuous traces of the dynamical system D. In terms of temporal logics, this
means that the universal fragment ∀ CTL∗ [24] is preserved by the hybridization. Since
LTL properties are part of ∀ CTL∗ [24], they are also preserved by the hybridization.

We have seen that the hybridization method allows over-approximating the set of
continuous traces of D. Now to measure the quality of over-approximation, we use
the distance between the set of continuous traces of H(F) and that of D.

Theorem 2 We assume that f is λ-Lipschitz on �, that is

∀ x, z ∈ �, ‖f (x) − f (z)‖ ≤ λ‖x − z‖.

Then, for all (I, x) ∈ Tc(D), (J, z) ∈ Tc(H(F)), such that x(0) = z(0), the following
inequality holds:

∀ t ∈ I ∩ J, ‖x(t) − z(t)‖ ≤ π(F , f)
λ

(eλt − 1). (1)

462 E. Asarin et al.

Proof The proof relies heavily on the fundamental inequality, and for clarity we first
recall this theorem.

Theorem 3 Let � be a subset of R
n, let f : � → R

n be a λ-Lipschitz vector field. Let
x : I → R

n and z : J → R
n be piecewise differentiable functions such that I ∩ J is not

empty and contains 0 and for all t ∈ I ∩ J, x(t) ∈ � and z(t) ∈ �. If in addition, for all
t ∈ I ∩ J, where x is differentiable ‖ẋ(t) − f (x(t))‖ ≤ α, and for all t ∈ I ∩ J, where z is
differentiable ‖ż(t) − f (z(t))‖ ≤ β, then the following inequality holds:

∀ t ∈ I ∩ J, ‖x(t) − z(t)‖ ≤ ‖x(0) − z(0)‖eλ|t| + α + β

λ
(eλ|t| − 1). (2)

The fundamental inequality is a central theorem of the theory of differential equations.
A detailed proof can be found in [23]. We now proceed with the proof of Theorem 2.
Let (I, x) ∈ Tc(D), then x is differentiable on I and for all t ∈ I ‖ẋ(t) − f (x(t))‖ = 0.
Let (J, z) ∈ Tc(H(F)). Let ({Jk| 0 ≤ k ≤ N}, {qk| 0 ≤ k ≤ N}, {zk| 0 ≤ k ≤ N}) be
the hybrid trace of H(F) associated with (J, z). For all 0 ≤ k ≤ N, for all piecewise
continuous input uk : Jk → Uqk such that for all t ∈ Jk where uk is continuous,

‖ż(t) − f (z(t))‖ = ‖fqk(z(t)) + uk(t) − f (z(t))‖ ≤ π(F , f).

Then, the inequality (1) follows from the application of the fundamental inequality.
��

The above theorem states that the distance between the set of continuous traces of
H(F) and that of D depends linearly on the precision π(F , f). The theorem thus shows
that one can approximate the set of traces of the system D with an arbitrarily small
error by using an appropriate hybridization (i.e. with a sufficiently good precision).
This result was also used in the previous works [22,26] to justify the application of
the hybridization method to approximate solutions of differential equations. Indeed,
assuming that each input sets Ul contains the origin, that is 0 ∈ Ul, one can effectively
compute an approximate solution of the equation ẋ = f (x) by computing the contin-
uous traces of H(F) corresponding to the input functions {uk| 0 ≤ k ≤ N} satisfying
uk(t) = 0 for all t ∈ Jk.

4.2 Preservation of attractors

Theorems 1 and 2 can also be used to prove another important property of hybrid-
izations involving the preservation of attractors. Let us assume that the dynamical
system D has an attractor A, attracting a compact set B. In addition, let us assume
that the following conditions hold:

1. ∀ x0 ∈ B, ∃(I, x) ∈ T ∞
c (D) : x(0) = x0.

2. ∃δ > 0 : N (A, δ) = {x ∈ R
n| ∃xa ∈ A, ‖x − xa‖ ≤ δ} ⊆ B.

The set N (A, δ) is called δ-neighborhood of A.

Theorem 4 For all ε ∈ (0, δ], there exists ν > 0, such that if π(F , f) ≤ ν, then there
exists a set A(F), which is an attractor for the hybrid system H(F) and such that

A ⊆ A(F) ⊆ N (A, ε).

Moreover, B is in the basin of attraction of A(F).

Hybridization methods for the analysis of nonlinear systems 463

The theorem states that attractors are preserved by hybridization, and one can thus
use the hybridization method to check attraction properties of continuous and hybrid
systems.

Proof Since A attracts the compact set B, there exists a time T > 0 such that

∀ (I, x) ∈ T ∞
c (D), x(0) ∈ B �⇒ ∀ t ≥ T, x(t) ∈ N (A, ε/2). (3)

We define

ν = ελ

2(eλ2T − 1)
.

Let us assume that π(F , f) ≤ ν. Let (J, z) ∈ T ∞
c (H(F)) such that z(0) ∈ B. Then,

there exists (I, x) ∈ T ∞
c (D) such that x(0) = z(0). From Theorem 2, we have that

∀ t ∈ [0, 2T], ‖x(t) − z(t)‖ ≤ π(F , f)
λ

(eλ2T − 1) ≤ ε/2. (4)

Then, from the equation (3), it follows that

∀ (J, z) ∈ T ∞
c (H(F)), z(0) ∈ B �⇒ ∀ t ∈ [T, 2T], z(t) ∈ N (A, ε). (5)

Let us now show by induction that this actually holds for all t ≥ T. We first assume that
the previous equation holds for all t ∈ [T, kT] for some k ≥ 2. Let (J, z) ∈ T ∞

c (H(F))

such that z(0) ∈ B, let t̄ ∈ [kT, (k + 1)T], let (Ī, z̄) be defined by

Ī = [0, +∞), z̄(t) = z(t̄ − T + t).

