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Abstract. Over-approximating the set of all reachable states of a given system
is an important task for the verification of safety properties. Such an unbounded
time verification is in particular challenging for hybrid systems. We recently de-
veloped an algorithm that over-approximates the set of all reachable states of a
given affine hybrid automata by performing linear template-based abstract inter-
pretation [4]. In this article we extend the previous results by adding uncertainty
to the model of affine hybrid automata. Uncertainty can be used for abstracting
the behavior of non-linear hybrid systems. We adapt our techniques to this model
and show that, w.r.t. given linear templates, the abstract reachability problem is
still in coNP by reducing abstract reachability for affine hybrid automata with
uncertainty to abstract reachability for affine programs (affine hybrid automata
where only discrete transitions are allowed). We thus provide a new connection
between a continuous time model and a purely discrete model.

1 Introduction

Hybrid systems have been widely recognized as a mathematical model appropriate for
describing and reasoning about the interactions of software, modeled by discrete sys-
tems such as automata, with the physical world, described by continuous systems such
as differential equations. Cyber-physical systems are recent applications involving such
interactions. In addition, many applications of cyber-physical systems must be reli-
able and safe, not only for economic reasons but also for human safety. Automated
verification technologies are thus indispensable for the efficiency of their design. Un-
certainty is an important feature of cyber-physical systems. Indeed, accurate models
of some of their components may not be available or reliability of interoperation of
their heterogeneous subsystems may not be guantanteed. Moreover, modelling com-
plex cyber-physical systems with reasonable accuracy is a very challenging task; there-
fore uncertainty in their models is often unavoidable. While uncertainty can result from
imprecision in modelling, it can also result from the abstraction and approximation pro-
cedures frequenty used in systems design. Indeed, the dynamics of real-life systems are
often non-linear, for which most common analysis techniques involve some “lineariza-
tion” step, since the resulting linear approximation can be treated using well-developed
numerical and symbolic methods.
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In this article, we study affine hybrid automata with uncertainty and propose a method
for computing invariants of such systems. Such an invariant, being a conservative ap-
proximation of the reachable set, can be used to verify safety proterties.

Hybrid automata with linear continuous dynamics have been a focus in hybrid sys-
tems verification, and a number of tools for verifying such systems have been developed
[1, 2, 5, 8, 9]. The state-of-the-art reachability computation techniques can efficiently
handle continuous systems described by linear differential equations with uncertain in-
puts of up to a few hundreds of variables [7]. However, their extension to handle hybrid
systems is still limited. Unbounded time reachability analysis of hybrid systems with
linear continuous dynamics remains a challenge.

The novelty of our approach lies in its ability to efficiently handle unbounded time
verification. Indeed, by exporting abstract interpretation techniques in hybrid systems
verification, we avoid the complexity of the step-by-step approximations of reachable
sets in the continuous phase. Our work is close in spirit to the works on barrier cer-
tificates [10], polynomial invariants [14] and, in particular polyhedral invariants [12].
Computationally, an important advantage of our approach is the application of efficient
techniques for computing invariants and abstract semantics, initially developed for pro-
gram analysis, to verify hybrid systems.

2 Affine Hybrid Automata with Uncertainty

The set of real numbers is denoted by R. The complete linearly ordered set R∪{−∞,∞}
is denoted by R. The transpose of a matrix A is denoted by A�. We denote the i-th row
(resp. the j-th column) of a matrix A by Ai· (resp. A·j). Accordingly, Ai·j denotes the
component in the i-th row and the j-th column. We also use this notation for vectors
and functions f : X → Y k, i.e., fi·(x) = (f(x))i· for all x ∈ X and all i ∈ {1, . . . , k}.
For x, y ∈ R

n
, we write x ≤ y iff xi· ≤ yi· for all i ∈ {1, . . . , n}. The complete lattice

R
n

is partially ordered by ≤. We write x < y iff x ≤ y and x �= y. The elements x
and y are called comparable iff x ≤ y or y ≤ x. Let D be a partially ordered set. We
denote the least upper bound and the greatest lower bound of a set X ⊆ D by

∨
X and∧

X , respectively, provided that they exist. Their existence is in particular guaranteed
if D is a complete lattice. The least element

∨
∅ (resp. the greatest element

∧
∅) is de-

noted by ⊥ (resp. �), provided that it exists. We define the binary operators ∨ and ∧ by
x∨ y :=

∨
{x, y} and x∧ y :=

∧
{x, y} for all x, y ∈ D, respectively. If D is a linearly

ordered set (for instance R or R), then ∨ is the maximum operator and ∧ the minimum
operator. A function f : D1 → D2, where D1 and D2 are partially ordered sets, is called
monotone iff x ≤ y implies f(x) ≤ f(y) for all x, y ∈ D1. The fixpoint theorem of
Knaster/Tarski [13] states that any monotone self-map f : D → D on a complete lattice
D has a least fixpoint μf =

∧
{x ∈ D | x ≥ f(x)}.

