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Using high level coordination primitives allows enhanced expressiveness of component-
based frameworks to cope with the inherent complexity of present-day systems designs.
Nonetheless, their distributed implementation raises multiple issues, regarding both the
correctness and the runtime performance of the final implementation. We propose a novel
approach for distributed implementation of multiparty interactions subject to scheduling
constraints expressed by priorities. We rely on a new composition operator named
Restriction, whose semantics dynamically restricts the set of interactions allowed for
execution, depending on the current state. We show that this operator provides a natural
encoding for priorities. We provide a knowledge-based optimization that modifies the
Restriction operator to avoid superfluous communication in the final implementation. We
complete our framework through an enhanced conflict resolution protocol that natively
implements Restriction. A prototype implementation allows us to compare performances
of different optimizations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Correct design and implementation of computing systems has been an active research topic over the past three decades.
This problem is significantly more challenging in the context of distributed systems due to a number of factors such as
non-determinism, asynchronous communication, race conditions, fault occurrences, etc. Model-based development of such
applications aims to ensure correctness through the usage of explicit model transformations from high-level models to code.

In this paper, we focus on distributed implementation for models defined using the BIP framework [6]. BIP (Behavior,
Interaction, Priority) is based on a semantic model encompassing composition of heterogeneous components. The behavior of
components is described as an automaton extended by data and associated functions written in C. BIP uses an expressive set
of composition operators for obtaining composite components from a set of components. The operators are parameterized
by a set of multiparty interactions between the composed components and by priorities, used to specify different scheduling
mechanisms between interactions.1

✩ This article extends two papers, presented at the AGERE!2012 workshop and at the FMOODS/FORTE 2012 conference. The research leading to these
results has received funding from the European Community’s Seventh Framework Programme [FP7/2007–2013] under grant agreement No. 248776 (PRO3D)
and No. 257414 (ASCENS) and from ARTEMIS JU grant agreement ARTEMIS-2009-1-100230 (SMECY).

* Corresponding author.
E-mail addresses: bensalem@imag.fr (S. Bensalem), bozga@imag.fr (M. Bozga), quilbeuf@fortiss.org (J. Quilbeuf), sifakis@imag.fr (J. Sifakis).

1 Although our focus is on BIP, all results in this paper can be applied to any model that is specified in terms of a set of components synchronized by
interactions with priorities.
http://dx.doi.org/10.1016/j.scico.2014.02.013
0167-6423/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2014.02.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:bensalem@imag.fr
mailto:bozga@imag.fr
mailto:quilbeuf@fortiss.org
mailto:sifakis@imag.fr
http://dx.doi.org/10.1016/j.scico.2014.02.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2014.02.013&domain=pdf


294 S. Bensalem et al. / Science of Computer Programming 98 (2015) 293–316
A multiparty interaction is a high-level construct that expresses a strong synchronization between a fixed set of compo-
nents. Such an interaction takes place only if all its participant components agree to execute it. If two multiparty interactions
involve a common component, they are conflicting because the common component cannot participate in both interactions.
Transforming a BIP model into a distributed implementation consists in addressing three fundamental issues:

1. Enabling concurrency. Components and interactions should be able to run concurrently while respecting the semantics
of the high-level model.

2. Conflict resolution. Interactions that share a common component can potentially conflict with each other. Such interac-
tions should be executed in mutual exclusion.

3. Enforcing priorities. When two interactions are simultaneously enabled, only the one with higher priority can be chosen
for execution. Priorities can be applied indifferently between conflicting or non-conflicting interactions.

We developed a general method based on source-to-source transformations of BIP models with multiparty interactions
leading to distributed models that can be directly implemented [16,17]. This method has been later extended to handle
priorities [18] and optimized by exploiting knowledge [12]. The target model consists of components representing pro-
cesses and Send/Receive interactions representing asynchronous message passing. Correct coordination is achieved through
additional components implementing conflict resolution and enforcing priorities between interactions.

In particular, the conflict resolution issue has been addressed by incorporating solutions to the committee coordination
problem [20] for implementing multiparty interactions. Intuitively, this problem consists in scheduling several meetings,
every one involving a set of professors. A meeting requires the whole attendance. A professor cannot participate in more
than one meeting at a time. Bagrodia [3] proposes solutions to this problem with different degrees of parallelism. The most
distributed solution is based on the drinking philosophers problem [19], and has inspired the later approaches of Pérez
et al. [41] and Parrow and Sjödin [39]. In the context of BIP, a transformation addressing all the three challenges through
employing a centralized scheduler is proposed in [5]. Moreover, in [16], the transformation is extended to address both the
concurrency issue by breaking the atomicity of interactions and the conflict resolution issue by embedding a solution to the
committee coordination problem in a distributed fashion.

Distributed implementation of priorities is usually considered as a separate issue, and solved using completely different
approaches. However, such an implementation should simultaneously enforce the priority rules and the mutual exclusion of
conflicting interactions. In [18], priorities are eliminated by adding explicit scheduler components. This transformation leads
to potentially more complex models, having definitely more interactions and conflicts than the original one. In [7], situations
where priorities and multiparty interactions are intermixed, called confusion, are avoided by adding more priorities.

Enforcing priority rules is done when deciding execution of low priority interactions, by checking that no interaction with
more priority is ready to execute. This check requires a synchronous view of the components involved in higher priority
interactions. The distributed knowledge [22] of a component consists of all the information that it can infer about other
components state, based on its current state and the reachable states. In [15,8,4], the focus is on reducing the overhead
for implementing priorities by exploiting knowledge. Yet, these approaches make the implicit assumption that multiparty
interactions are executed atomically and do not consider conflict resolution.

In [13], we introduce a new composition operator called Restriction. This operator associates a state predicate to each
multiparty interaction. The semantics of Restriction allows executing an interaction only if the associated predicate eval-
uates to true in the current state. For instance, an interaction “start” representing a car starting at a crossing might be
restricted with the predicate “the traffic light is green”. Note that the predicate possibly depends on components that do
not participate in the interaction. In our example, the traffic light component is not necessarily a participant in the “start”
interaction.

This paper is an extension of both [12] and [13], and combines the two approaches. This combination yields several
methods for obtaining a distributed implementation of multiparty interactions subject to priorities. These methods rely on
an appropriate intermediate model and transformations towards fully distributed models. Each transformation, depicted by
an arrow in Fig. 1, either refines the composition operator used to glue components of the model or optimizes the model.
The contribution is manyfold:

1. First, we introduce an alternative semantics for BIP that relies on the Restriction operator. We show that this operator
is general enough to encompass priorities through a simple transformation (Transformation 1 of Fig. 1). The Restriction
operator reveals two types of conflicts occurring between interactions, that can be handled using different conflict
resolution mechanisms (see below).

2. Second, we show that the knowledge-based optimization originally presented in [12] can be extended to handle the
Restriction and reduce the overall coordination of the model. This optimization (Transformation 2 of Fig. 1) modifies
only the predicates used by the Restriction operator.

3. Third, a model with Restriction can be used as an intermediate step in the transformations leading to a distributed
implementation. We show that observation conflicts, that usually follow from encoding of priorities, can be dealt more
efficiently than structural conflicts, where two multiparty interactions involve a common component. In particular, we
compare two approaches for generating a distributed implementation. The first consists in encoding Restriction with
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Fig. 1. Possible paths to generate a distributed implementation from a model encompassing multiparty interactions and priorities.

multiparty interactions and then using a conflict resolution protocol (Transformations 3 and 4). The second is new and
uses a conflict resolution protocol designed to handle Restriction (Transformation 5).

4. These approaches have been fully implemented and evaluated through benchmarks.

The paper is organized as follows. Section 2 introduces the main concepts of the BIP framework together with the new
Restriction composition operator. An adaptation of the knowledge-based optimization from [12] for Restriction is presented
in Section 3. Section 4 recalls the principles for distributed implementation of BIP models, focusing on conflict resolution
by using counter-based protocols and present a solution for distributed implementation of Restriction. Experiments are
reported in Section 5. Section 6 presents the related work for conflict resolution, priorities and knowledge. Section 7 provides
conclusions and perspectives for future work.

2. Semantic models of BIP

In this section, we present BIP [6], a component framework for building systems from a set of atomic components by
using two types of composition operators: Interaction and Priority. We then present an alternative type of composition,
named Restriction, that can express Priority. Finally, we present a transformation from a component with Restriction into
an equivalent component with only Interaction.

Atomic components. An atomic component B is a labeled transition system represented by a tuple (Q ,q0, P , T ) where Q is
a set of control locations or states, q0 is the initial state, P is a set of communication ports and T ⊆ Q × P × Q is a set of
transitions.

We write q
p−→ q′ if (q, p,q′) ∈ T . If the target state is irrelevant, we write q

p−→ to express that an outgoing transition
labeled by p is possible at state q.

2.1. Interactions & priorities

In order to compose a set of n atomic components {Bi = (Q i,q0
i , Pi, Ti)}i=1,n , we assume that their respective sets of

control locations and ports are pairwise disjoint; i.e., for any two i �= j in {1, . . . ,n}, we require that Q i ∩ Q j = ∅ and

Pi ∩ P j = ∅. We define the global set P
def= ⋃n

i=1 Pi of ports. An interaction a is a set of ports such that a contains at most
one port from each atomic component. In the sequel, we denote by participants(a) the components that participate in a,
and by Ia ⊆ {1, . . . ,n} the corresponding indices. We also denote a = {pi}i∈Ia , where pi ∈ Pi is the port of Bi participating
in a.

Priorities. Given a set γ of interactions, we define a Priority as a strict partial order π ⊆ γ ×γ . We write a <π b for (a,b) ∈ π
to express that a has a lower priority than b.

Composite components. A composite component πγ (B1, . . . , Bn) (or simply component) is defined by a set of atomic compo-
nents {Bi = (Q i,q0

i , Pi, Ti)}i=1,n composed by a set of interactions γ and a Priority π ⊆ γ × γ . If π is the empty relation,
then we omit π and simply write γ (B1, . . . , Bn). A global state q of πγ (B1, . . . , Bn) is defined by a tuple of control loca-
tions q = (q1, . . . ,qn). The behavior of πγ (B1, . . . , Bn) is a labeled transition system (Q ,q0, γ ,→πγ ), where Q = ⊗n

i=1 Q i ,
q0 = (q0

1, . . . ,q0
n) and →γ ,→πγ are the least sets of transitions satisfying the rules:

a = {pi}i∈Ia ∈ γ ∀i ∈ Ia. (qi, pi,q′
i) ∈ Ti ∀i /∈ Ia. qi = q′

i

(q , . . . ,q )
a→ (q′ , . . . ,q′ )

[inter]

1 n γ 1 n



296 S. Bensalem et al. / Science of Computer Programming 98 (2015) 293–316
Fig. 2. A BIP component. Initial state is (off ,dwn).

q
a−→γ q′ ∀a′ ∈ γ . a <π a′ �⇒ q

a′
�γ

q
a−→πγ q′

[prio]

Transitions →γ defined by rule [inter] specify the behavior of the component without considering priorities. A component
can execute an interaction a ∈ γ iff for each port pi ∈ a, the corresponding atomic component Bi can execute a transition
labeled by pi . If this happens, a is said to be enabled. Execution of a modifies atomically the state of all interacting atomic
components whereas all others stay unchanged. The behavior of the component is specified by transitions →πγ defined
by rule [prio]. This rule restricts execution to interactions which are maximal with respect to the priority order among the
enabled ones. An enabled interaction a can execute only if no other interaction a′ with higher priority is enabled.

