Linear Systems and Feedback Control II

Course Feedback Control and Real-time Systemsl HECS3: Performance and quantitative properties

High-confidence Embedded and Cyber-Physical Systems Master of Science in Informatics at Grenoble Univ. Grenoble Alpes, Laboratoire Verimag ${\tt thao.dang@univ-grenoble-alpes.fr}$

Plan

In this course we learn how to design a controller

- We have considered closed-loop stability
- Now we consider time response specifications
 - 1. By pole placement
 - 2. In a more systematic manner

Poles and Time Response

2nd order system transfer function:
$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi \omega_n + \omega_n^2}$$

The poles of the system: $P_{1,2} = \sigma \pm j\omega_d = -\xi \omega_n \pm j\omega_n \sqrt{1-\xi^2}$

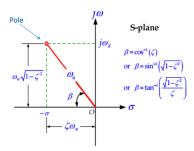
 ξ is Damping Ratio ω_n is the Natural frequency

Rise Time:
$$T_r = \frac{\pi - \beta}{\omega_d}$$

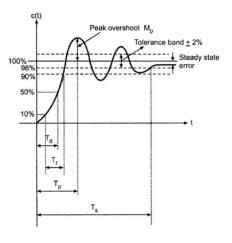
Peak Time:
$$T_p = \frac{\pi}{\omega_d} = \frac{\pi}{\omega_n \sqrt{1-\xi^2}}$$

Settling Time:
$$T_s = \frac{4}{\xi \omega_n}$$

Rise Time:
$$T_r = \frac{\pi - \beta}{\omega_d}$$
 Settling Time: $T_s = \frac{4}{\xi \, \omega_n}$ Delay Time: $T_d = \frac{1 + 0.7 \, \xi}{\omega_n}$ Peak Time: $T_p = \frac{\pi}{\omega_d} = \frac{\pi}{\omega_n \sqrt{1 - \xi^2}}$ Maximum Overshoot: $M_p = e^{-\pi \, \xi} / \sqrt{1 - \xi^2} \times 100\%$



Poles and Time Response



Poles and Time Response

- Delay Time (T_d) : is the time required for the response to reach 50 percent of the final value.
- Rise Time (T_r) : is the time required for the response to rise from 0 to 90 percent of the final value.
- Settling Time (T_s) : is the time required for the response to reach and stay within a specified tolerance band (2 percent or 5 percent) of its final value.
- ullet Peak Time (T_p) : is the time required for the underdamped step response to reach the peak of time response.

Computing Time Response - Example 1

- Using Matlab
- Define a system by its transfer function $\frac{s^2+5s+5}{s^4+1.65s^3+5s^2+6.5s+2} \text{ by the following command:}$

$$sys = tf([1 5 5],[1 1.65 5 6.5 2]);$$

Compute its step response by:

step(sys)

Computing Time Response - Example 2

• Define a system by its state space representation:

```
\begin{split} a &= [-0.5572 - 0.7814; 0.78140]; \\ b &= [1 - 1; 02]; \\ c &= [1.96916.4493]; \\ \text{sys} &= \text{ss(A,B,C,0)}; \end{split}
```

• Compute its impulse response (that is, the response to the Dirac delta input, the Laplace transform of which is 1) by:

```
impulse(sys)
```

Problem Setting

Given a linear system in a state space representation

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad x(0) = x_0$$

$$y(t) = Cx(t) + Du(t)$$

- $x(t) \in \mathbb{R}^n$ is the system state (vector of state variables), n: order of the state space representation
- $u(t) \in \mathbb{R}^m$ the control input
- $y(t) \in \mathbb{R}^p$ the measured output
- A, B, C and D are real-valued matrices
- x_0 is the initial state

Pole Placement Problem

Does there exist a state feedback control law

$$u(t) = -Fx(t)$$

such that the closed-loop poles are in predefined locations (denoted γ_i , $i=1,\dots,n$) in the complex plane?

Controllability

There **exists** a state feedback control u(t) = -Fx(t) such that the poles of the closed-loop system are γ_i , $i = 1, \ldots, n$ if and only if the pair (A, B) is **controllable**.