Intuitively, z̄ is the suffix of z obtained by truncating off the initial length t̄ − T, and
starting with z̄(0) = z(t̄ − T). It is easy to show that (Ī, z̄) ∈ T ∞

c (H(F)). Moreover,
z̄(0) = z(t̄ − T). Since t̄ − T ∈ [T, kT], we obtain: z̄(0) ∈ N (A, ε) ⊆ B. From the equa-
tion (5), it follows that z̄(T) ∈ N (A, ε). Since z̄(T) = z(t̄), we proved by induction
that

∀ (J, z) ∈ T ∞
c (H(F)), z(0) ∈ B �⇒ ∀ t ∈ [T, +∞), z(t) ∈ N (A, ε). (6)

Now let us define the set A(F) by

A(F) = {z(t)| (J, z) ∈ T ∞
c (H(F)), z(0) ∈ B, t ≥ T}

∪{z(t)| (J, z) ∈ T ∞
c (H(F)), z(0) ∈ A, t ≥ 0}

= {z(t)| (J, z) ∈ T ∞
c (H(F)), z(0) ∈ B, t ≥ T}

∪{z(t)| (J, z) ∈ T ∞
c (H(F)), z(0) ∈ A, t ∈ [0, T]} (7)

Clearly A ⊆ A(F). Moreover, from the Eq. (6)

{z(t)| (J, z) ∈ T ∞
c (H(F)), z(0) ∈ B, t ≥ T} ⊆ N (A, ε). (8)

Let (J, z) ∈ T ∞
c (H(F)), such that z(0) ∈ A, there exists (I, x) ∈ T ∞

c (D) such that
x(0) = z(0). Let t ∈ [0, T]; since A is an attractor for D, x(t) ∈ A. Then, it follows from
equation (4) that z(t) ∈ N(A, ε/2). Hence,

{z(t)| (J, z) ∈ T ∞
c (H(F)), z(0) ∈ A, t ∈ [0, T]} ⊆ N (A, ε/2). (9)

Thus, we have proved that A(F) ⊆ N(A, ε). Next, we prove that A(F) is an attractor
for H(F) and that B is in its basin of attraction. Let (J, z) ∈ T ∞

c (H(F)), such that
z(0) ∈ A(F). There are two possible situations. Either there exists (J̄, z̄) ∈ T ∞

c (H(F))

464 E. Asarin et al.

and t̄ ≥ T such that z̄(0) ∈ B and z̄(t̄) = z(0), or there exists (J̄, z̄) ∈ T ∞
c (H(F)) and

t̄ ≥ 0 such that z̄(0) ∈ A and z̄(t̄) = z(0). We consider only the first situation, and the
second one can be handled in a similar way. We define (J̃, z̃) as

J̃ = [0, +∞), z̃(t) =
{

z̄(t), if t ∈ [0, t̄]
z(t − t̄), if t ∈ [t̄, +∞)

(10)

We can show that (J̃, z̃) ∈ T ∞
c (H(F)), thus from the definition of A(F), for all t̃ ≥ T,

z̃(t̃) ∈ A(F). Therefore, since t̄ ≥ T, for all t ≥ 0, z(t) = z̃(t + t̄) ∈ A(F). This
implies that A(F) is invariant for H(F). It now remains to show that it attracts B. Let
(J, z) ∈ T ∞

c (H(F)), such that z(0) ∈ B. From the definition of A(F), for all t ≥ T,
z(t) ∈ A(F). It then follows that limt→+∞ d(z(t), A(F)) = 0. ��

Relation to previous work. Before continuing to explain how to actually con-
struct a hybridization, let us discuss the relation of the method to some previous
work. Regarding the approximation and abstraction categories discussed in Sect. 2.3,
our hybridization method has elements of both. On one hand, it provides approxima-
tions with error bounds. It should be noted that for safety verification it is sufficient
to prove the property on an over-approximation of the original system; however for
other problems, such as controller synthesis where under-approximations are used, the
accuracy criterion is important since we do not want to disregard too much controlla-
ble behavior. On the other hand, our method has some similarity with the abstraction
methods mentioned in Sect. 2.3, since the approximate systems we construct are
indeed abstractions of the original system, which are more precise at the price of
being more complex. Therefore, the refinement ideas [2,16,55] can be straightfor-
wardly applied in our approach.

Our hybridization method also has some common elements with the viability algo-
rithms [50] for approximating viability kernels of differential inclusions. The approx-
imation in the viability algorithms involves not only a space discretization but also a
time discretization, which results in a hybrid system in discrete time. In our hybrid-
ization, the resulting approximate system is in continuous time. Similar hybridization
ideas were previously explored in [25,33,48,53] where the approximate systems are
systems with piecewise constant slopes or rectangular inclusions. As mentioned ear-
lier, similar ideas have been used for numerical integration of nonlinear differential
equations [22,26]. On the other hand, the reachability method proposed in [28] uses
linear approximation in each integration step to obtain better approximations of the
reachable sets in 2 dimensions. In [29], a control problem for a class of piecewise
linear systems, similar to our affine hybridizations, is solved in terms of reachability
conditions. In [49], a hybridization approach is used to solve optimal control problems.

5 Effective construction of hybridizations

In the previous section, we have shown that hybridizations can be used to analyze a
fairly large class of properties. In this section, we deal with the question of constructing
hybridizations for systems with possibly complex nonlinear continuous dynamics. We
propose two methods to do so, and a bound on the precision of the hybridization is
also provided. Let us recall the continuous system under study:

ẋ(t) = f (x(t)), x(t) ∈ �, t ≥ 0.

