
Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

Functional BIP: Embedding connectors in functional
programming languages

Romain Edelmann a, Simon Bliudze a,∗, Joseph Sifakis b

a École polytechnique fédérale de Lausanne, Station 14, CH-1015 Lausanne, Switzerland
b Verimag, Université Grenoble Alpes, 700, avenue centrale, 38401 Saint Martin d’Hères, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 December 2016
Accepted 23 June 2017
Available online 12 August 2017

Keywords:
BIP
Connectors
Dynamicity
Functional programming
Haskell
Scala

This paper presents a theoretical foundation for functional language implementations
of Behaviour–Interaction–Priority (BIP). We introduce a set of connector combinators
describing synchronisation, data transfer, priorities and dynamicity in a principled way.
A static type system ensures the soundness of connector semantics.
Based on this foundation, we implemented BIP as an embedded domain specific language
(DSL) in Haskell and Scala. The DSL embedding allows programmers to benefit from
the full expressive power of high-level languages. The clear separation of behaviour and
coordination inherited from BIP leads to systems that are arguably simpler to maintain
and reason about, compared to other approaches.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

When building large concurrent systems, one of the key difficulties lies in coordinating component behaviour and,
in particular, management of the access to shared resources of the execution platform. Our approach relies on the BIP
framework [1] for component-based design of correct-by-construction applications. BIP provides a simple, but powerful
mechanism for the coordination of concurrent components by superposing three layers: Behaviour, Interaction, and Priority.
First, component behaviour is described by Labelled Transition Systems (LTS) having transitions labelled with ports and ex-
tended with data stored in local variables. Ports form the interface of a component and are used to define its interactions
with other components. They can also export part of the local variables, allowing access to the component’s data. Second,
interaction models, i.e. sets of interactions, define the component coordination. Interactions are sets of ports that define
allowed synchronisations between components. Interaction models are specified in a structured manner by using connec-
tors [2]. Third, priorities are used to impose scheduling constraints and to resolve conflicts when multiple interactions are
enabled simultaneously. Interaction and Priority layers are collectively called Glue.

The strict separation between behaviour—i.e. stateful components—and coordination—i.e. stateless connectors and
priorities—allows the design of modular systems that are easy to understand, test and maintain. Hierarchical combina-
tion of interactions and priorities provides a very expressive coordination mechanism [3,4]. The BIP language has been
implemented as a coordination language for C/C++ [1] and Java [5,6]. It is supported by a tool-set including translators from

* Corresponding author.
E-mail addresses: romain.edelmann@epfl.ch (R. Edelmann), simon.bliudze@epfl.ch (S. Bliudze), joseph.sifakis@univ-grenoble-alpes.fr (J. Sifakis).
http://dx.doi.org/10.1016/j.jlamp.2017.06.003
2352-2208/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jlamp.2017.06.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:romain.edelmann@epfl.ch
mailto:simon.bliudze@epfl.ch
mailto:joseph.sifakis@univ-grenoble-alpes.fr
http://dx.doi.org/10.1016/j.jlamp.2017.06.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2017.06.003&domain=pdf

20 R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44
Fig. 1. Traffic light in BIP.

Fig. 2. Flat and hierarchical BIP connectors.

various programming models into BIP, source-to-source transformers, as well as a number of back-ends for the generation
of code executable by dedicated engines.1

Atoms BIP systems are composed of atoms (atomic components) that have communication ports used for coordination.
Atoms have disjoint state spaces; their behaviour is specified as a system of transitions labelled with ports. Fig. 1 shows a
simple traffic light controller system modelled in BIP. It is composed of two atomic components Timer and Light, mod-
elling, respectively, a timer and the light-switching behaviour. The Timer atom has one state with two self-loop transitions.
The incoming arrow, labelled init, denotes the initialisation event. It is guarded by the constant predicate true and has an
associated update function t := 0, which initialises the internal data variable t , used to keep track of the time spent since
the last change of colour. This component also has a data variable n used in the guard [t ≥ n] of the transition labelled by
the port switchT to determine when this transition can be fired. The variable n is exported through the port switchT , which
allows its value to be updated upon synchronisation with the other atomic component. The Light atom determines the
colour of the traffic light and the duration (in minutes) that the light must stay in one of the three states, corresponding to
the three colours.

Interactions Interactions between components are defined by hierarchically structured connectors [2,7].2 The system in
Fig. 1 has two connectors: a singleton connector with one port timer and no data transfer and a binary connector, synchro-
nising the ports switchT and switchL of the two components. The first, singleton connector is necessary, since, in BIP, only
ports that belong to at least one connector can fire. The second connector has an exported (top) port, called switch, and an
associated variable x used for the data transfer. The guard is the constant predicate true, the upward and downward data-
flows are defined, respectively, by the assignments x := switchL .m ∗ 60 and switchT .n := x. Thus, upon each synchronisation,
Light informs Timer about the amount of time to spend in the next location, converting it from minutes to seconds.

In [2], we have introduced the Algebra of Connectors. Connectors define sets of interactions based on the synchronisation
attributes of the connected ports, which may be either trigger or synchron (Fig. 2a). If all connected ports are synchrons,
then synchronisation is by rendezvous, i.e. the defined interaction may be executed only if all the connected components

1 http :/ /www-verimag .imag .fr /Rigorous-Design-of-Component-Based .html.
2 Our presentation of connectors combines elements of the Algebra of Connectors [2] (trigger and synchron port typing, hierarchical composition) for

structuring the interactions and of interaction expressions [7] for data manipulation aspects (upward and downward data-flows). The notions of top and
bottom ports were introduced in [7] to formalise the principle of the classical BIP language implementation, whereby connectors can export interactions for
use by higher-level connectors.

http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.html

R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44 21
allow the transitions of those ports (Fig. 2b). If a connector has at least one trigger, the synchronisation is by broadcast,3

i.e. the allowed interactions are all non-empty subsets of the connected ports comprising at least one of the trigger ports
(Fig. 2b). More complex connectors can be built hierarchically (Fig. 2c).

We have shown [2,4] that such hierarchical connectors can express any coordination operator definable by a certain class
of Structural Operational Semantics (SOS) [8] rules. While detailed discussion of SOS rules and the corresponding coordi-
nation operators is beyond the scope of this paper,4 it should be noted that this class encompasses parallel composition
operators used in classical concurrency models, such as CSS [9] and CSP [10]. In particular, for a given set of ports P , any
set of interactions � ∈ 2P can be precisely represented by a structured connector.

In the textual notation used for the Algebra of Connectors in [2], triggers are marked by primes. Thus, the three con-
nectors in Fig. 2b (from top to bottom) are written, respectively, as abc, a′bc and a′b′c. In hierarchical connectors, square
brackets are used to denote sub-connectors. Thus, the three connectors in Fig. 2c (from left to right) are written, respectively,
as a[bc], a′[bc] and a′[b′c].

Notice that, abc and a[bc] are equivalent, i.e. define the same set of interactions (here the singleton set {abc}), whereas
a′bc and a′[bc] are not equivalent, defining, respectively, the interaction sets {a, ab, ac, abc} and {a, abc}. Notice, furthermore,
that this equivalence relation is not a congruence. Indeed, although connectors abc and a[bc] are equivalent, this is not the
case for abcd′ and a[bc]d′ , since the latter does not allow the interactions involving only one of the ports b and c, i.e. bd,
cd, abd and acd. A sound and complete axiomatisation is provided in [2]. In particular, it is shown that, if two connectors
γ1 and γ2 are equivalent, then [γ1] and [γ2] are congruent, i.e. either of them, used as a sub-connector of a larger one, can
be substituted by the other.

The description of each (sub-)connector consists of three parts:

1. A Boolean guard determining the enabledness of each interaction allowed by the connector, depending on the values of
the provided data: an interaction is only enabled if the data provided by the components satisfies the guard [7].