A mapping V : R
n → 2R

n

is called a vector field with uncertainty over R
n. It assigns

a set V (x) ⊆ R
n of vectors to each state x ∈ R

n. We denote the set {x ∈ R
n | V (x) �=

∅} by dom(V ). A vector field with uncertainty over R
n is called affine iff there exists

some convex polyhedron P ⊆ R
2n such that V (x) = {x′ ∈ R

n | (x, x′) ∈ P } for all
x ∈ R

n. The set dom(V ) is a convex polyhedron, whenever V is affine. In the remain-
der of this article we assume w.l.o.g. that all affine vector fields with uncertainty are
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specified by existentially quantified conjunctions of non-strict inequalities and equal-
ities with free variables x and x′ that take values from R

n. We say that a continuous
differentiable time trajectory τ : [0, δ] → R

n (δ ∈ R≥0) evolves from τ(0) to τ(δ)
according to the vector field with uncertainty V iff τ̇ (t) ∈ V (τ(t)) for all t ∈ [0, δ).

An affine hybrid automaton with uncertainty differs from an affine hybrid automaton
on the description of the continuous dynamics. They are now described by affine vector
fields with uncertainty instead of ordinary affine vector fields: A hybrid automaton with
uncertainty Ψ = (n,L, T , Θ,D, l0) consists of the following components: n is the
number of continuous variables. L is a finite set of locations. l0 ∈ L is the initial
location. T is a finite set of discrete transitions. Each transition (l1, Ξ, l2) ∈ T consists
of a move from the location l1 ∈ L to the location l2 ∈ L, and an assertion Ξ ⊆ (Rn)2.
Θ ⊆ R

n is the set of possible initial values of the continuous variables at l0. D is a
mapping that maps each l ∈ L to a vector field with uncertainty D(l).

At each location l ∈ L, the values of the continuous variables evolve according to
D(l). A hybrid automaton with uncertainty Ψ = (n,L, T , Θ,D, l0) is called affine
iff the following statements are fulfilled: (1) The initial condition Θ and all transition
relations Ξ are convex polyhedra (we identify (Rn)2 with R

2n). (2) The dynamics D(l)
at each location l ∈ L is an affine vector field with uncertainty. In the following we will
assume that all convex polyhedra are specified by existentially quantified conjunctions
of linear equalities and non-strict linear inequalities.

A computation is a possibly infinite sequence (l0, x0), (l1, x1), . . ., where x0 ∈ Θ
and, for all i ∈ N, one of the following statements hold: (Discrete Consecution) There
exists a discrete transition (li, Ξ, li+1) ∈ T such that (xi, xi+1) ∈ Ξ . (Continuous
Consecution) li = li+1 and there exists a δ ∈ R>0 and a continuous differentiable time
trajectory τ : [0, δ] that evolves from xi to xi+1 according to D(li).

As an abstract domain [3] we use template polyhedra as introduced by Sankara-
narayanan et al. [11]. For that we fix a template constraint matrix T ∈ R

m×n, where
we w.l.o.g. assume that Ti· �= (0, . . . , 0) for every i ∈ {1, . . . , m}. Each row of T
represents a linear template (a linear function). Each template relates n variables. The
concretization γT : R

m → 2R
n

and the abstraction αT : 2R
n → R

m
are defined by

γT (d) := {x ∈ R
n | Tx ≤ d} for all d ∈ R

m
, and αT (X) := min{d ∈ R

m | γT (d) ⊇
X} for all X ⊆ R

n. We omit the subscripts T , whenever they are clear from the context.
As shown by Sankaranarayanan et al. [11], α and γ form a Galois connection.Hence,
α ◦ γ is a downward closure operator, and γ ◦ α is an upward closure operator. This in
particular implies that α ◦ γ and γ ◦ α are monotone. In order to simplify notations, we
denote α ◦ γ by cl. The abstract elements from α(2R

n

) = cl(R
m

) are called closed.
The convex polyhedra from the set γ(R

m
) = γ(α(2R

n

)) are called template polyhedra.
For all X ⊆ R

n, we moreover define the operator clX on R
m

by clX(d) := α(γ(d)∩
X) for all d ∈ R

m
. The operator clX is a downward closure operator. Moreover, note

that clR
n

= cl. Similar to Sankaranarayanan et al. [11] we get

clXi· (d) = sup{Ti·x | x ∈ X and Tx ≤ d} ∀X ⊆ R
n, i ∈ {1, . . . , m}, d ∈ R

m
. (1)