Example 1. A BIP component is depicted in Fig. 2 using a graphical notation. It consists of two atomic components named M
and S . The component S is a server, that may receive requests (through the port req) and acknowledges them (through the
port ack). Formally, S = ({lst,dwn, srv},dwn, {hS ,bS , req,ack}, {(lst,hS ,dwn), (dwn,bS , lst), (lst, req, srv), (srv,ack, lst)}). The
component M is a manager that may perform upgrades (upg) and needs to reboot (rb) the server for the upgrade to be
effective. Interactions are represented using connectors between the interacting ports. There are 4 unary interactions, that
are interactions involving a single port, and 2 binary interactions. Formally γ = {{bM ,bS }, {hM ,hS}, {rb}, {upg}, {req}, {ack}}.
In the figure, we use names to denote interactions, for instance {bM ,bS } is called boot. The depicted system goes up and
down through the binary interactions boot and halt respectively. The priority π = {(reboot, request), (reboot,acknowledge)} is
used to prevent a reboot whenever a request or an acknowledgment are possible.

2.2. Interaction and Restriction

The priority operator is defined over a system made of components composed by interactions. We consider a new
operator, also defined over components composed by interactions, called Restriction operator. A Restriction operator assigns
a predicate, defined on the global states, to each interaction. This operator inhibits execution of interactions for which the
predicate evaluates to false at the current state. We later show that a priority operator can be expressed as a Restriction
operator.

Given a BIP component γ (B1, . . . , Bn), we define Restriction as a function ρ , such that for each interaction a ∈ γ , ρ(a) is
a boolean formula involving atomic predicates of the form at(q), where q ∈ ⋃n

i=1 Q i is one of the local states of the atomic
components. The predicate at(q) is true at a given global state (q1, . . . ,qn), if q is a local state of the atomic component Bi
and q = qi . We denote by ρa : Q → {True, False} the predicate obtained by combining the at(q) predicates according to ρ(a),
that is the semantics of ρ(a). In the sequel, we often refer directly to the predicate ρa , instead of using the formula ρ(a).

A composite component with Restriction ργ (B1, . . . , Bn) is defined from a component γ (B1, . . . , Bn) and a Restriction
operator ρ over this component. The behavior of ργ (B1, . . . , Bn) is the labeled transition system (Q ,q0, γ ,−→ργ ), where
Q = ⊗n

i=1 Q i is the set of global states, q0 = (q0
1, . . . ,q0

n) is the initial state, and −→ργ is the least set of transitions
satisfying the rule:

q
a−→γ q′ ρa(q)

q
a−→ργ q′

[restr]

The rule [restr] states that a transition a can execute if it is already a valid transition in the component γ (B1, . . . , Bn)

and if the predicate ρa holds for the current state of the components.
Although it is defined on the global state, a Restriction predicate ρa might depend only on a subset of the components.

We use the syntactical definition given for the formula ρ(a) to determine the set of components on which ρa depends.
More precisely, we denote by support(ρ(a)) the set of components {Bi | ∃q ∈ Q i . at(q) appears in ρ(a)}. The components
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Fig. 3. A component with Restriction.

in observedρ(a)
def= support(ρ(a)) \ participants(a) play a particular role in the execution of the interaction a: they do not

participate in the interaction but their state is observed to decide whether it can execute.

Example 2. Fig. 3 depicts a composite component with Restriction. Each interaction is labeled by the corresponding formula,
which is omitted if it is true. The Restriction operator specified in the example implements the priority operator from
Example 1. Here, reboot is the only interaction whose formula is not true, because it is the only low priority interaction. The
formula assigned to reboot is ¬(at(lst) ∨ at(srv)). It evaluates to false whenever interactions with more priority than reboot
are enabled.

The Restriction operator violates the component encapsulation principle as it depends on the inner states of components
and not only on their interfaces (ports). It is however useful because it explicitly defines the components to observe for
deciding the execution of an interaction a. Indeed, this decision can be taken solely based on the states of components in
observedρ(a) and participants(a).

2.3. Implementing priority with Restriction

In Fig. 3, we presented an example of composite component with Restriction. Note that the predicate associated to
reboot actually encodes the priority rule of Fig. 2, since it guarantees that nor request neither acknowledge are enabled
when executing reboot. We show that given a Priority π one can obtain a Restriction ρπ such that the behaviors of the
components with Priority and Restriction are identical. This corresponds to the Transformation 1 of Fig. 1.

Using at(q) predicates, we define the predicate E Na stating whether the interaction a is enabled. First, we define the
predicate E Ni

pi
characterizing enabledness of port pi in a component Bi = (Q i, Pi, Ti), that is E Ni

pi
= ∨

(qi ,pi ,−)∈Ti
at(qi).

Then, the predicate E Na can be defined by: E Na = ∧
pi∈a E Ni

pi
. Note that this predicate depends only on components in

participants(a).

Definition 1 (Priority Restriction). Let πγ (B1, . . . , Bn) be a prioritized BIP component. The priority Restriction ρπ associates
to each interaction a ∈ γ the predicate ρπ

a = ∧
a <π b ¬E Nb .

For the example in Fig. 2, the only low-priority interaction is reboot. For every other interaction a, the predicate ρπ
a

is True. The component with Restriction obtained from the component with Priority is exactly the one depicted in Fig. 3.
Indeed, the predicate ρreboot is ¬at(lst) ∧ ¬at(srv) which is equivalent to ¬E Nrequest ∧ ¬E Nacknowledge .

Proposition 1. Given a component with Priority πγ (B1, . . . , Bn) and the component with Restriction ρπγ (B1, . . . , Bn), where ρπ

is constructed from π as specified in Definition 1, we have −→πγ =−→ρπγ .

Proof. For each interaction a, the predicate ρπ
a = ∧

a <π b ¬E Nb is equivalent to ∀b ∈ γ .(a <π b �⇒ q
b
�γ ). Thus the rules

[prio] and [restr] define exactly the same set of transitions. �
2.4. Implementing Restriction with interactions

We start from a component with Restriction ργ (B1, . . . , Bn) and translate it into an observably equivalent BIP component
γ ′(B ′

1, . . . , B ′
n) by using the Transformation 3 of Fig. 1. In order to implement Restriction, each atomic component has to

make explicit its current state, both for interactions where it participates and for interactions where it is observed. Then
each interaction is extended so that components that are observed by an interaction a because of the Restriction ρ become
participants in the corresponding interaction in γ ′ .
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2.4.1. Transforming atomic components
Given an atomic component B = (Q ,q0, P , T ), we define the corresponding observable atomic component as a labeled

transition system B ′ = (Q ′,q′0 P ′, T ′), where:

• Q = Q ′ and q0 = q′ 0 the states are the same as in the original component as well as the initial state.
• P ′ = (P ∪{obs})× Q : we add a new port denoted obs, that will be used for observation. All ports contain the information

of the current state. We denote by p(q) the port (p,q) ∈ P ′ .
• For each transition (q, p,q′) ∈ T , T ′ contains the transition (q, p(q),q′) where the current state of the component is

explicit in the offered port. For q ∈ Q , T ′ contains the loop transition (q,obs(q),q) that is used when the component is
observed.

The ports of the transformed atomic component are actually couples made of one port and one state of the original
component. These explicit the current state of the component to the interactions, in order to evaluate Restriction predicates.

2.4.2. Transforming interactions
Given a set γ of interactions and a Restriction ρ , we define the set of interactions γ ′ . If a ∈ γ is an interaction, it is

transformed into a set of interactions that are included in γ ′ . By definition, given a global state q = (q1, . . . ,qn), the value of
ρa(q) depends only on components in participants(a) ∪ observedρ(a). We denote by Ia (resp. Ja) the indices of components
in participants(a) (resp. observedρ(a)), and we denote by {i1, . . . , ik} the indices in Ia and Ja . For each interaction a = {pi}i∈Ia

and each partial state (qi1 , . . . ,qik ) that satisfies ρa , γ ′ contains the interaction a(qi1 , . . . ,qik ) = {pi(qi)}i∈Ia ∪ {obs j(q j)} j∈ Ja .
This construction extends each original interaction a = {pi}i∈Ia to a set of interactions defined over the transformed ports
pi(.) and the additional ports obs j(.) of the observed components. The interaction between ports pi(qi) and obs j(q j) is
added only if ρa(q1, . . . ,qn) evaluates to true.

Proposition 2. We have −→γ ′=−→ργ by mapping the interactions a(q j1 , . . . ,q jk ) of γ ′ to a.

Proof. The state spaces of ργ (B1, . . . , Bn) and γ ′(B ′
1, . . . , B ′

n) are the same. The transition q
a−→ργ q′ can be fired if and

only if the components visible to a, namely participants(a) ∪ observedρ(a), denoted {Bi1 , . . . , Bik }, are in a state (qi1 , . . . ,qik )

satisfying the predicate ρa . In that case γ ′ contains an interaction a(qi1 , . . . ,qik ). This interaction only changes the state of

participants in a, thus we have q
a−→γ ′ q′ .

Conversely, if we have q
a−→γ ′ q′ , with q = (q1, . . . ,qn), there is an interaction a(qi1 , . . . ,qik ) in γ ′ . By definition of γ ′

we have ρa(q). If a(qi1 , . . . ,qik ) is enabled at state q, each port pi(qi) for i ∈ Ia is enabled, thus a is enabled. By combining

that a is enabled at q and ρa(q) holds, we have q
a−→ργ q′′ . If the transition qi

pi(qi)−→ q′
i is in the component B ′

i , then the

transition qi
pi−→ q′

i is in the component Bi , therefore q′′ = q′ . �
Note that the duplication of interactions can be avoided by using models extended with variables and guards on inter-

actions, such as the one presented in [17]. In that case, instead of creating a new port p(q) for any pair in P × Q , each port
exports a state variable q. Then ρa is the guard associated with the interaction a, and depends only on variables exported
by the ports involved in a.