2. A control part specifying a relation between a set of bottom ports and a single top port. In hierarchical connectors,
sub-connector top ports are used as higher-level bottom ports. Each port of an atom can be used in several connec-
tors. However, a CONNECTOR can involve at most one port per atomic component. The same applies to top ports of
connectors.

3. A data-flow part specifying the computation associated with each interaction. The computation can affect variables
associated with the ports. It consists of an upstream computation followed by a downstream computation. The former
is specified by a function that takes as arguments the values exported through the ports involved in the interaction.
The computed value is exported through the top port. The downstream computation produces values associated with
the synchronised ports from the value received at the top port. This allows bidirectional exchange of information upon
synchronisations among components.

Priorities Finally, priorities are used to impose scheduling constraints and to resolve conflicts when multiple interactions
are enabled simultaneously. Interaction and Priority layers are collectively called Glue.

For instance, notice that, when t ≥ n, both transitions, timer and switchT , of the Timer atom in Fig. 1 are enabled. Since
all other guards in the system are constant predicates true, this means that both connectors can fire. Imposing the priority
timer < switch resolves this choice, so that switching is performed whenever possible. In general, it is not necessary to
impose priorities in all conflict situations: according to the BIP semantics, one of the enabled maximal priority interactions
is chosen non-deterministically [2].

Although, the theoretical presentation in [2] completely separates interactions and priorities, in all practical applications
and BIP implementations, one always implicitly assumes maximal progress, which defines the priority α < β for two interac-
tions allowed by the same connector, provided that the inclusion α ⊂ β holds on α and β considered as sets of ports. Thus,
among the interactions defined by the connector a′bc (Fig. 2b), the priority relations a < ab < abc and a < ac < abc are
always enforced in all practical applications. Unless additional priorities are provided explicitly, interactions ab and ac are
incomparable. Thus, when all three ports a, b and c are enabled, but the interaction abc is disabled because of a data guard,
one of the interactions ab and ac will be chosen non-deterministically.

This paper adapts the BIP coordination mechanisms to the context of functional programming languages. This adaptation
constitutes the core of the results obtained by Edelmann in his Master thesis [11], where further additional material can be
found. The main contributions presented in the paper are the following:

• We present a set of combinators to build connectors which can describe synchronisation, data transfer, priorities and
dynamicity. We introduce the formal semantics and typing rules of those combinators and present some of their alge-
braic properties.

3 Although we use the term “broadcast” by analogy with message passing—trigger ports initialise interactions, whereas synchrons join if they are
enabled—, connectors synchronise ports, i.e. no messages passing is involved.

4 Detailed presentation can be found in [4].

22 R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44
Fig. 3. A Functional BIP view of the switch connector from the example in Fig. 1.

• We present implementations of the concepts developed in this paper in two functional programming languages,
Haskell [12] and Scala [13]. In each case, we show how the concepts can be transposed using well known idioms
of the language. The two resulting frameworks are released under open source licenses and are freely available for
download and use.5

The rest of this paper is structured as follows. Section 2 provides a brief introductory overview of Functional BIP. Sec-
tion 3 introduces the typing and semantic framework for connector combinators. Section 4 introduces the core, priority, data
and dynamic connector combinators. Section 5 discusses their algebraic properties. Section 6 describes an implementation
of the presented concepts in Haskell and Scala. Section 7 discusses the related work. Section 8 concludes and summarises
the paper.

2. Overview of Functional BIP

In Functional BIP, systems are composed of atoms, ports and a single static connector. As in the original BIP implementa-
tions, atoms have their own private memory, which is not shared with other atoms. Thus, atoms can communicate only by
interacting through the ports of the system.

There are three main differences between Functional BIP and the original implementations. First of all, Functional BIP
abandons code generation, introducing instead the primitives necessary to programmatically describe both the atomic be-
haviour and the glue. In particular, ports offer a very simple interface which consists of a single operation, called await.
When invoking await, the atom sends a value to the port and blocks until the port sends a value back to the atom. Atoms
may wait on multiple ports simultaneously. Ports are typed to describe the type of values that can be sent and received
through them.

The second—most important—difference is that, in Functional BIP, ports are not directly associated with atoms. On the
contrary, they are globally accessible entities used for communication and coordination. We introduce the construct Bind
to attach a port to a specific atom. Such dissociation of ports from atoms allows us to introduce forms of dynamicity, which
are not currently available in any of the original BIP implementations: some atoms are created at the system initiation,
while others may be spawned by existing atoms at run time; we introduce the construct Dynamic, which binds all existing
atoms, including those created at run time, to a given port.

Finally, as mentioned above, a Functional BIP system comprises only one connector, as opposed to a set of connectors
in the original BIP approach. Notice, however, that this does not reduce the expressiveness of the BIP coordinating mecha-
nism, since any number of connectors can be combined into a single one using the OneOf combinator (see Section 4.1.3).
The connector of a system links atom–port pairs to define the possible interactions. The connector is unique and fixed
throughout the system lifespan. Also note that connectors, contrary to atoms, are completely stateless in Functional BIP.

We introduce a number of combinators to describe connectors. Connector combinators combine connectors into larger
connectors. They are used to hierarchically build complex connectors, starting from a set of basic ones [7]. Fig. 3 shows the
Functional BIP representation of the switch connector from the example in Fig. 1. This is realised using two combinators:
BothOf (see Section 4.1.4) and Mapped (see Section 4.3.1). The former synchronises the switch ports of the two atoms,
whereas the latter is used to convert the data value sent by the first atom from minutes to seconds. Notice that, since, as
discussed above, ports in Functional BIP are dissociated from atoms, we use only one port switch instead of the two ports
switchT and switchL in the example in Fig. 1.

5 Haskell version: https :/ /github .com /redelmann /bip-in-haskell; Scala version: https :/ /github .com /redelmann /bip-in-scala.

https://github.com/redelmann/bip-in-haskell
https://github.com/redelmann/bip-in-scala

R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44 23
Fig. 4. Data transfer within connectors.

In Functional BIP, the connector is represented as a tree, with port–atom bindings at the leaves and combinators in the
nodes. The arity of each node depends on the corresponding combinator.

Data transfer within the connector occurs in two phases: upward and downward. During the upward phase, the values
sent through the ports by the atoms are collected and propagated up through the connector hierarchy. Once a value reaches
the top of the hierarchy, it is transferred downward, back to the atoms involved in the interaction. Both up- and downward
data transfers at each node of the tree are defined by the corresponding combinator. Fig. 4 illustrates the data transfer
within the connector in Fig. 3, assuming that the atoms Timer and Light have sent, respectively, the values 2 and 0 on the
port switch.

A connector ensures that atoms may only receive a value on the ports on which they are waiting. To maintain this
invariant, we ensure that only the combinators which provided a value during the upward computation phase may receive
a value during the downward phase. Some additional discussion about the implementation of Functional BIP is provided in
Section 6.

The listings in Fig. 5 and Fig. 6 show Haskell and Scala implementations of the system presented in Fig. 1 using the
Functional BIP framework. In order to define a Functional BIP system one would usually proceed in the following steps:

1. define the ports (lines 2–3 in Fig. 5 and 3–4 in Fig. 6);
2. define the behaviour of atoms to be executed in concurrent threads (lines 4–13, 14–22, 26–28 in Fig. 5 and 6–15, 17–21,

23–25 in Fig. 6);
3. create the atom instances (lines 24–26 in Fig. 5 and 27–29 in Fig. 6);
4. bind ports from these atom instances to those defined in step 1 and combine them using connector combinators (lines

30–34 in Fig. 5 and 31–35 in Fig. 6).

3. Semantic framework

Before we introduce the connector combinators, we introduce notation and concepts that will be used to describe their
semantics and types.

3.1. Partial functions

We denote by A ⇀ B the set of partial functions from the set A to the set B . We will sometimes use the fact that partial
functions can be represented as sets of pairs from A × B , in particular when we will construct such partial functions. For
instance, we will denote the empty partial function by ∅ and the singleton partial function that maps x to y by {x �→ y}.