Let V be a vector field with uncertainty over R
n. A set X ⊆ R

n is called an invari-
ant of V iff every trajectory that starts in X and evolves according to V stays in X .
Before going further, we introduce the following notation: For all d ∈ R

m
and all
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R ⊆ {1, . . . , m}, we define d|R ∈ R
m

by (d|R)i· = di·, if i ∈ R, and (d|R)i· = ∞, if
i /∈ R (for all i ∈ {1, . . . , m}).

Assume now that the vector field with uncertainty V is affine. A template polyhedron
P ∈ γ(R

m
) is called a positive invariant of V iff there exists some R ⊆ {1, . . . , m}

such that the following properties are fulfilled: (1) Ti·v ≤ 0 for all v ∈ V (x) and all
x ∈ P with Ti·x = αi·(P ) and all i ∈ R. (2) P ⊇ γ(α(P )|R) ∩ dom(V ).

Each i ∈ {1, . . . , m} stands for a face of the template polyhedron P . Condition 1
ensures that there is no point x on the face i such that some vector from V (x) points to
the outside. Condition 2 ensures that all faces i that are not from R are implied by the
faces from R and the staying condition dom(V ).

We emphasize that our definition of positive invariants differs from the ones we used
in [4]. In [4], we assumed that the staying condition is a template polyhedron that is
represented by a vector from R

m
. Our new definition does not require this precondition

to be fulfilled. We do so, because the staying condition dom(V ) is obtained from V
by projecting out variables. However, we want to avoid this, since it might be costly
to compute the templates that are necessary to fulfill that precondition (polynomial-
time algorithms for projecting out a set of variables are not known). Hence, we cannot
w.l.o.g. assume that dom(V ) is a template polyhedron. The advantage of our new defi-
nition is that it does not require such technical preconditions.

We emphasize that every template polyhedron that is positive invariant according
to the definition in [4] is also a positive invariant according to the definition in this
article, i.e., the above definition gives us additional precision. The two notions coincide,
whenever dom(V ) is a template polyhedron.

Our goal is to compute the abstract semantics for affine hybrid automata with un-
certainty w.r.t. given linear templates. The abstract semantics for the affine hybrid au-
tomaton with uncertainty Ψ = (n,L, T , Θ,D, l0) (w.r.t. given linear templates that
are specified by T ) is the point-wise minimal mapping V �

� that maps every location

l ∈ L to a template polyhedron V �
�[l] ∈ γ(R

m
) and fulfills the following constraints:

(1) V �
�[l0] ⊇ Θ. (2) V �

�[l] is a positive invariant of D(l) for every location l ∈ L. (3)

x′ ∈ V �
�[l′] for all (l, Ξ, l′) ∈ T and all (x, x′) ∈ Ξ with x ∈ V �

�[l]. The existence of
such a point-wise minimal mapping will be ensured by our findings.

In order to verify safety properties, a problem one is interested in is abstract reach-
ability, which is the following decision problem: Decide whether or not, for a given
template constraint matrix T ∈ R

m×n, a given affine hybrid automaton with uncer-
tainty Ψ = (n,L, T , Θ,D, l0), and a given location l ∈ L, the statement V �

�[l] �= ∅
holds. The location l may represent an unsafe state. The decision problem then answers
the question, whether or not the unsafe state can be reached within the abstraction. The
system is safe, whenever this is not the case. If the unsafe state can be reached within
the abstraction, then either the system is unsafe or the abstraction is too coarse.

