
Template-Based Unbounded Time Verification
of Affine Hybrid Automata�

Thao Dang1,�� and Thomas Martin Gawlitza1,2

1 Verimag
{Thao.Dang,Thomas.Gawlitza}@imag.fr

2 University of Sydney
TGawlitza@usyd.edu.au

Abstract. Computing over-approximations of all possible time trajectories is an
important task in the analysis of hybrid systems. Sankaranarayanan et al. [20]
suggested to approximate the set of reachable states using template polyhedra.
In the present paper, we use a max-strategy improvement algorithm for comput-
ing an abstract semantics for affine hybrid automata that is based on template
polyhedra and safely over-approximates the concrete semantics. Based on our
formulation, we show that the corresponding abstract reachability problem is in
co−NP. Moreover, we obtain a polynomial-time algorithm for the time elapse
operation over template polyhedra.

1 Introduction

Motivation. Hybrid systems have become widely accepted as a mathematical model
appropriate for embedded systems and cyber-physical systems since they allow to de-
scribe the mixed discrete-continuous dynamics resulting from integrations of compu-
tations and physical processes. Verification is one of the most important questions in
the design of such systems. For safety properties, this often leads to reachability anal-
ysis. The essential idea of many existing reachability computation techniques could be
roughly described as tracking the evolution of the reachable set under the continuous
flows using some set represention (such as polyhedra, ellipsoids, level sets, support
functions)1. Since exact computation is possible only for restrictive classes of contin-
uous dynamics, reachable sets are often approximated using time discretization. Such
step-by-step tracking processes can be expensive when time steps should be small for
accuracy reasons, and moreover discrete transitions can significantly increase the ge-
ometric complexity of reachable sets. This is a reason, besides undecidability of the
reachability problem for general hybrid systems, why unbounded time reachability
computation remains a challenge. Another category of techniques aim at finding ap-
proximations which might not be precise but good enough to prove a property of in-
terest. Among such techniques, we can mention the works on barrier certificates [18],

� This work was partially funded by the ANR project VEDECY.
�� VERIMAG is a joint laboratory of CNRS, Université Joseph Fourier and Grenoble INP.

1 The hybrid systems reachability analysis literature is vast. The reader is referred to the recent
proceedings of the conferences Hybrid Systems: Control and Computation.

H. Yang (Ed.): APLAS 2011, LNCS 7078, pp. 34–49, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Template-Based Unbounded Time Verification of Affine Hybrid Automata 35

polynomial invariants [23] and polyhedral invariants [20]), and various discrete abstrac-
tion techniques [3–5, 22]). The work we present in this paper is close to the techniques
of the second category, in particular to the work by Sankaranarayanan et al. [20].

Sankaranarayanan et al. [20] suggested to approximate the set of reachable states
by template polyhedra. Their work is focused on studying the time elapse operation
for affine hybrid automata over template polyhedra, since this is a challenging prob-
lem in hybrid systems verification. They in particular adapted the min-strategy iteration
approach of Costan et al. [6] in order to compute a small template polyhedron that
safely over-approximates the set of states reachable by continuous evolution. at a sin-
gle location. Each min-strategy improvement step can be performed in polynomial time
through linear programming. The approximation of the set of reachable states their al-
gorithm computes can be used to improve an existing flowpipe construction technique
using Taylor series [20]. However, their approach for performing the time elapse oper-
ation has disadvantages: (1) Their min-strategy iteration algorithm does not guarantee
minimality of the computed template polyhedron. In fact, its accuracy heavily depends
on the staying conditions (also called location invariants). If there are no restrictions due
to staying conditions, then their algorithm will return too conservative approximations
in many cases. (2) The number of min-stratgies is double exponential and a polyno-
mial upper bound for the number of min-strategy improvement steps their algorithm
performs is not known.

Contributions. In this paper we propose a remedy for the mentioned disadvantages of
the approach of Sankaranarayanan et al. [20]. Moreover, instead of only focusing on
the time elapse operation, we study the more general problem of computing abstract
semantics for affine hybrid automata w.r.t. given linear templates — a problem which is
useful for unbounded time verification. We emphasize that we provide a max-strategy
improvement algorithm that precisely computes these abstract semantics and not just
safely over-approximates it, as it is often done when using the widening/narrowing
approach of Cousot and Cousot [7].

To this end, we firstly reduce our problem to the problem of computing least so-
lutions of systems of inequalities of the form xi ≥ f(x1, . . . ,xn), where x1, . . . ,xn

are variables that take values from R = R ∪ {−∞,∞} and f is an operator of a
special structure that is in particular monotone and concave (cf. Gawlitza and Seidl
[10, 11, 12, 14, 15]). Our max-strategy improvement algorithm for solving these sys-
tems of inequalities performs at most exponentially many strategy improvement steps,
each of which can be performed in polynomial-time through linear programming. Al-
though only an exponential upper bound is known, the hope is that only a few strategy
improvement steps are required for typical examples. As a byproduct of our consid-
erations, we show that the corresponding abstract reachability problem is in co−NP.
When we apply our method to perform just the time elapse operation, our max-strategy
improvement algorithm will perform at most polynomially many strategy improvement
steps. Hence, we provide a polynomial-time algorithm for the time elapse operation for
affine hybrid automata over template polyhedra.

Related Work. The concepts we present in this paper, strictly generalize the concepts
studied by Gawlitza and Seidl [10]. This is no surprise, since affine hybrid automata

36 T. Dang and T.M. Gawlitza

are a strict generalization of the affine programs considered by Gawlitza and Seidl [10].
The additional challenge comes from the time elapse operation. The approach of Gawl-
itza and Seidl [10] and the approach we present in this paper are both based on max-
strategy iteration. Costan et al. [6] were the first who suggested to use strategy iteration
for computing numerical invariants (for instance w.r.t. to template polyhedra). Strategy
iteration can be seen as an alternative to the traditional widening/narrowing approach of
Cousot and Cousot [7]. For more information regarding these approaches see Adjé et al.
[1, 2], Costan et al. [6], Gaubert et al. [9], Gawlitza and Seidl [10, 11, 12], Gawlitza and
Monniaux [13], Gawlitza and Seidl [14, 15].

Corresponding Technical Report. Omitted proofs and reports on our proof-of-concept
implementation can be found in the corresponding technical report [8].

