
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Generation of NXC code for control
programs

Thao Dang

VERIMAG, CNRS (France)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

NXC – Overview

• The NXT has a bytecode interpreter (provided by LEGO), which can
be used to execute programs.

• The NXC compiler translates a source program into NXT bytecodes,
which can then be executed on the target itself.

• Although NXC is very similar to C, NXC is not a general-purpose
programming language - there are many restrictions that stem from
limitations of the NXT bytecode interpreter.

• The NXC Application Programming Interface (API) describes the sys-
tem functions, constants, and macros that can be used by programs.

• This API is defined in a special file known as a ”header file” which is,
by default, automatically included when compiling a program.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

NXC – Main Features

• Multi-Threading support. A task in NXC directly corresponds to an
NXT thread
task name()
{
// the task’s code is placed here
}

• A program must always have at least one task - named ”main” - which
is started whenever the program is run. Maximum number of tasks is
256.

• Scheduling mechanisms
Example: Precedes(task1, task2, ..., taskN)

– Schedule the specified tasks for execution once the current task has
completed executing.

– The tasks will all execute simultaneously unless other dependencies

• Task priorities

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example
mutex type is a 32-bit value, used for global variables that all tasks or func-
tions can Acquire or Release to obtain exclusive access to a shared resource

mutex moveMutex;

task move_square()
{

while (true)
{

Acquire(moveMutex);
OnFwd(OUT_AC, 75); Wait(1000);
OnRev(OUT_C, 75); Wait(500);
Release(moveMutex);

}
}

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example (cont’d)

task check_sensors()
{

while (true)
{

if (SENSOR_1 == 1)
{

Acquire(moveMutex);
OnRev(OUT_AC, 75); Wait(500);
OnFwd(OUT_A, 75); Wait(500);
Release(moveMutex);

}
}

}

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example (cont’d)
task main()
{

Precedes(move_square, check_sensors);
SetSensorTouch(IN_1);

}

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Lustre to NXC

• Automatic generation of NXC code from Lustre programs

• Normally, the Lustre compiler produces ansi-C code, too complex to
be handled by the nxc compiler. To produce very simple C code which
can be compiled by NXC compilers, use Lustre compiler (from version
0.5) with option -nxc.

• lus2c double_counter.lus double_counter -nxc

produces a file
double_counter.ec2nxc

which contains:
– void double_counter_I_c(bool)

is the input procedure that must be called to feed the program.
– void double_counter_step()

the procedure that performs one cycle of the program and calls the
2 output procedures:
double_counter_O_x(int), double_counter_O_y(int)

These procedures should be defined by the user.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Writing a main NXC program
In order to compile and execute the code generated by the Lustre compiler,
the user should write a main NXC program that:

1. defines the output procedures,

2. includes the ec2nxc code,

3. defines the main task consisting in a loop that:

• call the input procedure
double_counter_I_c;

For a real application the input value should be obtained from the
sensors

• call the step procedure

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

1. Example – double counter

node double_counter (c: bool) returns (x : int; y : int);
let

x = (0 -> pre x) + if c then 1 else 0 ;
y = (0 -> pre y) + if c then 0 else 1 ;

tel

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example
/* Output procs. <node-name>-O-<var-name>(<var-type>) */

void double_counter_O_x(int V) { NumOut(0, LCD_LINE3, V); }

void double_counter_O_y(int V) { NumOut(0, LCD_LINE4, V); }

/* Includes of the (compiled) Lustre code.

The input proc(s) is(are) defined here, and must be called

at each cycle, before calling the step procedure */

#include "double_counter.ec2nxc"

task main () {

int cycles_counter = 0;

bool c = false;

while (cycles_counter < 3000) {

//prepares and launches a step...

cycles_counter++;

c = !c;

double_counter_I_c(c);

double_counter_step(); }

}

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Periodic Tasks
The rate of the cycles are not related to the ”real-time”: a new cycle
begins as soon as the previous cycle ends.
In real-time programming, it is very common that a task should be exe-
cuted with a known period (e.g. 100 ms). This can be approximated by
enforcing the main task to wait between two cycles:
task main () {

int cycles_counter = 0;
bool c = false;
while (cycles_counter < 3000) {

cycles_counter++;
c = !c;
double_counter_I_c(c);
double_counter_step();

Wait(msDelay);
}

Problem: It is hard to know the execution time of the step procedure

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

2. Periodic Tasks (cont’d)

Modified program: the step call is replaced by a start task statement.
task do_one_step () {

double_counter_step();
}
task main () {

int cycles_counter = 0;
bool c = false;
while (cycles_counter < 3000) {

cycles_counter++;
c = !c;
double_counter_I_c(c);
StartTask(do_one_step);

Wait(msDelay);
}

}

Delay between two step calls: msDelay + some constant overhead (5
statements).

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Periodic Tasks (cont’d)
When the Worst Case Execution Time (WCET) of the step procedure is
greater than the expected period, a step will be ”re-launched” while the
previous step has not yet finished.

We can modify the program in order to check this problem at run time:

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Periodic Tasks (cont’d)
int nb_problems;
int running;
task do_one_step () {

running = true;
double_counter_step();
running = false;

}
task main () {

int cycles_counter = 0; bool c = false;
nb_problems = 0; running = false;
while (cycles_counter < 3000) {

cycles_counter++;
c = !c;
double_counter_I_c(c);
if(running) nb_problems++;
StartTask(do_one_step);
Wait(msDelay);

}
TextOut(0, LCD_LINE8, "problems:");
NumOut(10*6, LCD_LINE8, nb_problems);
Wait(10000);

}

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Documentation on NXC
http://bricxcc.sourceforge.net/nbc/nxcdoc/nxcapi/index.html

	Example – double counter
	Periodic Tasks (cont'd)