3. Knowledge-based reduction of observation

Before executing an interaction a, one must check that the state of atomic components in participants(a) and in
observedρ(a) satisfies ρa . In a distributed context, consistently checking this condition requires a synchronized observa-
tion of the corresponding components. Therefore, our first optimization, corresponding to Transformation 2 of Fig. 1, tries
to minimize the number of components to synchronize in order to check ρa . Since executing an interaction a involves
synchronizing its participants, the only set that could be reduced is observedρ(a).

In this section, we use distributed knowledge to replace a given Restriction ρ by a new one ρ ′ . The new Restric-
tion reduces the set of observed components observedρ ′ (a) for each interaction. The distributed knowledge ρ ′

a is a safe
under-approximation of ρa , depending only on participants(a) and observedρ ′(a). Distributed knowledge assumes that every
component knows the set of reachable states, or at least one over-approximation of it.

There is a tradeoff between minimizing the number of observed components in ρ ′ and the faithfulness of the under-
approximation. When reducing the set of observed components observedρ ′(a), one also restricts the set of global states
where ρ ′

a detects a valid interaction, that is, evaluates to true. To characterize how much of originally valid transitions are
detected, we define detection levels.

We first explain in Section 3.1 how the set of reachable states is approximated using invariants. We then present dis-
tributed knowledge in Section 3.2. In Section 3.3, we show how knowledge can be used to compute a correct Restriction,
provided that the set of components to observe is given. We also define two detection levels that characterize faithfulness of
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the obtained component with respect to the original component. In Section 3.4, we provide heuristics that try to minimize
the number of observed components, while ensuring a given detection level.

3.1. Invariants and reachable states

Let B = ργ (B1, . . . , Bn) be a component with Restriction. We say that the state q is reachable (from the initial state q0)

if there exist a sequence of interactions a1, . . . ,ak ∈ γ and states q1, . . . ,qk such that q0 a1−→ργ q1 a2−→ργ · · · ak−→ργ qk = q.
We denote by R the set of reachable states of B .

An invariant of B is a predicate I : Q → {True, False} satisfied by all reachable states of B . The characteristic set R̃ of I
provides an over-approximation of the reachable states (R⊆ R̃). We are interested in two types of inductive invariants that
can be generated automatically [14], respectively:

• boolean invariants, that is, conjunctions of boolean constraints of the form
∨

j∈ J at(q j). For the example of Fig. 2,
at(onup) ∨ at(on) ∨ at(dwn) is a boolean invariant. Indeed, by executing any transition from a state where the invariant
holds, we reach a state where the invariant still holds. For instance, executing the interaction halt disables the predi-
cates at(on) or at(onup) but enables the predicate at(dwn). It characterizes a set of control locations such that at each
global state, at least one location of the set is active. Such constraints are obtained using methods described in [14].

• linear invariants, that is, conjunctions of linear constraints of the form
∑

j∈ J k jat(q j) = k0, where all k j and k0 are integer
constants, and at(qi) is equal to 1 if qi is active and 0 otherwise. For the example of Fig. 2, at(onup)+at(on)+at(dwn) =
1 is a linear constraint. Again, by executing any transition from a state where the invariant holds, we reach a state
where the invariant still holds. A linear constraint corresponds to a set of places such that the weighted sum of tokens
in the places remains constant throughout the execution. Linear invariants are obtained using algebraic techniques as
described in [34].

The two above categories of invariants are particularly useful for several reasons. First, they provide good approximations
for the enabling/disabling conditions of interactions. This has been empirically demonstrated by the successful application
of such invariants for checking deadlock-freedom of component-based systems in BIP [14,10]. Second, the methods for com-
puting these invariants are tractable and scale for large systems. Their computation is based on the (interaction) structure
of the system and can be done incrementally [9]. In particular, it does not involve fixpoints computation and avoids state
space exploration.

3.2. Knowledge and indistinguishability

Given a model γ (B1, . . . , Bn), the knowledge of a set of atomic components L ⊆ {B1, . . . , Bn} is the information about the
current global states through a synchronized observation of the components in L. Intuitively, the synchronized observation
of the components gives a partial state of the system. The corresponding global state is (1) reachable and (2) coherent with
the partial state observed on L. The information obtained through an observation of L correspond to properties that are
true in all global states verifying conditions (1) and (2). Any subset L induces an equivalence relation on the global states,
defined as follows.

Definition 2 (Indistinguishability equivalence for L). Given L, we define the indistinguishability equivalence ∼L on global
states q ∈ Q as q ∼L q′ iff ∀B j ∈L q j = q′

j .

Intuitively, two states are indistinguishable for L if their restrictions to the states of atomic components in L are iden-
tical. An equivalence class of this relation is a set of global states that are coherent with an observation of the local state
of atomic components in L. Given an over-approximation R̃ of the reachable states and an arbitrary state predicate φ, we

define the predicate “L knows φ” as K R̃
L φ(q) = ∀q′ ∈ R̃ q′ ∼L q �⇒ φ(q′). This predicate is defined on R̃. Intuitively, a set

of components L knows a predicate φ at a global state q if φ holds in any reachable state q′ that L cannot distinguish
from q.

Fig. 4 illustrates KL with respect to φ and R̃. Each global state within R̃ is a point characterized by two coordinates:
the projections of this state on the states of L and the states of its complement L = {B1, . . . , Bn} \L. On the left, the gray
region represents the characteristic set of φ. In the middle, the gray region represents the characteristic set of “L knows
φ” that is the set of the global states where observation of L suffices to assert “φ is true”. On the right, the gray region
represents the set of the states where “L knows not φ” that is the set of the global states where observation of L suffices
to assert “φ is false”.

3.3. Building a Restriction with reduced observation

This subsection defines a new Restriction ρ ′ built as a knowledge approximation of ρ . This new Restriction is pa-
rameterized by assigning to each interaction a ∈ γ a set of components obs(a) that defines observation. We require that
obs(a) ∩ participants(a) = ∅.
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Fig. 4. Knowledge-based approximation of φ for observation L, within reachable states R̃.

Fig. 5. Global states of the example from Fig. 3, assuming that the component M is observed.

Definition 3. Given a component B = ργ (B1, . . . , Bn), an over-approximation R̃ of its reachable states and the sets of
observed components {obs(a)}a∈γ , the Restriction ρ ′ with reduced observation associates to each interaction a ∈ γ the

predicate ρ ′
a = K R̃

La
ρa where La = participants(a) ∪ obs(a).

By definition of knowledge, we have ρ ′
a ⇒ ρa . Furthermore, ρ ′

a depends only on the state of components in La . In other
words, the actual set of observed components for each interaction a is exactly observedρ ′ (a) = La \ participants(a), that is
the parameter obs(a). Therefore, in the sequel, we directly denote by observedρ ′(a) the parameter obs(a).

Example 3. We detail the reduction of the Restriction predicate for the interaction reboot of the example in Fig. 3. The pred-
icate ρreboot = ¬at(srv)∧¬at(lst) depends on the state of the component S , and thus we have originally observedρ(reboot) =
{S}. In that very simple example, the only possible reduction is to take observedρ ′(reboot) = ∅. It means that we rely only
on the state of M , that is the unique participant in reboot, to determine whether ρreboot holds.

In Fig. 5, we present all the global states of the system, and indicate whether they are reachable or not. This figure is
the instantiation of Fig. 4 when considering the example in Fig. 3 and observing only M . On this example, both boolean and
linear invariants characterize the exact set of reachable states. For instance, the state (off , lst) is not reachable as it does
not satisfy the boolean constraint at(onup) ∨ at(on) ∨ at(dwn). We obtain the same conclusion by using the linear constraint
at(onup) + at(on) + at(dwn) = 1.

In the figure, each local observation (state of M) corresponds to a column representing the global states that are indis-
tinguishable from that local observation. The interaction reboot is enabled at local state onup and off up . When the local state
is onup , the system is either at state (onup, lst) or (onup, srv). In both cases, ρreboot does not hold, thus “M knows ¬ρreboot” at
that state. Conversely, at local state off up , the global state is (off up,dwn). Therefore, M knows that ρreboot holds if its current
state is off up . Finally, the new Restriction predicate for reboot is ρ ′

reboot = at(off up), which depends only on the state of M .

By reducing too much the set observedρ ′(a), one takes the risk of always obtaining ρ ′
a = false, as the observation might

not be sufficient to ensure that ρa holds. We define two criteria characterizing different detection levels, namely basic and
complete. Intuitively, the condition for basic detection ensures that the sets of states enabling at least one interaction from γ
is the same for ρ and ρ ′ . In contrast, the condition for complete detection ensures that every interaction in γ is enabled in
the same states for ρ and ρ ′ .

Definition 4 (Detection levels). Let ργ (B1, . . . , Bn) be a component and ρ ′ be a Restriction obtained by reducing observation
in ρ using the over-approximation R̃ of the reachable states. We say ρ ′ is:

• Basic iff ∀q ∈ R̃.(
∨

a∈γ (ρa(q) ∧ E Na(q)) = ∨
a∈γ (ρ ′

a(q) ∧ E Na(q))).

• Complete iff for each interaction a ∈ γ : ∀q ∈ R̃.(E Na(q) ∧ ρ ′
a(q) = E Na(q) ∧ ρa(q)).

Theorem 1 relates the detection levels and corresponding guarantees on the component equipped with the computed
Restriction ρ ′ . Baseness ensures that ρ ′ does not introduce deadlocks. Completeness ensures that the global behaviors of
the component equipped with ρ and the component equipped with ρ ′ are identical.
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Algorithm 1 Pseudo-code of simulated annealing
Input: An initial solution init , a cost function, an alter function, temperature bounds Θmax and Θmin .
Output: A solution with a minimized cost.
1: sol := init
2: Θ := Θmax

3: while Θ > Θmin do
4: sol′ := alter(sol)
5: � := cost(sol′) − cost(sol)

6: if � < 0 or random() < e
−�
Θ then

7: sol := sol′
8: end if
9: Θ := 0.99 × Θ

10: end while
11: return sol

Theorem 1. Let ργ (B1, . . . , Bn) be a component and ρ ′ be the Restriction obtained by reducing observation in ρ . Then,
−→ρ ′γ ⊆−→ργ and:

1. If ρ ′ is basic, then q ∈ R̃ is a deadlock for −→ρ ′γ only if q is a deadlock for −→ργ .
2. If ρ ′ is complete, then −→ρ ′γ =−→ργ .

Proof. Since for each a ∈ γ , ρ ′
a �⇒ ρa , we have −→ρ ′γ ⊆−→ργ .