2 Basics

Notations. The set of real numbers is denoted by R. The complete linearly ordered set
R ∪ {−∞,∞} is denoted by R. The transposed of a matrix A is denoted by A�. We
denote the i-th row (resp. j-th column) of a matrix A by Ai· (resp. A·j). Accordingly,
Ai·j denotes the component in the i-th row and the j-th column. We also use this nota-
tion for vectors and functions f : X → Y k, i.e., fi·(x) = (f(x))i· for all x ∈ X and
all i ∈ {1, . . . , k}. For x, y ∈ R

n
, we write x ≤ y iff xi· ≤ yi· for all i ∈ {1, . . . , n}.

R
n

is partially ordered by ≤. We write x < y iff x ≤ y and x �= y. The elements x and
y are called comparable iff x ≤ y or y ≤ x.

Let D be a partially ordered set. We denote the least upper bound and the greatest
lower bound of a set X ⊆ D by

∨
X and

∧
X , respectively, provided that they exist.

Their existence is in particular guaranteed if D is a complete lattice. The least element∨
∅ (resp. the greatest element

∧
∅) is denoted by ⊥ (resp. �), provided that it exists.

We define the binary operators ∨ and ∧ by x∨ y :=
∨
{x, y} and x∧ y :=

∧
{x, y} for

all x, y ∈ D, respectively. If D is a linearly ordered set (for instance R or R), then ∨ is
the maximum operator and ∧ the minimum operator.

A function f : D1 → D2, where D1 and D2 are partially ordered sets, is called
monotone iff x ≤ y implies f(x) ≤ f(y) for all x, y ∈ D1. The fixpoint theorem of
Knaster/Tarski [21] states that any monotone self-map f : D → D on a complete lattice
D has a least fixpoint μf =

∧
{x ∈ D | x ≥ f(x)}.

A mapping f : R
n → R

m
is called affine iff there exist A ∈ R

m×n and b ∈ R
m

such that f(x) = Ax + b for all x ∈ R
n

. Observe that f is monotone, if all entries
of A are non-negative. Here, we use the convention −∞ + ∞ = −∞. A mapping
f : R

n → R is called weak-affine iff there exist a ∈ R
n and b ∈ R such that f(x) =

a�x + b for all x ∈ R
n

with f(x) �= −∞. Accordingly, a mapping f : R
n → R

m

is called weak-affine iff there exist weak-affine mappings f1, . . . , fm : R
n → R such

that f = (f1, . . . , fm). Every affine mapping is weak-affine, but not vice-versa. In the
following we are in particular interested in mappings that are point-wise minimums of
finitely many monotone weak-affine mappings.

Hybrid Automata. In this paper, we study affine hybrid automata. Here, the continuous
consecution at each location l is given by an affine vector field V and a staying condition

Template-Based Unbounded Time Verification of Affine Hybrid Automata 37

I that is a convex polyhedron. A vector field V over R
n is just an operator on R

n. Hence,
it can be defined by V (x) = Ax + b for all x ∈ R

n, where A ∈ R
n×n and b ∈ R

n. A
staying conditions I is simply a subset of R

n. We say that a differentiable time trajectory
τ : [0, δ] → R

n (δ ∈ R≥0) evolves from τ(0) to τ(δ) according to the vector field V
over R

n while satisfying the staying condition I ⊆ R
n iff (1) τ̇ (t) = V (τ(t)) for all

t ∈ [0, δ), and (2) τ(t) ∈ I for all t ∈ [0, δ].

Example 1 (Sankaranarayanan et al. [20]). We consider the affine vector field V :
R

2 → R
2 that is defined by

V (x) = Ax + b for all x ∈ R
2, where A =

(
−1 0
0 0

)

and b =
(

5
1

)

and the staying condition I = (−∞, 2.5] × R that is a convex polyhedron. The poly-
hedron P = {x ∈ R

2 | x1· ≤ 2.5, x2· ≤ 2.5, and x2· ≤ x1·} is an invariant in the
following sense: each differentiable trajectory that starts in P and evolves according to
V while satisfying I stays in P . The situation is illustrated in Figure 1. ��
A hybrid automaton Ψ = (n,L, T , Θ,D, I, l0) consists of the following components:

– n is the number of continuous variables.
– L is a finite set of locations.
– l0 ∈ L is the initial location.
– T is a finite set of discrete transitions. Each transition (l1, Ξ, l2) ∈ T consists of a

move from the location l1 ∈ L to the location l2 ∈ L, and an assertion Ξ ⊆ (Rn)2.
– Θ ⊆ R

n is the set of possible initial values of the continuous variables at l0.
– D is a mapping that maps each location l ∈ L to a vector field D(l) : R

n → R
n.

– I is a mapping that maps each location l ∈ L to a staying condition I(l) ⊆ R
n.

At each location l ∈ L, the values of the continuous variables evolve according to D(l)
while satisfying I(l). The assertion Ξ ⊆ (Rn)2 of a discrete transition (l, Ξ, l′) ∈ T
combines a guard with an assignment.

A hybrid automaton Ψ = (n,L, T , Θ,D, I, l0) is called affine iff the following state-
ments are fulfilled: (1) The initial condition, location invariants and transition relations
are all convex polyhedra.2 (2) The dynamics D(l) at each location l ∈ L is an affine
vector field.

We now introduce our running example. We choose a simple example without dis-
crete transitions, since the main challenges stem from the time elapse operation on
which we want to focus in this paper.

Example 2. An affine hybrid automaton is given by Ψ = (n,L, T , Θ,D, I, l0}, where
n = 2, L = {1}, T = ∅, Θ = {x ∈ R

2 | x1·, x2· ≤ 1 and x2· ≤ x1·}, D(1) = V ,
I(1) = I , and l0 = 1. V and I are defined in Example 1. ��
A computation of a hybrid automaton is a possibly infinite sequence (l0, x0), (l1, x1),
. . ., where x0 ∈ Θ and, for all i ∈ N, one of the following statements hold: (Discrete
Consecution) There exists a discrete transition (li, Ξ, li+1) ∈ T such that (xi, xi+1) ∈
Ξ . (Continuous Consecution) li = li+1 and there exists a δ ∈ R>0 and a differentiable
time trajectory τ : [0, δ] that evolves from xi to xi+1 according to the vector field D(li)
while satisfying the staying condition I(li).

