
Modeling Dynamic Architectures Using Dy-BIP?

Marius Bozga, Mohamad Jaber, Nikolaos Maris, and Joseph Sifakis
Firstname.Lastname@imag.fr

UJF-Grenoble 1 / CNRS, VERIMAG UMR 5104, Grenoble, F-38041, France

Abstract. Dynamic architectures in which interactions between components can
evolve during execution, are essential for modern computing systems such as
web-based systems, reconfigurable middleware, wireless sensor networks and
fault-tolerant systems. Currently, we lack rigorous frameworks for their model-
ing, development and implementation. We propose Dy-BIP a dynamic extension
of the BIP component framework rooted in rigorous operational semantics and
supporting a powerful and high-level set of primitives for describing dynamic
interactions. These are expressed as symbolic constraints offered by interacting
components and computed efficiently by an execution Engine. We present exper-
imental results which validate the effectiveness of Dy-BIP and show significant
advantages over using static architecture models.

1 Introduction

Architectures are essential for mastering the complexity of systems and facilitate their
analysis and evolution. They allow a separation between detailed behavior of compo-
nents and their overall coordination. Coordination is usually expressed by constraints
that define possible interactions between components. There exists a large number of
formalisms supporting a concept of architecture, including software component frame-
works, systems description languages and hardware description languages. Despite an
abundant literature and a considerable volume of research, there is no agreement on a
common concept of architecture, while most definitions agree on the core e.g. diagram-
matic representations by using connectors. This is due to two main reasons.

First, is the lack of rigorous operational semantics defining architectures as com-
position operators on components. That is the behavior of a composite component
is inferred from the behavior of its constituent components by applying architectural
constraints. For existing component frameworks, the definition of rigorous operational
semantics runs into many technical difficulties. They fail to clearly separate between
behavior of components and architecture. Connectors are not just memoryless switch-
ing elements. They can be considered as special types of components with memory
e.g. fifo queues and specific behavior. Another difficulty stems from verbose architec-
ture definitions e.g. by using ADLs [1], that do not rely on a minimal set of concepts.
Such definitions are hardly amenable to formalization. Finally, some frameworks [2]
use declarative languages e.g. first order logic to express global architecture constraints
which are useful for checking correctness but as a rule do not provide a basis for defin-
ing operational semantics.
? This work is partially supported by the FP7 IP ASCENS.

ha
l-0

07
22

48
1,

 v
er

si
on

 1
 -

2
Au

g
20

12
Author manuscript, published in "Software Composition - 11th International Conference, SC 2012, Prague : Czech Republic (2012)"

 DOI : 10.1007/978-3-642-30564-1_1

http://dx.doi.org/10.1007/978-3-642-30564-1_1
http://hal.archives-ouvertes.fr/hal-00722481
http://hal.archives-ouvertes.fr

The second is the distinction between static and dynamic architectures. Usually,
hardware and system description languages rely on static architecture models. The re-
lationships between components are known at design time and are explicitly specified
as a set of connectors defining possible interactions. Dynamic architectures are needed
for modeling reconfigurable systems or systems that adapt their behavior to changing
environments. They are defined as the composition of dynamically changing architec-
ture constraints offered by their constituent components. Filling the gap between static
and dynamic architecture models raises a set of interesting problems. In principle, dy-
namic architecture models are more general: each configuration corresponds to a static
architecture model. Is it possible to define a dynamic architecture modeling language
as an extension of a static architecture modeling language? Furthermore, if we restrict
to systems with a finite - although potentially large - set of possible configurations, any
dynamic architecture model can be translated into a static architecture model. Such a
translation can yield very complex static architecture models. As a rule, using dynamic
architectures may lead to more concise models. However, static architecture models can
be executed more efficiently thanks to the global and static knowledge of connectors [3].

We propose the Dy-BIP component framework based on rigorous operational se-
mantics for modeling both static and dynamic architectures. Dy-BIP can be considered
as an extension of the BIP language [4] for the construction of composite hierarchi-
cally structured components from atomic components. These are characterized by their
behavior specified as automata extended with data and functions described in C. A tran-
sition of an automaton is labeled by a port name, a guard (boolean condition on local
data) and an action (computation on local data). In BIP architectures are composition
operators on components defining their interactions. An interaction is described as a
set of ports from different components. It can be executed if there exists a set of en-
abled transitions labeled by its ports. The completion of an interaction is followed by
the completion of the involved transitions: execution of the corresponding actions fol-
lowed by a move to the target state. An operational semantics for BIP has been defined
in [5]. It provides a basis for the implementation of an Engine that orchestrates compo-
nent execution. The Engine knows the set of the interactions modeling the architecture.
It executes cyclically and atomically the following three-step protocol: 1) from a state
each component sends to the Engine the ports of its enabled transitions; 2) the Engine
computes the set of feasible interactions (sets of received ports corresponding to some
interaction); 3) the Engine chooses non-deterministically one interaction amongst the
feasible interactions by sending back to the components the names of their ports in-
volved in this interaction. Figure 1(a) shows a static architecture defined by interactions
pq and qr. Its consists of three components offering communications through ports p, q
and r. In contrast to BIP, the set of interactions characterizing architectures in Dy-BIP
changes dynamically with states. A port p has an associated architecture constraint Cp
which describes possible sets of interactions involving p. Feasible interactions from a
state are computed as maximal solutions of constraints obtained as the conjunction of
constraints offered by enabled transitions. Figure 1(b) illustrates a dynamic architecture
with three components offering ports p, q and r with associated constraints Cp, Cq and
Cr. As for the static architecture, the possible interactions are pq and qr.

ha
l-0

07
22

48
1,

 v
er

si
on

 1
 -

2
Au

g
20

12

Architecture Constraints

p q q r

q rp

p q r

p q rp q q r

(a) Static architecture

r

p[Cp] q[Cq]

p q

r[Cr]

r

p qp q q r q

(b) Dynamic architecture

Fig. 1. Static and dynamic architecture.

