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Modelling

A model is a description of a (physical, biological,
economical, etc...) phenomenon, in a given language (for
example, mathematical language).

A model is defined by a collection of variables et describes

their evolution over time:

e Predict the values of the variables

e Explain complex phenomena from simpler or more
general phenomena/principles



Modelling steps

e Formalisation: define the input and output variables,
and the equations describing their relations. The
eqguations may contain parameters.

¢ |dentification: determine the parameter values in a
given context

e Validation: verify if the model is coherent with the
observations

Simulation: solving the equations to find the relations
between the input and output variables. The resolution can
be analytical, numerical, etc.

Other usages of models: design of controllers, formal
verification of properties, code generation



Signal and System

A signal is an application from time to a domain X : T'— Dx

e T can be either continuous in R, or logical/discrete N, Z

e Dx specffies the signal type, R, N, Bool

A system is a signal transformer: S : (T' - Dx) — (T — Dy)
Example 1. A modem transforms a binary signal into a continuous
electrical signal (system in open loop, i.e. the output is determined
directly from the input)

Example 2. A thermostat is a system in closed loop (with a
feedback loop from the output to the input)



System - Input/Output

A system: establishes a cause-effect link between the input
signals (excitations) and the output signals (responses).

Among the inputs, we distinghuishes:

e the controls

¢ the disturbances



Defining a dynamical system (1)

A system is a transformer of signals
S:(T'— Dx)— (I' = Dy)
To define a system

¢ |dentify the inputs and outputs: a plant (inputs: raw
material, outputs: products), a computer (input/output:
information coming from the input/output interfaces)

¢ Choose the types of the input/output signals: Dy
et Dy

e Choose the domain of time T": Z, N (discrete time),
or R, R, (continuous time), or collection of moments at
which some events occur



Defining a dynamical system (2)

Define directly the function S is difficult!!

We need to use associated analysis tools

¢ [or continuous-time systems: differential and integral
calculus

e For discrete-time systems: algebra



Composition using block diagrams (1)

¢ Block diagrams: graphical description of connections
between the components. Each component is
associated with a function of signal transformation

e Connection = composition of functions
e Hierarchical, easy to understand



Composition using block diagrams (2)

WcCYy
w=yeW
Soy: W xV =Y
S12U—>V —
uelU veV yeY
U = [Dy — Ry] V = [Dy — Ry] Y = [Dy — Ry]

The global systeml S5 : U — Y t.q.
Yu e U : Sg(u) = SQ(Sg(U),Sl(U))

The connection between y et w is called ‘feedback’. We
need to solve the equation z = Sy(z, S1(2))



Properties, characteristics of a system (1)

—

Linear systems vs non-linear systems
A system is linear iff it satisfies the following properties:

e Properties of additivity: If the input is 24 (t), the output is
y1(t). If the input is z5(t), the output is yo(t). Thus, if the
inputis (t) = z1(t) + 22(t), the output is
y(t) = v1 () + y2(1).

¢ Proprerties of homogeneity :

If the input is x4 (t), the output is ¥4 (t). Thus, for Va # 0,
if the input is x(t) = a1 (t), the output is y(t) = oy (t).



Properties, characteristics of a system (2)

Stationary systems (time-invariant)

—

More formally, we say that the system commutes with a delay:

S(z(t — 8)) = (Sz)(t — o)

The linear stationary systems form a class important
historically and practically



Properties, characteristics of a system (3)

Causal system

Principle of causality: the effects should not precede the

causes.
—

If the input z(t) is nul for t < 0, then the output y(t) is also nul
fort < 0.




Properties, characteristics of a system (4)

Instantenous system vs dynamical system

Instantenous system (without memory or static): at a given
instant, the output depends only on the input at that instant

—

For example, y(t) = a(t)x(t) defines a static system.
Dynamical system: non-static, with memory




Properties, characteristics of a system (5)

Dynamical system In continuous system, memory is
formalised by an integrator. The input/output relation is
described by differential equations involving y(t) and their
derivatives

g (y(t) —y(t —h)
Y (t) - llmhao n

'(t) : information about the growth

Y
® y(t) : present instant
y(t — h) : past instant



Dynamical system - example

Consider a continuous dynamical system described by the
following first-order linear differential equation:

a1y (t) + aoy(t) = x(t)

y(0) = =22y(t) + —a(t
1/a, N
s(y—{>— >0 T ¥(t)

+

This schema is not optimised in the sense that one single
integrator would suffice