It is important to note that most existing hybrid systems verification techniques were
developed first for purely continuous systems (defined by ordinary differential equa-
tions) and were then adapted with some loss of precision to handle staying conditions in
hybrid automata. Our approach, in contrast, can handle in a unified manner differential
equations and differential algebraic inequalities (i.e. inequalities involving differential
and algebraic variables).
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3 From Affine Hybrid Automata to Affine Programs

The Time Elapse Operation We will firstly prepare our main result by studying the
time elapse operation. We will basically extend the results of Dang and Gawlitza [4] by
allowing uncertainty. Let V be an affine vector field with uncertainty. Firstly, we define
the operator ΔV on R

m
by ΔV

k·(d) := sup {Tk·v | x ∈ R
n, Tx ≤ d, Tk·x ≥ dk·, v ∈

V (x)} for all k ∈ {1, . . . , m} and all d ∈ R
m

with dk· < ∞. Note that ΔV
k·(d) = −∞,

whenever {v ∈ R
n | x ∈ R

n, Tx ≤ d, Tk·x ≥ dk·, v ∈ V (x)} = ∅. This is in
particular fulfilled, if there exists some i ∈ {1, . . . , m} with di· = −∞. Moreover,
we set ΔV

k·(d) := 0 for all k ∈ {1, . . . , m} and d ∈ R
m

with dk· = ∞. Intuitively,
ΔV

k·(d) > 0 iff there exists some point x on the face F := {x ∈ R
n | Tx ≤ d, Tk·x ≥

dk·} such that some vector v ∈ V (x) points to the outside. For all ε ∈ R
m
>0, we define

the operator fV,ε on R
m

by fV,ε(d) := d + ε�ΔV (d) for all d ∈ R
m

. An application
of the operator fV,ε corrects the bounds to the templates according to the vector field
with uncertainty V . Note that the staying condition (a.k.a. location invariant) dom(V ) is
not completely taken into account so far. More precisely, we have not taken care of the
second requirement of the definition of positive invariants. This will be done through
the operator cldom(V ). Similarly to Dang and Gawlitza [4], we get:

Lemma 1. Let ε ∈ R
m
>0 and d ∈ R

m
. The template polyhedron γ(d) is a positive

invariant of V iff d ≥ cldom(V )(cl(d) ∨ fV,ε(cl(d))). ��

In order to use the above lemma within a monotone framework, we have to ensure that
fV,ε ◦ cl is monotone. Then fV,ε ◦ cldom(V ) and F := cldom(V ) ◦ (cl ∨ fV,ε ◦ cl) are
monotone, too, and the fixpoint theorem of Knaster/Tarski [13] can be applied.1 The
operator fV,ε ◦ cl is monotone on R

m
, whenever the operator fV,ε is monotone on

cl(R
m

) (It is not always possible to choose an ε such that fV,ε is monotone on R
m

).
Analogously to Dang and Gawlitza [4], we get:

Lemma 2 (Monotonicity of fV,ε). In polynomial time we can compute an ε(0) ∈ R
m
>0

such that fV,ε is monotone on cl(R
m

), whenever ε ≤ ε(0). ��

Because of Lemma 2, we from now on assume that we have chosen an ε ∈ R
m
>0 such

that fV,ε ◦ cl and thus finally cldom(V ) ◦ (cl ∨ fV,ε ◦ cl) = cldom(V ) ◦ (id ∨ fV,ε) ◦ cl
is monotone. Therefore, for all sets Θ ⊆ R

n of values, there exists a least positive
invariant P of V which is a superset of Θ. It is given by γ(μ(α(Θ) ∨ cldom(V ) ◦ (cl ∨
fV,ε◦cl))). However, we want to have a simpler formulation that allows to perform time
elapse operations in polynomial time. In order to obtain such a simpler formulation, we
observe that μ(θ ∨ cldom(V ) ◦ (cl ∨ fV,ε ◦ cl)) = cldom(V )(μ(θ ∨ fV,ε ◦ cldom(V ))) for
all θ ∈ cldom(V )(R

m
). Here, θ denotes the function that returns θ for every argument.

Putting everything together, we obtain our main result for the time elapse operation:

Theorem 1 (The Time Elapse Operation). Let V be an affine vector field with un-
certainty over R

n, and Θ ⊆ R
n. Assume that ε ∈ R

m
>0 is chosen such that fV,ε ◦ cl is

monotone. The template polyhedron γ(α(Θ∪γ(μ(α(Θ∩dom(V ))∨fV,ε◦cldom(V )))))
is the least positive invariant of V which is a superset of Θ. ��

1 For mappings f, g : X → D, f ∨ g is defined by (f ∨ g)(x) := f(x) ∨ g(x) for all x ∈ X.
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The Abstract Semantic Inequalities We will now set up a system of inequalities over
R

m
whose least solution corresponds to the abstract semantics of the affine hybrid au-

tomaton with uncertainty Ψ . In the next subsection, we will construct an affine program
whose abstract semantics gives us the solution of this system of inequalities.