1. By contraposition, let q ∈ R̃ be a deadlock-free state for −→ργ , i.e. such that ∃a ∈ γ (E Na(q) ∧ ρa(q)). Baseness

ensures that
∨

a∈γ (E Na ∧ ρ ′
a) holds and thus ∃b ∈ γ such that E Nb(q) ∧ ρ ′

b(q). Thus q
b−→ρ ′γ and q is a deadlock-free state

for −→ρ ′γ .

2. Assume that q
a−→ργ q′ . Then E Na ∧ ρa(q) holds. Completeness ensures that E Na ∧ ρ ′

a(q) also holds. Thus

q
a−→ρ ′γ q′ . �
These results characterize to what extent the original Restriction can be captured through partial observation. The

approach suggested by this subsection is to come up with some sets of components to observe, then compute the cor-
responding Restriction and see whether it fits a given detection level. In the next subsection, we propose the reverse
approach, that is heuristics that minimize the number of observed atomic components, yet ensuring the required detection
level.

3.4. Heuristics to minimize observed components

In this subsection, we propose for each detection level from Definition 4 a heuristic that takes as input a component
with Restriction and outputs minimized sets of observed components {observedρ ′(a)}a∈γ . In general, finding the optimal
solution, that is which minimizes the number of observed components while ensuring baseness or completeness is hard.
This problem is actually similar to the identification of the minimal number of attributes required to distinguish a set
of objects in the rough set theory [40] which is known to be NP-hard. Each of the proposed heuristics guarantees that
the reduced Restriction ρ ′ built using the returned sets of observed components meets the corresponding detection level.
The results depend upon the approximation R̃ of the reachable states used for computing the knowledge. We assume
throughout this subsection a fixed over-approximation R̃ of the reachable states. In practice, R̃ is provided by linear or
boolean invariants.

We propose a solution to the minimizing observation problem based on the simulated annealing meta-heuristic [33].
A pseudo-code for the simulated annealing is shown in Algorithm 1. This heuristic allows searching for optimal solutions to
arbitrary cost optimization problems. The search through the solution space is controlled by a temperature parameter Θ that
ranges from Θmax to Θmin during the execution. At every iteration of the simulated annealing, temperature decreases slowly
(line 9) and the current solution moves into a new, nearby solution still ensuring either baseness or completeness (line 4). If
the new solution is better (i.e. observes fewer components), then it becomes the current solution. Otherwise, it may be
accepted with a probability that decreases when (1) the temperature decreases or (2) the extra cost of the new solution
increases (line 6). The idea is to temporarily allow a bad (but correct) solution whose neighbors may be better than the
current one. By the end of the process, the temperature is low, which prevents bad solutions from being accepted. The
choice of the parameters Θmin and Θmax depends on the possible cost values that depend on the model, and also define
the execution time of the simulated annealing. These values should be chosen so that a very bad solution can be accepted
when temperature Θ = Θmax and that the probability to accept a solution worse than the current one is almost 0 when
Θ = Θmin . In the sequel, we only provide initial solutions init as well as alter and cost functions that are used to ensure
either completeness or baseness.
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Algorithm 2 Function alter for ensuring completeness
Input: A component ργ (B1, . . . , Bn), an interaction a and a solution La .
Output: A solution L′

a that is a neighbor of La .
1: L′

a := La

2: choose Bi in L′
a \ participants(a)

3: L′
a := L′

a \ {Bi} //perturbation

4: while ENa ∧ KR̃
L′

a
ρa �= ENa ∧ ρa do

5: choose Bi in {B1, . . . , Bn} \L′
a

6: L′
a := L′

a ∪ {Bi} //completion
7: end while
8: choose B ′

i in L′
a \ participants(a)

9: while ENa ∧ KR̃
L′

a
ρa = ENa ∧ ρa do

10: L′
a := L′

a \ {B ′
i} //reduction

11: if L′
a = participants(a) then

12: EXIT participants(a) //cannot observe less components
13: end if
14: choose B ′

i in L′
a \ participants(a)

15: end while
16: return L′

a

3.4.1. Ensuring completeness
According to Definition 4, checking for completeness is performed interaction by interaction. Therefore, minimizing ob-

servation can be carried out independently for each interaction. Given an interaction a we are seeking for a minimal set of

atomic components La such that K R̃
La

ρa = ρa . Note that finding such a set La yields the corresponding set of components
to observe by taking observedρ ′ (a) =La \ participants(a).

The initial solution is obtained by taking the set of atomic components that are needed to decide ρa , that is inita =
participants(a) ∪ observedρ(a). At each iteration of the simulated annealing, a new solution is computed using the alter
function shown in Algorithm 2. First, one atomic component is removed from the solution (perturbation, line 3), possibly
breaking completeness. Then, new atomic components are added randomly until the solution ensures complete detection
again (completion, line 6). Note that loop terminates because in the worst case observing all components is sufficient to de-
cide whether ρa holds. Finally, atomic components are removed randomly, provided they do not contribute to completeness
(reduction, line 10). This loop stops when removing a component breaks completeness or when there is no more component
to remove. The latter case arises when observing the participants is enough to evaluate the Restriction predicate. In that
case (line 12), the simulated annealing can be stopped as participant(a) is an optimal solution.

After completion and during reduction steps, the completeness condition is checked (line 9). On termination, this ensures
that the solution returned by the heuristic is complete.

The cost of a solution is obtained by counting the number of atomic components in observedρ ′ (a) = La \ participants(a).
The cost function is thus cost(La) = |La \ participants(a)|.

3.4.2. Ensuring baseness
Baseness is achieved if for every state where an interaction is allowed by ρ , at least one interaction is also allowed in ρ ′ .

Baseness is a global property for the set of all interactions. Indeed, when reducing the set of components observed by an
interaction, one restricts the set of states where this interaction can be executed. Whether this restriction breaks baseness
depends on whether there exists another interaction which can execute at the removed states. Therefore, a solution {La}a∈γ

to the minimizing observation ensuring baseness cannot be built independently for each interaction.
The initial solution assumes that each interaction a observes all atomic components that are needed to decide ρa , that

is inita . Thus the initial solution is init = {inita}a∈γ . As for completeness, the alter function for baseness presented in
Algorithm 3 computes a new solution based on the same three steps (perturbation, completion, reduction) being performed
on a family of sets of observed atomic components, instead of a single set. As in the previous case, the completion terminates
by observing all components in the worst case. Conversely, the reduction terminates either when the baseness property is
broken or when no more component can be removed. Again, in the latter case the whole algorithm can be stopped as an
optimal solution has been found.

After completion and during reduction steps, the baseness condition is checked (line 9). This guarantees that the returned
solution is basic. Here the cost of the solution is the sum of the number of atomic components observed by each interaction.
Thus, we define the cost function as cost({La}a∈γ ) = ∑

a∈γ |La \ participants(a)|.

4. Decentralized implementation of BIP

We provide here the principle of the method for distributed implementation of BIP as presented in [17,16]. This method
relies on a systematic transformation from arbitrary BIP components into distributed BIP components. A distributed BIP
component relies only on message passing interactions. A message passing interaction is defined by a send port and a re-
ceive port and models the passing of a message between the corresponding components. The transformation guarantees that
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Algorithm 3 Function alter for ensuring basic detection
Input: A component ργ (B1, . . . , Bn), a solution {La}a∈γ ,
Output: A solution {L′

a}a∈γ that is a neighbor of {La}a∈γ .
1: {L′

a}a∈γ := {La}a∈γ

2: choose b in γ and Bi in Lb \ participants(b)

3: L′
b := L′

b \ {Bi} //perturbation

4: while
∨

a∈γ (ENa ∧ K B̃
L′

a
ρa) �= ∨

a∈γ (ENa ∧ ρa) do

5: choose b in γ and Bi in {B1, . . . , Bn} \Lb

6: L′
b := L′

b ∪ {Bi} //completion
7: end while
8: choose b in γ and Bi in Lb \ participants(b)

9: while
∨

a∈γ (ENa ∧ K B̃
L′

a
ρa) = ∨

a∈γ (ENa ∧ ρa) do

10: L′
b := L′

b \ {Bi} //reduction
11: if ∀a ∈ γ ,L′

a = participants(a) then
12: EXIT {participants(a)}a∈γ //cannot observe less components
13: end if
14: choose b in γ and Bi in Lb \ participants(b)

15: end while
16: return {L′

a}a∈γ

Fig. 6. A composite component with Restriction.

the receive port is always enabled when the corresponding send port becomes enabled, and therefore Send/Receive interac-
tions can be safely implemented using any asynchronous message passing primitives (e.g., MPI send/receive communication,
TCP/IP network communication, etc.).

In a distributed setting, each atomic component executes independently and thus has to communicate with other atomic
components in order to ensure correct execution with respect to the original semantics. Thus, a reasonable assumption is
that each component will publish its offer, that is the list of its enabled ports, and then wait for a notification indicating
which interaction has been chosen for execution. This behavior is obtained by splitting each transition: one part sends the
offer, the other part is triggered by the notification and executes the chosen interaction.

A set of distributed atomic components that send offers and wait for notifications requires a mechanism that receives
offers and sends the notifications, accordingly to the offers received and the semantics of the original model. In our im-
plementation, this mechanism consists of one or several additional components. Respecting the semantics of the original
model can be described as two tasks:

1. Detect enabled interactions whose Restriction predicate evaluates to true,
2. Resolve conflicts between interactions that involve a common component.

Our solutions rely on Bagrodia’s algorithms from [3]. These algorithms use counters to implement mutual exclusion of
conflicting interactions. We propose an extended version that encompasses the Restriction operator.

In Section 4.1, we present the different kinds of conflicts that arise between interactions subject to Restriction. We then
describe in Section 4.2 how atomic components are modified to send offers and receive notifications. In Section 4.3, we
formally describe a solution relying on a single manager and prove its correctness in Section 4.4. Finally, we informally
describe how this manager can be decentralized to obtain a 3-layer distributed implementation.

4.1. Conflicts and observation

A conflict appears when two entities compete for a single resource. In our case, the potentially competing entities are
the interactions and the resource is the participation of a component. Intuitively, two interactions are conflicting if they
involve a common component, which is a participant for at least one of them.

As an example, consider the composite component depicted in Fig. 6. It contains three atomic components and three
fragments of interaction. Interactions a and b observe the atomic component B2. Execution of a or b will not change the
state of B2 since none of its transitions is involved. Intuitively, a and b can be executed in parallel, they do not really
conflict. However, execution of c changes the state of the atomic component B2 and may disable the predicate associated
to a or b. Thus a and c cannot be executed simultaneously. They are conflicting.
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Fig. 7. Observable model obtained from the composite component with Restriction in Fig. 6.