We provide operational semantics for Dy-BIP implemented by an Engine which as
for BIP, orchestrates components by executing atomically a three-step protocol. The
protocol differs in that components send not only port names of enabled transitions but
also their associated architecture constraints.

Dy-BIP is an extension of BIP. A BIP model with a global architecture constraint
C, can be represented as a Dy-BIP model such that the constraint Cp associated with a
port p is the set of the interactions of C involving p.

Dy-BIP allows modeling dynamic architectures as the composition of instances of
component types. For the sake of simplicity, we assume that there is no dynamic cre-
ation/deletion of component instances. The main contributions are the following:

– Definition of a logic for the description of architecture constraints. The logic is
expressive and amenable to analysis and execution. It encompasses quantification
over instances of component types. Formulas involve port names used as logical
variables and characterise sets of interactions. Given a formula, a feasible interac-
tion is any set of ports assigned true by a valuation which satisfies the formula.

– Study of a semantic model and a modeling methodology for writing architecture
constraints associated with ports. For a port p, the associated constraint is decom-
posed into three types of constraints characterizing interaction between ports [6]:
“causal constraint”, “acceptance constraint”, “filter constraint”. Causal constraint
defines the ports required for interaction. Acceptance constraint defines optional
ports for participation. Filter constraints are invariants used to discriminate unde-
sirable configurations of a component’s environment.

– Implementation principles for Engines handling symbolic architecture constraints.
The proposed implementation is based on the resolution of architecture constraints
on-the-fly. The Engines use efficient constraint resolution techniques based on
BDDs. For a given model, quantifiers over components can be eliminated and for-
mulas become boolean expressions on ports.

– Experimental results and benchmarks showing benefits from using dynamic archi-
tectures compared to static architectures. We consider several examples showing
that compositional modeling of dynamic architectures allows enhanced concise-
ness and rigorousness. In particular, it is possible to master complexity of intricate
dynamic interactions by compositional specification of interactions of individual
components.

ha
l-0

07
22

48
1,

 v
er

si
on

 1
 -

2
Au

g
20

12

The paper is structured as follows. Section 2 presents related work. Section 3 de-
scribes the semantic model for Dy-BIP. Section 4 presents the dynamic architecture
description language and the methodology for writing constraints. Section 5 is dedi-
cated to examples and experimental results. Section 6 concludes and discusses future
work directions.

2 Related work

In contrast to other frameworks [7, 8] Dy-BIP relies on a clear distinction between
behavior and architecture as a set of stateless architecture constraints characterizing
interactions. Architecture constraints are specified compositionally as the conjunction
of individual architecture constraints of components. Existing frameworks usually de-
scribe dynamic architectures as a set of global transitions between configurations. Only
process algebras adopt a compositional approach e.g. pi-calculus [9]. Nonetheless, they
do not encompass a concept of architecture as behavior and composition operators are
intermingled. Dy-BIP differs from other formalisms such as [10] in that it has rigor-
ous operational semantics. In [2], a first order logic extended with architecture-specific
predicates is used. However, there is no clear methodology on how to express syn-
chronisation protocols (e.g., rendezvous, broadcast) whose combination is expressive
enough to represent any kind of interaction and avoids the exhaustive enumeration of
all possible interactions [11]. In [12], a dynamic architecture is defined as a set of global
transitions between global configurations. These transitions are expressed in a first or-
der logic extended with architecture-specific predicates. The same logic is used in [13,
14] but global configurations are computed at runtime from the local constraints of
each component. Dy-BIP follows the same approach but constraints are stateless (they
are based on the boolean representation of causal rules [6]) and take advantage of the
stateful behavior of the components by eliminating some of the undesirable global con-
figurations implicitly. [15] provides an operational semantics based on the composition
of global configurations from local ones. These express three forms of dependencies
between services (mandatory, optional and negative). Nonetheless, dynamism is sup-
ported only at the installation phase.

In BIP [4], coordination between components is modeled by using connectors [6].
A simple (or flat) connector is an expression of the form p′1 . . . p

′
kpk+1 . . . pn where

primed p′i ports are triggers, and unprimed ports pj are synchrons. For a flat connector
involving the set of ports {p1, . . . , pn}, interaction semantics defines the set of its inter-
actions γ by the following rule: an interaction is any non-empty subset of {p1, . . . , pn}
which contains some port that is trigger; otherwise (if all ports are synchrons), the only
possible interaction is the maximal one, that is p1 . . . pn. Connectors, representing these
two protocols for a sender s and receivers r1; r2; r3, are shown in 2-(a,b). Triangles
represent triggers, whereas bullets represent synchrons. Hierarchical connectors are ex-
pressions composed of types ports and/or typed sub-connectors. Figure 2-c shows a con-
nector realizing an atomic broadcast from a port s to ports r1, r2, r3. The sending port
s is trigger, and the three receiving ports are strongly synchronized in a sub-connector
itself typed as a synchron. The connector shown in Figure 2-d is a causal chain of inter-
actions initiated by the port s, the possible interactions are s, sr1, sr1r2, sr1r2r3.

