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Plan

In this course we learm how to design a controller

¢ \We have considered closed-loop stability
¢ Now we consider time response specifications

1. By pole placement
2. In.a more systematic manner



Poles and Time Response
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Poles and Time Response
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Poles and Time Response

e Delay Time (T): is the time required for the response to
reach 50 percent of the final value.

¢ Rise Time (T;). is the time required for the response to
rise from O to 90 percent of the final value.

e Settling Time (T7): is the time required for the response to
reach and stay within a specified tolerance band ( 2
percent or 5 percent) of its final value.

* Peak Time (1}): is the time required for the underdamped
step response to reach the peak of time response.



Computing Time Response - Example 1

e Using Matlab

e Define a system by its transfer function
s2+5s+5

5%+ 1.65s3 + 552 4+ 6.55 +

sys =tf([1 5 5],[1 1.655 6.5 2));
e Compute its step response by:

5 by the following command:

step(sys)



Computing Time Response - Example 2

e Define a system by its state space representation:

[—0.5572 — 0.7814;0.78140];

[1—1;02];

[1.96916.4493];
sys = ss(A,B,C,0);

e Compute its impulse response (that is, the response to
the Dirac delta input, the Laplace transform of which is 1)
py:

a
b
c

impulse(sys)



Problem Setting

Given a linear system in a state space representation

&(t) = Az(t) + Bu(t) z(0) = zo
y(t) = Cx(t) + Du(t)

e x(t) € R™is the system state (vector of state variables),
n. order of the state space representation

* u(t) € R™ the control input

* y(t) € RP the measured output

e A B, Cand D are real-valued matrices
* 1, is the initial state



Pole Placement Problem

Does there exist a state feedback control law
u(t) = —Fux(t)

such that the closed-loop poles are in predefined locations
(denoted ~; , i = 1,...,n)in the complex plane?



Controllability

There exists a state feedback control u(t) = —Fx(t) such
that the poles of the closed-loop systemare ~; ,i=1,...,n
if and only if the pair (A4, B) is controllable.

Controllability matrix C(A, B) = [B AB A*B... A" 'B|
(wWhere A € R™*™ and B € R™*™)

e The pair (A, B) is controllable if and only if the
controllability matrix C(A, B) is full rank

e For the case m = 1, the pair (A, B) is controllable if the
square controllability matrix is nonsingular, that is
det(C(A,B)) #0



Controllable Canonical Form

0 1 0 0 0
0 0 1 0
A=| : RS : ,B=| . | and
0 : 0 1 0
—dap —a4 —anp—1 1
C=[ o Cy : Cn1 ]
LetF:[f1 f2 fn]
Then
0 1 0
0 0 1 0
A—BF =
0 : 0 1
—a—-fi —a1—-H ... ... —ap_1—"



Pole Placement

The desired closed-loop polynomial
(s —71)(s—72)...(s—,) can be developed as:

(s=m)(s=72)...(s— W) ="+, 18" ' +...+as+aqg

Threfore f; = —a;_1 + a;_1, 1 =1,...,n ensures that the
poles of (A — BF)are {v;},i=1,...,n



Procedure for General State Space Representation (1)

For a general state space representation, use a change of
basis to put the system in the canonical form = simplify the
computation of the state feedback control gain F

In Matlab, use F' = acker(A, B, P), or a newer version
F = place(A, B, P), where P is the set of desired
closed-loop poles



Procedure for General State Space Representation (2)

Procedure for the general case:
1. Check controllability of (A, B)
2. Calculate € = [B,AB,...,A"'8].

g an
! gnA
Notes~'=| : |.Define T= _

Qn ann—1

3. Note A= T~ ' AT and B= T~'B (which are under the controllable
canonical form)

4. Choose the desired closed-loop poles and define the desired
closed-loop characteristic polynomial:
S"+ap_ 18" 4. +oays+og

5. Calculate the state feedback u = —FXx with:

fi=—a_q+oiq1,i=1,..n
6. Calculate (for the original system):

u=—Fx, with F=FT~!



Closed-Loop Poles as Specifications

The required closed-loop performances should be chosen in the
following zone
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which ensures a damping greater than & =sin¢.

—v implies that the real part of the CL poles are sufficiently negatives.



Closed-Loop Poles as Specifications

Some useful rules for selection the desired pole/zero locations (for a
second order system):

» Rise time : t; ~ %

» Seetling time : ts ~ .?Ti

» Overshoot My = exp(—7& /sqrt(1 — £2)):
£ =03 M,=235%,
£ =05 Mp=16%,
E=0.7 < My=5%.