Hybridization methods for the analysis of nonlinear systems 465

5.1 Affine hybridization

The first hybridization construction method, called affine hybridization, computes a
piecewise affine vector field by partitioning the state space into simplices. The use of
such approximate vector fields is motivated by a large choice of available methods
for reachability computation of piecewise affine systems (see for instance [6,15,27]).
It is worth emphasizing that, besides reachability properties, the hybridization can be
used to verify other classes of properties of the original system, provided that we are
equipped with a tool to verify these properties on the hybridization.

5.1.1 Constructing the mesh

We start by constructing a simplicial mesh M = {Ml| l ∈ L} over the set � where
each mesh element Ml is a simplex. We recall that a simplex in R

n is the convex hull
of (n + 1) affinely independent points in R

n. A simplicial mesh can be easily obtained
from a rectangular mesh {Hj| j ∈ J} over �, generated by a uniform grid of size h.
Each mesh element Hj, which is a hypercube with edge length h, is then partitioned
into simplices as follows. The explanation here holds for the hypercube [0, 1]n but the
procedure generalizes easily to any hypercube. Let � denote the set of permutations
of {1, . . . , n}. For all θ = (i1, . . . , in) ∈ �, the set

Sθ = {x ∈ [0, 1]n : 0 ≤ xi1 ≤ · · · ≤ xin ≤ 1}
is a simplex of R

n. Moreover, {Sθ | θ ∈ �} indeed defines a simplicial mesh of [0, 1]n.
A proof of this can be found in [38].

It is easy to see that the resulting simplicial mesh has the size σ(M) = h. We note
that the cardinality of � is the factorial n!.

This mesh generation method is very simple and, moreover, memory efficient since
it can be done in the course of the analysis of the hybridization. For example, when
performing reachability analysis by advancing the set of solutions numerically step
by step, we only need to create new mesh elements around the solutions. Therefore,
we do not need to generate the whole mesh before we start any computation (unlike
using a Delaunay triangulation whose dynamic construction is expensive).

5.1.2 Defining the hybridization

Once we have our simplicial mesh M, we define a composite vector field F =
{(Ml, Ul, fl) | l ∈ L} as follows. For each mesh element Ml, we denote by V(Ml)

the set of its vertices. We define fl as an affine map of the form: fl(x) = Alx + bl (Al is
a matrix of size n×n and bl ∈ R

n) such that fl interpolates the function f at the vertices
of Ml. More precisely, f (v) = fl(v) for all v ∈ V(Ml). An important advantage of
this hybridization method is that using simplicial meshes the affine interpolant fl is
uniquely determined, since each simplicial mesh element has (n + 1) vertices.

Let us now define Ul so that F is a conservative approximation of the original
vector field f , as in Definition 7. To this end, we define the interpolation error as:

ε(h) = sup
l∈L

sup
x∈Ml

‖f (x) − fl(x)‖.

We write this error as a function of h to emphasize that it depends on the mesh size.
Suppose that we can find an upper bound of ε(h), denoted by ε(h). Then, we can

466 E. Asarin et al.

choose the input value set Ul to be the ball (i.e. a hypercube for the infinity norm) that
is centered at the origin and has radius ε(h). We estimate this bound for two cases: the
vector field f is Lipschitz and f is a C2 function. The proofs can be found in Appendix.

Proposition 1 If f is λ-Lipschitz, then

ε(h) ≤ h
2n λ

n + 1
= ε(h).

An important remark is that the second partial derivatives of the affine approximation
fl vanish; therefore, if f is a C2 function, we can obtain a better error bound. Excep-
tionally, to write the second partial derivatives of f , we use superscripts to indicate
the components of f , that is f = (f 1, f 2, . . . , f n).

Proposition 2 If f is C2 on � with bounded second order derivatives then

ε(h) ≤ Kn2

2(n + 1)2 h2 = ε(h)

where

K = max
i∈{1,...,n}

sup
x∈�

p1=n∑

p1=1

p2=n∑

p2=1

∣
∣
∣
∣

∂2f i(x)

∂xp1∂xp2

∣
∣
∣
∣ .

The main drawback of affine hybridization is the cardinality of the simplicial partition
of �. We have seen that n! simplices are needed to partition a hypercube in R

n. In
the next section, we propose a similar method but based on a rectangular mesh. As
a consequence, the complexity of the resulting hybridization is lower and therefore
systems in higher dimensions can be considered.

5.2 Multi-affine hybridization

Rectangular meshes and multi-affine interpolation can be thought of as a simple
generalization of affine interpolation. The technique is most easily explained in two
dimensions, but the case of higher dimensions is analogous in every way.

5.2.1 Constructing the mesh

We assume that the state space is a rectangle � = [x1, x1] × [x2, x2] ⊂ R
2, let

x1 = x1
1 < x2

1 < · · · < xm
1 = x1, x2 = x1

2 < x2
2 < · · · < xp

2 = x2

such that for all 1 ≤ i ≤ m, xi+1
1 − xi

1 = h and for all 1 ≤ j ≤ m, xj+1
2 − xj

2 = h. This
defines a uniform mesh with (m−1)(p−1) elementary rectangles and mp interpolating
points (xi

1, xj
2). Hence, the index set L of the mesh M is L = {1, 2, . . . , (m − 1)(p − 1)}.