2 Here, we identify (Rn)2 with R
2n.

38 T. Dang and T.M. Gawlitza

Template Polyhedra. As an abstract domain [7] we use template polyhedra as intro-
duced by Sankaranarayanan et al. [19]. For that we fix a template constraint matrix
T ∈ R

m×n, where we w.l.o.g. assume that Ti· �= (0, . . . , 0) for every i ∈ {1, . . . , m}.
Each row of T represents a linear template. Each template relates n variables. The con-
cretization γ : R

m → 2R
n

and the abstraction α : 2R
n → R

m
are defined as follows:

γ(d) := {x ∈ R
n | Tx ≤ d} ∀d ∈ R

m
, α(X) :=

∧
{d ∈ R

m | γ(d) ⊇ X} ∀X ⊆ R
n,

As shown by Sankaranarayanan et al. [19], α and γ form a Galois connection, i.e., for
all X ⊆ R

n and all d ∈ R
m

, α(X) ≤ d iff X ⊆ γ(d). Hence, α ◦ γ is a downwards
closure operator, and γ ◦ α is an upwards closure operator3. This in particular implies
that α◦γ and γ ◦α are monotone. In order to simplify notations, we denote α◦γ by cl.
The abstract elements from α(2R

n

) = cl(R
m

) are called closed. The convex polyhedra
from the set γ(R

m
) = γ(α(2R

n

)) are called template polyhedra.

x1·

x2·

Fig. 1. Illustration for Example 1. The dotted region represents the convex polyhedron P . The
wall represents the region that is not allowed, because of the staying condition I . The arrows
illustrate the directions of the vector field V . Observe that any trajectory that starts in P and
evolves according to V while satisfying I will stay in P .

Example 3. Let the template constraint matrix T ∈ R
3×2 and d ∈ R

3
be defined by

T =

⎛

⎝
1 0
0 1
−1 1

⎞

⎠ , and d =

⎛

⎝
2.5
2.5
0

⎞

⎠ .

Then γ(d) = P , where P is defined in Example 1 (see Figure 1). ��

The following properties of the operator cl will be crucial for the algorithms we present
in this paper:

Lemma 1. For all i ∈ {1, . . . , m} and all d ∈ R
m

, we have:

1. cli·(d) = sup {Ti·x | x ∈ R
n and Tx ≤ d}

2. cl is a point-wise minimum of finitely many monotone weak-affine mappings.

3 An operator f : D → D on a partially ordered set D is called downwards (resp. upwards)
closure operator iff (1) f is monotone, (2) f is idempotent (i.e. f2 = f), and (3) f(x) ⊆ x
(resp. f(x) ⊇ x) for all x ∈ D.

Template-Based Unbounded Time Verification of Affine Hybrid Automata 39

Proof. For the first statement see Sankaranarayanan et al. [19]. In order to show that cl
is a point-wise minimum of finitely many monotone weak-affine mappings, we use the
strong duality theorem for linear programming as follows: cli·(d) = sup {Ti·x | x ∈
R

n and Tx ≤ d} = inf {d�y | y ∈ R
m
≥0, T�y = T�

i· } for all d with γ(d) �= ∅. This
gives us the statement. ��

Invariants and Positive Invariants. Let V : R
n → R

n be a vector field and I ⊆ R
n

a staying condition. A set X ⊆ R
n is called an invariant of (V, I) iff every trajectory

that starts in X and evolves according to V while satisfying I stays in X . Before going
further, we introduce the following notation: For all d ∈ R

m
and all R ⊆ {1, . . . , m},

we define d|R ∈ R
m

by

(d|R)i· =

{
di· if i ∈ R

∞ if i /∈ R
for all i ∈ {1, . . . , m}.

Assume now that the affine vector field V is affine, and the staying condition I is a
template polyhedron, i.e., I ∈ γ(R

m
). A template polyhedron P ∈ γ(R

m
) is called a

positive invariant of (V, I) iff there exists some R ⊆ {1, . . . , m} such that the following
statements hold:

1. Ti·V (x) ≤ 0 for all x ∈ P with Ti·x = αi·(P) and all i ∈ R with αi·(P) < αi·(I).
2. P = γ(α(P)|R).

Our notion of positive invariants slightly differs from the notion of positive invariants
of Sankaranarayanan et al. [20]. However, observe that every positive invariant in the
sense of Sankaranarayanan et al. [20] is a positive invariant in our sense.

Every positive invariant is an invariant. However, there exist template polyhedra that
are invariants without being positive invariants. Indeed due to the presence of stay-
ing conditions, for a template polyhedron P to be an invariant, the above condition
Ti·V (x) ≤ 0 does not need to be satisfied at all the points x ∈ P on the face corre-
sponding to Ti·x = αi·(P), when αi·(P) < αi·(I). However, because of lack of space
and additionally for clarity of presentation, we do not consider this in the present paper.

Example 4. We continue our running example (see Figure 1), i.e., the affine vector field
V and the staying condition I are defined in Example 1, and the template constraint
matrix T is defined in Example 3. The staying condition I is a template polyhedron,
since I = γ((2.5,∞,∞)�). The template polyhedron P = γ(d) is an invariant as well
as a positive invariant of (V, I). If we choose R = {1, 3}, then the requirements of the
definition can be verified easily (cf. Figure 1). ��

Our Goals: Time Elapse Operations and Abstract Semantics. We are interested
in computing abstract semantics for affine hybrid automata w.r.t. template polyhedra.
Performing the time elapse operation w.r.t. to template polyhedra is just the special
case, where the affine hybrid automaton has no discrete transitions.

The abstract semantics for the affine hybrid automaton Ψ = (n,L, T , Θ,D, I, l0)
(w.r.t. the template polyhedra domain) is the point-wise minimal mapping V �

� that maps

40 T. Dang and T.M. Gawlitza

every location l ∈ L to a template polyhedron V �
�[l] ∈ γ(R

m
) and fulfills the follow-

ing constraints: (1) V �
�[l0] ⊇ Θ. (2) V �

�[l] is a positive invariant of (D(l), I(l)) for

every location l ∈ L. (3) x′ ∈ V �
�[l′] for all discrete transitions (l, Ξ, l′) ∈ T and

all (x, x′) ∈ Ξ with x ∈ V �
�[l]. The existence of such a point-wise minimal mapping

will be ensured by our findings. The abstract semantics safely over-approximates the
concrete semantics.

In order to verify safety properties, a problem one is interested in is abstract reach-
ability, which is the following decision problem: Decide whether or not, for a given
template constraint matrix T ∈ R

m×n, a given affine hybrid automaton Ψ = (n,L, T ,
Θ,D, I, l0), and a given location l ∈ L, the statement V �[l] �= ∅ holds.

In this paper, we will adapt the max-strategy improvement algorithm of Gawlitza
and Seidl [10, 11, 12, 14, 15] for computing V �

�. We will find that abstract reachability
is in co−NP. Whether or not it is also in P is an open question. However, we at least
know that it is a hard problem in the following sense: a polynomial-time algorithm
for abstract reachability would give us a polynomial-time algorithm for computing the
winning regions of mean-payoff games (see [12]). The latter problem is in UP∩co−UP
(see Jurdzinski [16]) and it is a long outstanding and fundamental question whether or
not it is in P.

