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Plan

In this course we learn how to design a controller

• We have considered closed-loop stability
• Now we consider time response specifications

1. By pole placement
2. In a more systematic manner
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Poles and Time Response

• Delay Time (Td): is the time required for the response to
reach 50 percent of the final value.

• Rise Time (Tr): is the time required for the response to
rise from 0 to 90 percent of the final value.

• Settling Time (Ts): is the time required for the response to
reach and stay within a specified tolerance band ( 2
percent or 5 percent) of its final value.

• Peak Time (Tp): is the time required for the underdamped
step response to reach the peak of time response.

4



Computing Time Response - Example 1

• Using Matlab
• Define a system by its transfer function

s2 + 5s+ 5

s4 + 1.65s3 + 5s2 + 6.5s+ 2
by the following command:

sys = tf([1 5 5],[1 1.65 5 6.5 2]);
• Compute its step response by:

step(sys)
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Computing Time Response - Example 2

• Define a system by its state space representation:

a = [−0.5572− 0.7814; 0.78140];

b = [1− 1; 02];

c = [1.96916.4493];

sys = ss(A,B,C,0);
• Compute its impulse response (that is, the response to
the Dirac delta input, the Laplace transform of which is 1)
by:

impulse(sys)
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Problem Setting

Given a linear system in a state space representation

ẋ(t) = Ax(t) +Bu(t) x(0) = x0

y(t) = Cx(t) +Du(t)

• x(t) ∈ Rn is the system state (vector of state variables),
n: order of the state space representation

• u(t) ∈ Rm the control input
• y(t) ∈ Rp the measured output
• A, B, C and D are real-valued matrices
• x0 is the initial state
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Pole Placement Problem

Does there exist a state feedback control law

u(t) = −Fx(t)

such that the closed-loop poles are in predefined locations
(denoted γi , i = 1, . . . , n ) in the complex plane?
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Controllability

There exists a state feedback control u(t) = −Fx(t) such
that the poles of the closed-loop system are γi , i = 1, . . . , n

if and only if the pair (A,B) is controllable.

Controllability matrix C(A,B) = [B AB A2B . . . An−1B]

(where A ∈ Rn×n and B ∈ Rn×m)

• The pair (A,B) is controllable if and only if the
controllability matrix C(A,B) is full rank

• For the case m = 1, the pair (A,B) is controllable if the
square controllability matrix is nonsingular, that is
det(C(A,B)) ̸= 0
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Controllable Canonical Form
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Pole Placement

The desired closed-loop polynomial
(s− γ1)(s− γ2) . . . (s− γn) can be developed as:

(s− γ1)(s− γ2) . . . (s− γn) = sn + αn−1s
n−1 + . . .+ αs+ α0

Threfore fi = −ai−1 + αi−1, i = 1, . . . , n ensures that the
poles of (A−BF ) are {γi}, i = 1, . . . , n
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Procedure for General State Space Representation (1)

For a general state space representation, use a change of
basis to put the system in the canonical form ⇒ simplify the
computation of the state feedback control gain F

In Matlab, use F = acker(A,B, P ), or a newer version
F = place(A,B, P ), where P is the set of desired
closed-loop poles
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Procedure for General State Space Representation (2)
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Closed-Loop Poles as Specifications
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Closed-Loop Poles as Specifications
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