5.2.2 Defining the hybridization

We now show how to define the piecewise multi-affine vector field
F = {(Ml, Ul, fl) | l ∈ L}. For each l ∈ L, we define a multi-linear function that

Hybridization methods for the analysis of nonlinear systems 467

interpolates f at the vertices of the corresponding rectangle. Suppose that the rectangle
is [xi

1, xi+1
1] × [xj

2, xj+1
2],

fl(x) = (xj+1
2 − x2)

(xj+1
2 − xj

2)

(xi+1
1 − x1)

(xi+1
1 − xi

1)
f (xi

1, xj
2)

+ (xj+1
2 − x2)

(xj+1
2 − xj

2)

(x1 − xi
1)

(xi+1
1 − xi

1)
f (xi+1

1 , xj
2)

+ (x2 − xj
2)

(xj+1
2 − xj

2)

(xi+1
1 − x1)

(xi+1
1 − xi

1)
f (xi

1, xj+1
2)

+ (x2 − xj
2)

(xj+1
2 − xj

2)

(x1 − xi
1)

(xi+1
1 − xi

1)
f (xi+1

1 , xj+1
2)

To see how this definition can be generalized to higher dimensions, we remark that
the above function fl can be thought of as the result of iteratively applying an affine
interpolation on each dimension. More concretely, we denote by λf (k; xi

k, xi+1
k) the

function obtained by applying an affine interpolation of f on the kth dimension at two
points xi

k and xi+1
k . Let

p(x) = λf (1; xi
1, xi+1

1) and q(x) = λf (2; xj
2, xj+1

2).

Then, the function fl for the rectangle [xi
1, xi+1

1] × [xj
2, xj+1

2] can be rewritten as:

fl(x) = λp(2; xj
2, xj+1

2) = λq(1; xi
1, xi+1

1).

As in the case of affine interpolation over a simplicial mesh, the piecewise multi-affine
function fl which interpolates f at all mesh vertices is unique and continuous over �.
The following proposition gives a bound on the multi-affine interpolation error, which
is also quadratic in the mesh size if f is C2. The proof can be found in [30].

Proposition 3 If f is C2 on � with bounded second order derivatives then

ε(h) = sup
x∈�

||f (x) − fl(x)|| ≤ M
8

h2 = ε(h)

where M = ∑i=n
i=1 ||Dxi f ||2 with Dxi f = ∂

∂xi
J and J is the Jacobian matrix of f .

Again, the above error bound ε(h) is used to define the input value set Ul of the
composite vector field F .

Besides the advantage of rectangular meshes over simplicial meshes with respect
to the complexity of the hybridization, the computation of set intersection occurring
at the transitions between adjacent mesh elements is also simpler (due to the axis-
aligned boundary between the mesh elements). Then, reachability computation for the
approximate piecewise multi-affine system can be done using the method proposed
in [8]. The main idea of this method is to project away some continuous variables and
consider them as inputs taking values in the corresponding mesh element ranges. This
results in a piecewise bilinear system with uncertain inputs, which is then handled by
a reachability analysis method using the Maximum principle. Alternatively, one can
apply our recent method for polynomial systems [17] which exploits the geometric
properties of polynomial maps without resorting to variable projection.

468 E. Asarin et al.

5.3 Convergence

Thus, we have completely defined a piecewise affine or multi-affine vector field F . The
following result is a direct consequence of the above construction of the hybridization.

Theorem 5 The piecewise affine vector field F is a conservative approximation of f ,
and the precision π(F , f) is bounded by 2ε(h).

We can see that the composite vector field F converges uniformly to f with respect
to the space discretization size, that is the mesh size h. Therefore, regarding reach-
ability analysis, Theorem 2 shows that the continuous traces of H(F) converges to the
continuous traces of the original system with the same rate as the composite vector
field F converges to f . In the case where f is a C2 function, this rate is quadratic.
As mentioned earlier, reachability analysis of H(F) can be done using any of the
available methods for piecewise affine or multi-affine systems.

However, it should be noted from (2) that the error bound diverges exponentially
in the duration of the traces. Hence, when the verification requires the computation
of the reachable set for a long interval of time, the error bound given by Theorem 2
might be large. However, for a system with an attractor that attracts all the traces of
the system (that is, the basin of attraction is the whole state space), using Theorem 4,
we can prove the following convergence result concerning the reachable set approxi-
mation. Given a mesh size h, we denote by Fh the composite vector field constructed
as shown in Sect. 5.1.2.

Corollary 1 Let X0 ⊂ � be a compact set of initial states. If the dynamical system D
has an attractor which attracts all the trajectories of D, then there exists a mesh size
h′ such that for all h ≤ h′ the distance between the reachable set of D and that of the
hybridization H(Fh) is bounded. Moreover,

lim
h→0

dH (Reachc(D, X0), Reachc(H(Fh), X0)) = 0

where dH denotes the Hausdorff distance.

6 Applications

We have implemented the hybridization method and integrated it in the verification
tool d/dt [6,7]. The tool d/dt was initially designed to handle the following class of
hybrid systems: the continuous dynamics are linear and possibly with bounded uncer-
tain inputs, and the guard and staying conditions associated with discrete transitions
and locations are described by linear contraints (or convex polytopes). The main func-
tionality of the tool is the verification of safety and reachability properties, based on
reachable set computations. The integration of the hybridization method in the tool
extended its scope to hybrid systems with nonlinear continuous dynamics. We have
experimented this new functionality of the tool on various applications [8,9,18]. In
this section, we illustrate the method with some examples.

