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NXC – Overview

• The NXT has a bytecode interpreter (provided by LEGO), which can
be used to execute programs.

• The NXC compiler translates a source program into NXT bytecodes,
which can then be executed on the target itself.

• Although NXC is very similar to C, NXC is not a general-purpose
programming language - there are many restrictions that stem from
limitations of the NXT bytecode interpreter.

• The NXC Application Programming Interface (API) describes the sys-
tem functions, constants, and macros that can be used by programs.

• This API is defined in a special file known as a ”header file” which is,
by default, automatically included when compiling a program.
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NXC – Main Features

• Multi-Threading support. A task in NXC directly corresponds to an
NXT thread
task name()
{
// the task’s code is placed here
}

• A program must always have at least one task - named ”main” - which
is started whenever the program is run. Maximum number of tasks is
256.

• Scheduling mechanisms
Example: Precedes(task1, task2, ..., taskN)

– Schedule the specified tasks for execution once the current task has
completed executing.

– The tasks will all execute simultaneously unless other dependencies

• Task priorities
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Example
mutex type is a 32-bit value, used for global variables that all tasks or func-
tions can Acquire or Release to obtain exclusive access to a shared resource

mutex moveMutex;

task move_square()
{

while (true)
{

Acquire(moveMutex);
OnFwd(OUT_AC, 75); Wait(1000);
OnRev(OUT_C, 75); Wait(500);
Release(moveMutex);

}
}
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Example (cont’d)

task check_sensors()
{

while (true)
{

if (SENSOR_1 == 1)
{

Acquire(moveMutex);
OnRev(OUT_AC, 75); Wait(500);
OnFwd(OUT_A, 75); Wait(500);
Release(moveMutex);

}
}

}



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example (cont’d)
task main()
{

Precedes(move_square, check_sensors);
SetSensorTouch(IN_1);

}



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Lustre to NXC

• Automatic generation of NXC code from Lustre programs

• Normally, the Lustre compiler produces ansi-C code, too complex to
be handled by the nxc compiler. To produce very simple C code which
can be compiled by NXC compilers, use Lustre compiler (from version
0.5) with option -nxc.

• lus2c double_counter.lus double_counter -nxc

produces a file
double_counter.ec2nxc

which contains:
– void double_counter_I_c(bool)

is the input procedure that must be called to feed the program.
– void double_counter_step()

the procedure that performs one cycle of the program and calls the
2 output procedures:
double_counter_O_x(int), double_counter_O_y(int)

These procedures should be defined by the user.
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Writing a main NXC program
In order to compile and execute the code generated by the Lustre compiler,
the user should write a main NXC program that:

1. defines the output procedures,

2. includes the ec2nxc code,

3. defines the main task consisting in a loop that:

• call the input procedure
double_counter_I_c;

For a real application the input value should be obtained from the
sensors

• call the step procedure
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1. Example – double counter

node double_counter ( c: bool ) returns ( x : int; y : int);
let

x = (0 -> pre x) + if c then 1 else 0 ;
y = (0 -> pre y) + if c then 0 else 1 ;

tel
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Example
/* Output procs. <node-name>-O-<var-name>(<var-type>) */

void double_counter_O_x(int V) { NumOut(0, LCD_LINE3, V); }

void double_counter_O_y(int V) { NumOut(0, LCD_LINE4, V); }

/* Includes of the (compiled) Lustre code.

The input proc(s) is(are) defined here, and must be called

at each cycle, before calling the step procedure */

#include "double_counter.ec2nxc"

task main () {

int cycles_counter = 0;

bool c = false;

while (cycles_counter < 3000) {

//prepares and launches a step...

cycles_counter++;

c = !c;

double_counter_I_c(c);

double_counter_step(); }

}
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Periodic Tasks
The rate of the cycles are not related to the ”real-time”: a new cycle
begins as soon as the previous cycle ends.
In real-time programming, it is very common that a task should be exe-
cuted with a known period (e.g. 100 ms). This can be approximated by
enforcing the main task to wait between two cycles:
task main () {

int cycles_counter = 0;
bool c = false;
while (cycles_counter < 3000) {

cycles_counter++;
c = !c;
double_counter_I_c(c);
double_counter_step();

Wait(msDelay);
}

Problem: It is hard to know the execution time of the step procedure
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2. Periodic Tasks (cont’d)

Modified program: the step call is replaced by a start task statement.
task do_one_step () {

double_counter_step();
}
task main () {

int cycles_counter = 0;
bool c = false;
while (cycles_counter < 3000) {

cycles_counter++;
c = !c;
double_counter_I_c(c);
StartTask(do_one_step);

Wait(msDelay);
}

}

Delay between two step calls: msDelay + some constant overhead (5
statements).
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Periodic Tasks (cont’d)
When the Worst Case Execution Time (WCET) of the step procedure is
greater than the expected period, a step will be ”re-launched” while the
previous step has not yet finished.

We can modify the program in order to check this problem at run time:
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Periodic Tasks (cont’d)
int nb_problems;
int running;
task do_one_step () {

running = true;
double_counter_step();
running = false;

}
task main () {

int cycles_counter = 0; bool c = false;
nb_problems = 0; running = false;
while (cycles_counter < 3000) {

cycles_counter++;
c = !c;
double_counter_I_c(c);
if(running) nb_problems++;
StartTask(do_one_step);
Wait(msDelay);

}
TextOut(0, LCD_LINE8, "problems:");
NumOut(10*6, LCD_LINE8, nb_problems);
Wait(10000);

}
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Documentation on NXC
http://bricxcc.sourceforge.net/nbc/nxcdoc/nxcapi/index.html
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