3.2. Universe of values

We denote by V the set of values which can be handled and exchanged by the atoms. We assume that this set contains
at least the Boolean values true and false, integers, all pairs of values and all total functions from values to values.
Connectors are also part of the universe of values.

3.3. Types

The values are equipped with a polymorphic type system, similar to Haskell’s type system. We denote by T the set of all
types and by v : t (respectively x : t) the predicate “value (respectively variable) v ∈ V has type t ∈ T ”. For each type t ∈ T ,
we denote by sem(t) ⊆ V its semantic domain, i.e. the set of values ranged over by variables x : t . Booleans are given the
type bool, integers the type int while pairs of values of type a and b are given the type a × b. Total functions from values

24 R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44
Fig. 5. Implementation in Haskell of the example from Fig. 3.

of type a to values of type b are given the type a → b. Depending on the context, we will use both the “type” notation,
f : t1 → t2, and the “set” notation, f : sem(t1) → sem(t2). The main difference is that, without the function name, t1 → t2
denotes the type, whereas sem(t1) → sem(t2) denotes the set of functions of this type, i.e. sem(t1 → t2) = sem(t1) → sem(t2).

Connectors propagating values of type u during the upward phase and receiving values of type d during the downward
phase have the type u ↑↓ d. The type system dictates how the connector combinators can be used. A connector of type
u ↑↓ d can only send values of type u during the upward phases, and expect values of type d during the downward phases.

3.4. Atoms

We denote by A the set of atom identifiers of a system.

R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44 25
Fig. 6. Implementation in Scala of the example from Fig. 3.

3.5. Ports

We denote by P the set of ports of a system. Each port p ∈ P is associated with two types: pup and pdown . Atoms can
only send values of type pup through the port p and are guaranteed that the value eventually received from the port, if any,
has type pdown .

3.6. Connectors

We denote by C the set of connectors c for which there exists at least two types u and d such that c : u ↑↓ d. A connector
of type u ↑↓ d sends values of type u during the upward phases and expects values of type d during the downward phases.

26 R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44
Fig. 7. System state.

Fig. 8. Assignment.

Fig. 9. Open interaction.

3.7. System states

A system state is as partial function, mapping atom–port pairs to corresponding values sent by the atom through the
port. The set of states is:

S = { f ∈ (A× P) ⇀ V | ∀(
(a, p) �→ x

) ∈ f , x : pup} . (1)

In a given system state, all atoms are waiting on a (possibly empty) subset of ports. When a port is active for an atom,
a value of the appropriate type has been sent through it. In the above definition, the predicate of the set comprehension
ensures that only the states in which the values sent are of the appropriate type are considered. Fig. 7 shows a system state
where atoms ai have sent values vi on ports pi .

3.8. Assignments

Similarly, an assignment is a partial function, mapping atom–port pairs to corresponding values received by the atom on
the port. The set of assignments is:

R = { f ∈ (A× P) ⇀ V | ∀(
(a, p) �→ x

) ∈ f , x : pdown} .

An assignment maps each atom–port pair to at most one value. The value assigned, if any, is the value received by the
atom on the given port. Fig. 8 represents an assignment where atoms ai receive values vi on the ports pi .

3.9. Open interactions

We denote by O = V × ⋃
u∈T (sem(u) → R) the set of open interactions. An open interaction consists of an upward

value in V and a downward function in sem(u) → R that, given a downward value of some type u returns an assignment.
Intuitively, open interactions describe the value that flows out of the connector (upward direction), and, given the value
that flows into the connector (downward direction), describe what values, if any, are assigned to the ports of atoms. Those
interactions are called open as the values exchanged are exposed. Fig. 9 shows the schematic representation of an open
interaction.

When the upward value is in the domain of the downward function, the open interaction can be closed to obtain a valid
assignment. In this case, the upward value is used as a downward value:

close : O ⇀ R
close((v, f)) = f (v), if v ∈ domain(f) .

(2)

3.10. Downward compatibility

We consider two assignments R1, R2 ∈R to be downward compatible if and only if:

{a | ∃p ∈ P .(a, p) ∈ domain(R1)} ∩ {a | ∃p ∈ P .(a, p) ∈ domain(R2)} = ∅ .

R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44 27
Intuitively, two assignments are downward compatible if they involve distinct sets of atoms. We extend this notion to
downward functions. Downward functions f1, f2 are downward compatible if and only if they produce downward compat-
ible assignments for all possible downward values. Notice that, if two assignments R1, R2 ∈ R are downward compatible,
then R1 ∪ R2 is also an assignment. Indeed, downward compatibility ensures that two interactions can be fused [2] without
violating the requirement that atoms are only involved once in an interaction. For two downward compatible functions,
f1, f2 : sem(u) →R, we will denote f1 ∪ f2 : sem(u) →R the downward function defined by (f1 ∪ f2)(v) def= f1(v) ∪ f2(v).

4. Connector combinators

Using the semantic framework introduced in Section 3, we can now introduce the set of combinators used to describe
connectors. For the sake of clarity, we will introduce combinators progressively, in related groups. First, we introduce core
combinators, which correspond to the Algebra of Interactions [2]. Then, we introduce combinators describing priorities, data
manipulation and dynamicity.

For each connector combinator, we will provide the type inference rule defining the type of the resulting connector from
the types of the parameters and children connectors. We also provide formal semantics of each combinator. To this end, we
define the following semantic function:

[·] : C → S → 2O

This semantic function gives, for each connector and system state, the set of possible open interactions. Intuitively, this
function will define, for each connector and system state, what are the possible values sent out of the connector during the
upward phase and what are the corresponding assignments of values to the different atoms and ports for a given downward
value. We will define this function progressively as we encounter the different set of connector combinators. We will define
it recursively for each of the possible combinators.

4.1. Core combinators

4.1.1. Bind
This combinator takes a port and an atom and binds them together. It is equivalent to the port of an atomic component

in BIP. The type of the resulting connector depends on the send and receive types of the port:

(Bind a p) : pup ↑↓ pdown
(3)

The resulting connector provides a single interaction if the atom is currently waiting on the port and none otherwise.
The value propagated upward by this connector is the value, if any, that was sent through the port by the atom. When this
connector receives a value during the downward phase, it is transmitted to the atom via the given port. Expressed in terms
of the open semantics function, the behaviour of the resulting connector is defined, for all S ∈ S , by

[Bind a p](S) =
{

{(S(a, p), {v �→ {(a, p) �→ v} | v : pdown})} , if (a, p) ∈ domain(S) ,

∅ , otherwise.
(4)

If the system state has an entry for the given atom–port pair, then a single open interaction is possible. The upward
value of the open interaction is the value sent by the port, while the downward function propagates the downward value
to the atom and port.

4.1.2. Success and Failure
These two combinators do not involve any atoms and ports. They do not take any connectors as parameters and thus

can only be found at the leaves of the connector tree.
Regardless of the system state, Success v always provides a single open interaction, whose upward value is v .

Failure, on the other hand, represents a connector that is never enabled. While by themselves, these combinators do
not present any practical interest, they can be combined with others to build more useful connectors. They correspond to
the elements 1 and 0 of the Algebra of Interactions [2]. The types of connectors defined by Success and Failure are
given by the following inference rules:

v : u

(Success v) : u ↑↓ d
,

Failure : u ↑↓ d
. (5)

Notice that Success is polymorphic in the downward type and Failure in both the upward and downward types. Let us
denote Successu↑↓d v , with v : u, the instantiation of Success v for the type u ↑↓ d. The open-interaction semantics of
the two connectors is defined, for all S ∈ S , by

[Successu↑↓d v](S) = {(
v, {w �→ ∅ | w ∈ sem(d)})} , (6)

[Failure](S) = ∅ . (7)

28 R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44
4.1.3. OneOf
This combinator expresses the non-deterministic choice between two connectors. The connector OneOf c1 c2 behaves

as either c1 or c2. This combinator corresponds to the union operation in the Algebra of Interactions [2]. The type and open
interaction semantics of OneOf c1 c2 are defined as follows:

c1 : u ↑↓ d c2 : u ↑↓ d

(OneOf c1 c2) : u ↑↓ d
, (8)

[OneOf c1 c2](S) = [c1](S) ∪ [c2](S) , for all S ∈ S . (9)

Thus, the interactions possible in this connector are all interactions that are possible in either c1 or c2.