These types of conflicts also appear in transactional memories [31]. In this context, different transactions (interactions)
can simultaneously read (observe) a variable (an atomic component), but writing on a variable (executing a transition)
requires exclusive access to the variable.

The transformation of the model from Fig. 6 into an observable model, as described in Section 2.4, yields the model
depicted in Fig. 7. The Restriction is implemented by adding a new port obs(q) to B2 and extending interactions a and b to
that new port. In this model, B2 becomes a participant, through the port obs(q) in the interactions a and b. This results in
a structural conflict between a and b.

In the context of multiparty interactions, a component either participates in or does not interfere with an interaction. In
particular, models where interactions can observe components without modifying them, such as the one in Fig. 6, cannot
be directly implemented. The transformation presented in Section 2.4 allows to transform a model with Restriction into a
model containing only multiparty interactions. Nevertheless, the obtained distributed implementation involves an unneces-
sarily high number of exchanged messages: Consider the model presented in Fig. 7. Execution of interaction a followed by
interaction b requires at least 4 messages between the component B2 and the protocol. Indeed, each interaction requires at
least one offer and one notification (on the port obs(q)). These four messages could be replaced by a single one, indicating
that B2 is at state q to the protocol, since the component B2 does not need to be notified when it is observed.

4.2. Distributed atomic components

The transformation of atomic components consists in splitting each transition into two consecutive transitions: (i) an
offer that publishes the current state of the component, and (ii) a notification that triggers the transition corresponding to
the chosen interaction. The offer transition publishes the list of enabled ports through a port, labeled o.

Definition 5 (Distributed atomic components). Let B = (Q ,q0, P , T ) be an atomic component. The corresponding transformed

atomic component is B⊥ = (Q ⊥,q0⊥
, P⊥, T ⊥), such that:

• Q ⊥ = Q ∪ {⊥q| q ∈ Q } is the union of stable states Q and busy states {⊥q| q ∈ Q }.

• q0⊥ =⊥q0 the initial state is the busy state associated to the initial state of the original component.
• P⊥ = P ∪ {o}, where o is a new port which publishes the currently enabled ports and the current state of the compo-

nent.
• The set of transitions T ⊥ includes, for every transition τ = (q, p,q′) ∈ T :

1. An offer transition (⊥q,o,q) that goes from a busy to a stable state and publishes the port enabled from this stable
state.

2. A notification transition q
p−→⊥q′ that goes from a stable to a busy state and executes the transition from the original

component.

We introduced a new port that publishes offers. The actual offer sent depends on the current state of the component.

Given a stable state q ∈ Q , we denote by offer(q) = {p ∈ P | ∃q′ ∈ Q ,q
p−→ q′} the set of ports enabled at state q. In a

more concrete implementation, the distributed component exports the set offer(q) and the current state q through the
offer port [17].

4.3. Counter-based conflict resolution

In Bagrodia’s solutions, the protocol is implemented through one or several managers that receive offers from the atomic
components and reply with notifications. We extend these solutions to encompass Restriction predicates.

The first solution consists of a single manager. In order to ensure mutual exclusion of conflicting interactions, the protocol
maintains two counters for each atomic component Bi :

• The offer-count ni which counts the number of offers sent by the component so far. This counter is initially set to 0 and
is incremented each time an offer from Bi is received.
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• The participation-count Ni which counts the number of times the component participated in an interaction. This counter
is initially set to 0 and is incremented each time the manager selects an interaction involving Bi for execution.

Intuitively, the offer-count ni associated to an offer from a component Bi correspond to a time stamp. The manager
maintains the last used time stamp (Ni ) for each component. If the time stamp (ni ) of an offer is greater than the last used
time stamp (Ni ), then the offer from Bi has not been consumed yet. Otherwise, some interaction has taken place and the
manager has to wait for a new offer from the component Bi .

Furthermore, the manager knows the set of enabled ports and the current state through the offers sent by each compo-
nent. Thus in order to schedule an interaction, it must check that

1. all ports involved in the interaction are enabled according to the last offers received,
2. the Restriction predicate associated to the interaction evaluates to true according to the last offers, and
3. these offers are still valid according to the ni and Ni counters.

If these three conditions hold, the interaction can be executed. Upon execution the participation-counts (Ni ) associated to
the participants are updated to the values of the offer-counts (ni), so that participants cannot interact again until a new
offer is sent and ni > Ni holds again. In particular, any other interaction that involves (as participants or for observation)
one of the participants of the previously executed interaction is blocked until new offers from the conflicting components
are sent. Hence, mutual exclusion of conflicting interactions is ensured.

The participation-counts of the observed components are not updated, even if they are checked to ensure that offers
satisfying the Restriction predicate are still valid. Thus a component can be “observed” many times, as long as it does
not participate in an interaction. We define formally the behavior of the composition of the centralized protocol with the
distributed atomic components.

Definition 6. Given a BIP component with Restriction ργ (B1, . . . , Bn) we define the behavior of the adapted counter-based
centralized implementation as an infinite state LTS (Q ⊥,q0, γ ⊥, T ⊥) where:

• The set of states Q ⊥ is the product of the states of the atomic components with the state of the protocol:

Q ⊥ =
n⊗

i=1

Q ⊥
i ×

n⊗

i=1

(
N × N × 2Pi × Q i

)

The state of the manager is defined by n quadruples mi = (ni, Ni,offeri,qi), one for each component Bi , where ni and
Ni are the values of the corresponding counters, offeri is the last offer from Bi and qi is the last known state from
Bi . We denote by (q,m) a state of Q ⊥ , q[i] and m[i] represent the ith element of the tuples q and m.

• q0 = ((⊥q0
1
, . . . ,⊥q0

n
), ((0,0,∅,q0

1), . . . , (0,0,∅,q0
n))). The initial state of system is obtained by taking the initial states of

the distributed atomic components, and assigning 0 to each counter in the manager.
• The interactions of γ ⊥ include the interactions from the original component and the offers:

γ ⊥ = γ ∪
n⋃

i=1

{oi}

• There are two types of transitions in T ⊥:
(1) Offer transitions: From state (q,m) ∈ Q ⊥ , there is an offer transition in T ⊥ if for some component B⊥

i an offer is

enabled: (q[i],oi,q′
i) ∈ T ⊥

i . In that case, T ⊥ contains the transition (q,m)
oi−→ (q′,m′), where:

– q′[i] = q′
i ,

– m′[i] = (ni + 1, Ni,offer(q′
i),q′

i), with m[i] = (ni, Ni, _, _),
– for all j �= i, q′[ j] = q[ j] and m′[ j] = m[ j].
(2) Execute transitions: From state (q,m) ∈ Q ⊥ , there is an execute transition in T ⊥ if there is an interaction a = {pi}i∈Ia ,
such that (we denote m[i] = (ni, Ni,offeri,qi)):
– ∀Bi ∈ participants(a), pi ∈ offeri : the interaction is enabled according to the last offers,
– ρa((q1, . . . ,qn)) evaluates to true according to the values stored in the manager state m,
– ∀Bi ∈ participants(a) ∪ observedρ(a),ni > Ni : the last offers of participants and observed components are still valid.

Then, the transition (q,m)
a−→ (q′,m′) is in T ⊥ with (q′,m′) defined by:

– ∀i ∈ participants(a), q′[i] is the state such that (q[i], pi,q′[i]) ∈ T ⊥
i ,

– ∀i ∈ participants(a), m′[i] = (ni, Ni + 1,offeri,qi): counters of participants are incremented.
– ∀ j /∈ participants(a), q′[ j] = q[ j] ∧ m′[ j] = m[ j].

A global state (q,m) of this protocol clearly separates the state of the components q and the state of the manager m. The
enabling of offer transitions depends exclusively on the state of the component sending the offer. Similarly, the enablement
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Fig. 8. Exchanges of messages to execute the sequence a,b, c in the model of Fig. 6, for the two implementations.

of execute transitions depends only on the state of the manager. Thus we can assume an asynchronous execution where an
offer or an execute transition correspond to a message passing. In the case of the offer transition, the message is sent from
the atomic component to the manager. For the execute transition, messages are sent from the manager to each participant
in the interaction.

With components where all Restriction predicates are always true, the above construction falls back to the original
solution from Bagrodia. We can compare a multiparty-based implementation, obtained by encoding Restriction predicates
into multiparty interactions, with a Restriction-aware implementation that directly encompass Restriction predicates.

Example 4. Consider again the model depicted in Fig. 6. We obtain a multiparty-based implementation by transforming
it into the model of Fig. 7 and building a distributed implementation from that model. The protocol presented here is
able to build a Restriction-aware implementation directly from the model in Fig. 6. In Fig. 8, we compare the behavior of
the two approaches, when executing the interaction sequence a,b, c. On the left, we show the messages exchanged in the
multiparty-based implementation. On the right we show the messages exchanged in the Restriction-aware implementation.
For each process (the distributed components Bi and the protocol P ) Fig. 8 presents the sequence of messages received and
sent. The black circles indicate that an interaction is scheduled by the protocol. Note that the component B2 is observed
by a and b and is a participant in c. With the multiparty-based implementation, the observation is treated as a partic-
ipation. Both execution of a and b trigger the emission of a notification (obs) to B2 followed by a new offer (o2). With
the Restriction-aware implementation, the first offer sent by B2 is observed but not consumed by a and b. So, there is no
need to send notifications and wait for corresponding offers. Only the execution of c consumes the offer. For this particular
execution sequence, the Restriction-aware implementation spares 4 messages and increases parallelism since b and c can
be launched directly after a, without waiting for a new offer.

4.4. Correctness

We show that the component ργ (B1, . . . , Bn) and the corresponding counter-based implementation are observationally
equivalent in the sense of Milner [38]. We first prove the following lemma on the reachable states of the distributed
implementation.

Lemma 1. Let B⊥
i be a distributed atomic component. The component B⊥

i is in a stable state qi iff ni > Ni . Furthermore, if B⊥
i is in a

stable state we have mi = (ni, Ni,offer(qi),qi).

Proof. The construction of B⊥
i implies that it alternates offer and execute transitions. In the initial configuration, ni = Ni = 0

and B⊥
i is in a busy state. Therefore the equivalence holds.