Representation mode

For a continuous system:

e Differential equations
e Functional representation
e State space representation

¢ Representation in a transformed space, for example via
the Laplace transform



Functional representation

The functional schema is deduced from differential
equations and allows a more direct way to numerical
simulation
e [tis a program in a graphical language connecting
the functional blocks
e A compiler translates this schema into a computer
program for the numerical resolution of differential
equations
¢ Jo describe a linear continuous system, we need the
following functional blocks: Gain, Sum/Substraction,
integrators (memory blocks).
¢ This representation is not unique



Functional representation - example

Consider a continuous dynamical system described by:

a1y (t) + aoy(t) = x(t)

’ Qo 1
) =~ 2y(0) + e
1/a, - 1/a Iyn
() *Q vy X +A ¥it)
-a;a -4y
(@ T Ty {t)

Integration uses initial conditions:



How to obtain a functional representation (1)

Obtain systematically a functional representation associated
with a differential equation (z(t) is input and y(t) is output)

dry(t) _ d"ty(t" ) dy(t)
i Ve e aoy(t)
d"x(t) dx(t)
Example 1:
d?y(t dy(t
dy(t) =—a vl _ aoy(t) + box(t)

dt? dt



How to obtain a functional representation (2)

Example 2:
fa(t) as input and x(t) as output.

AR
K, K
— — - —

The system is represented by the differential equation:

d3x(t) d*x(t) dx(t)
mb—dt3 + mk1 —dt2 + b(kl + kg) dt + klkgx(t) =
dfa(t)
b pm + ki fa(t)



How to obtain a functional representation (3)

d*y(t) dy(?)
ol S vt aoy(t) + box(t)
We write uq(t) = y(t) and u}(t) = —aey(t) + box(t). Hence,
uy = —aguh + uj.
After the first integration uf, = —ajus + uy.

Now in integrating u4(t) we obtain y(t)

uy(t) = —agy(t) + box(t)
up(t) = —aqus(t) + uy(t)
y(t) = ua(t)
b, y'(0)+ay(0) y(0)
x(0) - - — ¥
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How to obtain a functional representation (4)

d*y(t) dy(t) da(t)
di2 = —aa dt — aoy(t) + blw + b().fl?(t)
We write u) (t) = —apy(t) + boz(t) et us(t) = y(t). Hence,

uhy = —ajubh + by’ + uf.

x(t)

y’'(0)ta y(0)
+b,x(0)

y(©)

g
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State space representation (1)

Notion of state

¢ To specify the function .S, we often need a collection X
of internal states.

e More formally, the state is a vector containing a minimal
number of variables such that:
The initial output value y(to) is known = for all ¢ > t,
y(t) can be determined uniquely if the input () is
known for the interval [to, t]
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State space representation (2)

Example of capacitor i(t) = 24

oft) = —/ dT_—/ Pdr+ 4 t: i(r)dr

= v(ty) + = - /to i(t)dr
e Specifying v(tg) is more “economical” than specifying all
the evolution i(t) rom ¢t = —oco t0 t = ¢
e The state at the instant t, of the system must form the
memory of the system
¢ The state can be a representation more compact than
the complete history of the system.
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State space representation (3)

e The state at the instant t, of the system must form the
minimal memory of the past, necessary to determine the
future

¢ The state represented by the internal variables provides a
complete description of the evolution of the system

¢ This formalism allows transforming all the linear
differential equations of order » into a system of
differential equations of order 1.

¢ The choice of state representation is not unique
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How to obtain a state space representation

Consider the precedent example

2
ddigt):—md@:ii) ()—I—b1dd()+b0 (t)
We have set
ui(t) = —aoy(t) + box(t) = —agua(t) + box(t)
u’2 (t) = —a1u2 (t) + blfL’(t) “+ u (t)
y(t) = wua(t)

In a matrix form

)= (0 ) () ()

and
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State space representation

v = Au+ Bx
y = Cu+ Dx

The matrix A: state matrix, of dimension n x n

The matrix B: input matrix, of dmension n x p

The matrix C:. output matrix, of dimension g x n

The matrix D: coupling matrix, of dmension ¢ x p
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From a structural viewpoint

System of first order (second ordre, ...):

differential \ recurrent, automaton, object program
X (0) X (0)
X’ = F(Xv U) Xnt1 = F(XmUn—i—l)
Y = GX,U) Y, = G(X,U,)

Order of the system: dimension of X

Remark: not intrinsic
Finite-state system: Automaton, finit-state machine
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