ha
l-0

07
22

48
1,

 v
er

si
on

 1
 -

2
Au

g
20

12

u u u u
s r1 r2 r3

N u u u
s r1 r2 r3

γ = {sr1r2r3} γ = {s, sr1, sr2, sr3, sr1r2, sr2r3, sr1r2r3}
(a) Rendezvous (b) Broadcast

N u u uu
s r1 r2 r3

N uN

uN

u
s

r1 r2 s3

γ = {s, sr1r2r3} γ = {s, sr1, sr1r2, sr1r2r3}
(c) Atomic broadcast (d) Causal chain

Fig. 2. Graphic representation of connectors

Connectors can be used to define easily any type of coordination between compo-
nents. However, in this case connectors and their interactions are defined statically, and
this leads to inefficiency for systems with dynamically changing architecture.

3 The Dynamic-BIP model

Dy-BIP offers primitives for dynamic architecture modeling. Atomic components are
transition systems. Transitions are labeled with ports, that is, action names, and con-
straints for interaction with other components.

Ports are used to define interactions between atomic components. Henceforth P is a
universal set of ports. An interaction is a non empty subset a ⊆ P . To simplify notation,
an interaction a = {p1, p2, . . . pn} is simply denoted by p1p2 . . . pn.

3.1 Interaction constraints

To introduce dynamic architectures, we consider that each atomic component provides
its own interaction constraints at each computation step. A global interaction is defined
as a solution of the set of interaction constraints offered by components. As the interac-
tions at some state may depend on interactions in the past, it is necessary to parametrize
interaction constraints by history variables which keep track of the interactions already
executed. For example, in a protocol, if A sends a message to B, then A can record the
identity of B in a history variable to remember that an acknowledgement is expected
from B. If A does not use history variables then it is necessary to encode the identity of
the receiver in control locations and this may result in an explosion of the number of its
control locations.

Definition 1 (Interaction Constraint). Given a set of history variables H , an interac-
tion constraint C is defined by the following grammar:

C ::= true | p∈h | p | ¬C | C ∧ C (1)

where p ∈ P is a port, and h ∈ H is a history variable.

ha
l-0

07
22

48
1,

 v
er

si
on

 1
 -

2
Au

g
20

12

The syntax of interactions constraints is tacitly extended for all boolean operators e.g.,
false, ⇒, ∨ in the usual way. To simplify notation, we overload the meaning of a
port symbol p: within p ∈ h it denotes the port itself whereas p alone denotes a boolean
variable. This ambiguity is removed in the two-step definition of semantics given below.
We denote by C the set of all interaction constraints and by Cb the subset of boolean
constraints, that is, without history variables.

Given a valuation of history variables µ : H 7→ 2P , an interaction constraint C ∈ C
defines a boolean interaction constraint [[C]]µ by the following rules:

[[true]]µ = true

[[p ∈ h]]µ =

{
true if p ∈ µ(h)
false otherwise

[[p]]µ = p
[[¬C]]µ = ¬[[C]]µ
[[C1 ∧ C2]]µ = [[C1]]µ ∧ [[C2]]µ

(2)

That is, the terms of the form p ∈ h are replaced by true or false as the case may
be: true if port p belongs to the stored interaction and false otherwise. All the other
terms of the interaction constraint remain unchanged.

An interaction a ⊆ P satisfies a boolean constraint C ∈ Cb (denoted by a |= C), as
defined by the following rules:

a |= true

a |= p ⇔ p ∈ a
a |= ¬C ⇔ ¬(a |= C)
a |= C1 ∧ C2 ⇔ (a |= C1) ∧ (a |= C2)

(3)

We denote with I(C) and Imax(C) the set of interactions and respectively maximal
interactions satisfying C, formally:

I(C) = {a | a |= C}
Imax(C) = {a ∈ I(C) | @a′ ∈ I(C) . a′ ⊃ a} (4)

For example, we can specify interaction constraints for: (1) rendez-vous between
p1, p2, p3 by C1 = (p1 ⇒ p2) ∧ (p2 ⇒ p3) ∧ (p3 ⇒ p1), the only possible interaction
is the maximal one, that is I(C1) = Imax(C1) = {p1p2p3}; (2) broadcast where s is
the sending port and r1, r2, r3 are the receiving ports by C2 = (true ⇒ s) ∧ (r1 ⇒
s)∧(r2 ⇒ s)∧(r3 ⇒ s), the possible interactions are I(C2) = {s, sr1, sr1r2, sr1r2r3}
and Imax(C2) = {sr1r2r3}; (3) the constraint p ⇒ false means absence of p from
any interaction; (4) p⇒ true allows inclusion of p in any interaction.