The only possible transition from this configuration is an offer, which brings the system to a state where ni = Ni +1 > Ni
and the B⊥

i is in a stable state. In this configuration, the equivalence holds as well. Furthermore, the offer transition ensures
that the offer and state in mi correspond to those of B⊥

i .
In the configuration where B⊥

i is in a stable state and ni = Ni + 1 > Ni , the only next possible step in B⊥
i is an execute

action. By executing this step we reach again a configuration where ni = Ni and B⊥
i is a busy state. �

In order to show observational equivalence, we have to define the observable actions of both systems. For the component
γ (B1, . . . , Bn) the observable actions are the interactions γ . These interactions correspond to the execute interactions of the
distributed implementation, that are also γ . We denote by β the offer interactions.

We define a relation between states Q of the centralized component and states Q ⊥ of its distributed implementation. To
each state (q⊥,m) ∈ Q ⊥ of the distributed implementation, we associate a state e((q⊥,m)) ∈ Q of the original component.



S. Bensalem et al. / Science of Computer Programming 98 (2015) 293–316 307
For each component B⊥
i , q⊥[i] is either a stable state qi or a busy state ⊥qi . In both cases, we take e((q⊥,m))[i] = qi . We

say that a state q ∈ Q and (q⊥,m) ∈ Q ⊥ are equivalent, denoted by (q⊥,m) ∼ q, if q = e((q⊥,m)).

Proposition 3 (Correctness of centralized counter-based implementation). Given a component ργ (B1, . . . , Bn), the labeled transitions

systems (Q ,q0, γ ,→ργ ) and (Q ⊥,q0⊥
, γ ⊥,→⊥) of its distributed implementation are observationally equivalent.

Proof. We have to prove that:

1. If (q⊥,m)
β−→⊥ (r⊥,m′), then

∀q ∈ Q .(q ∼ (q⊥,m) �⇒ q ∼ r⊥).

2. If (q⊥,m)
a−→⊥ (r⊥,m), then

∀q ∈ Q .(q ∼ (q⊥,m) �⇒ ∃r ∈ Q .(q
a−→ργ r ∧ r ∼ (r⊥,m′))).

3. If q
a−→ργ r, then

∀(q⊥,m) ∈ Q ⊥.((q⊥,m) ∼ q �⇒ ∃(r⊥,m) ∈ Q ⊥.((q⊥,m)
β∗a−→⊥ (r⊥,m) ∧ r ∼ (r⊥,m))).

1. This is a consequence of the definition of ∼.
2. The transition ((q⊥,m),a, (r⊥,m)) is possible at state (q⊥,m) ∈ Q ⊥ if for each participant and observed component

Bi in the interaction, the counters verify ni > Ni , for each port pi ∈ a, we have pi ∈ offeri , and ρa evaluates to true
according to the state m of the manager. Lemma 1 ensures that in the equivalent state q ∈ Q , we have for each component
Bi participant in a pi ∈ offer(qi). Furthermore, the lemma ensures that for all participant and observed component, the
state stored in m is the actual state in q⊥ , which is equal to q by definition of ∼. Therefore ρa(q) evaluates to true and

q
a−→ργ r. The construction of distributed atomic components ensures that r ∼ (r⊥,m).

3. If q
a−→ργ r, then for each state (q⊥,m) ∼ q, each participant Bi in a is either in a busy or in a stable state. In

the first case, it can perform an offer transition, labeled β , and reach a stable state. Let (s⊥,m′′) be a state such that

(q⊥,m)
β∗

−→⊥ (s⊥,m′′) β
�⊥ . Such state is attained when all components have performed their offer transitions. Since offers

transitions do not modify any common part of the state, executing them in any order yields the same final state and
therefore there is a unique state (s⊥,m′′) as above. By Lemma 1, since at (s⊥,m′′) all distributed components are in a stable
state, we have for 1 � i � n:

• ni > Ni ,
• m′′

i = (ni, Ni,offer(q′
i),q′

i) where q′
i = qi by definition of ∼.

According to m′′ , ρa((q′
1, . . . ,q′

n)) = ρa(q) evaluates to true and for each port pi ∈ a, we have pi ∈ offer(qi). Thus

(s⊥,m′′) a−→⊥ (r⊥,m′). By construction (r⊥,m′) ∼ r. �
4.5. 3-layer distributed architecture

With a single manager we obtain a 2-layer implementation, namely the components layer and the manager. In [17], we
further decompose the manager in two layers, respectively an interaction layer, and a conflict resolution layer.

The interaction layer receives the offers from the components, compute the enabled interactions and evaluates the Re-
striction predicates. Whenever an interaction is possible, the interaction layer sends a reservation request rsv to the conflict
resolution layer for executing the interaction. The request contains the offer-count (ni) of each component participant in or
observed by the interaction. The interaction layer then waits for an answer from the conflict resolution layer. If the answer is
positive (ok), the interaction is executed and the interaction layer sends a notification to each participant in the interaction.
Otherwise the answer is f (fail), and the interaction protocol waits for a new offer before trying a new reservation.

The conflict resolution layer receives the requests along with the offer-count. It is also responsible for maintaining the
participation-count Ni . Upon reception of a request, it compares the received ni with the maintained Ni . If for all involved
components ni > Ni , then all for all participants the value of Ni is updated to ni and a positive answer ok is sent back.
Otherwise a negative answer f (fail) is sent back.

As shown in Fig. 9, the interaction layer can be separated in several processes (here IP1, IP2, IP3), in order to allow
concurrent execution of interactions. The transformation from a BIP model into a 3-layer implementation is actually param-
eterized by a partition of the interaction. Each class of the partition yields a distinct process in the final implementation.
For our example, the partition is {{upgrade, reboot}, {boot,halt}, {request,acknowledge}}. Thus in our case, the process IP1 is
responsible for detecting whenever the interaction reboot or the interaction upgrade is enabled.

If there are several processes handling interactions, each component maintain its ni counter and send it with the offer.
The components send offer only to processes handling interactions in which they are observed or participate. If some
interaction conflicts only with interactions that are handled in the same process, the conflict can be resolved locally. Thus,
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Fig. 9. 3-layer distributed implementation of component from Fig. 2.

taking a coarser partition reduces the parallelism between execution of interactions but also reduce the load on the conflict
resolution layer as more conflicts can be solved internally.

Finally, the conflict resolution layer can be decentralized as well. Intuitively, the key property to ensure tis correctness
is the atomicity of the operation consisting in checking that the offer-counts are greater than the participation-counts and
updating the latter ones if true. Following Bagrodia [3], we propose three implementations:

• A centralized implementation, where a single process receives all the requests. In that case, atomicity is ensured as only
this process can access the Ni variables.

• A token ring implementation, where each interaction yields a separate process in the conflict resolution layer. Each
process receives only the requests for executing the interaction it handles. A token carrying all the Ni variables circles
through all processes in the layer. Only the process holding the token can access these variables, which ensures the
needed atomicity.

• An implementation based on a solution to the dining philosophers problem [20]. This is the most decentralized solution.
Each interaction yields a process in the conflict resolution layer. Interactions are mapped to philosophers, and forks
represent conflicting components. Hence, two processes corresponding to two conflicting interactions share a fork, that
is a token with the Ni variables of the components causing the conflict. In order to execute an interaction, each process
must acquire all forks shared with its neighbors. Then it is the only one to access the needed Ni variables which
ensures atomicity. Using a solution to the dining philosopher problem ensures that any process will eventually be able
to acquire all the forks shared with its neighbors (no starvation).

5. Experiments

We compare the execution time and the number of exchanged messages for several distributed implementations of a
component with priority. As shown in Fig. 1, several sequences of transformations and optimizations can be applied to
generate a distributed implementation. The first step (Transformation 1 in Fig. 1) involves transformation of this component
into a component with Restriction. The obtained component may be optimized using knowledge as explained in Section 3
(Transformation 2 in Fig. 1). Whether the component is optimized or not, we consider the two following sequences of
transformations leading to a distributed implementation.

• Transform the component with Restriction into a component with only interactions as explained in Section 2.4. Then
generate a 3-layer distributed model embedding the conflict resolution protocol described in Section 4.3, which in
this case falls back to the original version by Bagrodia. This method (Transformations 3 and 4 in Fig. 1) results in a
multiparty-based implementation.

• Directly transform the component with Restriction into a 3-layer distributed model embedding the conflict resolution
protocol described in Section 4.3. This method (Transformation 5 in Fig. 1) results in a Restriction-aware implementa-
tion.

For both cases, we used the centralized version of the conflict resolution protocol.

5.1. Dining philosophers

We consider a variation of the dining philosophers problem, denoted by PhiloN where N is the number of philosophers.
A fragment of this composite component is presented in Fig. 10. In this component, an “eat” interaction eati involves a
philosopher and the two adjacent forks. After eating, philosopher Pi cleans the forks one by one (cleanlefti then cleanrighti ).
We consider that each eati interaction has higher priority than any cleanleft j or cleanright j interaction.

This example has a particularly strong priority rule. Indeed, executing one “clean” interaction potentially requires to
check that all “eat” interactions are disabled. This check requires observing all components. This example compares the
above implementations under strong priority constraints.
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Fig. 10. Fragment of the dining philosopher component. Braces indicate how interactions are grouped into interaction protocols.

Table 1
Minimal number of observations for ensuring completeness in the interaction protocol C0.

Component Size True BI LI Optimal

Philo3 6 3 3 1 1
Philo4 8 5 5 2 2
Philo5 10 7 7 3 3
Philo10 20 17 17 8 8
Philo20 40 37 37 18 18
Philo100 200 197 197 108 98

As explained in Section 4.5, the construction of our distributed implementation is structured in 3 layers. The second
layer is parameterized by a partition of the interactions. For this example, the partition is built as follows. There is one
interaction protocol Ei for every eati interaction and one interaction protocol Ci for every pair cleanrighti−1, cleanlefti . Only
the latter deals with low priority interactions that need to observe additional atomic components.

5.1.1. Minimizing observed components
We first define the quantity that we minimize. In the distributed implementation, each atomic component sends its

state to interactions that are observing it. If interactions a and b, both observing a component Bi , are handled by the same
interaction protocol, the component Bi sends only one message to that interaction protocol. In that case, we say that the
atomic component is observed by the interaction protocol. We count as an observation each couple (component, interaction
protocol) such that the interaction protocol observes the component, and the component is not involved in any interaction
handled by the interaction protocol.

Minimizing the number of observations in a complete Restriction ρ ′ is done independently for each interaction protocol.
Table 1 shows the results, that is the number of observations involving the interaction protocol C0 in the solution obtained
with the heuristic described in Section 3.4.1. Note that same number of observations are needed for each other interaction
protocol Ci . The total number of atomic components in the composite component is indicated in column Size. The columns
true, BI and LI provide the cost of the solutions obtained when using respectively true, the boolean invariant and the linear
invariant as over-approximation of the global states. Using true as invariant does not allow actual optimization, therefore it
shows the number of observations in the initial Restriction ρ . The column optimal indicates the cost of an optimal solution,
that we know for this particular example.