The problem of performing the time elapse operation over template polyhedra is the
following computational problem: Compute, for a given template constraint matrix T ,
a given affine vector field V : R

n → R
n and given template polyhedra Θ and I with

Θ ⊆ I , the least positive invariant of (V, I) which is a superset of Θ. We will show that
the latter computational problem can be solved in polynomial time.

3 Our Approach: Getting into the Corset of the Monotone
Framework

We aim at adapting the max-strategy improvement algorithms of Gawlitza and Seidl
[10, 11, 12, 14, 15] in order to obtain an algorithm for computing abstract semantics.
For that we have to formulate the problem as a problem of finding the least fixpoint of
a self-map that is a maximum of finitely many monotone and concave self-maps (cf.
Gawlitza and Seidl [10, 14]). The challenge is to get the time elapse operation into the
corset of this monotone framework.

The Time Elapse Operation. Let V : R
n → R

n be an affine vector field. Firstly, we
define the operator ΔV on R

m
by

ΔV
k·(d) := sup {Tk·V (x) | x ∈ R

n, Tx ≤ d, Tk·x ≥ dk·}

for all k ∈ {1, . . . , m} and all d ∈ R
m

with dk· < ∞. Note that ΔV
k·(d) = −∞,

whenever {x ∈ R
n | Tx ≤ d, Tk·x ≥ dk·} = ∅. This is in particular fulfilled, if there

exists some i ∈ {1, . . . , m} with di· = −∞. Moreover, we set ΔV
k·(d) := 0 for all

k ∈ {1, . . . , m} and d ∈ R
m

with dk· = ∞. Intuitively, ΔV
k·(d) > 0 iff there exists

some point x on the face F := {x ∈ R
n | Tx ≤ d, Tk·x ≥ dk·} such that V (x) points

to the outside.

Template-Based Unbounded Time Verification of Affine Hybrid Automata 41

For all ε ∈ R
m
>0, we define the operator fV,ε on R

m
by

fV,ε(d) := d + ε�ΔV (d) for all d ∈ R
m

.

An application of the operator fV,ε corrects the bounds to the templates according to the
vector field V , ignoring the staying condition I . In order to take the staying condition I
into account, we assume w.l.o.g. that I is a template polyhedron, i.e., I ∈ γ(R

m
). For

all ε ∈ R
m
>0, we define the operator FV,I,ε on R

m
as follows:

FV,I,ε(d) := fV,ε(d) ∧ α(I) for all d ∈ R
m

x1·

x2·

(a) γ((1, 1, 0)�)

x1·

x2·

(b) γ(F V,I,(1
8 , 1

8 , 1
8)�((1, 1, 0)�)) = γ((1.5, 1.125,−0.375)�)

Fig. 2. The Running Example: An Application of F V,I,ε for ε = (1
8
, 1

8
, 1

8
)�

How the operator FV,I,ε modifies a template polyhedron is shown in Figure 2 for our
running example. Positive invariants can now be characterized as follows:

Lemma 2. Let ε ∈ R
m
>0. For all d ∈ R

m
the following holds: The template polyhedron

γ(d) is a positive invariant of (V, I) iff d ≥ cl(cl(d) ∨ FV,I,ε(cl(d))). ��

In order to use the above lemma within a monotone framework, we have to ensure that
FV,I,ε ◦ cl is monotone. Then F := cl ◦ (cl ∨ FV,I,ε ◦ cl) is monotone, too, and the
fixpoint theorem of Knaster/Tarski [21] can be applied.4 Observe that by construction
FV,I,ε ◦ cl is monotone, whenever fV,ε ◦ cl is monotone. The operator fV,ε ◦ cl is
monotone on R

m
, whenever the operator fV,ε is monotone on cl(R

m
).5 If we choose ε

small enough, then we enforce the monotonicity of fV,ε on cl(R
m

) and thus finally the
monotonicity of FV,I,ε ◦ cl and F :

Lemma 3 (Monotonicity of fV,ε). Assume V (x) = Ax + b for all x ∈ R
n. From A

and T , we can compute an ε(0) ∈ R
m
>0 in polynomial time such that fV,ε is monotone

on cl(R
m

), whenever ε ≤ ε(0). For every ε ≤ ε(0), fV,ε ◦ cl is a point-wise minimum of
finitely many monotone weak-affine self-maps. ��

Because of the above lemma, we from now on assume that we have chosen an ε ∈ R
m
>0

such that fV,ε ◦ cl and thus finally cl ◦ (cl ∨ FV,I,ε ◦ cl) = cl ◦ (id ∨ FV,I,ε) ◦ cl
is monotone. Therefore, for all sets Θ ⊆ R

n of values, there exists a least positive
invariant P of (V, I) which is a superset of Θ. It is given by

γ(μ(α(Θ) ∨ cl ◦ (cl ∨ FV,I,ε ◦ cl)))

4 For mappings f, g : X → D, f ∨ g denotes the mapping that is defined by (f ∨ g)(x) :=
f(x) ∨ g(x) for all x ∈ X.

5 It is not always possible to choose an ε such that fV,ε is monotone on R
m

.

42 T. Dang and T.M. Gawlitza

However, we do not use this formulation. We want to have a simpler formulation that
will allow us to perform the time elapse operation in polynomial time. For that we use
the following fixpoint transfer lemma:

Lemma 4. Let ε ∈ R
m
>0 be chosen such that FV,I,ε ◦ cl is monotone. For all closed

θ ∈ cl(R
m

), we have γ(μ(θ ∨ cl ◦ (cl ∨ FV,I,ε ◦ cl))) = γ(μ(θ ∨ FV,I,ε ◦ cl)).6 ��

Putting everything together, we obtain our main result for the time elapse operation:

Theorem 1 (The Time Elapse Operation). Let V : R
n → R

n be an affine vector
field, and Θ, I ∈ γ(R

m
) template polyhedra. Assume that ε ∈ R

m
>0 is chosen such that

FV,I,ε ◦ cl is monotone. The template polyhedron γ(μ(α(Θ) ∨FV,I,ε ◦ cl)) is the least
positive invariant of (V, I) which is a superset of Θ.