So far, we have ignored the discrete transitions. In order to take them into account,
we define an abstract semantics for discrete transitions (l, Ξ, l′) ∈ T . Recall that the
assertion Ξ ⊆ R

2n is a convex polyhedron (represented by an existentially quantified
conjunction of inequalities with free variables x and x′ that take values from R

n). The
collecting semantics �Ξ� of Ξ is defined by �Ξ�(X) := {y ∈ R

n | ∃x ∈ X .
(
x, y

)
∈

Ξ} for all X ⊆ R
n. The abstract semantics �Ξ�� of Ξ is defined by �Ξ�� := α◦�Ξ�◦γ.

The abstract semantics �Ξ�� safely over-approximates the collecting semantics �Ξ� and
the concrete semantics.

We are now going to define an abstract semantics V � for an affine hybrid automaton
Ψ = (n,L, T , Θ,D, l0) with uncertainty that corresponds to the abstract semantics V �

�
of Ψ . The abstract semantics V � of Ψ is the least solution to the following constraints:

A�[l0] ≥ α(Θ) A�[l′] ≥ �Ξ��(V�[l]) ∀(l, Ξ, l′) ∈ T
B�[l] ≥ cldom(D(l))(A�[l])) B�[l] ≥ fD(l),ε(l)(cldom(D(l))(B�[l])) ∀l ∈ L
V�[l] ≥ A�[l] V�[l] ≥ cldom(D(l))(B�[l])) ∀l ∈ L

The variables A�[l], B�[l], and V�[l] (for l ∈ L) take values from R
m

. A�[l] and B�[l]
are just auxiliary variables. The existence of the least solution is ensured by the fixpoint
theorem of Knaster/Tarski, since we assume that, for all locations l ∈ L, ε(l) ∈ R

m
>0

is chosen such that fD(l),ε(l) ◦ cl and thus fD(l),ε(l) ◦ cldom(D(l)) are monotone. The
existence of such an ε(l) is again ensured by Lemma 2.

The first constraint takes all possible initial values of the continuous variables at the
initial location l0 into account. The second constraint ensures that the template polyhe-
dron γ(V �[l′]) contains at least all values that can come through the discrete transition
(l, Ξ, l′). The remaining constraint ensure that the template polyhedron γ(V �[l]) is a
positive invariant of D(l) (cf. Theorem 1). By construction, we get V �

�[l] = γ(V �[l])
for all locations l ∈ L.

The Reduction. We are now going to reduce the problem of computing abstract seman-
tics of affine hybrid automata w.r.t. template polyhedra to the problem of computing
abstract semantics of affine programs w.r.t. template polyhedra. An affine program is an
affine hybrid automaton with uncertainty Ψ = (n,L, T , Θ,D, l0), where D(l) = ∅ for
every location l ∈ L. That is, only discrete transitions are allowed.

Abstract reachability for affine programs is in coNP (see e.g. Dang and Gawlitza
[4]). Moreover, it is known to be at least as hard as computing the winning regions of
mean-payoff games (cf. Gawlitza [6]). The latter problem is known to be in UP∩coUP,
but not known to be in P. It is an open question whether or not abstract reachability for
affine programs is coNP−hard. Hence, it makes sense to ask the question, whether or
not abstract reachability for affine hybrid automata with uncertainty is more difficult
than abstract reachability for affine programs. In this section, we show that this is not
the case by providing a polynomial-time reduction from abstract reachability for affine
hybrid automata with uncertainty to abstract reachability for affine programs. Hence,
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any efficient algorithm for affine programs gives us an efficient algorithm for affine
hybrid automata with uncertainty.

Let Ψ = (n,L, T , Θ,D, st) be an affine hybrid automaton with uncertainty and
T ∈ R

m×n be a template constraint matrix. We construct an affine program Ψ ′ =
(m,L′, T ′, Θ′,D′, st′) such that we can read off the abstract semantics of Ψ from the
abstract semantics of Ψ ′. Here, we consider the abstract semantics of Ψ ′ w.r.t. the tem-
plate constraint matrix T ′ that is simply the identity matrix of size m, i.e., we restrict
our considerations to upper bounds. We set L′ := {l, lA, lB | l ∈ L}, i.e., we replace
each location of Ψ by three locations. We will use the location l for the variable V�[l],
the location lA for the variable A�[l], and the location lB for the variable B�[l].