Here, the linear invariant gives better results than the boolean invariant, which is not precise enough to allow reducing
observation comparatively to the true invariant. For N = 3, we provide the boolean and linear invariants respectively in
Figs. 11 and 12. As an example, consider the linear constraint (15). It ensures that interaction cleanleft0 and interaction
eat1 cannot be enabled concurrently, otherwise, control locations P0.eating and F1.free would be active and the sum in
constraint (15) would be equal to 2. Thus, the priority cleanleft0 <π eat1 never forbids execution of cleanleft0. A related
boolean constraint, that is constraint (3) of boolean invariant guarantees that at least one of these locations is active.
However, this constraint is not strong enough to discard the case where two of them are active.

In general, the approximations of reachable states provided by boolean and linear invariants are not comparable. Consider
the global state P0.cleaning ∧ F0.used ∧ P1.cleaning ∧ F1.used ∧ P2.cleaning ∧ F2.used. This state satisfies all the constraints
of the linear invariant, but does not satisfy the constraint 8 of the boolean invariant.

The results for computing basic solutions are presented in Table 2. The column Size contains the total number of atomic
components in the composite component. The columns true, BI and LI contains respectively the cost of the solutions ob-
tained when using respectively true, the boolean invariant and the linear invariant. For Philo3, baseness is achieved when
each engine observes only the components involved in the interactions it handles (i.e. no additional observation is needed),
therefore the cost is 0.
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∀i ∈ {0,1,2} (at(Fi .free) ∨ at(Fi .used)) (1)

∧ ∀i ∈ {0,1,2} (at(Pi .thinking) ∨ at(Pi .eating) ∨ at(Pi .cleaning)) (2)

∧ (at(P1.eating) ∨ at(P0.eating) ∨ at(P0.cleaning) ∨ at(F1.free)) (3)

∧ (at(P2.eating) ∨ at(P1.eating) ∨ at(P1.cleaning) ∨ at(F2.free)) (4)

∧ (at(P0.thinking) ∨ at(F0.used) ∨ at(P0.cleaning) ∨ at(P2.thinking)) (5)

∧ (at(P0.thinking) ∨ at(F1.used) ∨ at(P1.cleaning) ∨ at(P1.thinking)) (6)

∧ (at(P2.cleaning) ∨ at(F0.free) ∨ at(P2.eating) ∨ at(P0.eating)) (7)

∧ (at(F1.free) ∨ at(F2.free) ∨ at(F0.free) ∨ at(P1.eating) ∨ at(P2.eating) ∨ at(P0.eating)) (8)

∧ (at(F2.used) ∨ at(P2.cleaning) ∨ at(P1.thinking) ∨ at(P2.thinking)) (9)

∧ (at(F2.used) ∨ at(P2.cleaning) ∨ at(P1.thinking) ∨ at(F0.free) ∨ at(P0.eating)) (10)

∧ (at(F1.free) ∨ at(P1.eating) ∨ at(F0.used) ∨ at(P0.cleaning) ∨ at(P2.thinking)) (11)

∧ (at(P0.thinking) ∨ at(F2.free) ∨ at(F1.used) ∨ at(P2.eating) ∨ at(P1.cleaning)) (12)

Fig. 11. Boolean invariant for the dining philosophers example with N = 3.

(at(P0.thinking) + at(P0.eating) + at(P0.cleaning) = 1) (13)

∧ ∀i ∈ {0,1,2}(at(Fi .free) + at(Fi .used) = 1) (14)

∧ (at(P1.eating) + at(P0.eating) + at(P0.cleaning) + at(F1.free) = 1) (15)

∧ (at(P1.thinking) − at(P0.eating) − at(P0.cleaning) + at(F1.used) + at(P1.cleaning) = 1) (16)

∧ (at(P2.eating) − at(P0.eating) − at(P0.cleaning) + at(F1.used) + at(P1.cleaning) − at(F2.used) = 0) (17)

∧ (at(P2.cleaning) + 2 ∗ at(P0.eating) + at(P0.cleaning) − at(F1.used) − at(P1.cleaning) + at(F2.used) − at(F0.used) = 0) (18)

∧ (at(P2.thinking) − at(P0.eating) + at(F0.used) = 1) (19)

Fig. 12. Linear invariant for the dining philosophers example with N = 3.

Table 2
Minimal number of observations for ensuring baseness in the whole model.

Component Size True BI LI

Philo3 6 9 9 0
Philo4 8 20 20 4
Philo5 10 35 35 6
Philo10 20 170 170 23

5.1.2. Comparing obtained implementations
The goal of this subsection is to compare the different implementations that we obtained for the dining philosophers

example. First, we consider different levels of optimization for the Restriction operator:

• No optimization: the Restriction operator is the direct rewriting of priorities rules, we do not apply any knowledge-
based optimization (Transformation 2 in Fig. 1).

• Basic: observation required by the Restriction operator is minimized while still ensuring baseness.
• Complete: observation required by the Restriction operator is minimized while still ensuring completeness.

As showed in the previous subsection, the Boolean invariant is not strong enough to reduce the number of observed com-
ponents comparatively to the non-optimized version. Therefore, the basic and complete version of the Restriction operator
have been computed using the linear invariant. For each optimization level considered, we generate a multiparty-based (MB)
and a Restriction-aware (RA) implementation. Once we have built the distributed components, we use a code generator that
generates a standalone C++ program for each atomic component. These programs communicate by using Unix sockets.

The obtained code has been run on a UltraSparc T1 that allows parallel execution of 24 threads. For each run, we
count the number of interactions executed and messages exchanged in 60 seconds, not including the initialization phase.
For each instance we consider the average values obtained over 20 runs. The number of interactions executed by each
implementation is presented in Fig. 13. The total number of messages exchanged for the execution of each implementation
is presented in Fig. 14.

First, remark that switching from a multiparty-based (gray) to a Restriction-aware (black) implementation improves
performance, that is the number of interactions executed in 60 seconds. Furthermore, it always reduces the number of mes-
sages exchanged. The improvement is very visible with the unoptimized version (No opt). This can be explained as follows.
Evaluating Restriction predicates requires to observe all components for executing a cleanlefti or a cleanrighti interaction.
In the multiparty-based implementation, observed components must synchronize to execute some interaction cleanlefti or
cleanrighti . Between two “clean” executions, each component has to receive a notification and to send a new offer. This
strongly restricts the parallelism. In the observation-aware implementation, a component offer is still valid after execution
of an interaction observing that component. After a “clean” interaction, only components that participated may need to send
a new offer before another “clean” interaction can be executed. This explains the speedup.

Second, when comparing multiparty-based (gray) implementations, one sees that the Restriction operator ensuring com-
pleteness gives the best performance. The basic implementations exhibit poor performance because restricting observation
also restricts parallelism in that case. For the example with 9 philosophers, multiparty-based implementation with opti-
mized Restriction (Complete – MB) shows a significant gain in performance compared to the non-optimized version (No opt
– MB). The performance gained by optimizing the Restriction operator into a complete one is not visible anymore when
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Fig. 13. Number of interactions executed in 60 s for different implementations of the dining philosophers example. MB: Multiparty-based. RA: Restriction-
aware. More interactions = better performance.

Fig. 14. Number of messages exchanged in 60 s for different implementations of the dining philosophers example. MB: Multiparty-based. RA: Restriction-
aware. Fewer messages = more efficient implementation.

Fig. 15. Jukebox component with 3 disks.

switching to Restriction-aware (black) implementation. However, the optimization remains interesting in that case since it
reduces by up to 10% the number of messages needed.

5.2. Jukebox

The second example is a jukebox depicted in Fig. 15. It represents a system, where a set of readers R1 . . . R4 access
data located on 3 disks D1, D2, D3. Readers may need to access any disk. Access to disks is managed by jukeboxes J1, J2
that can load any disk to make it available to the connected readers. The interaction loadi,k (respectively unloadi,k) allows
loading (respectively unloading) the disk Di in the jukebox Jk . Each reader R j is connected to a jukebox through the read j
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Table 3
Minimal observation cost to ensure baseness or completeness.

Interaction True BI (basic) BI (complete) LI (basic) LI (complete)

unloadi,k 5 3 (k = 1) or 5 (k = 2) 5 2 2
loadi,k 1 0 1 0 1

Fig. 16. Number of interactions executed in 60 s for the jukebox example. More interactions = better performance.

interaction. Once a jukebox has loaded a disk, it can either take part in a “read” or “unload” interaction. Each jukebox
repeatedly loads all N disks in a random order.

If unload interactions are always chosen immediately after a disk is loaded, then readers may never be able to read data.
Therefore, we add the priority unloadi,k <π read j , for all i, j,k. This ensures that “read” interactions will take place before
corresponding disks are unloaded. Furthermore, we assume that readers connected to J1 need more often disk 1 and that
readers connected to J2 need more often disk 2. Therefore, loading these disks in the corresponding jukeboxes is assigned
higher priority: loadi,1 <π load1,1 for i ∈ {2,3} and loadi,2 <π load2,2 for i ∈ {1,3}. Each interaction is handled by a dedicated
interaction protocol.

The main difference with the dining philosopher examples is that here priority rules do not restrict parallelism since
they are expressed between structurally conflicting interactions. Here a priority rule is used to express a scheduling policy
that aims to improve the efficiency of the system, in terms of “read” interactions. Removing this priority rule results in a
system that does less “read” interactions.

5.2.1. Minimizing observed components
The results of the simulated annealing heuristic are presented in Table 3. Interaction protocols handling a “read” inter-

action do not need to observe additional atomic components since there is no interaction with higher priority. The boolean
invariant allows removing some observed atomic components, in the basic solution. As for PhiloN components, the lin-
ear invariant is stronger than the boolean invariant. Therefore, attaining the same level of detection requires less observed
atomic components.

5.2.2. Comparing obtained implementations
For this example, the Boolean invariant (BI) provides enough information to reduce the observation. We consider the

optimization levels: No optimization, Basic (I), and Complete (I), where I is either the boolean invariant BI or the linear
invariant LI. For each optimization level, we compare multiparty-based and Restriction-aware implementations. The number
of interactions executed during 60 seconds is presented in Fig. 16. Here the performance of the Restriction-aware imple-
mentation is not significantly better than the performance of the multiparty-based implementation. The best results are
obtained with the basic optimization level using linear invariant. These results come from the fact that no parallelism is
allowed between low priority interactions since they are structurally conflicting. Therefore patterns enabling parallelism as
in Fig. 8 do not arise. More precisely, the only gain in performance consists in time involving actually sending and receiving
messages, not in waiting unneeded offers.