4.1.4. BothOf
This last core combinator represents the fusion of two connectors. It corresponds to the fusion operator in the Algebra

of Interactions [2]. The corresponding type inference rule is

c1 : u1 ↑↓ d c2 : u2 ↑↓ d

(BothOf c1 c2) : (u1 × u2) ↑↓ d
. (10)

Thus, BothOf c1 c2 propagates upward the pair of upward values coming from c1 and c2. In the presence of non-
determinism, this connector returns all possible combinations of interactions from c1 and c2, i.e., for all S ∈ S , we let

[BothOf c1 c2](S) =
{(

(x1, x2), f1 ∪ f2
) ∣∣∣ (x1, f1) ∈ [c1](S) , (x2, f2) ∈ [c2](S) and

f1 and f2 are downward compatible
}

. (11)

Interactions that would lead to atoms receiving more than one value during the downward phase are filtered out by the
downward compatibility check.

4.1.5. Examples

Example 4.1. The Optional combinator, which takes as parameters a value v and a connector c, and returns a connector
that provides any interaction provided by c, plus an extra interaction whose upward value is v , is derived as follows:

Optional v c = OneOf c (Success v) .

Note that the extra interaction introduced by this combinator does not involve any atoms.

Example 4.2. The AnyOf and AllOf combinators, which generalise, respectively, the OneOf and the BothOf combinators
to an arbitrary number of underlying connectors, are recursively built as follows:

AnyOf<> = Failure

AnyOf<c1, . . .> = OneOf c1 (AnyOf<. . .>)

and

AllOf<> = Success<>

AllOf<c1, . . .> = BothOf c1 (AllOf<. . .>) ,

where <> denotes the empty sequence.

The AllOf combinator allows us to define an arbitrary rendezvous connector as shown in Fig. 2b. The following example
shows how to define broadcast connectors.

Example 4.3. Recall the textual notation of the Algebra of Connectors (Section 1) and consider a connector [t1]′ . . . [tn]′ [s1] . . .
[sm] with n triggers and m synchrons. It is easy to see [2] that this connector can be equivalently rewritten as

[[t1]′ . . .
[tn]′]′ [[s1]′ . . . [sm]′].

We define the following derived combinators:

Trigger t s = OneOf (BothOf t s) t , (12)

ManyOf c1 c2 = OneOf (BothOf c1 c2) (OneOf c1 c2) , (13)

ManyOf c1 c2 < · · · > = ManyOf c1 (ManyOf c2 < · · · >) , (14)

which allow us to encode arbitrary broadcast connectors [t1]′ . . . [tn]′ [s1] . . . [sm] as follows:

Broadcast (t1 . . . tn) (s1 . . . sm) = Trigger (ManyOf t1 . . . tn) (ManyOf s1 . . . sm) . (15)

R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44 29
4.2. Priority combinators

In this sub-section, we introduce the combinators used to specify priorities. Priorities are used to inhibit the execution of
certain interactions when interactions of higher priority are possible. Contrary to the classical BIP syntax, where priorities
are defined by a separate syntactic construction and can be applied only at the top level of a connector within a compound
component, priority combinators can be applied at any level in the connector hierarchy.

4.2.1. FirstOf
This combinator imposes fixed-order priority among the sub-connectors. In the connector FirstOf c1 c2, interactions

from c1 will be preferred over interactions from c2, whenever the former are available. The type and semantics of the
resulting connector are defined as follows

c1 : u ↑↓ d c2 : u ↑↓ d

(FirstOf c1 c2) : u ↑↓ d
, (16)

and, for all S ∈ S ,

[FirstOf c1 c2](S) =
{

[c1](S) , if [c1](S) �= ∅ ,

[c2](S) , otherwise .
(17)

4.2.2. Maximal
Given a partial ordering on the upward data domain encoded by a predicate g , the connector Maximal g c returns all

interactions from the connector c whose upward values are maximal. The parameter function g should return true when
its first parameter is strictly less than its second parameter, and false otherwise. The type of the resulting connector is
defined by the inference rule

g : (u × u) → bool c : u ↑↓ d

(Maximal g c) : u ↑↓ d
, (18)

whereas its semantics is defined by letting, for all S ∈ S ,

[Maximal g c](S) =
{
(x, f) ∈ [c](S)

∣∣∣�(x1, f1) ∈ [c](S).g(x, x1) = true
}

. (19)

4.2.3. Examples

Example 4.4. Assume a system composed of two agents A1 and A2 with behaviour modelled by the automaton in Fig. 10a.
The connector in Fig. 10b ensures that only one of A1 and A2 may be in the state work at the same time.

The use of FirstOf in this example ensures that the finish transitions are taken as soon as possible. If the OneOf com-
binator was used instead, the mutual exclusion property could be violated, as the connector would allow begin transitions
to fire alone.

To see that more concretely, let us examine the different cases where the mutual exclusion property could potentially be
violated:

1. Atoms A1 and A2 are both waiting on the port begin. In this case, the connector ensures that only one of the atoms
may take the transition and enter the critical section. As OneOf may only select one of the underlying connector, both
begin transitions cannot be part of the same interaction.

2. A1 is waiting on the finish port and A2 on the begin port. A problem would occur if A2 entered the work state while A1
stayed in the same state. The use of FirstOf within the connector ensures that A1 takes a transition from the work
state to the idle state, thereby avoiding the problematic situation.

3. The case when A2 is waiting on the finish port and A1 on the begin port is symmetrical to the previous case.

Thus, since in the initial state both atoms are idle, they cannot end up being in the work state simultaneously, i.e. the
mutual exclusion property is, indeed, ensured.

Example 4.5. In Example 4.3, we have shown how to encode arbitrary broadcast connectors using the core combinators. In
order to implement the maximal progress assumption, we replace two of the occurrences of OneOf in (12) and (13) by
FirstOf:

TriggerMP t s = FirstOf (BothOf t s) t ,

ManyOfMP c1 c2 = FirstOf (BothOf c1 c2) (OneOf c1 c2) ,

ManyOfMP c1 c2 < · · · > = ManyOfMP c1 (ManyOfMP c2 < · · · >) .

30 R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44
Fig. 10. Mutual exclusion using FirstOf.

The definition of the broadcast combinator stays the same:

BroadcastMP (t1 . . . tn) (s1 . . . sm) = TriggerMP (ManyOfMP t1 . . . tn) (ManyOfMP s1 . . . sm) .

4.3. Data combinators

We now introduce the combinators for data manipulation in the connectors.

4.3.1. Mapped and ContraMapped
These two combinators apply a parameter function to, respectively, the upward and downward values propagated by the

underlying connector. The types of the resulting connectors are defined by the inference rules:

g : v → u c : v ↑↓ d

(Mapped g c) : u ↑↓ d
,

g : d → e c : u ↑↓ e

(ContraMapped g c) : u ↑↓ d
. (20)

The two combinators never modify the number of possible interactions. Their semantics is defined by letting, for all S ∈ S ,

[Mapped g c](S) = {
(g(x), f)

∣∣ (x, f) ∈ [c](S)
}
, (21)

[ContraMapped g c](S) = {
(x, f ◦ g)

∣∣ (x, f) ∈ [c](S)
}
. (22)

4.3.2. Guarded
This combinator is used to filter out open interactions whose upward values fail to satisfy a predicate passed as the

argument. The connector type is defined by the inference rule

g : u → bool c : u ↑↓ d
. (23)
(Guarded g c) : u ↑↓ d

R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44 31
Fig. 11. Example use of ContraMapped.