Proof. The existence of ε is ensured by Lemma 3. The existence of the least fixpoint
is ensured by the fixpoint theorem of Knaster/Tarski. Lemmata 2 gives us that P :=
γ(μ(α(Θ) ∨ cl ◦ (cl ∨ FV,I,ε ◦ cl))) is the least positive invariant of (V, I) which is a
superset of Θ. Lemma 4 finally gives us P = γ(μ(α(Θ) ∨ FV,I,ε ◦ cl)). ��

Abstract Semantics. So far, we have ignored the discrete transitions. In order to take
them into account, we define an abstract semantics for discrete transitions (l, Ξ, l′) ∈
T . Recall that the assertion Ξ ⊆ R

2n is a convex polyhedron. In the following we will
always assume that the convex polyhedron Ξ is given by a matrix AΞ ∈ R

l×2n and a
vector bΞ ∈ R

l such that Ξ = {x ∈ R
2n | AΞx ≤ bΞ}. The collecting semantics �Ξ�

of Ξ is defined by �Ξ�(X) := {y ∈ R
n | ∃x ∈ X . (x, y) ∈ Ξ} for all X ⊆ R

n. The
abstract semantics �Ξ�� of Ξ is defined by �Ξ�� := α◦ �Ξ�◦γ. The abstract semantics
safely over-approximates the collecting semantics and the concrete semantics. For all
k ∈ {1, . . . , m} and all d ∈ R

m
, we have:

�Ξ��
k·(d) := sup

{

Tk·y
∣
∣
∣
∣ x ∈ γ(d),

(
x
y

)

∈ Ξ

}

(1)

= sup
{

Tk·y
∣
∣
∣
∣

(
x
y

)

∈ R
2n, Tx ≤ d, AΞ

(
x
y

)

≤ bΞ

}

(2)

If we consider the dual of the above linear programming problem, we get that also the
operator �Ξ�� on R

m
has nice properties (cf. Gawlitza and Seidl [10, 14]):

Lemma 5 (The Abstract Semantics �Ξ��). The following holds for every convex poly-
hedron Ξ ⊆ R

2n: (1) �Ξ�� = �Ξ��◦cl = cl◦�Ξ��. (2) �Ξ�� is the point-wise minimum
of finitely many monotone weak-affine operators. ��

We are now going to define an abstract semantics V � for an affine hybrid automata Ψ =
(n,L, T , Θ,D, I, l0) that corresponds to the abstract semantics V �

� of Ψ (cf. Section 2).
W.o.l.g. we assume that the initial condition Θ, the location invariants I(l), l ∈ L, and
the transition relations are all template polyhedra. The abstract semantics V � of Ψ is the
least solution of the following constraint system:

V�[l0] ≥ α(Θ) (3)

6 Here, θ denotes the function that returns θ for every argument.

Template-Based Unbounded Time Verification of Affine Hybrid Automata 43

V�[l] ≥ FD(l),I(l),ε(l)(cl(V�[l])) for all l ∈ L (4)

V�[l′] ≥ �Ξ��(V�[l]) for all (l, Ξ, l′) ∈ T (5)

The variables V�[l], l ∈ L take values from R
m

. The existence of the least solution is
ensured by the fixpoint theorem of Knaster/Tarski, since we assume that, for all loca-
tions l ∈ L, ε(l) ∈ R

m
>0 is chosen such that FD(l),I(l),ε(l) is monotone. The existence

of such an ε(l) is again ensured by Lemma 3.
Constraint (3) takes all possible initial values of the continuous variables at the initial

location l0 into account. Constraint (4) ensures that the template polyhedron γ(V �[l])
is a positive invariant of (D(l), I(l)) (cf. Lemma 2). Constraint (5) ensures that the
template polyhedron γ(V �[l′]) contains at least all values that can come through the
discrete transition (l, Ξ, l′). By construction, we have:

Theorem 2. V �
�[l] = γ(V �[l]) for all locations l ∈ L. ��

Because of the above theorem, we should now aim at computing V �.

4 Adapting the Max-Strategy Approach

Notations. In this section, we consider systems C of inequalities of the form x ≥ e
(resp. x ≤ e), where x is a variable that takes values form R and e is an expression over
R. The set of variables of C is denoted by XC , where we omit the subscript, whenever
it is clear from the context. The semantics �e� : (X → R) → R of an expression e is
defined by �x�(ρ) := ρ(x) and �f(e1, . . . , ek)�(ρ) := f(�e1�(ρ), . . . , �ek�(ρ)), where
x ∈ X, f is a k-ary operator on R, e1, . . . , ek are expressions, and ρ : X → R is a
variable assignment.

For a system C of constraints of the form x ≥ e (resp. x ≤ e), we define the operator
�C� : (X → R) → X → R by

�C�(ρ)(x) :=
∨

{�e�ρ | x ≥ e belongs to C}

(resp. �C�(ρ)(x) :=
∧
{�e�ρ | x ≥ e belongs to C}) for all variable assignments ρ :

X → R and all variables x ∈ X. Hence, ρ is a solution of C iff ρ ≥ �C�(ρ) (resp.
ρ ≤ �C�(ρ)). The least (resp. the greatest) solution of C is μ�C� (resp. ν�C�). For a
system C of inequalities of the form x ≥ e and a pre-fixpoint ρ of the operator �C� (i.e.,
ρ ≤ �C�(ρ)), μ≥ρ�C� denotes the least solution of C that is greater than or equal to ρ.

Rewriting the Abstract Semantic In-Equations. We now rewrite the abstract se-
mantic in-equations (3) - (5) into a system C(Ψ) of in-equations of the form x ≥
f(x1, . . . ,xk), where the variables take values from R and the operator f is a maxi-
mum of finitely many monotone weak-affine operators. The set X of variables of the
system C(Ψ) of in-equations we are going to construct is X = {dl,i | l ∈ L and i ∈
{1, . . . , m}}. Corresponding to constraint (3) we add the following in-equations:

dl0,i ≥ αi·(Θ) for all i ∈ {1, . . . , m} (6)

44 T. Dang and T.M. Gawlitza

Corresponding to constraint (4), for every location l ∈ L, we add the following in-
equations that will deal with the time elapse operation:

dl,i ≥ F
D(l),I(l),ε(l)
i· (cl((dl,1, . . . ,dl,m)�)) for all i ∈ {1, . . . , m} (7)

Corresponding to constraint (5), for every discrete transition (l, Ξ, l′) ∈ T , we add the
following in-equations that will deal with the discrete transition (l, Ξ, l′):

dl′,i ≥ �Ξ��
i·

(
(dl,1, . . . ,dl,m)�

)
for all i ∈ {1, . . . , m} (8)

By construction we have:

Lemma 6. Let ρ∗ : X → R be the least solution of C(Ψ). Then, for all locations l ∈ L
and all i ∈ {1, . . . , m}, we have (V �[l])i· = ρ∗(dl,i). ��

Example 5. We continue our running example, i.e., we aim at computing the abstract
semantics V � of the hybrid automaton Ψ from Example 2, where we use the template
constraint matrix T introduced in Example 3. For that we choose ε(1) = (1, . . . , 1)�.
Then fD(1),ε(1) and thus FD(1),I(1),ε(1) are monotone. The system C(Ψ) consists of the
following in-equations:

d1,1 ≥ 1 d1,1 ≥ F
D(1),I(1),ε(1)
1· (cl((d1,1,d1,2,d1,3)�))

d1,2 ≥ 1 d1,2 ≥ F
D(1),I(1),ε(1)
2· (cl((d1,1,d1,2,d1,3)�))

d1,3 ≥ 0 d1,3 ≥ F
D(1),I(1),ε(1)
3· (cl((d1,1,d1,2,d1,3)�))

Example 6 shows how we can compute the least solution of this constraint system. ��

The Max-Strategy Improvement Algorithm. Let C be a system of inequalities of
the form x ≥ e, where �e� is a point-wise minimum of finitely many monotone weak-
affine operators. We aim at computing the least solution μ�C� of C that exists due to
monotonicity.

A subset σ of C is called a max-strategy of C iff it contains exactly one constraint
x ≥ e for every variable x occurring in C. For simplicity, we assume that in C there
exists a constraint x ≥ −∞ for every variable x occurring in C. Then {x ≥ −∞ | x ∈
X} is a max-strategy. This will be the max-strategy the algorithm starts with.

The max-strategy improvement algorithm maintains a current max-strategy σ and
a current approximate ρ : X → R to the least solution μ�C� of C. The max-strategy
algorithm can be written as follows:

Algorithm 1. The Max-Strategy Improvement Algorithm

σ ← {x ≥ −∞ | x ∈ X}; ρ← {x
→ −∞ | x ∈ X};
while (ρ is not a solution of C) {σ ← improvement of σ w.r.t. ρ; ρ← μ≥ρ�σ�; }
return ρ;

We have to define the term improvement. Let σ be a max-strategy of C and ρ be a pre-
solution of �σ�, i.e., ρ ≤ �σ�ρ. A max-strategy σ′ of C is called an improvement of σ
w.r.t. ρ iff the following conditions hold:

Template-Based Unbounded Time Verification of Affine Hybrid Automata 45

1. �σ′�ρ ≥ �σ�ρ.
2. If x ≥ e belongs to σ and x ≥ e′ belongs to σ′ with e �= e′, then �e′�ρ > �e�ρ.

The second condition ensured that a max-strategy is only changed at variables where
we have a strict improvement. This is important for the correctness of the algorithm (cf.
Gawlitza and Seidl [10, 11, 12, 14, 15]).

It is obvious that the algorithm returns the least solution of C, whenever it terminates.
From the considerations in the next subsection, it will follow that it terminates at the
latest after considering every max-strategy at most once. In the next subsection, we
will also explain how we can compute μ≥ρ�σ� for a max-strategy σ and a variable
assignment ρ that occurs during the run of the algorithm. Before doing so, we will use
our algorithm for computing the abstract semantics of our running example.

Example 6. We apply the max-strategy improvement algorithm to the system C of con-
straints defined in Example 5. After the first max-strategy improvement step we may
get the max-strategy σ1 that consists of the following constraints:

d1,1 ≥ 1 d1,2 ≥ 1 d1,3 ≥ 0

We have to find the least solution ρ1 of σ1 that is greater than of equal to ρ0 = {x �→
−∞ | x ∈ X}. Hence, obviously ρ1 = μ≥ρ0�σ1� = {d1,1 �→ 1,d1,2 �→ 1,d1,3 �→ 0}.
However, ρ1 is not a solution of C. Hence, we can improve the current max-strategy σ1

w.r.t. ρ1. We may obtain the max-strategy σ2 that consists of the following constraints:

d1,1 ≥ F
D(1),I(1),ε(1)
1· (cl((d1,1,d1,2,d1,3)�))

d1,2 ≥ F
D(1),I(1),ε(1)
2· (cl((d1,1,d1,2,d1,3)�)) d1,3 ≥ 0

We get ρ2 = μ≥ρ1�σ1� = {d1,1 �→ 2.5,d1,2 �→ 3.5,d1,3 �→ 0}. How we can com-
pute ρ2 will be explained in Example 7. ρ2 solves the constraint system C. Hence,
the algorithm terminates and returns ρ2, which is the correct least solution of C. Thus,
we have V �[1] = (2.5, 3.5, 0)�. By Theorem 2, we get V �

�[1] = γ((2.5, 3.5, 0)�) =
{(x1, x2)� ∈ R

2 | x1 ≤ 2.5, x2 ≤ 2.5, x2 ≤ x1} (cf. Figure 1). ��
In the above example, we have 3 inequality constraints for each variable after introduc-
ing the constraints d1,i ≥ −∞, i = {1, 2, 3}. Hence, we have 33 = 9 max-strategies.
However, since the sequence of approximates is strictly increasing until it stabilizes, the
constraint d1,1 ≥ −∞ will not be considered after considering the constraint d1,1 ≥ 1.
Similar, the constraint d1,1 ≥ 1 will not be considered after considering the constraint

d1,1 ≥ F
D(1),I(1),ε(1)
1· (cl((d1,1,d1,2,d1,3)�)). Hence, the maximal number of max-

strategies considered by our max-strategy improvement algorithm is 1 + 2 · 3 = 7.
This is not by accident. Whenever the affine hybrid system has exactly one location

and no discrete transitions, the number of max-strategies the algorithm considers is at
most 1 + 2m. If we start the algorithm with the max-strategy that corresponds to the
set Θ of all possible initial values, then we can reduce this number to 1 + m. Thus, we
have:

Lemma 7. If we apply our max-strategy improvement algorithm for performing the
time elapse operation, then the number of max-strategy improvement steps is bounded
by m, where m is number of templates. ��

46 T. Dang and T.M. Gawlitza

Evaluating a Single Max-Strategy. Let σ be a max-strategy for C(Ψ) and ρ be a vari-
able assignment that occurs during a run of the max-strategy improvement algorithm
(the constraint system C(Ψ) is defined in Subsection 4). We are aiming at computing
μ≥ρ�σ�. For that, we firstly remove all constraints x ≥ −∞ from σ and replace the
corresponding variables with the constant −∞. For simplicity, we denote the resulting
system again by σ. Since the algorithm only improves max-strategies at positions where
there are strict improvements, we have μ≥ρ�σ�(x) > −∞ for all variables x ∈ X.