Before continuing, we remark that in the implementation of the hybridization
method, we use a dynamical construction of the mesh, that is, only the cells around
the trajectories under exploration are created. This is an important advantage of
the hybridization approach, compared to the grid-based approaches that requires the

Hybridization methods for the analysis of nonlinear systems 469

whole mesh to be constructed before starting the computation (such as [44,50]). How-
ever, in our approach, treating the transitions between the cells requires computing the
intersection with the cell boundaries, which is expensive especially in high dimensions.
We are currently working on a method that reduces this intersection computation by
defining a transient dynamics in a neighborhood of the cell boundaries.

The Van der Pol System

The first example is the two dimensional Van der Pol oscillator:

{
ẋ(t) = y(t)
ẏ(t) = y(t)(1 − x2(t)) − x(t)

It is well-known that the Van der Pol oscillator has a limit cycle which attracts all the
trajectories of the system. Thus, it satisfies the condition of Corollary 1. We used a
triangular mesh of size h = 0.05 to construct the hybridization. In this example, we
use the bound in Proposition 2. An input was added to account for the approximation
error. The reachable set computed by the hybridization method is shown in Fig. 1,
where the dotted set represents the set of initial values. The figure shows that the
reachable set indeed contains the limit cycle.

Biquad lowpass filter

The second application is a second order biquad lowpass filter circuit, shown in Fig. 2.
This example is taken from [31]. Recently, analog and mixed signal circuit design has
attracted a lot of attention of researchers in microelectronic systems design. With
this example, we attemped to show the applicability of hybrid systems techniques to
formal verification of such circuits.

Fig. 1 Reachable set of the Van der Pol oscillator

470 E. Asarin et al.

Fig. 2 Lowpass filter

The behavior of the circuit can be described by the following differential-algebraic
equations:

u̇C1 = 7 uC2 + uo − uC1
C1R2

, (11)

u̇C2 = Ui − uC2 − uo
C2R1

− uC2 + uo − uC1
C2R2

, (12)

uo − Vmax tanh
(

(uC2−uo)Ve
Vmax

)
+ Uom = 0, (13)

io = −C2 u̇C2, (14)

Uom = V(i0), (15)

V(io) = Kio + 0.5
√

K1i2o − 2K1ioIs + K1I2
s + K2

−0.5
√

K1i2o + 2K1ioIs + K1I2
s + K2. (16)

The state variables are (uC1, uC2), the voltages across the capacitors C1 and C2. The
algebraic constraints (13–16) come from the characteristics of the operational ampli-
fier (OPAM) where uo is the output voltage and Uom is to the output voltage decrease
caused by the output current io. The other variables are circuit parameters. By differ-
entiating (13) the circuit equations can be transformed into a nonlinear ODE on
a manifold as with state variables x = (uC1, uC2, uo). Then, the resulting system is
treated using the method for ODEs on manifolds [18]. This method indeed combines
the hybridization method to deal with the differential part of the dynamics and the
projection integration approach to deal with the algebraic part.

A property of interest to verify is the absence of overshoots. The parameters of
the circuit equations are: K = 0.1e11, K1 = 0.1e21, K2 = 2e4, Ve = 1e4, Vmax = 1.5,
Is = 0.5e − 2. For the highly damped case (where C1 = 0.5e − 8, C2 = 2e − 8, and
R1 = R2 = 1e6), Figure 3 shows the projection of the reachable set on uC1 and uC2.
The reachable set here is represented as a set of convex polyhedra. The hybridization
was done using a mesh of size h = 0.1. The initial set is a box: uC1 ∈ [−0.3, 0.3],
uC2 ∈ [−0.3, 0.3] and uo ∈ [−0.2, 0.2]. From the figure, one can see that uC1 indeed
remains in the range [−2, 2], as desired. Details on the computation results can be
found in [18].

Hybridization methods for the analysis of nonlinear systems 471

Fig. 3 Reachable set
projected on variables uC1
and uC2

7 Concluding remarks

In this paper, we proposed a framework for approximate analysis of complex non-
linear systems by means of approximate systems that we call hybridizations. We also
developed two methods for constructing hybridizations, which allows analyzing the
original system with an arbitrary precision and a good convergence rate. These results
can be readily applied to the verification of interesting properties of hybrid systems.

The results presented in the paper open various interesting directions for future
research. One direction concerns the problem of hierarchical mesh refinement that
is guided by the information obtained in the process of proving the property, as
in the abstraction approaches. Another promising direction is to use mixed rectan-
gular-simplicial meshes in order to achieve a good trade-off between accuracy and
computational cost. In addition, the convergence can be improved by using higher
degree approximants, such as piecewise quadratic, and the reachability method for
polynomial systems [17] can then be used. Finally, an important theoretical question
to address is whether other new properties can be verified using the hybridization
approach.

Acknowledgments We would like to thank our colleagues at the laboratories Verimag and LMC in
Grenoble for their collaboration and encouragement. We would also like to thank the anonymous
reviewers for their useful comments and suggestions.

Appendix

Proof of Proposition 1

Proposition 4 If f is λ-Lipschitz, then

ε(h) ≤ h
2n λ

n + 1
= ε(h).

472 E. Asarin et al.

Proof We first estimate an upper bound of ||f (x) − fl(x)|| for all points x inside a
mesh element Ml. Let v be a vertex of Ml. By the triangle inequality, we have
||f (x) − fl(x)|| ≤ ||f (x) − f (v)|| + ||f (v) − fl(x)||. The function f is λ-Lipschitz, then

||f (x) − fl(x)|| ≤ λ||x − v|| + ||f (v) − fl(x)||. (17)

Let V(Ml) = {v0, v1, . . . , vn}. A point x ∈ V(Ml) can be written as:

x =
n∑

i=0

αi vi, with
n∑

i=0

αi = 1 and ∀ i ∈ {1, . . . , n}, αi ≥ 0. (18)

Since fl is affine, we have

fl(x) =
n∑

i=0

αi fl(vi) =
n∑

i=0

αi f (vi).