This combinator allows restricting non-determinism, ensuring that upward values all satisfy a given predicate. Its semantics
is defined by letting, for all S ∈ S ,

[Guarded g c](S) = {
(x, f) ∈ [c](S)

∣∣ g(x) = true
}
. (24)

4.3.3. Feedback
This last data manipulation combinator allows feeding the upward value back into the downward propagation phase. The

typing inference rule and the semantics are defined by

c : u ↑↓ (d × u)

(Feedback c) : u ↑↓ d
, (25)

[Feedback c](S) = {
(x, f ◦ tagx)

∣∣ (x, f) ∈ [c](S)
}
, for all S ∈ S, (26)

where tagx(y) def= (y, x) (see the figure on the left).
While this combinator does not strictly augment the expressiveness of the language, it is useful to build connectors in a

more modular fashion. In ensures that the upward value is always known in the downward phase regardless of the context
in which the connector is used.

4.3.4. Examples

Example 4.6. Consider the connector in Fig. 11. This connector synchronises two atoms, A1 and A2, on the exchange port.
The value sent back to each atom is the value that was sent by the other atom.

Example 4.7. The ability to manipulate data allows us to encode FirstOf by combining Mapped, OneOf and Maximal:

FirstOf c1 c2 = Mapped untag
(
Maximal cmp2

(
OneOf (Mapped tag2 c1) (Mapped tag1 c2)

))
,

where the function untag, cmp2 and tagn are defined as by putting

untag(x,n) = x ,

cmp2((x,n), (y,m)) = n < m ,

tagn(x) = (x,n) .

Example 4.8. In Examples 4.3 and 4.5, we have shown how one can encode arbitrary broadcast connectors with (Exam-
ple 4.3) and without (Example 4.5) the maximal progress assumption. However, both of these encodings potentially incur
a huge overhead at run time, due to the duplication of operand connectors in (12) and (13). We now provide an alterna-
tive, efficient encoding of broadcast without maximal progress. To this end, we define the following derived combinators
(denoting by cs, ts and ss, respectively, the lists of connectors, triggers and synchrons):

OptionalD c = OneOf (Mapped singleton c) (Success <>) ,

ManyOfD cs = Mapped flatten (AllOf < OptionalD c | c ∈ cs >)

and

32 R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44
BroadcastD ts ss = Mapped flatten
(
BothOf(

Guarded notEmpty (ManyOfD ts)
)

ManyOfD ss
)
,

where singleton wraps its parameter value into a singleton list, flatten transforms a structured tuple of lists into one flat list
and notEmpty checks whether a list is empty or not. We omit the definitions of these functions.

Notice that this encoding does not use any priority combinators, relying on the guard to ensure that at least one trigger
is present in every allowed interaction.

In order to obtain a similar encoding of a broadcast with maximal progress, one has to tag the lists produced by
ManyOfD with their lengths and replace Guarded notEmpty by Maximal cmp2 similarly to the previous example.

4.4. Dynamic combinators

Finally, we introduce a set of combinators that allow dynamicity, i.e. creation and deletion of atoms at run time and
dynamic reconfiguration of the set of possible interactions among the atoms. Since the connector of a system is set at
system initialisation time, it is not possible to explicitly refer to atoms which have not been created yet, and therefore it is
not possible to make those atoms participate in any interactions described by the connector. The combinators we introduce
in this section alleviate this problem.

4.4.1. Dynamic
Given a port p, the Dynamic combinator, binds all existing atoms to the port p. Atoms that are created at run time are

also bound to the port. This combinator can be thought of as Bind with an atom chosen non-deterministically. Hence, the
corresponding type inference rule is

(Dynamic p) : pup ↑↓ pdown
(27)

and the semantics is defined by letting, for all S ∈ S ,

[Dynamic p](S) =
{(

S(a, p),
{

v �→ {(a, p) �→ v} ∣∣ v : pdown}) ∣∣∣ (a, p) ∈ domain(S)
}

. (28)

Note that the Dynamic combinator does not impose any restriction on the atom involved. It is however possible to
constrain its choices using Guarded above it in the connector hierarchy.

4.4.2. Joined
This last combinator that we introduce allows dynamic connector reconfiguration by accepting connectors as values. The

connector Joined c acts as a placeholder for connectors passed as upward values by the connector c. The type of this
connector is thus given by the inference rule

c : (u ↑↓ d) ↑↓ d

(Joined c) : u ↑↓ d
. (29)

The connector is named after the natural transformation μ of monads, called join or multiply, in the context of category
theory and join in Haskell. The corresponding semantic function is defined, for all S ∈ S by

[Joined c](S) =
{(

x, f1 ∪ f2
) ∣∣∣ (c1, f1) ∈ [c](S), (x, f2) ∈ [c1](S) and f1 and f2 are downward compatible

}
. (30)

This connector is very expressive and can be used to derive some of the combinators that we have introduced previously,
such as Guarded and BothOf.

4.4.3. Examples

Example 4.9. The Joined combinator allows us to redefine Guarded and BothOf as derived combinators:

Guarded p c = Joined
(
Mapped (λx. if p(x) then Success x else Failure) c

)
,

BothOf c1 c2 = Joined
(
Mapped

(
λx1. Mapped

(
λx2.(x1, x2)

)
c2

)
c1

)
.

In both cases, the basic idea is to build a connector from the upward value provided by the underlying connectors using
Mapped, then using Joined on this connector.

As we will discuss later in Section 5, Joined, Mapped, Success and Failure form interesting algebraic structures,
yielding many combinators such as Guarded and BothOf, in a completely generic fashion.

R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44 33
4.5. Closed semantic function

Based on the semantic function we have defined throughout this section, we now introduce the partial function [[·]] :
C ⇀ S → 2R that associates to a connector c ∈ C and a system state S ∈ S , the set of possible assignments defined by the
interactions allowed by c (see (2) for the definition of close):

[[c]](S)
def= {close(o) | o ∈ [c](S)} , if c : a ↑↓ a for some type a .

This function gives to a connector its meaning as a function from system states to possible assignments.
The following two lemmata provide basic soundness results that we will use to prove the subsequent propositions that

show that the closed semantics of any well-typed connector is well-defined and the resulting behaviour satisfies the BIP
consistency constraints.

Lemma 4.10. For any connector c : u ↑↓ d and any system state S ∈ S , we have x ∈ sem(u), for all (x, f) ∈ [c](S).

Lemma 4.11. For any connector c : u ↑↓ d and any system state S ∈ S , we have domain(f) = sem(d), for all (x, f) ∈ [c](S).

The proofs of the lemmata are straightforward by structural induction and are relegated to the Appendix.

Proposition 4.12. For any type u, the function [[·]] is well-defined on connectors of type u ↑↓ u.

Proof. For any connector c ∈ C and system state S ∈ S , we have:

[[c]](S) = {close(o) |o ∈ [c](S)} = { f (x) | (x, f) ∈ [c](S)} .

Consider some (x, f) ∈ [c](S). By Lemma 4.10, we have x ∈ sem(u), whereas, by Lemma 4.11, sem(u) = domain(f). If follows
immediately that f (x) is well-defined. Hence close(·) and [[·]] are also well-defined. �
Proposition 4.13. For any type u, connector c ∈ C of type u ↑↓ u, system state S ∈ S and assignment R ∈ [[c]](S), holds the inclusion
domain(R) ⊆ domain(S).

Proof sketch. This proposition is a straightforward consequence of the construction of the semantics function. It follows
directly from the fact that new points can be added to the domain of an assignment only through the Bind and Dynamic
combinators. Indeed, all other combinators either leave the assignments untouched or simply combine them. In the Bind
and Dynamic combinators, a new atom–port pair is only added to the domain of the assignment if it belongs to the domain
of the system state.

Thus, when an atom–port pair (a, p) is part of the domain of an assignment R ∈ [[c]](S), it must be, by construction, the
case that (a, p) ∈ domain(S). �

Proposition 4.13 means that assignments resulting from closing the connector only send values to atoms through the
ports that these atoms are waiting on.