Fig. 17 shows that significantly fewer messages are exchanged with the Restriction-aware implementation. Intuitively,
this difference corresponds to the notifications and subsequent offers to and from observed components, that are not nec-
essary with the Restriction-aware implementation. Interestingly, the implementation giving the best performance (Basic (LI)
optimization with Restriction-aware implementation) is also the one requiring the least number of messages.
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Fig. 17. Number of messages exchanged in 60 s for the jukebox example. Fewer messages = more efficient implementation.

6. Related work

Conflict resolution for multiparty interactions. Distributed conflict resolution boils down to solving the committee coordination
problem [20], where a set of professors organize themselves in different committees. A meeting requires the presence of
all professors to take place and two committees that have a professor in common cannot meet simultaneously. Different
solutions have been provided, using managers [20,3,39,41], a circulating token [35], or a randomized algorithm without
managers [32].

The solutions provided by Bagrodia [3] rely on counters to ensure mutual exclusion of conflicting interactions, as ex-
plained in Section 4. The token ring and dining philosopher-based solutions allow the designer to use an arbitrary partitions
of the interactions for building the different managers. Our solution differs as we separate the conflict resolution from the
execution of the interactions.

The α-core protocol [41] builds one manager (called coordinator) per interaction. Contrarily to Bagrodia’s solution, this
solution does not rely on counters. The principle of the protocol is that each coordinator locks sequentially the components
according to a global order. Each component can be locked by only one coordinator. If the coordinator manages to lock all
components of the interaction, it executes the interaction. Otherwise, the coordinator frees all components locked so far. As
there are no counters, every component must explicitly withdraw all unsuccessful offers when executing an interaction. Fur-
thermore, it must wait for an acknowledgment of the withdrawal before resuming execution, which may incur an overhead
compared to a counter-based solution. In [11], knowledge is used to optimize the α-core protocol.

The solution by Kumar [35] implements an idea similar to the α-core protocol, without managers. Each interaction is
represented by a token. There is a global order on the components, and to execute an interaction, the token must traverse
(and lock) all the components according to the global order. If a token arrives in a component that has already been
locked by another token (i.e. a conflicting interaction), it waits until the interaction either succeeds or fail. If the conflicting
interaction fails, the token is propagated. If the conflicting interaction succeeds, the token is stopped and all components it
already traversed are unlocked.

The solution provided by Joung and Smolka in [32] mainly focuses on ensuring fairness between interactions. This algo-
rithm relies on randomization: each component picks an interaction and send a message to all participants. If one of the
participants detects that at a given point all participants agree on the interaction, the latter is executed. Otherwise, each
component picks another interaction.

Other frameworks for process coordination. Although we use multiparty interactions to describe communication between pro-
cesses, many solutions enhancing message-passing exist. The MPI framework [28] provides collective operations such as
MPI_Barrier() that implements strong synchronization of a set of processes. However, conflicting interactions are not
handled, the programmer has to ensure that all involved processes commit to the same synchronization.

In [26], German presents a framework providing multiparty interactions with priorities as primitives. The processes are
described using a notation similar to the CCS. Interactions are specified as composite action labels made of conjunctions
and negations of actions. For instance, the interaction reboot of the example from Fig. 2 could be encoded as the action
label rb ∧¬req∧¬ack, assuming that BIP ports are mapped to simple actions. Encoding an interaction requires an additional
process, that contains a single rule with the corresponding action label. The idea is to provide a language suitable for
specifying distributed systems, with a high-level description that can be executed for rapid prototyping. This framework
was used to model and verify a telephone switching application. To our knowledge, there is no distributed implementation
for this framework, although it was apparently one of the goals in [26].

Reo [2] is a framework where components communicates using a basic set of dataflow connectors that are combined to
form a complex connector. At each round, each component enables a set of input and output ports. In Reo, components are
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black boxes, only their interface is known at each state. A Reo connector defines a set of allowed dataflow interactions for
each configuration of the enabled ports. A round consists of executing such an interaction, which transfers data. Furthermore,
Reo basic connectors include FIFO1 connectors that can store one data item, allowing the composed connector to save some
data between two rounds. The FIFO connectors introduce a control state in the composed connector, which differs from BIP
where interactions have no memory. The Dreams framework [42,43] provides a distributed implementation for Reo. Each
basic connector is implemented as an actor. A round synchronizes the actors through a consensus algorithm, in order to
choose the next interaction. In order to achieve a more decentralized behavior, a GALS architecture is obtained by cutting the
complex connector into synchronous regions. Two regions can be separated if their border consists only of FIFO connectors.

I/O automata [36] were introduced to formally model distributed systems. In this framework, each process is represented
by an automaton whose transitions are labeled by actions, similarly to processes from this chapter. Each interaction is
represented through a common label that is used in several processes to denote synchronization. I/O automata clearly
distinguish between input (uncontrollable) actions and output (controllable) actions. Given an interaction label, there is
exactly one process for which this label is an output action, in other processes it can appear only as an input action.
Furthermore, from every state of an automaton, all its input actions are required to be enabled. With these restrictions, an
interaction is completely controlled by the process for which it is an output action. In that sense, I/O automata interactions
are similar to Send/Receive interaction where the sender controls the execution and the receiver should not block the
sender. In particular, the fact that an interaction is enabled or not is local to the process that controls the corresponding
output action. In that sense, there is no conflict between interactions. However, if two interactions a and b are scheduled
simultaneously by two separate processes, the order should be consistent among all common participants in a and b. The
solution proposed in the first sketch of a distributed implementation [24] is to require that each automaton reaches the
same state for both orderings. In a later solution [25,45], this problem is solved by adding a handshake protocol.

In [23,21], Synchronizers are used to filter incoming messages for a set of actors. A message is delivered only if it matches
an enabled pattern. Such patterns include atomic synchronization of a set of messages, that requires all involved messages
to be pending before granting their transmission. According to [21], synchronizers are implemented through dispatchers
located on the target actors, that is the actors for which incoming messages are filtered. Upon reception of an incoming
message, the dispatcher is responsible for checking whether the message is allowed for transmission according to the
synchronizers. In case of atomic synchronization, this requires a protocol similar to the one for multiparty interactions.
The actors communicate through asynchronous message-passing, which makes it difficult to exploit the synchronization of
messages for verification purposes. This framework is mainly concerned with providing practical constructs for programming
with actors.

Behavioral programming [37] is another model for programming interactions between processes. In that model, at each
global state, each process provides three sets of actions: requested actions, watched actions and blocked actions. A (central-
ized) scheduler selects an action that is requested by at least a process and not blocked by any process. The selected action
is executed by all processes that requested it and all processes that watched it. The system reaches the next global state
by executing the selected action. This model differs from multiparty interactions as the set of participants in the common
action is not fixed, but depends on the state. Decentralizing the scheduler while preserving centralized semantics requires
to solve problems similar to Interaction and Restriction conflicts resolution. In particular, scheduling an action based on a
partial set of offers requires to ensure that this action will not be blocked by a subsequent offer.

Knowledge. The formalization of different kinds of knowledge and related logic, called epistemic logic, have been intensively
studied [22,29,30]. In rough sets theory [40], objects are defined through a set of attributes. Intuitively, an attribute can be
the shape, the color, the weight. . . of the object. Each object is fully identified by the definition of its attributes. Given a
subset of the objects, deciding whether a given object is part of that subset is always achieved by observing all attributes.
Restricting the set of attributes that are observed creates a rough set, that approximates the subset. In that case indeed,
there could be some objects whose membership in the subset depends on an unobservable attribute. One of the question
in this theory is to find a minimal set of attributes whose observation is sufficient to distinguish any two objects [47].

In [44], Knowledge is applied to decentralized control of a plant. A plant is an automaton whose interactions are labeled
by actions, some of them being forbidden. Multiple decentralized controllers are in charge of controlling the plant, through
allowing or not a given subset of the actions. Each controller is defined by the set of actions it can observe and the set
of actions it can control (i.e. execute). Knowledge is applied to allow each controller to infer which actions are legal from
the current state and thus can be executed. An extension to distributed knowledge is proposed, whenever the information
available to only one controller is not enough to decide. A criterion, called “Kripke observability” decides whether the
extension to distributed knowledge is enough to control the plant.

In [8,4], the focus is on distributed controllers for executing Petri nets constrained by a given property. An example of
such a constraining property is a priority order. Processes are defined as sets of Petri nets transitions. A transition can be
common to several processes, in which case it describes a synchronization. Each process can observe its neighborhood, that
is the places that are adjacent to its transitions. In [4], Knowledge is used to build a support table for each process. This
table indicates, for each local configuration, which interaction can be safely executed. Knowledge based on the state of the
neighborhood is not always sufficient, two possible extensions are proposed. The first one consists in using knowledge with
perfect recall. The second one, also proposed in [27] consists in accumulating knowledge through additional synchroniza-
tions between processes. This additional synchronization is handled by a multiparty interaction protocol; α-core [41] is
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proposed. In [8], an optimization is proposed by considering only executions satisfying the constraining property in order to
build the knowledge. This approach allows reducing the state space and possibly increases the knowledge of each process.

7. Conclusion

We proposed different methods for generating a distributed implementation from a model described using multiparty
interactions with Restriction. The proposed model ensures enhanced expressiveness as the enabling conditions of an inter-
action can be strengthened by state predicates of components non-participating in that interaction. It directly encompasses
priorities which are essential for modeling scheduling policies. We have proposed a transformation leading from a model
with Restriction into an equivalent model with interactions. The transformation consists in creating events making visible
state-dependent conditions.

Components whose state is needed to evaluate the Restriction predicate associated to an interaction are observed by this
interaction. A synchronized up-to-date view of the observed components that satisfy the predicate is needed to launch the
execution of the interaction. We proposed methods, based on the work in [12], to compute a new Restriction with a reduced
number of observed components. The obtained Restriction ensures either deadlock-freedom preservation or observational
equivalence with the original model.

Expressing Restriction by interactions allows the application of existing distributed implementation techniques, such
as the one presented in [17]. We have proposed an optimization of the conflict resolution algorithm from [3] that takes
into account the fact that an observed component does not actively participate in the interaction. Preliminary experiments
compare the performance and communication volume of the implementation obtained with various optimization levels.
They show significant performance improvement when using the optimized conflict resolution algorithm.

Future work includes further optimization of the conflict resolution protocol through Knowledge, as in [11]. It also
includes generating distributed models with timing constraints as in [1]. In particular, the multi-threaded implementation
in [46], where all timing constraints are handled by a single thread, could be extended to a fully distributed implementation.
Furthermore, Knowledge could be applied as well to determine for instance whether an interaction protocol has to wait for
a particular message.
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