3.2 Atomic components

An atomic component is an automaton extended with history variables. Transitions rep-
resent relations on control locations (local states). Each transition is labeled by a port,
an interaction constraint and a set of history variables to be updated.

ha
l-0

07
22

48
1,

 v
er

si
on

 1
 -

2
Au

g
20

12

Definition 2 (Atomic Component). An atomic component is a tuple B =
(L,P,H, T), where,

– L is a finite set of control locations;
– P ⊆ P is a finite set of ports;
– H is a finite set of history variables;
– T ⊆ L×P×C×2H×L is a finite set of transitions. Each transition (`, p, C,h, `′),

denoted by `
p, C,h−−−−−→ `′ is labeled with:

• p ∈ P , the port offered for interaction
• C ∈ C, the interaction constraint on P and H
• h ⊆ H , the set of history variables to be updated

Given µ : H 7→ 2P a valuation of the history variables H , the state of an atomic
component B = (L,P,H, T) is a pair (`, µ), where ` ∈ L is a control location. Q =
L × µ is the set of states ot the atomic component B, where µ denotes the set of
valuations on H . For each state (`, µ) ∈ Q, we define its associated state constraint
SC(`, µ) as follows:

SC(`, µ) =


∨

`
p, C,h−−−−−→`′

p ∧ [[C]]µ ∧
∧

p′∈P\{p}

¬p′

 ∨

∧
p∈P
¬p (5)

The state constraint characterizes the set of possible contributions of the component
to a global interaction at state (`, µ). Either the component executes some transition

`
p, C,h−−−−−→ `′ and offers interactions (1) involving p and excluding all other ports label-

ing transitions from this state, that is, p ∧
∧
p′∈P\{p} ¬p′ holds and (2) involving ports

which satisfy the constraint C for the valuation µ, that is, [[C]]µ. Or, the component does
not interact, if none of its ports is used, that is

∧
p∈P ¬p.

3.3 Composition

A system S = B1‖ . . . ‖Bn is defined as the composition of a set of atomic components
Bi = (Li, Pi, Hi, Ti)i=1,n. We assume that the sets of locations, ports and history
variables are pairwise disjoint. The semantics of the composition is provided by the
following definition.

Definition 3 (Composition). The behavior of a system S = B1‖ . . . ‖Bn is a labeled
transition system (Q,Σ,−→), where,

– Q =
∏n
i=1Qi is the set of states, where Qi is the set of states of component Bi;

– Σ = 2P is the set of interactions, where P = ∪ni=1Pi;
– −→⊆ Q×Σ ×Q is the set of transitions, defined by the following rule:

ha
l-0

07
22

48
1,

 v
er

si
on

 1
 -

2
Au

g
20

12

{µi : Hi 7→ P}ni=1 a = {pj}j∈J ∈ Imax(
∧n
i=1 SC(`i, µi))

∀j ∈ J. `j
pj , Cj ,hj−−−−−−−→ `′j

∧
j∈J [[Cj]]µj

µ′j = µj [a/hj]

∀j 6∈ J. `′j = `j µ′j = µj

((`1, µ1), . . . , (`n, µn))
a−→ ((`′1, µ

′
1), . . . , (`

′
n, µ
′
n))

Intuitively, system transitions are taken for maximal interactions a that satisfy all
state constraints defined by atomic components

∧n
i=1 SC(`i, µi). The components par-

ticipating in the interaction change their location according to the selected transition
and update their local valuation of history variables. The components which do not
participate keep their state unchanged.

The composition semantics has been implemented by using a centralized execution
Engine. The Engine gathers current state interaction constraints from all atomic com-
ponents. Then, it builds the overall system of constraints and solves it, that is, finds the
set of maximally satisfying interactions. One maximal interaction is then selected and
executed atomically by all involved components. This operation is repeated by the En-
gine on-the-fly, at every state reached at execution. More formally, atomic components
interact and coordinate their execution through the Engine according to the following
protocol:

1. Each component Bi, computes its state constraint SC(`i, µi) and sends it to the
Engine.

2. The Engine computes the global constraint GC as the conjunction of state con-
straints defined by atomic components GC =

∧n
i=1 SC(`i, µi).

3. The Engine picks some maximal interaction a on P , such that a |= GC. That is,
a ∈ Imax(GC).

4. The Engine notifies the selected interaction a to all participating components, that
is, all Bj such that a ∩ Pj 6= ∅.

5. Each notified component Bj executes its local transition labeled by pj = a ∩ Pj
and updates its history variables.

Example 1. Figure 3 shows an example of a composite component consisting of three
atomic components B1, B2, and B3. Component B1 requests synchronization with ei-
ther B2 or B3, and then performs some computation with the synchronized component.
To do so, we model component B1 as follows. It has two control locations l1, l2, two
ports s, r, and a history variable h. From control location l1, the transition labeled by the
port s requests synchronisation with ports b1 or b2 (s ⇒ b1 ∨ b2), forbids the synchro-
nisation with b1 and b2 at the same time (¬(b1 ∧ b2)), and forbids the synchronisation
with f1 and f2 (¬f1 ∧ ¬f2). After executing this transition, the executed interaction
is stored in the history variable h (Update h), to store the identity of the synchronized
component. From control location l2, the transition labeled by the port r, depending on
the value of the history variable h, it either (1) requests synchronisation with port f1
and forbids the synchronisation with port f2; or (2) requests synchronisation with port
f2 and forbids the synchronisation with port f1. In both cases, it forbids the synchroni-
sation with ports b1 and b2 (¬b1 ∧ ¬b2).