Proposition 4.14. For any type u, connector c ∈ C of type u ↑↓ u and system state S ∈ S , all assignments in [[c]](S) involve each of
the atoms at most once.

Proof sketch. The proof is direct by structural induction on the connector combinators. The only two cases where special
care must be taken, in order to ensure that the assignment does not involve an atom more than once, are BothOf and
Joined. In those two cases, the downward compatibility check ensures that this property is not violated. �

Notice that the closed semantics of connectors allows simulating the Feedback combinator. This can be achieved by
modifying all the combinators higher in the connector tree hierarchy to propagate the corresponding value upward then
downward back to the connector, to which Feedback has to be applied. Therefore, the Feedback combinator is not,
strictly speaking primitive. However, it greatly simplifies this construction, by allowing feeding values back locally.

4.6. Additional remarks about expressiveness

Connector combinators defined above are very expressive. Indeed, the AllOf (Example 4.2) and Broadcast (Exam-
ple 4.3) combinators encode precisely the rendezvous and broadcast synchronisation discussed in the introduction and
illustrated in Fig. 2. Since hierarchical composition is an intrinsic property of combinators, these are sufficient to directly
encode any connector of the Algebra of Connectors [2]. The same approach used in Example 4.7 to encode FirstOf using
the Maximal and Mapped combinators, can also be used to encode any priority relation.

34 R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44
Thus, connector combinators have at least the same expressiveness as the classical BIP glue. As discussed in the intro-
duction, BIP connectors are sufficiently expressive to encode classical parallel composition operators, such as the ones used
in CCS [9] and CSP [10]. The expressiveness of BIP priorities is discussed in detail in [3].

Furthermore, the way data is handled by connector combinators, i.e. the separation into the upward and downward data
transfer phases, in combination with the data combinators (Section 4.3), precisely mimic interaction expressions as defined
in [7], which, in their turn, correspond exactly to the implementation in the BIP tool-set.

Finally, it should be noted that the dynamic combinators Dynamic and Joined (Section 4.4) are novel. Introduced
in [11], they allow dynamic creation and deletion of components—a functionality that is not available in the classical BIP
implementation and goes beyond the dynamic connectors as defined in [14].

5. Algebraic & categorical properties

Algebraic and categorical structures often form powerful abstractions in functional programming languages. Such struc-
tures, such as monoids, functors and monads [15], as well as many others [16], have been successfully used in the context
of functional programming.

In Haskell, those structures form typeclasses such as Monoid, Functor and Monad and can be used very effectively
to build high-level expressions. The Monad typeclass is so prevalent that syntactic sugar (the do notation) is present in the
language to ease its use.

In Scala, those structures are not explicitly present. However, many methods, such as map and flatMap mirror the
functor and monad operations. Syntactic sugar (the for-notation) is present in the language and, as in Haskell, makes the
use of multiple map and flatMap operations syntactically lighter.

In this section, we show that connector combinators form such structures. This allows connectors to be made instances
of the corresponding typeclasses and allows programmers to use well-known abstractions and syntactic sugar to build
connectors.

We only provide sketches of proofs—some complete proofs are provided in the appendix, while others can be found
in [11].

5.1. Algebraic properties

Below, we provide two lemmata that show that connector combinators form two monoidal structures. However, first we
have to define an equality relation on combinators. This is achieved by a canonical lifting of value and function equalities:

Definition 5.1 (Connector equality). Two connectors c1, c2 ∈ C are equal if and only if they define the same open interactions,
for any system state, i.e.

c1 = c2
def⇐⇒ ∀S ∈ S, [c1](S) = [c2](S) .

Lemma 5.2. Connector equality is a congruence w.r.t. all connector combinators introduced in Section 4.

Proof sketch. The statement of the lemma follows straightforwardly from the observation that, for a given state S , the
open-interaction semantics, [·](S), of every combinator involving a sub-connector c—i.e. every combinator other than Bind,
Success, Failure and Dynamic—is defined per element of [c](S) and without relying on the structure of c. �
Lemma 5.3. (C, OneOf, Failure) is a commutative monoid, that is OneOf is associative and commutative, with the identity ele-
ment Failure.

Proof sketch. The lemma trivially follows from the properties of set-theoretical operations. �
Lemma 5.4. Given a commutative monoid (V, ×, 1), the structure

(
C, Mapped (·×·) (BothOf · ·),Success 1

)
is also a commu-

tative monoid, that is Mapped (·×·) (BothOf · ·) is associative and commutative, with the identity element Success 1.

Proof sketch. The lemma follows directly from the properties of set-theoretical operations and the fact that (V, ×, 1) is a
commutative monoid. �

Notice that, taking × to be the usual Cartesian product, the resulting structure
(
C, BothOf,Success 1

)
is a commuta-

tive monoid up to isomorphism.

R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44 35
5.2. Categorical properties

Notice that the values V (comprising data values, functions and connectors) and types introduced in Section 3 form a
category, whose objects are types, whereas arrows between objects a and b are functions f : a → b ∈ V . We denote this
category T .

Given types u and d, we define two mappings F d
up, F u

down : T → T by putting, for each type a and each function f : a → b,

F d
up(a) = a ↑↓ d , F d

up(f) = (Mapped f) : (a ↑↓ d) → (b ↑↓ d) ,

F u
down(a) = u ↑↓ a , F u

down(f) = (ContraMapped f) : u ↑↓ b → u ↑↓ a .

The following propositions establish the basic properties of these mappings, showing that F d
up is a functor—symmetrically,

F u
down is a contravariant functor—and that F d

up along with Success and Joined form a monad. The proofs are straightfor-
ward and are provided in the appendix.

Proposition 5.5. For any type d, the mapping F d
up is a functor from the category T to itself, that is

Mapped identitya = identity(a↑↓d) ,

Mapped (g ◦ f) = Mapped g ◦ Mapped f .

Symmetrically, for any type u, the mapping F u
down is a contravariant functor from the category T to itself, that is

ContraMapped identitya = identity(a↑↓d) ,

ContraMapped (g ◦ f) = ContraMapped f ◦ ContraMapped g .

Proposition 5.6. For any type d, the functor F d
up along with Success and Joined form a monad, i.e. the following four properties

hold:

• Success is a natural transformation from 1T to F d
up:

Success ◦ f = Mapped f ◦ Success ,

• Joined is a natural transformation from F d
up ◦ F d

up to F d
up:

Joined ◦ Mapped (Mapped f) = Mapped f ◦ Joined ,

• First monad law:

Joined ◦ Mapped Joined= Joined ◦ Joined ,

• Second monad law:

Joined ◦ Mapped Success= Joined ◦ Success= identity .

6. Implementation

We have implemented the concepts presented in this paper in two functional programming languages, Haskell6 and
Scala.7 These implementations allow programmers to build concurrent systems following the principles of BIP in very ex-
pressive high-level languages. Thus programmers can separately describe the behaviour and coordination of their system.

The choice of using an embedded DSL approach was motivated by the fact that the various combinators we have defined
correspond to well-known constructs in both Haskell and Scala. Connectors can be built using already existing combinators
and syntactic sugar (do-notation and for-notation). However, the approach has some drawbacks. Since parts of the code are
opaque to the framework, the embedded DSL approach offers less opportunities for analysis and optimisations, compared
to an external DSL approach. Meta-programming techniques could be used to alleviate this problem, but were not explored
during this work.

Both implementations allow programmers to describe concurrent systems with a set of instructions, which are used
to declare the atoms and ports of the system. Special instructions, such as await and spawn are provided for atoms to
respectively wait on ports and spawn children atoms. Note that the automata and their description are not directly present
in the frameworks. Instead, the behaviour of atoms is expressed directly in the host language, in a fashion that is opaque to

6 https :/ /github .com /redelmann /bip-in-haskell.
7 https :/ /github .com /redelmann /bip-in-scala.

https://github.com/redelmann/bip-in-haskell
https://github.com/redelmann/bip-in-scala

36 R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44
Fig. 12. The connector type in Haskell and Scala.

the execution engine. The only actions that can be observed by the engine are calls to special instructions such as await
and spawn.

