Generation of NXC code for control
programs

Thao Dang
VERIMAG, CNRS (France)

NXC — Overview

e The NXT has a bytecode interpreter (provided by LEGO), which can
be used to execute programs.

e The NXC compiler translates a source program into NXT bytecodes,
which can then be executed on the target itself.

e Although NXC is very similar to C, NXC is not a general-purpose
programming language - there are many restrictions that stem from
limitations of the NXT bytecode interpreter.

e The NXC Application Programming Interface (API) describes the sys-
tem functions, constants, and macros that can be used by programs.

e This API is defined in a special file known as a "header file” which is,
by default, automatically included when compiling a program.

NXC — Main Features

e Multi-Threading support. A task in NXC directly corresponds to an
NXT thread

task name ()

{
// the task’s code is placed here

}

e A program must always have at least one task - named "main” - which
is started whenever the program is run. Maximum number of tasks is

256.

e Scheduling mechanisms
Example: Precedes(taskl, task2, ..., taskIN)

— Schedule the specified tasks for execution once the current task has
completed executing.

— The tasks will all execute simultaneously unless other dependencies

e Task priorities

Example

mutex type is a 32-bit value, used for global variables that all tasks or func-
tions can Acquire or Release to obtain exclusive access to a shared resource

mutex moveMutex;

task move_square ()
{
while (true)
{
Acquire(moveMutex) ;
OnFwd (QUT_AC, 75); Wait(1000);
OnRev(OUT_C, 75); Wait(500);
Release (moveMutex) ;

Example (cont’d)

task check_sensors()
{
while (true)
{
if (SENSOR_1 == 1)
{
Acquire (moveMutex) ;
OnRev (OUT_AC, 75); Wait(500);
OnFwd (OUT_A, 75); Wait(500);
Release (moveMutex) ;

Example (cont’d)

task main()

{

Precedes (move_square, check_sensors);
SetSensorTouch(IN_1);
+

Lustre to NXC

e Automatic generation of NXC code from Lustre programs

e Normally, the Lustre compiler produces ansi-C code, too complex to
be handled by the nxc compiler. To produce very simple C code which
can be compiled by NXC compilers, use Lustre compiler (from version
0.5) with option -nxc.

e lus2c double_counter.lus double_counter -nxc
produces a file

double_counter.ec2nxc
which contains:
— void double_counter_I_c(bool)

is the input procedure that must be called to feed the program.
—void double_counter_step()

the procedure that performs one cycle of the program and calls the
2 output procedures:
double_counter_0_x(int), double_counter_0_y(int)

These procedures should be defined by the user.

Writing a main NXC program

In order to compile and execute the code generated by the Lustre compiler,
the user should write a main NXC program that:

1. defines the output procedures,
2. includes the ec2nxc code,
3. defines the main task consisting in a loop that:

e call the input procedure
double_counter_I_c;

For a real application the input value should be obtained from the
SEnsors

e call the step procedure

1. Example — double counter

node double_counter (c: bool) returns (x : int; y : int);
let
x = (0 -> pre x) + if c then 1 else O ;

tel

Example

/* Output procs. <node-name>-0-<var-name>(<var-type>) */
void double_counter_0_x(int V) { NumOut(0, LCD_LINE3, V); }
void double_counter_0_y(int V) { NumQut(O, LCD_LINE4, V); }

/* Includes of the (compiled) Lustre code.
The input proc(s) is(are) defined here, and must be called
at each cycle, before calling the step procedure */
#include "double_counter.ec2nxc"
task main () {
int cycles_counter = 0;
bool ¢ = false;
while (cycles_counter < 3000) {
//prepares and launches a step...
cycles_counter++;
c = lc;
double_counter_I_c(c);
double_counter_step(); }

Periodic Tasks

The rate of the cycles are not related to the "real-time”: a new cycle
begins as soon as the previous cycle ends.

In real-time programming, it is very common that a task should be exe-
cuted with a known period (e.g. 100 ms). This can be approximated by

enforcing the main task to wait between two cycles:
task main () {

int cycles_counter = O;
bool ¢ = false;
while (cycles_counter < 3000) {
cycles_counter++;
c = lc;
double_counter_I_c(c);
double_counter_step();
Wait (msDelay) ;
+

Problem: It is hard to know the execution time of the step procedure

2. Periodic Tasks (cont’d)

Modified program: the step call is replaced by a start task statement.
task do_one_step () E)

double_counter_step();
+
task main () {
int cycles_counter = O;
bool ¢ = false;
while (cycles_counter < 3000) A
cycles_counter++;
c = lc;
double_counter_I_c(c);
StartTask(do_one_step) ;
Wait (msDelay) ;
+
+

Delay between two step calls: msDelay + some constant overhead (5
statements).

Periodic Tasks (cont’d)

When the Worst Case Execution Time (WCET) of the step procedure is
greater than the expected period, a step will be "re-launched” while the
previous step has not yet finished.

We can modify the program in order to check this problem at run time:

Periodic Tasks (cont’d)

int nb_problems;

int running;

task do_one_step () {
running = true;
double_counter_step();
running = false;

+

task main () {
int cycles_counter = 0; bool c = false;
nb_problems = 0; running = false;
while (cycles_counter < 3000) {
cycles_counter++;
c = lc;
double_counter_I_c(c);
if (running) nb_problems++;
StartTask(do_one_step) ;
Wait (msDelay) ;
+
TextOut (0, LCD_LINE8, "problems:");
NumQut (10*x6, LCD_LINE8, nb_problems) ;

Wait (10000) ;

Documentation on NXC
http://bricxce.sourceforge.net /nbe/nxedoc/nxcapi/index.html

	Example – double counter
	Periodic Tasks (cont'd)