From location l1 the state constraint is SC(l1, µ1) = (s∧Cs ∧¬r)∨ (¬s∧¬r) re-
gardless of the value of µ1. This is due to the fact that constraint Cs does not depend on

ha
l-0

07
22

48
1,

 v
er

si
on

 1
 -

2
Au

g
20

12

b1 ⇒ s

h

Cr =
(
(b1 ∈ h)⇒ [(r ⇒ f1) ∧ ¬f2]

)
∧
(
(b2 ∈ h)⇒ [(r ⇒ f2) ∧ ¬f1]

)
∧
(
¬b1 ∧ ¬b2

)
l1

l2

s r

r s

Cs

Updateh
Cr

B1

l3
b1 f1 B2

l5
b2 f2 B3

l6

l4
Cs = (s⇒ b1 ∨ b2)
∧¬(b1 ∧ b2)
∧(¬f1 ∧ ¬f2)

f2 ⇒ r

f2 b2

b2 ⇒ s

f1 ⇒ r

f1 b1

Fig. 3. An example of a composite component in Dy-BIP.

history variables. For this constraint, the possible interactions are Imax(SC(l1, µ)) =
{sb1, sb2}. From location l2, if the history variable h contains the interaction sb2,
then the state constraint is SC(l2, µ1) = (r ∧ [[Cr]]µ1

∧ ¬s) ∨ (¬s ∧ ¬r), where
[[Cr]]µ1

=
(
false⇒ [(r ⇒ f1)∧¬f2]

)
∧
(
true⇒ [(r ⇒ f2)∧¬f1]

)
∧
(
¬b1∧¬b2

)
.

For this constraint, the only possible interaction is Imax(SC(l2, µ1)) = {rf2}.
Initially, components B1, B2, and B3 are in locations l1, l3, and l5, respectively.

Starting from these locations, the Engine coordinates execution of these components as
follows: (1) Components B1, B2, and B3 compute their state constraints SC(l1, µ1),
SC(l3, µ2), and SC(l5, µ3), respectively, where, SC(l1, µ1) = (s∧Cs ∧¬r)∨ (¬s∧
¬r), SC(l3, µ2) = (b1∧(b1 ⇒ s)∧¬f1)∨(¬b1∧¬f1), and SC(l5, µ3) = (b2∧(b2 ⇒
s)∧¬f2)∨(¬b2∧¬f2); (2) The Engine picks any interaction from Imax(SC(l1, µ1)∧
SC(l3, µ2) ∧ SC(l5, µ3)) = {sb1, sb2}; (3) If the Engine selects the interaction sb2, it
notifies components B1 and B3; (4) Components B1 and B3 execute their transitions
labeled by s and b2, respectively. Moreover, component B1 sets its history variable h to
sb2.

4 Methodology for writing interaction constraints

Writing interaction constraints associated with transitions of atomic components, in the
proposed declarative language may be error-prone or may lead to incomplete specifica-
tions. We provide a methodology based on a classification of constraints and on a set
of macro-notations for enhancing soundness and completeness. The classification dis-
tinguishes between interactions in which a port p must, may or must not be involved. It
allows a systematic analysis of interaction capabilities of components to make sure that
no essential properties are omitted. Macro-notations allow a compact and high-level
expression of the most commonly used constraints, thus avoiding specification errors.

We extend the interaction constraint language towards a first order logic with quan-
tification over component instances. This extension is useful because in practice, sys-
tems are built from multiple, replicated instances of components of different types. The

ha
l-0

07
22

48
1,

 v
er

si
on

 1
 -

2
Au

g
20

12

formulas of the logic interaction constraints are therefore defined as follows:

C ::= true | x.p ∈ h | x.p | x = y | x = self | ¬C | C ∧ C | ∀x :T.C(x) (6)

In this definition, T denotes a component type. Each component type represents a set
of component instances with identical interfaces and behavior. The variables x, y range
over component instances. These variables must occur in the scope of a quantifier, e.g.
∀x : T.C(x). They are strongly typed and moreover, they can be tested for equality.
Additionally, self represents a fixed component instance, that is, the (context) compo-
nent where the constraint belongs. The remaining syntactic constructs are directly lifted
from the propositional case: h ∈ H denotes a history variable and x.p denote the port p
belonging to component instance x. As previously, we consider the standard extension
of this logic for all boolean operators and existential quantification.

In the sequel, we consider systems consisting of finitely many instances for each
component type. Under this restriction, an interaction constraint written in the logic
above boils down into a propositional interaction constraint by (1) substituting self by
the current component instance, (2) elimination of universal quantifiers and (3) eval-
uation of equality constraints. For example, for a component type T with instances
t1, . . . tk, universal quantifiers of the form ∀x :T can be eliminated:

∀x :T.C(x) ≡ C(t1) ∧ . . . ∧ C(tk) (7)

In the rest of this section, we provide guidelines for writing interaction constraints
in this logic. Consider a fixed transition in some component (type) which is labeled
by a port p. The associated interaction constraint Cp is a conjunction of three types of
constraints, respectively causal, acceptance and filtering, as explained below.

4.1 Causal constraints

These constraints are used to specify the ports required for interactions of p. At proposi-
tional level, they can be reduced to the one of the two following forms, either true⇒ p
or p⇒ C, whereC is a boolean interaction constraint without negated ports. To express
such constraints in practice, we provide hereafter few useful abbreviations:

– Trigger ≡ true⇒ self.p. This constraint specifies that port p is a trigger, that is,
the transition labeled by Trigger does not require synchronization with transitions
of other components to occur.

– Require T.q ≡ ∃x : T.(self.p ⇒ x.q). This constraint specifies that an arbitrary
instance of component type T must participate with the port q in the interaction
involving p.

– Require x1.q1...xn.qn[x1 : T1 . . . xn : Tn|C1(x1, ..., xn)] ≡ ∃x1 : T1...∃xn :
Tn.