Controllability matrix $\mathcal{C}(A,B)=[B \ AB \ A^2B\dots A^{n-1}B]$ (where $A\in\mathbb{R}^{n\times n}$ and $B\in\mathbb{R}^{n\times m}$)

- The pair (A,B) is controllable if and only if the controllability matrix $\mathcal{C}(A,B)$ is **full rank**
- For the case m=1, the pair (A,B) is controllable if the square controllability matrix is **nonsingular**, that is $det(\mathcal{C}(A,B)) \neq 0$

Controllable Canonical Form

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & 0 & 1 \\ -a_0 & -a_1 & \dots & -a_{n-1} \end{bmatrix}, B = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \text{ and }$$

$$C = \begin{bmatrix} c_0 & c_1 & \dots & c_{n-1} \end{bmatrix}.$$

$$\text{Let } F = \begin{bmatrix} f_1 & f_2 & \dots & f_n \end{bmatrix}$$
Then

$$A - BF = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & & 0 & 1 \\ -a_0 - f_1 & -a_1 - f_2 & \dots & \dots & -a_{n-1} - f_n \end{bmatrix}$$

Pole Placement

The desired closed-loop polynomial $(s-\gamma_1)(s-\gamma_2)\dots(s-\gamma_n)$ can be developed as:

$$(s - \gamma_1)(s - \gamma_2) \dots (s - \gamma_n) = s^n + \alpha_{n-1}s^{n-1} + \dots + \alpha s + \alpha_0$$

Threfore $f_i = -a_{i-1} + \alpha_{i-1}$, i = 1, ..., n ensures that the poles of (A - BF) are $\{\gamma_i\}$, i = 1, ..., n

Procedure for General State Space Representation (1)

For a general state space representation, use a **change of basis** to put the system in the canonical form \Rightarrow simplify the computation of the state feedback control gain F

In Matlab, use F=acker(A,B,P), or a newer version F=place(A,B,P), where P is the set of desired closed-loop poles

Procedure for General State Space Representation (2)

Procedure for the general case:

- 1. Check controllability of (A, B)
- 2. Calculate $\mathscr{C} = [B, AB, \dots, A^{n-1}B]$.

Note
$$\mathscr{C}^{-1} = \begin{bmatrix} q_1 \\ \vdots \\ q_n \end{bmatrix}$$
. Define $T = \begin{bmatrix} q_n \\ q_n A \\ \vdots \\ q_n A^{n-1} \end{bmatrix}^{-1}$

- 3. Note $\bar{A} = T^{-1}AT$ and $\bar{B} = T^{-1}B$ (which are under the controllable canonical form)
- Choose the desired closed-loop poles and define the desired closed-loop characteristic polynomial: sⁿ + α_{n-1} sⁿ⁻¹ + ... + α₁ s + α₀
- 5. Calculate the state feedback $u = -\bar{F}\bar{x}$ with:

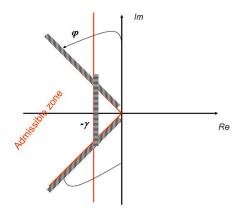
$$\bar{f}_i = -a_{i-1} + \alpha_{i-1}, i = 1, ..., n$$

6. Calculate (for the original system):

$$u = -Fx$$
, with $F = \bar{F}T^{-1}$

Closed-Loop Poles as Specifications

The required closed-loop performances should be chosen in the following zone



which ensures a damping greater than $\xi = \sin \phi$.

 $-\gamma$ implies that the real part of the CL poles are sufficiently negatives.

Closed-Loop Poles as Specifications

Some useful rules for selection the desired pole/zero locations (for a second order system):

- Rise time : $t_r \simeq \frac{1.8}{\omega_n}$
- Seetling time : $t_{\rm S} \simeq {4.6 \over \xi \omega_n}$
- ► Overshoot $M_p = \exp(-\pi \xi/sqrt(1-\xi^2))$: $\xi = 0.3 \Leftrightarrow M_p = 35\%$, $\xi = 0.5 \Leftrightarrow M_p = 16\%$, $\xi = 0.7 \Leftrightarrow M_p = 5\%$.