The initial location st′ is the location stA. The set Θ′ of initial states of the affine
program Ψ ′ is given by Θ′ := {x ∈ R

m | x ≤ αT (Θ)}. Hence, αT ′(Θ′) = αT (Θ).
These definitions correspond to the first inequality.

Moreover, we set D′(l) := ∅ for all locations l ∈ L, i.e., we are actually constructing
an affine program. The set T ′ of discrete transitions is the smallest set that fulfills the
following constraints:

1. If (l, Ξ, l′) ∈ T , then (l, Ξ ′, l′A) ∈ T ′, where

Ξ ′ :=
{(

d, d′
)
∈ (Rm)2

∣
∣ ∃x, x′ ∈ R

n . Tx ≤ d,
(
x, x′) ∈ Ξ, d′ ≤ Tx′}

Recall that Ξ is a convex polyhedron. Therefore, Ξ ′ is a convex polyhedron. By
the construction, we get αT (�Ξ�(γT (d))) = αT ′(�Ξ ′�(γT ′(d))) for all d ∈ R

m
.

This discrete transition corresponds to the second inequality.

2. For every location l ∈ L, we have to add additional discrete transitions in order to
deal with the time elapse operation. For simplicity, let V := D(l). Assume further
that ε ∈ R

m
≥0 is chosen such that fV,ε ◦ cl is monotone. In order to apply cldom(V ),

we define the polyhedron Ξcl := {
(
d, d′

)
∈ (Rm)2 | ∃x ∈ dom(V ) . d′ ≤

Tx, Tx ≤ d}. By construction, we have αT ′(�Ξcl�(γT ′ (d))) = cldom(V )(d)
for all d ∈ R

m
(see (1)). Hence, we add the discrete transitions (lA, Ξcl, lB) and

(lB, Ξcl, l) for the 3rd and the 6th inequality, respectively. For the 5th inequality, we
add the discrete transition (lA, Ξid, l), where Ξid :=

{(
d, d′

)
∈ (Rm)2 | d′ = d

}
.

For the 4th inequality, we finally add the discrete transition (lB, Ξ, lB), where

Ξ :=
{(

d, d′
)
∈ (Rm)2

∣
∣ d′ ≤ fV,ε(cldom(V )(d))

}

=
{(

d, d′
)
∈ (Rm)2

∣
∣ ∀k ∈ {1, . . . , m} .

∃x ∈ R
n, v ∈ V (x) . d′k· ≤ dk· + εk·Tk·v, Tx ≤ d, Tk·x ≥ dk·}

=
{(

d, d′
)
∈ (Rm)2

∣
∣ ∃x(1), . . . , x(m) ∈ R

n, v(1) ∈ V (x(1)), . . . , v(m) ∈ V (x(m)) .

∀k ∈ {1, . . . , m} . d′k· ≤ dk· + εk·Tk·v(k), Tx(k) ≤ d, Tk·x(k) ≥ dk·}

Ξ is a convex polyhedron, and αT ′(�Ξ�(γT ′ (d))) = fV,ε(cldom(V )(d)) ∀d ∈ R
m

.

We finally get: Let V �
� denote the abstract semantics of Ψ w.r.t. the template constraint

matrix T , and V �
�
′

denote the abstract semantics of Ψ ′ w.r.t. the template constraint

matrix T ′. Then αT (V �
�[l]) = αT ′(V �

�
′
[l]) for all locations l ∈ L.
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The construction contains existential quantifications. This does not cause any prob-
lems, since the existential quantifications can be eliminated by introducing at most poly-
nomially many auxiliary program variables (We cannot simply project out the existen-
tially quantified variables, since this could not be carried out in polynomial time). Since
the above construction can be carried out in polynomial time, we obtain:

Theorem 2. Abstract reachability w.r.t. template polyhedra for affine hybrid automata
with uncertainty is polynomial-time equivalent to abstract reachability w.r.t. template
polyhedra for affine programs. ��

4 Conclusion

In this article, we studied the problem of template-based unbounded time verification
of safety properties for affine hybrid automata with uncertainty. This model is used
to safely over-approximate non-linear behavior. We showed that, w.r.t. template poly-
hedra, abstract reachability for affine hybrid automata with uncertainty is polynomial-
time reducible to abstract reachability for affine programs. That is, these problems are
polynomial-time equivalent. The reduction replaces every time elapse operation by a
bunch of discrete transitions forming a loop.
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