(
C1(x1, ..., xn)∧self.p⇒ (x1.q1∧. . .∧xn.qn)

)
. This is the most general type

of require constraint. It specifies that a set of component instances x1, . . . xn satis-
fying the constraint C1(x1 . . . xn) must jointly participate with respectively ports
q1, . . . qn in the interaction involving p. Usually, the constraint C1 is used to check
previous participation of x1 . . . xn in interactions recorded into history variables.

ha
l-0

07
22

48
1,

 v
er

si
on

 1
 -

2
Au

g
20

12

4.2 Acceptance constraints

These constraints define optional ports for participation used to define the boundary of
interactions. They are expressed by excluding explicitly from interactions all the ports
that are not optional. At propositional level, they are of the form r ⇒ false where port
r is excluded from interaction. In practice, we use the following abbreviations:

– Accept T.q ≡
∧

(T ′,q′)6=(T,q) ∀x : T ′.
(
x.q′ 6= self.p ⇒ (x.q′ ⇒ false)

)
. This

constraint accepts only ports q of component instances of type T .
– Accept x.q[x : T |x.r ∈ h] ≡ Accept T.q ∧ ∀x : T.

(
x.r 6∈ h ⇒ (x.q ⇒ false)

)
.

This constraint restricts participation to ports of component instances x that had
participated in the interaction stored in h.

4.3 Filtering constraints

These constraints are used to exclude some of interactions allowed by causal and ac-
ceptance constraints. At propositional level, filter constraints are of the form p ⇒ C
where each monomial in C has at least one negated port. In practice, we are commonly
requiring unicity constraints of the form:

– Unique T.q ≡ ∀x : T.∀y : T. (x.q ∧ y.q ⇒ x = y). This constraint forbids the
participation of p with more than one instance of component type T with the port
q.

5 Experimental results

The operational semantics of Dy-BIP has been implemented using the CUDD BDD
package 1. We compare execution times for Dy-BIP and BIP (where we define archi-
tecture statically) for a Master-Slave example. Two other non-trivial examples, Fault-
Tolerant Servers, and Tracker and Peers are provided. Static architecture modeling for
these examples in BIP leads to complex descriptions and may be error-prone. Dy-BIP
models are concise and can be efficiently implemented. We present below the three
examples and the simulation results. Execution times are provided for executing 1000
interactions of the Engine running on PC Quad-Xeon 2.67HGz with 6GB RAM.

5.1 Masters and Slaves

In this example, we consider two scenarios. In the first scenario, is a system consisting
of M Masters and S Slaves. Each Master sends requests sequentially to two Slaves,
and then performs some computation involving both of them. The model of the Mas-
ter component type is shown in Figure 4(a). Initially, from location 0, a Master re-
quests synchronization with some Slave. To do so, it must synchronize his request
port with the get port of any Slave (Require Slave.get). As it requires one and only
one Slave, we add a Unique constraint. When a Master instance m1 synchronizes with

1 CUDD: CU decision diagram package (http://vlsi.colorado.edu/˜fabio/CUDD/)

ha
l-0

07
22

48
1,

 v
er

si
on

 1
 -

2
Au

g
20

12

some Slave instance, say s1, interaction m1.req s1.get is chosen. Then, the Master m1

has to keep track of the identity of the synchronized Slave (s1) by saving the interac-
tion m1.req s1.get to the history variable h1 (Update h1). From location 1 the Master
requires another Slave to synchronize with it, and keeps again track of its identity. Fi-
nally, from location 2, the Master establishes a ternary interaction with the two Slaves
recorded in its history variables.

The Slave component type is shown if Figure 4(b). It accepts a request and provides
a response. In order to allow participation in ternary interactions, the Accept clause
includes the port of one Master and the work port of another Slave. Notice that, the
statically predefined connector structure (using BIP) needs M ×S +M ×S × (S − 1)
interactions. Figure 5(a) shows execution times of 1000 interactions for BIP and Dy-

[y : Slave | y.get ∈ h2]

req

Require x.get[x : Slave | x.get /∈ h1]

Accept x.get[x : Slave | x.get /∈ h1]

Unique Slave.get

Update h2

0 1 2

req req

compute

req

Require Slave.get

Accept Slave.get
Unique Slave.get

Update h1

Accept x.work y.work[x : Slave | x.get ∈ h1]

Require x.work y.work[x : Slave | x.get ∈ h1]
compute

[y : Slave | y.get ∈ h2]

(a) Master type

[x : Master | x.req ∈ h]

0 1

get

work

Update h

get

Require Master.req

Accept Master.req

Unique Master.req

work
Require x.compute

Accept Slave.work x.compute
[x : Master | x.req ∈ h]

(b) Slave type

Fig. 4. Masters and Slaves in Dy-BIP.

BIP, as a function of the number of components in the system. Dy-BIP considerably
outperforms BIP. Figure 5(b) shows the number of the interactions created dynamically
for Dy-BIP along the evolution of the system for 20 Masters and 40 Slaves. Notice that,
for BIP the number of the interactions created is 32000 regardless of the system state.

 0
 20
 40
 60
 80

 100
 120
 140
 160

 2 4 6 8 10 12 14 16 18 20

M
ea

su
re

d
Ti

m
e

(S
ec

on
ds

)

Number of Masters (Nb of Slaves = 2 * Nb of Masters)

Dy-BIP
BIP

(a) Master-Slave execution time

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 100 200 300 400 500 600 700 800 900 1000Ar
ch

ite
ct

ur
e

Si
ze

 (N
b

of
 In

te
ra

ct
io

ns
)

System State

(b) Architecture variation Dy-BIP

Fig. 5. Masters and Slaves execution time and variation of dynamic architecture.