From the results of Gawlitza and Seidl [10, 14] it follows that μ≥ρ�σ� equals the
variable assignment ρσ : X → R which is defined as follows:

ρσ(z) := sup {ρ(z) | ρ : X → R, ρ(x) ≤ �e�(ρ) for all constraints x ≥ e of σ} (9)

for all z ∈ X. Observe that the variable assignment ρσ = μ≥ρ(σ) only depends on the
max-strategy σ and not on the variable assignment ρ. This is an important observation.
Since the max-strategy improvement algorithm generates a strictly increasing sequence
of variable assignments, each of which only depends on the current max-strategy, it
follows that the max-strategy algorithm terminates at the latest after considering each
max-strategy at most once.

In order to compute ρσ, we set up the system σ′ of linear inequalities as follows:
We start with an empty system of linear inequalities. For every inequality of the form
d ≥ c, where c ∈ R ∪ {∞}, we add the linear constraint d ≤ c. For every bunch of
inequalities of the form

d1 ≥ FV,I,ε
1· (cl((d1, . . . ,dm)�)) · · · dm ≥ FV,I,ε

m· (cl((d1, . . . ,dm)�)),

where V (x) = Ax + b for all x ∈ R
n and I ∈ γ(R

m
), we add (according to Lemma 1

and the definition of FV,I,ε) the following linear constraints

di≤d′
i + εi·Ti·(A(xi,1, . . . ,xi,n)� + b) ∧ αk·(I) ∀i ∈ {1, . . . , m}

Ti·(xi,1, . . . ,xi,n)≥d′
i ∀i ∈ {1, . . . , m}

Tj·(xi,1, . . . ,xi,n)≤d′
j ∀i, j ∈ {1, . . . , m}

d′
i≤Ti·(x′

i,1, . . . ,x
′
i,m)� ∀i ∈ {1, . . . , m}

Tj·(x′
i,1, . . . ,x

′
i,n)≤dj ∀i, j ∈ {1, . . . , m}

where d′
i, xi,j , x′

i,j are fresh variables for all i, j ∈ {1, . . . , m}.

For every inequality constraint d ≤ �Ξ��
k·(d1, . . . ,dm), where Ξ = {(x, y)� ∈

R
2n | Ax ≤ b} with A ∈ R

l×2n and b ∈ R
l, we add (according to Equation (2)) the

following linear constraints:

d ≤ Tk·(y1, . . . ,yn)� Ti·(x1, . . . ,xn)� ≤ di ∀i ∈ {1, . . . , m}
Ai·(x1, . . . ,xn,y1, . . . ,yn)� ≤ bi· ∀i ∈ {1, . . . , l}

Here, x1, . . . ,xn and y1, . . . ,yn are fresh variables. Finally, we get

ρσ(z) = sup {ρ(z) | ρ : X → R and ρ(x) ≤ �e�ρ for all constraints x ≤ e of σ′}

for all z ∈ X. Hence, for all z ∈ X, ρσ(z) can be computed by solving a linear
programming problem that can be constructed in polynomial time:

Template-Based Unbounded Time Verification of Affine Hybrid Automata 47

Lemma 8. For every max-strategy σ of C(Ψ), the variable assignment ρσ defined by
Equation (9) can be computed in polynomial time through linear programming. When-
ever the max-strategy algorithm must compute μ≥ρ�σ�, we have μ≥ρ�σ� = ρσ . ��

Example 7. We consider the max-strategy σ2 from Example 6, i.e., we aim at com-
puting μ≥ρ1�σ2� which equals ρσ2 as defined in Equation (9). Therefore, for all i ∈
{1, . . . , m}, we aim at solving the following optimization problem:

sup d1,i d1,1 ≤ F
D(1),I(1),ε(1)
1· (cl((d1,1,d1,2,d1,3)�))

d1,2 ≤ F
D(1),I(1),ε(1)
2· (cl((d1,1,d1,2,d1,3)�)) d1,3 ≤ 0

We are now going to simplify the constraints that define the feasible space. By unfolding
the definition of cl and the definition of F

D(1),I(1),ε(1)
i· for all i ∈ {1, 2}, we obtain:

d1,1 ≤ d′
1,1 + 5 + sup {−x1 | x1 = d′

1,1, x2 ≤ d′
1,2, x2 − x1 ≤ d′

1,3}
d1,1 ≤ 2.5
d1,2 ≤ d′

1,2 + 1 + sup {0 | x1 ≤ d′
1,1, x2 = d′

1,2, x2 − x1 ≤ d′
1,3}

d1,3 ≤ 0
d′

1,1 ≤ sup {x1 | x1 ≤ d1,1, x2 ≤ d1,2, x2 − x1 ≤ d′
1,3}

d′
1,2 ≤ sup {x2 | x1 ≤ d1,1, x2 ≤ d1,2, x2 − x1 ≤ d′

1,3}
d′

1,3 ≤ sup {x2 − x1 | x1 ≤ d1,1, x2 ≤ d1,2, x2 − x1 ≤ d′
1,3}

After eliminating the supremums in the right-hand sides, we get:

d1,1 ≤ d′
1,1 + 5 − x1,1,1 x1,1,1 = d′

1,1 x1,1,2 ≤ d′
1,2 x1,1,2 − x1,1,1 ≤ d′

1,3

d1,1 ≤ 2.5
d1,2 ≤ d′

1,2 + 1 x1,2,1 ≤ d′
1,1 x1,2,2 = d′

1,2 x1,2,2 − x1,2,1 ≤ d′
1,3

d1,3 ≤ 0
d′

1,1 ≤ x′
1,1,1 x′

1,1,1 ≤ d1,1 x′
1,1,2 ≤ d1,2 x′

1,1,2 − x′
1,1,1 ≤ d1,3

d′
1,2 ≤ x′

1,2,2 x′
1,2,1 ≤ d1,1 x′

1,2,2 ≤ d1,2 x′
1,2,2 − x′

1,2,1 ≤ d1,3

d′
1,3 ≤ x′

1,3,2 − x′
1,3,1 x′

1,3,1 ≤ d1,1 x′
1,3,2 ≤ d1,2 x′

1,3,2 − x′
1,3,1 ≤ d1,3

When we solve the corresponding linear programming problems that aim at maximizing
d1,1, d1,2, and d1,3, respectively, we get d1,1 = 2.5, d1,2 = 3.5, and d1,3 = 0. Observe
that, instead of solving three linear programming problems, we could solve just one,
where we aim at maximizing the sum d1,1 + d1,2 + d1,3. Any optimal solution then
gives us the values for d1,1, d1,2, and d1,3. ��

The Final Results. Putting everything together, we finally get:

Theorem 3. The abstract semantics of an affine hybrid automaton Ψ = (n,L, T , Θ,
D, I, l0) can be computed through the presented max-strategy improvement algorithm.
This algorithm performs at most exponentially many strategy improvement steps, each

48 T. Dang and T.M. Gawlitza

of which can be performed in polynomial time through linear programming. The num-
ber of max-strategy improvement steps is bounded by

m · |L| ·
∏

l∈L max{1, |{(l1, ρ, l2) ∈ T | l2 = l}|m},

where m denotes the number of linear templates. The time elapse operation for affine
hybrid automata w.r.t. template polyhedra can be performed in polynomial time. ��

Theorem 4. Abstract reachability for affine hybrid systems w.r.t. template polyhedra is
in co−NP.