Thus,

||f (v) − fl(x)|| ≤ ||f (v) −
n∑

i=0

αi f (vi)|| ≤
n∑

i=0

αi||f (v) − f (vi)||

≤ λ

n∑

i=0

αi||v − vi||.

Equation (17) becomes

||f (x) − fl(x)|| ≤ 2λ

n∑

i=0

αi||v − vi||.

Note that the above inequality holds for any vertex v ∈ V(Ml). We observe, from the
conditions (18), that there exists j ∈ {0, . . . , n} such that αj ≥ 1

n+1 . Since for all i �= j,
||vi − vj|| ≤ h then

||f (x) − fl(x)|| ≤ 2λ

n∑

i=0

αi||vj − vi|| ≤ 2λ(1 − αj)h ≤ h
2n λ

n + 1
.

This completes the proof of the proposition. ��
An important remark is that the second partial derivatives of the linear approximation
fl vanish; therefore, if f is a C2 function, we can obtain a better error bound. Excep-
tionally, to write the second partial derivatives of f , we use superscripts to indicate
the components of f , that is f = (f 1, f 2, . . . , f n).

Proof of Proposition 2

Proposition 5 If f is C2 on � with bounded second order derivatives then

ε(h) ≤ Kn2

2(n + 1)2 h2 = ε(h)

where

K = max
i∈{1,...,n}

sup
x∈�

p1=n∑

p1=1

p2=n∑

p2=1

∣
∣
∣
∣

∂2f i(x)

∂xp1∂xp2

∣
∣
∣
∣ .

Hybridization methods for the analysis of nonlinear systems 473

Proof For a given mesh element Ml, we define the function e(x) = f i(x) − f i
l (x)

where f i and f i
l denotes the i-th components of the vector fields f and fl. Let x∗ =

arg maxx∈Ml |e(x)| (note that the simplex Ml is compact). Let v be a vertex of Ml,
and all points in the line segment connecting x∗ and v can be written as: x(γ) =
x∗ + γ (v − x∗), γ ∈ [0, 1]. To determine a bound on e(x∗), we define a function
z(γ) = e(x(γ)) for γ ∈ [0, 1]. Expanding z with respect to γ gives

z(1) = z(0) + dz
dγ

(0) +
1∫

0

d2z
dγ 2 (s) (1 − s)ds. (19)

We can see that dx(γ)/dγ = (v − x∗). Thus,

dz
dγ

(γ) =
p1=n∑

p1=1

∂e
∂xp1

(x(γ)) (vp1 − x∗
p1

),

d2z
dγ 2 (γ) =

p1=n∑

p1=1

p2=n∑

p2=1

∂2e
∂xp1∂xp2

(x(γ)) (vp1 − x∗
p1

) (vp2 − x∗
p2

).

Since the second order derivatives of fl vanish, then

∀ p1, p2 ∈ {1, . . . , n}, ∂2e
∂xp1∂xp2

= ∂2f i

∂xp1∂xp2

.

Similar to the proof of Lemma 1, we can show that there exists v ∈ V(Ml) such that
||v − x∗|| ≤ hn/(n + 1). Then, using the bound K on the second order derivatives of
the function f , we obtain

∣
∣
∣
∣

d2z
dγ 2 (γ)

∣
∣
∣
∣ ≤ h2 n2 K

(n + 1)2 .

In addition, |e(x)| attains a maximum at x∗, which implies that dz(0)/dγ = 0. By
definition of the interpolating function, f i(v) = f i

l (v), then z(1) = 0. Therefore, (19)
becomes:

f i(x∗) − f i
l (x

∗) +
1∫

0

d2z
dγ 2 (s) (1 − s)ds = 0.

Using the above bound on the second order derivative of z(γ), we get

|f i(x∗) − f i
l (x

∗)| ≤ h2 n2 K
(n + 1)2

1∫

0

(1 − s)ds = h2 n2 K
2 (n + 1)2 .

We complete the proof by remarking that such an equality holds for all components
of the vector fields f and fl. ��

474 E. Asarin et al.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A.,
Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1),
3–34 (1995)

2. Alur, R., Dang, T., Ivancic, F.: Counter-example guided predicate abstraction of hybrid sys-
tems. Theor. Comput. Sci. 354(2), 250–271 (2006)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
4. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid sys-

tems. Proc. IEEE 88(2), 971–984 (2000)
5. Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimination. In: Di

Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) Hybrid Systems: Computation and Control,
vol. 2034 in LNCS, pp. 63–75. Springer, Heidelberg (2001)

6. Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate reachability analysis of piecewise-
linear dynamical systems. In: Krogh, B.H., Lynch, N. (eds.) Hybrid Systems: Computation and
Control, vol. 1790 in LNCS, pp. 20–31. Springer, Heidelberg (2000)

7. Asarin, E., Dang, T., Maler, O.: d/dt: A tool for verification of hybrid systems. In: Ed Brinksma,
Kim Guldstrand Larsen (eds.) Computer Aided Verification, vol. 2404 in LNCS, pp. 365–370.
Springer, Heidelberg (2002)

8. Asarin, E., Dang, T.: Abstraction by projection and application to multi-affine systems. In: Alur,
R., Pappas, G.J. (eds) Hybrid Systems: Control and Computation, vol. 2993 LNCS, pp. 32–47.
Springer, Heidelberg (2004)

9. Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservative
approximations. In: Maler, O., Pnueli, A. (eds.) Hybrid Systems: Computation and Control, vol.
2623 in LNCS, pp. 20–35. Springer, Heidelberg (2003)

10. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having piecewise-
constant derivatives. Theor. Comput. Sci. 138(1), 35–66 (1995)

11. Aubin, J.-P., Lygeros, J., Quincampoix, M., Sastry, S., Seube, N.: Impulse differential inclusions: a
viability approach to hybrid systems. IEEE Trans. Autom. Control, 47(1), 2–20 (2002)

12. Barringer, H., Kuiper, R., Pnueli, A.: A really abstract concurrent model and its temporal logic.
In: POPL’86: Principles of Programming Languages, pp. 173–183 (1986)

13. Botchkarev, O., Tripakis, S.: Verification of hybrid systems with linear differential inclusions
using ellipsoidal approximations. In: Krogh B., Lynch N. (eds.), Hybrid Systems: Computation
and Control, vol. 1790 in LNCS, pp. 73–88. Springer, Heidelberg (2000)

14. Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: model and
optimal control theory. IEEE Trans. on Automatic Control, 43(1), 31–45 (1998)

15. Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata using polygo-
nal flow pipe approximations. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) Hybrid systems:
Computation and Control, vol. 1569 in LNCS, pp. 76–90. Springer, Heidelberg (1999)

16. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction
and counterexample-guided refinement in model checking of hybrid systems. Int. J. Foundations
of Comput. Sci. 14(4), 583–604 (2003)

17. Dang, T.: Approximate reachability computation for polynomial systems. In: Hespanha, J., Tiwari,
A. (eds.) Hybrid Systems: Control and Computation, vol. 3927 in LNCS, pp. 138–152. Springer,
Heidelberg (2006)

18. Dang, T., Donze, A., Maler, O.: Verification of analog and mixed-signal circuits using hybrid
systems techniques. In: Hu, A., Martin, A. (eds.) Formal Methods for Computer Aided Design,
vol. 3312 in LNCS, pp. 21–36. Springer, Heidelberg (2004)

19. Dang, T., Maler, O.: Reachability Analysis via Face Lifting. In: Henzinger, T.A., Sastry, S. (eds.),
Hybrid Systems: Computation and Control, vol. 1386 in LNCS, pp. 96–109. Springer, Heidelberg
(1998)

20. Davoren, J.M., Coulthard, V., Markey, N., Moor, T.: Non-deterministic temporal logics for gen-
eral flow systems. In: Alur, R., G.J. Pappas, G.J. (eds.) Hybrid Systems: Computation and Control
HSCC04, vol. 2993 in LNCS, pp. 280–295. Springer, Heidelberg (2004)

21. Decarlo, R.A., Branicky, M.S., Pettersson, S., Lennartson, B.: Perspectives and results on the
stability and stabilizability of hybrid systems. Proc. the IEEE, 88(7), 1069–1082 (2000)

22. Della Dora, J., Maignan, A., Mirica-Ruse, M., Yovine, S.: Hybrid computation. In: Proceedings
International Symposium on Symbolic and Algebraic Computation ISSAC’01 (2001)

23. Dieudonné, J.: Calcul Infinitésimal. Collection Méthodes. Hermann, Paris (1968)

Hybridization methods for the analysis of nonlinear systems 475

24. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical
Computer Science, vol. B, pp. 995–1072. Elsevier, Amsterdam (1990)

25. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari, M.,
Thiele, L. (eds.) Hybrid Systems: Computation and Control, vol. 3414 in LNCS, pp. 258–273.
Springer, Heidelberg (2005)

26. Girard, A.: Approximate solutions of ODEs using piecewise linear vector fields. In: Proceedings
of the Int. Workshop on Computer Algebra in Scientific Computing CASC’02 (2002)

27. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele,
L. (eds.) Hybrid Systems: Computation and Control, vol. 3414 in LNCS, pp. 291–305. Springer,
Heidelberg (2005)

28. Greenstreet, M.R., Mitchell, I.: Reachability analysis using polygonal projections. In: Vaandrag-
er, F., van Schuppen, J.H. (eds.) Hybrid Systems: Computation and Control, vol. 1569 in LNCS,
pp. 76–90. Springer, Heidelberg (1999)

29. Habets, L.C.G.J.M., van Schuppen, J.H.: Control of piecewise-linear hybrid systems on simpli-
ces and rectangles. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) Hybrid systems:
Computation and Control, vol.. 2034 LNCS, pp. 261–273. Springer, Heidelberg (2001)

30. Hämmerlin, G., Karl-Heinz Hoffmann, K.-H.: Numerical Mathematics. Springer, Heidel-
berg (1991)

31. Hartong, W., Hedrich, L., Barke, E.: On discrete modelling and model checking for nonlinear
analog systems. In: Ed Brinksma, Kim Guldstrand Larsen (eds.) Computer Aided Verification,
vol. 2404 in LNCS, pp. 401–413. Springer, Heidelberg (2002)

32. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: A model checker for hybrid systems. Softw.
Tools Technol. Transf. 1(1–2), 110–122 (1997)

33. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata?
J. Comput. Syst. Sci. 57(1), 94–124 (1998)

34. Hubbard, J., West, B.: Differential equations: a dynamical system approach, part 2: higher dimen-
sional systems. Texts in Applied Mathematics, 18 Springer, Heidelberg (1995)

35. Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov functions for hybrid
systems. IEEE Trans. Autom. Control 43(4), 555–559 (1998)

36. Kloetzer, M., Belta, C.: Reachability analysis of multi-affine systems. In: Hespanha, J., Tiwari,
A. (eds.) Hybrid Systems: Computation and Control, vol. 3927 in LNCS, pp. 348–362. Springer,
Heidelberg (2006)