In the second scenario, we developed a simplified version of the Master-Slave model
presented above. Each Master performs some computation in tight synchronization with

ha
l-0

07
22

48
1,

 v
er

si
on

 1
 -

2
Au

g
20

12

any Slave. The model of the Master and Slave component types are shown in Figures
6(a) and 6(b). As expected, Figure 6(c) shows that the execution time for BIP outper-
forms Dy-BIP. This is due to the fact that the number of the interactions created is
M ×N for BIP as well as for Dy-BIP regardless of the system state.

work

work

Require Slave.req

Accept Slave.req
Unique Slave.req

0

(a) Master type

work

work

Require Master.req

Accept Master.req

Unique Master.req

0

(b) Slave type

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16 18 20

M
ea

su
re

d
Ti

m
e

(S
ec

on
ds

)

Number of Masters (Nb of Slaves = 2 * Nb of Masters)

Dy-BIP
BIP

(c) Simple Master-Slave execution time

Fig. 6. Simple Master-Slave in Dy-BIP.

5.2 Fault-Tolerant Servers

This example is inspired from the Fault-Tolerant Client-Server System presented in [3].
We consider a system consisting of a fixed number of available Servers and a pool
of alternative Servers used in case of crash. When a Server crashes, another Server is
turned on to preserve availability of the service, and so on. After successive crashes,
we get a chain of Servers s1 . . . st where s1 . . . st−1 are crashed and st is available.
Crashes in this example are software crashes like a memory error, so turning off and
on a crashed Server is also a way of repairing it through an action called softrepair.
Additionally, whenever a crashed Server si gets repaired, then the running Server in
the chain should turn off st and all crashed Server that replaced the repaired Server
(sj , i + 1 < j < t) provide a softrepair. Figure 5.2 shows a possible scenario for an

(4)

on

off off off

crash

on

off off off off

on

off

crash offcrash

on

(1)

(2)

(3)

Fig. 7. Possible scenario for Fault-Tolerant Client-Server.

example with four Servers: (1) the first Server is turned on while all the others are turned
off; (2) the first Server crashes and turns on the second Server; (3) the second Server
crashes and turns on the third Server; (4) the first Server gets repaired. In this case, the
third Server must be turned off and the crashed Server (the second one) has to turn off by
executing softrepair. Notice that, the decision of turning off a running Server has to be
propagated from the repaired Server. Also, Servers have to change state synchronously
to keep constant the number of available Servers.

ha
l-0

07
22

48
1,

 v
er

si
on

 1
 -

2
Au

g
20

12

The model of a Server component is shown in Figure 8. Moreover, we use the plus
symbol “+” to denote logical disjunction of require constraints involving several ports
determined by the same expression. For instance, Require x.repair+x.softrepair[x :
Server | x.crash ∈ h2] ≡ Require x.repair[x : Server | x.crash ∈ h2] ∨
Require x.softrepair[x : Server | x.crash ∈ h2]. A turnoff requires a repair or
a softrepair from any Server that has crashed.

Notice that, statically predefined connector structure (using BIP) leads to more than
NN interactions, where N is the total number of Servers. For this reason, modeling
statically this architecture is practically impossible even for a relatively small number
of Servers. Figure 9(a) depicts execution time for Dy-BIP. For a total number of 27

repair

onoff crash
turnon

turnoff repair

crash

Require Server.crash

Accept Server.crash
Unique Server.crash

turnon

Update h2

Require Server.turnon

Accept Server.turnon
Unique Server.turnon

crash

Update h1

softrepair
Require x.repair y.turnoff + x.repair y.softrepair + x.softrepair y.softrepair

+x.softrepair y.turnoff [x : Server | x.crash ∈ h2][y : Server | y.turnon ∈ h1]
Accept Server.repair Server.softrepair Server.turnoff

Require x.repair + x.softrepair

Accept Server.repair Server.softrepair
[x : Server | x.crash ∈ h2]

Unique Server.turnoff
Accept Server.repair Server.softrepair Server.turnoff
Require x.turnoff + x.softrepair[x : Server | x.turnon ∈ h1]

turnoff

Fig. 8. Fault-Tolerant Servers in Dy-BIP.

Servers with 13 available Servers, executing 1000 interactions requires only 8 seconds.
Notice that, using BIP we have to statically define more than 2727 interactions!

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 5 10 15 20 25 30

M
ea

su
re

d
Ti

m
e

(S
ec

on
ds

)

Number of Servers (Nb of Available Servers = Nb of Servers / 2)

Dy-BIP

(a) Fault-Tolerant Servers

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 5 10 15 20 25 30 35 40

M
ea

su
re

d
Ti

m
e

(S
ec

on
ds

)

Number of Peers (Nb of Trackers = Nb of Peers / 4)

Dy-BIP

(b) Trackers and Peers

Fig. 9. Execution times for Fault-Tolerant Servers and Trackers and Peers.

5.3 Trackers and Peers

As third benchmark, we consider a simplified wireless audio protocol for reliable mul-
ticast communication. The protocol allows an arbitrary numbers of participants (named

ha
l-0

07
22

48
1,

 v
er

si
on

 1
 -

2
Au

g
20

12

Peers) to dynamically connect and communicate along an arbitrary number of wireless
communication channels (managed by dedicated Trackers).

In this protocol, Peers are allowed to use at most one communication channel at a
time. The access to channels is subject to an explicit registration mechanism. Dynam-
ically, every Peer selects and registers to the channel it wants to use. Once registered,
Peers can either speak, that is, send data over the channel, or listen, that is, receive data
sent by others. For every channel, its associated Tracker ensures for any communication
that (1) exactly one registered peer (on that channel) is speaking and (2) all other regis-
tered peers are listening. That is, data is delivered atomically to all potential receivers.
Finally, Peers can dynamically de-register, then register to other channels, etc.