Proof. Let Ψ = (n,L, T , Θ,D, I, l0) be an affine hybrid system, l ∈ L, and T ∈ R
m×n

a template constraint matrix. We have to provide an non-deterministic algorithm that has
an accepting run iff μ�C(Ψ)�(dl,i) = −∞ for all i ∈ {1, . . . , m}, i.e., l is unreachable.

The algorithm firstly chooses a max-strategy σ for C(Ψ) non-deterministically. Note
that there exists a max-strategy σ′ for C(Ψ) such that ρσ′

= μ�C(Ψ)�. According to
Lemma 8, we then compute ρσ as defined by Equation (9) in polynomial time. If
ρσ solves C(Ψ) (this can be checked in polynomial time), then we know that ρσ ≥
μ�C(Ψ)�. Hence, the algorithm accepts iff ρσ(dl,i) = −∞ for all i ∈ {1, . . . , m}. ��

5 Conclusion

In this paper we showed how the max-strategy improvement algorithm of Gawlitza and
Seidl [10, 11, 12, 14, 15] can be utilized to compute abstract semantics of affine hybrid
automata w.r.t. template polyhedra — an problem that can be used for unbounded time
verification. This gives us a polynomial-time algorithm for the time elapse operation
over template polyhedra. Moreover, we showed that the corresponding abstract reacha-
bility problem is in co−NP. For future work, it would be interesting to see in how far
this approach can be generalized to non-linear templates and non-linear dynamics (cf.
Gawlitza and Seidl [14]). It also remains to evaluate the proposed approach in prac-
tice. We report on our proof-of-concept implementation in the corresponding technical
report Dang and Gawlitza [8].

References

[1] Adjé, A., Gaubert, S., Goubault, E.: Computing the smallest fixed point of nonexpansive
mappings arising in game theory and static analysis of programs. In: MTNS (2008)

[2] Adjé, A., Gaubert, S., Goubault, E.: Coupling Policy Iteration with Semi-Definite Relax-
ation to Compute Accurate Numerical Invariants in Static Analysis. In: Gordon, A.D. (ed.)
ESOP 2010. LNCS, vol. 6012, pp. 23–42. Springer, Heidelberg (2010)

[3] Alur, R., Dang, T., Ivancic, F.: Counter-example guided predicate abstraction of hybrid
systems. Theoretical Computer Science (TCS) 354(2), 250–271 (2006)

[4] Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear sys-
tems. Acta Inf. 43(7), 451–476 (2007)

[5] Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O., Theobald, M.:
Abstraction and counterexample-guided refinement in model checking of hybrid systems.
Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)

Template-Based Unbounded Time Verification of Affine Hybrid Automata 49

[6] Costan, A., Gaubert, S., Goubault, É., Martel, M., Putot, S.: A Policy Iteration Algorithm
for Computing Fixed Points in Static Analysis of Programs. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 462–475. Springer, Heidelberg (2005)

[7] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL (1977)

[8] Dang, T., Gawlitza, T.M.: Template-based unbounded time verification of affine hybrid au-
tomata. Technical report, VERIMAG, Grenoble, France (2011)

[9] Gaubert, S., Goubault, E., Taly, A., Zennou, S.: Static analysis by policy iteration on rela-
tional domains. In: Nicola [17]

[10] Gawlitza, T., Seidl, H.: Precise Relational Invariants through Strategy Iteration. In: Duparc,
J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 23–40. Springer, Heidelberg
(2007)

[11] Gawlitza, T., Seidl, H.: Precise fixpoint computation through strategy iteration. In: Nicola
[17]

[12] Gawlitza, T., Seidl, H.: Precise Interval Analysis vs. Parity Games. In: Cuellar, J., Sere, K.
(eds.) FM 2008. LNCS, vol. 5014, pp. 342–357. Springer, Heidelberg (2008)

[13] Gawlitza, T.M., Monniaux, D.: Improving Strategies via SMT Solving. In: Barthe, G. (ed.)
ESOP 2011. LNCS, vol. 6602, pp. 236–255. Springer, Heidelberg (2011)

[14] Gawlitza, T.M., Seidl, H.: Computing Relaxed Abstract Semantics w.r.t. Quadratic Zones
Precisely. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 271–286.
Springer, Heidelberg (2010)

[15] Gawlitza, T.M., Seidl, H.: Solving systems of rational equations through strategy iteration.
TOPLAS (accepted, to appear)

[16] Jurdzinski, M.: Deciding the winner in parity games is in up ∩ co-up. Inf. Process.
Lett. 68(3), 119–124 (1998)

[17] De Nicola, R. (ed.): ESOP 2007. LNCS, vol. 4421, pp. 157–172. Springer, Heidelberg
(2007)

[18] Prajna, S., Jadbabaie, A.: Safety Verification of Hybrid Systems using Barrier Certificates.
In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer,
Heidelberg (2004)

[19] Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable Analysis of Linear Systems using
Mathematical Programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 25–
41. Springer, Heidelberg (2005)

[20] Sankaranarayanan, S., Dang, T., Ivančić, F.: A Policy Iteration Technique for Time
Elapse over Template Polyhedra. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS,
vol. 4981, pp. 654–657. Springer, Heidelberg (2008)

[21] Tarski, A.: A lattice-theoretical fixpoint theorem and its appications. Pac. J. Math. 5, 285–
309 (1955)

[22] Tiwari, A., Khanna, G.: Series of Abstractions for Hybrid Automata. In: Tomlin, C.J.,
Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer, Heidelberg
(2002)

[23] Tiwari, A., Khanna, G.: Nonlinear Systems: Approximating Reach Sets. In: Alur, R., Pap-
pas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 600–614. Springer, Heidelberg (2004)

	Template-Based Unbounded Time Verification of Affine Hybrid Automata
	Introduction
	Basics
	Our Approach: Getting into the Corset of the Monotone Framework
	Adapting the Max-Strategy Approach
	Conclusion
	References