Connectors are described using functions and methods which correspond directly to the connector combinators we have
introduced in Section 4. A library of derived combinators is also made available in both languages. The connector type
indicates the types of upward and downward values propagated by the connector. In both cases, connectors are encoded
as Generalised Algebraic Data Types (GADTs) as illustrated in Fig. 12. Notice that the Haskell connector type has a type
parameter s. This parameter is a phantom type, used to ensure that identifiers do not escape the scope of the system in
which they are defined.

As shown in Section 5, connectors follow the laws of many interesting algebraic structures. This allows us to make con-
nectors instances of many Haskell typeclasses, such as Monoid, Functor, ProFunctor, Applicative, Alternative,
Monad and MonadPlus. These typeclasses allow programmers to build connectors using concepts and functions they al-
ready are familiar with.

In Scala, the Connector class implements common methods such as map, flatMap and filter. These methods
often mirror those of Haskell typeclasses.

The execution engine is composed of three distinct parts:

The pool of threads is used to concurrently execute the behaviour of atoms.
The system state records information about waiting atoms. It is encoded as a mapping from atoms and ports to:

• nothing, if the atom is not currently waiting on the port;
• the value sent by the atom on the port, along with the continuation of the atom, if the atom is waiting on the

port.
The continuations of atoms are stored to avoid needlessly blocking the execution thread of waiting atoms.

The engine core computes possible interactions from the system state and connector. This computation takes place when all
atoms are either done with their execution or waiting on ports.

The engine recursively computes a stream of possible open interactions from the system’s connector. The order
in which open interactions are produced is arbitrary, which is in accordance with the non-deterministic semantics.
For efficiency reasons, the first possible interaction produced at the top level of the connector is chosen.

In order to efficiently compute downwards compatibility checks, open interactions are extended to explicitly
contain the set of all involved atoms. Two open interactions are downwards compatible if and only if the two sets
of involved atoms are disjoint.

The execution engine runs the system in a lock-step fashion. The next interaction is only computed when the
system has reached a stable state, that is only when all atoms are either waiting or have completed their execution.
In Edelmann’s Master thesis [11], we investigate a way to conservatively execute some interactions earlier, while
some atoms are still executing.

We illustrate the implementations of Functional BIP by a concurrent system composed of a producer and 20 consumers.
The producer repeatedly produces values that are then sent on the send port of the system. Consumers repeatedly wait to
receive a value on the receive port and then directly consume it. The connector of the system states that the values sent
by the producer on the send port may be transmitted to any atom waiting on the receive port. Fig. 13 shows a Haskell
and a Scala implementations.

We also present a Haskell implementation of a Token Ring system. In this example, atoms are arranged to form a ring.
An integer value is exchanged around this ring by the different atoms of the system. The value is incremented at each step
until a given maximal value is reached. This example is presented in Fig. 14.

7. Related work

We show that an expressive component framework such as BIP can be defined as a DSL based on general purpose func-
tional programming languages. Writing DSL’s in functional languages allows their programmers to use powerful modelling
concepts and tools with minimal effort, while still using a domain specific interface. Similar work can be found in [17,18].
Approaches such as [19] also use combinators to describe coordination, but do so locally at each process. These approaches
have no notion of a global coordination object such as the connectors we present.

Dynamicity in BIP has been studied by several authors [14,20,21]. In [14], the authors present the Dy-BIP framework that
allows dynamic reconfiguration of connectors among the ports of the system. They use history variables to allow sequences
of interactions with the same instance of a given component type. Functional BIP can emulate history variables using
data. Dynamic combinators allow reconfiguration of connectors, but also creation and deletion of atoms, thereby extending

R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44 37
Fig. 13. Producer–Consumers example implemented in Haskell and Scala.

the expressivity with respect to Dy-BIP. From this perspective, the approach in [20] is closest to the one we adopted in
Functional BIP. The authors define two extensions of the BIP model without priorities, which they abbreviate to BI(P):
reconfigurable BI(P)—similar to Dy-BIP—and dynamic BI(P), allowing dynamic replication of components. They focus on the
operational semantics of the two extensions and their properties, by studying their encodability in BIP and Place/Transition
Petri nets (P/T Nets). Composition is defined through interaction models, without considering structured connectors. In

38 R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44
Fig. 14. Token Ring example implemented in Haskell.

contrast, the present paper focuses exclusively on connectors structured by combinators, disregarding the details of the
operational semantics of components. As opposed to [20], we have defined a complete set of combinators, including data
and priority. Although, the expressiveness of the two approaches w.r.t. dynamicity seems very close, we leave the formal
investigation for future work.

In [21], the authors revisit the BIP expressiveness, by introducing simple behaviour, such as prefixing, in the BIP glue
operators. They show that such minor modifications can rapidly lead to Turing completeness of glue. In contrast to [21]
and other frameworks, such as [22,23], Functional BIP relies on a clear distinction between behaviour and coordination
expressed by memoryless connectors obtained by combinator composition.

In contrast to other formalisms such as [24] our framework supports full dynamism and is rooted in rigorous abstract
semantics. In [25], dynamic architectures are defined as a set of global transitions between global configurations. These
transitions are expressed in a first order logic extended with architecture-specific predicates. The same logic is used in [26,
27] but global configurations are computed at run time from the local constraints of each component. [28] provides an

R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44 39
operational semantics based on the composition of global configurations from local ones. These express three forms of
dependencies between services (mandatory, optional and negative). Nonetheless, dynamism is supported only at the instal-
lation phase.

8. Conclusion

The paper shows how the BIP component framework can be embedded in functional host languages. The embedding
consists in defining sets of connector combinators that can describe the coordination mechanisms of BIP. The definition is
progressive and incremental. We first define combinators to express synchronisation and associated data transfer between
the components of a system. Then, we have introduced combinators for the application of priority policies allowing conflict
resolution between enabled interactions. Finally, we have presented combinators to deal with the dynamic creation of
components and connectors.

We have shown that the set of the defined combinators enjoy interesting algebraic properties and form well-known
algebraic structures which are of particular importance for the implementation of connectors in functional programming
languages.

The two implementations show how these concepts can be transposed, respectively, into Haskell and Scala. For both
languages, we have released an open source framework which programmers can use to build concurrent systems using the
high-level coordination primitives offered by BIP.

Appendix A. Additional proofs

Proof of Lemma 4.10: For any connector c : u ↑↓ d and any system state S ∈ S , we have x ∈ sem(u), for all (x, f) ∈ [c](S).

Proof. We prove the lemma by structural induction on the typing rules.

Case Bind a p
Let c = Bind a p, with some atom a ∈ A and port p ∈ P . Then, by the typing rule of Bind (3), u = pup and
d = pdown . If (a, p) ∈ domain(S), by (4), x = S(a, p). Furthermore, by the definition of state (1),

S(a, p) ∈ sem(pup) = sem(u) .

If (a, p) /∈ domain(S), then the proposition trivially holds, as, by (4), [Bind a p](S) = ∅.
Case Success

Let c = Success v , with some value v ∈ V . Then, by the typing rule of Success (5), it must be the case that
v : u and thus that v ∈ sem(u). By (6), we have x = v . Thus the proposition trivially holds.

Case Failure
Let c = Failure. Then, by (7), [c](S) = ∅ and the proposition trivially holds.

Case OneOf
Let c = OneOf c1 c2. Then, by the typing rule of OneOf (8), it must be the case that c1 : u ↑↓ d and c2 : u ↑↓ d.
By induction hypothesis, the proposition holds for c1 and c2. Thus, the proposition holds for c, as, by (9), [c](S) =
[c1](S) ∪ [c2](S).