The Dy-BIP model is depicted in Figure 10. As for the previous example, we use the
“+” abbreviation for disjunction of require constraints applied to several ports. Notice
that, a statically predefined connector structure is exponentially complex and the model
explodes rapidly. We need P ×T ×(3+2P−1) connectors, where P is the total number
of Peers and T is the total number of Trackers.

[x : Tracker | x.log ∈ h]

listen
Require x.broadcast[x : Tracker | x.log ∈ h]
Accept Peer.speak Peer.listen x.broadcast

[x : Tracker | x.log ∈ h]

Update h

register

Require Tracker.log

Accept Tracker.log
Unique Tracker.log

Require Tracker.log

Accept Tracker.log
Unique Tracker.log

unregister

0 1

register speak

listenunregister

Accept Peer.listen x.broadcast
[x : Tracker | x.log ∈ h]

Require x.broadcast
speak

(a) Peer type

log

Trigger
broadcast

Accept Peer.speak Peer.listen
Unique Peer.speak

Require: Peer.register + Peer.unregister

Accept: Peer.register Peer.unregister

log

broadcast

(b) Tracker type

Fig. 10. Trackers and Peers in Dy-BIP.

Figure 9(b) shows execution times for 1000 interactions for a Dy-BIP model where
there are four times more Peers than Trackers.

6 Conclusion

The paper provides a simple modeling language for compositional description of dy-
namic architectures. The language as a straightforward extension of a static architecture
modeling language, bridges the gap between static and dynamic description styles. It is
simple but expressive enough as illustrated by non-trivial examples. Its associated mod-
eling methodology leads to concise and intelligible models obtained as the composition
of components. Global architecture constraints can be synthesized by composing ar-
chitecture constraints of individual components. Using history variables in components
avoids state explosion and duplication of ports.

This work contrasts with existing approaches for dynamic architectures which lack
clear semantics and are not compositional. It proposes a rigorous methodology for writ-

ha
l-0

07
22

48
1,

 v
er

si
on

 1
 -

2
Au

g
20

12

ing architecture constraints of components. In particular, the distinction between differ-
ent types of constraints provides guidance for their soundness and completeness. The
choice between different implementations permits exploration efficiency trade-offs. On-
the-fly computation seems more adequate for architectures with a large number of con-
figurations while regular BIP execution is more advantageous for systems with a small
number of configurations.

Further developments will focus on integrating data transfer, priorities, as well as
creation and deletion of components.

References

1. N. Medvidovic and R. N. Taylor, “A framework for classifying and comparing architecture
description languages,” in ESEC / SIGSOFT FSE, 1997, pp. 60–76.

2. D. Garlan, R. T. Monroe, and D. Wile, “Acme: An architecture description interchange lan-
guage,” in Proceedings of CASCON’97, Toronto, Ontario, November 1997, pp. 169–183.

3. R. Allen, R. Douence, and D. Garlan, “Specifying and analyzing dynamic software architec-
tures,” in Fundamental Approaches to Software Engineering, Lisbon, Portugal, March 1998,
pp. 21–37.

4. A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen, and J. Sifakis, “Rig-
orous component-based system design using the bip framework,” IEEE Software, vol. 28,
no. 3, pp. 41–48, 2011.

5. A. Basu, P. Bidinger, M. Bozga, and J. Sifakis, “Distributed semantics and implementation
for systems with interaction and priority,” in FORTE, 2008, pp. 116–133.

6. S. Bliudze and J. Sifakis, Causal Semantics for the Algebra of Connectors. Berlin, Heidel-
berg: Springer-Verlag, 2008.

7. P. Inverardi and A. L. Wolf, “Formal specification and analysis of software architectures
using the chemical abstract machine model,” IEEE Trans. Software Eng., vol. 21, no. 4, pp.
373–386, 1995.

8. D. L. Métayer, “Describing software architecture styles using graph grammars,” IEEE Trans.
Software Eng., vol. 24, no. 7, pp. 521–533, 1998.

9. R. Milner, Communicating and mobile systems - the Pi-calculus. Cambridge University
Press, 1999.

10. J. Magee and J. Kramer, “Dynamic structure in software architectures,” SIG-
SOFT Softw. Eng. Notes, vol. 21, pp. 3–14, October 1996. [Online]. Available:
http://doi.acm.org/10.1145/250707.239104

11. S. Bliudze and J. Sifakis, “The algebra of connectors: structuring interaction in bip,” in EM-
SOFT, 2007, pp. 11–20.

12. J. S. Kim and D. Garlan, “Analyzing architectural styles,” Journal of Systems and Software,
vol. 83, no. 7, pp. 1216–1235, 2010.

13. M. H. Kacem, M. Jmaiel, A. H. Kacem, and K. Drira, “Evaluation and comparison of adl
based approaches for the description of dynamic of software architectures,” in ICEIS (3),
2005, pp. 189–195.

14. I. Georgiadis, J. Magee, and J. Kramer, “Self-organising software architectures for dis-
tributed systems,” in WOSS, 2002, pp. 33–38.

15. M. Belguidoum and F. Dagnat, “Dependency management in software component deploy-
ment,” Electr. Notes Theor. Comput. Sci., vol. 182, pp. 17–32, 2007.

ha
l-0

07
22

48
1,

 v
er

si
on

 1
 -

2
Au

g
20

12