37. Kratz, F., Sokolsky, O., Pappas, G.J., Lee, I.: R-Charon : a modeling language for reconfigurable
hybrid systems. In: Hespanha, J., Tiwari, A. (eds.) Hybrid Systems: Computation and Control,
vol. 3927 in LNCS, pp. 392–406. Springer, Heidelberg (2006)

38. Kuhn, H.W.: Some combinatorial lemmas in topology. IBM J. Res. Dev. 4(5), 518–524 (1960)
39. Kurzhanski, A., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Krogh, B., Lynch,

N. (eds.) Hybrid Systems: Computation and Control, vol. 1790 in LNCS, pp. 202–214. Springer,
Heidelberg (2000)

40. Lafferriere, G., Pappas, G., Yovine, S.: Symbolic reachability computation of families of linear
vector fields. J. Symbolic Comput. 32(3), 231–253 (2001)

41. Larsen, K., Pettersson, P., Yi, W.: Uppaal in a nutshell. Soft. Tools Technol. Transf. 1(1–2), 134–
152 (1997)

42. Liberzon, D.: Switching in systems and control. Volume in series Systems and Control: Founda-
tions and Applications. Birkhauser, Boston (2003)

43. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems: specifica-
tion. Springer, New York (1991)

44. Mitchell, I., Templeton, J.A.: A toolbox of Hamilton-Jacobi solvers for analysis of nondeterminis-
tic continuous and hybrid Systems. In: Morari, M., Thiele, L. (eds.) Hybrid Systems: Computation
and Control, vol. 3414 in LNCS, pp. 480–494. Springer, Heidelberg (2005)

45. Kvasnica, M., Grieder, P., Baoti, M., Morari, M.: Multi-Parametric Toolbox (MPT). In: Alur, R.,
Pappas, G.J. (eds.) Hybrid Systems: Computation and Control, vol. 2993 in LNCS, pp. 448–462.
Springer, Heidelberg (2004)

46. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur,
A., Pappas, G. (eds.) Hybrid Systems: Computation and Control, vol. 2993 LNCS, pp. 477–492.
Springer, Heidelberg (2004)

47. Prajna, S., Papachristodoulou, A.: Analysis of switched and hybrid systems - beyond piecewise
quadratic methods. In: Proceedings of the American Control Conference ACC (2003)

476 E. Asarin et al.

48. Puri, A., Varaiya, P.: Verification of sybrid systems using abstraction. In: Antsaklis, P., Kohn,
W., Nerode, A., Sastry, S. (eds.) Hybrid Systems II, vol. 999 in LNCS, pp. 359–369, Springer,
Heidelberg (1995)

49. Rondepierre, A., Dumas, J.G.: Algorithms for hybrid optimal control. Technical report IMAG-
ccsd-00004191, arXiv math.OC/0502172 (2005)

50. Saint-Pierre, P.: Approximation of Viability Kernels and Capture Basin for Hybrid Systems. In:
Proceedings of European Control Conference ECC’01, pp. 2776–2783 (2001)

51. Sastry, S.: Nonlinear systems: analysis, stability and control. Springer, Heidelberg (1999)
52. Stuart, A.M., Humphries, A.R.: Dynamical systems and numerical analysis. Cambridge

Monographs on Applied and Computational Mathematics. Cambridge University Press,
Cambridge (1996)

53. Stursberg, O., Kowalewski, S.: Approximating switched continuous systems by rectangular auto-
mata. In: Proceedings European Control Conference ECC, (1999)

54. Tabuada, P., Pappas, G.: Model-checking LTL over controllable linear systems is decidable,
In: Maler, O., Pnueli, A. (eds.) Hybrid Systems: Computation and Control, vol. 2623 LNCS,
pp. 498–513, Springer, Heidelberg (2003)

55. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C., Greenstreet,
M.R. (eds.) Hybrid Systems: Computation and Control, vol. 2289 LNCS, pp. 465–478, (2002)

56. Tiwari, A., Khanna, A.: Nonlinear systems: approximating reach sets. In: Alur, R., Pappas,
G.J. (eds.) Hybrid Systems: Computation and Control, vol. 2993 LNCS, pp. 600–614. Springer,
Heidelberg (2004)

57. Tomlin, C., Mitchell, I., Bayen, A., Oishi, M.: Computational techniques for the verification of
hybrid systems. Proc. IEEE 91(7), 986–1001 (2003)

58. Torrisi, F.D., Bemporad, A.: HYSDEL - A tool for generating computational hybrid mod-
els. IEEE Trans. Control Syst. Technol. 12(2), 235–249 (2004)

59. Van der Schaft, A.J., Schumacher, J.M.: An introduction to hybrid dynamical systems. Lect. Notes
in Control and Information Sciences, Vol 251. Springer, London, (2000)

60. Yovine, S.: Kronos: A verification tool for real-time systems. Soft. Tools Technol. Trans. 1(1–2),
123–133 (1997)

	Hybridization methods for the analysis of nonlinear systems
	Abstract
	Introduction
	Hybrid systems framework
	Hybrid model
	Properties of hybrid systems
	Hybrid systems analysis: a brief review
	Principles of hybridization
	Approximation properties of hybridizations
	Trace inclusion and approximation
	Preservation of attractors
	Effective construction of hybridizations
	Affine hybridization
	Constructing the mesh
	Defining the hybridization
	Multi-affine hybridization
	Constructing the mesh
	Defining the hybridization
	Convergence
	Applications
	Concluding remarks
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