Case BothOf
Let c = BothOf c1 c2. Then, by the typing rule of BothOf (10) it must be the case that:
• c1 : v ↑↓ d for some type v ,
• c2 : w ↑↓ d for some type w ,
• u = v × w .
Furthermore, by (11), for any (x, f) ∈ [c](S), we have x = (x1, x2) and f = f1 ∪ f2, such that (x1, f1) ∈ [c1](S)

and (x2, f2) ∈ [c2](S). By the induction hypothesis, the proposition holds for c1 and c2, that is x1 ∈ sem(v) and
x2 ∈ sem(w). Hence, x = (x1, x2) ∈ sem(u).

Case Mapped
Let c = Mapped g c1. Then, by the typing rule of Mapped (20), we have that c1 : v ↑↓ d, for some type v , and
g : v → u. Furthermore, by (21), for any (x, f) ∈ [c](S), we have x = g(x1), such that (x1, f1) ∈ [c1](S), for some
downward function f1. By induction hypothesis, we have x1 ∈ sem(v) and, consequently, x = g(x1) ∈ sem(u).

Case ContraMapped
Let c = ContraMapped g c1. Then, by the typing rule of ContraMapped (20), it must be the case that c1 : u ↑↓ e
for some type e. Furthermore, by (22), for any (x, f) ∈ [c](S), we have (x, f1) ∈ [c1](S), with some downward
function f1, such that f = f1 ◦ g . Thus x ∈ sem(u) by the induction hypothesis.

Case Guarded
Let c = Guarded g c1. Then, by the typing rule of Guarded (23), we have that:
• g : u → bool and
• c1 : u ↑↓ d.

40 R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44
Furthermore, by (24), for any (x, f) ∈ [c](S), we have (x, f) ∈ [c1](S) and g(x) = true. Thus, x ∈ sem(u), by the
induction hypothesis.

Case Feedback
Let c = Feedback c1. By the typing rule of Feedback (25), we have c1 : u ↑↓ (d × u). By (26), for any (x, f) ∈
[c](S), we have (x, g) ∈ [c1](S), with some downward function g . Thus, the proposition holds trivially by the
induction hypothesis.

Case FirstOf
Let c = FirstOf c1 c2. Then, by the typing rule of FirstOf (16), it must be the case that c1 : u ↑↓ d and
c2 : u ↑↓ d. Furthermore, by (17), for any (x, f) ∈ [c](S), we have either (x, f) ∈ [c1](S) or (x, f) ∈ [c2](S). Thus,
the proposition trivially holds by the induction hypothesis.

Case Maximal
Let c = Maximal g c1, then, by the typing rule of Maximal (18), we must have that c1 : u ↑↓ d and g : (u × u) →
bool. Furthermore, by (19), [c](S) ⊆ [c1](S). Thus, for any (x, f) ∈ [c](S), we also have (x, f) ∈ [c1](S) and the
proposition holds by the induction hypothesis.

Case Dynamic
Let c = Dynamic p for some port p ∈ P . By the typing rule of Dynamic (27), we have u = pup . Furthermore,
by (28), for any (x, f) ∈ [c](S), we have x = S(a, p), for some atom a, such that (a, p) ∈ domain(S). By the definition
of state (see Section 3.7), we have x : pup , hence x ∈ sem(u).

Case Joined
Let c = Joined c1. Then, by the typing rule of Joined (29), it must be the case that c1 : (u ↑↓ d) ↑↓ d. Further-
more, by (30), for any (x, f) ∈ [c](S), we have f = f1 ∪ f2, with (x, f1) ∈ [c2](S) for some connector c2 : u ↑↓ d,
such that (c2, f2) ∈ [c1](S). Notice that, by the induction hypothesis, we, indeed, have c2 ∈ sem(u ↑↓ d). Hence, by
a second application of the induction hypothesis, x ∈ sem(u). �

Proof of Lemma 4.11: For any connector c : u ↑↓ d and any system state S ∈ S , we have domain(f) = sem(d), for all (x, f) ∈ [c](S).

Proof. We prove the lemma by structural induction on the typing rules.

Case Bind a p
Let c = Bind a p, for some atom a ∈ A and port p ∈ P . Then, by the typing rule of Bind (3), it must be
the case that c : pup ↑↓ pdown . Furthermore, by (4), if (a, p) ∈ domain(S), then, for any (x, f) ∈ [c](S), the do-
main of f is sem(pdown), i.e. domain(f) = sem(d). If (a, p) /∈ domain(S), then the proposition trivially holds, as
[Bind a p](S) = ∅.

Case Success
Let c = Success v , with some value v : u. Then, by (6), for any (x, f) ∈ [c](S) we have domain(f) = sem(d). Thus,
the proposition trivially holds.

Case Failure
Let c = Failure. Then, by (7), [c](S) = ∅ and the proposition trivially holds.

Case OneOf
Let c = OneOf c1 c2. Then, by the typing rule of OneOf (8), it must be the case that c1 : u ↑↓ d and c2 : u ↑↓ d.
Furthermore, by (9), for any (x, f) ∈ [c](S), we either have (x, f) ∈ [c1](S) or (x, f) ∈ [c2](S). In both cases, we
have domain(f) = sem(d) by the induction hypothesis.

Case BothOf
Let c = BothOf c1 c2. Then, by the typing rule of BothOf (10), it must be the case that:
• c1 : v ↑↓ d for some type v .
• c2 : w ↑↓ d for some type w .

Furthermore, by (11), for any (x, f) ∈ [c](S), we have x = (x1, x2) and f = f1 ∪ f2, for some (x1, f1) ∈ [c1](S)

and (x2, f2) ∈ [c2](S). By the induction hypothesis, domain(f1) = domain(f2) = sem(d). Hence, also domain(f) =
sem(d).

Case Mapped
Let c = Mapped g c1. Then, by the typing rule for Mapped (20), it must be the case that c1 : v ↑↓ d and g :
v → u. Furthermore, by (21), for any (x, f) ∈ [c](S), we have (x, f) = (g(y), f), for some (y, f) ∈ [c1](S) and the
proposition holds, by the induction hypothesis.

Case ContraMapped
Let c = ContraMapped g c1, then by the typing rule of ContraMapped (20), we have that c1 : u ↑↓ e, for
some type e, and g : d → e, i.e. domain(g) = sem(d). Furthermore, for any (x, f) ∈ [c](S), by (22), we have (x, f) =
(x, f1 ◦ g), for some (x, f1) ∈ [c1](S).

By the induction hypothesis, we have sem(e) = domain(f1). Thus, as range(g) ⊆ sem(e) = domain(f1), the com-
position f1 ◦ g is well-defined and we have domain(f1 ◦ g) = domain(g) = sem(d).

Case Guarded
Let c = Guarded g c1. Then, by the typing rule of Guarded (23), we have that:

R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44 41
• g : u → bool and
• c1 : u ↑↓ d.
Furthermore, by (24), for any (x, f) ∈ [c](S), we have (x, f) ∈ [c1](S) and g(x) = true. Thus, domain(f) = sem(d),
by the induction hypothesis.

Case Feedback
Let c = Feedback c1. Then, by the typing rule of Feedback (25), it must be the case that c1 : u ↑↓ (d × u).
Furthermore, for any (x, f) ∈ [c](S), by (26), we have (x, f) = (x, g ◦ tagx), for some (x, g) ∈ [c1](S), with tagx(y) def=
(y, x).

By Lemma 4.10, we have x ∈ sem(u). Hence, tagx : d → (d, u), i.e. range(tagx) ⊆ sem(d × u). By the induction
hypothesis, we have sem(d × u) = domain(g). Hence, the composition g ◦ tagx is well-defined and domain(f) =
domain(tagx) = sem(d).

Case FirstOf
Let c = FirstOf c1 c2. Then, by the typing rule of FirstOf (16), it must be the case that c1 : u ↑↓ d and
c2 : u ↑↓ d. Furthermore, by (17), for any (x, f) ∈ [c](S), we have either (x, f) ∈ [c1](S) or (x, f) ∈ [c2](S). Thus,
the proposition trivially holds by the induction hypothesis.

Case Maximal
Let c = Maximal g c1, then, by the typing rule of Maximal (18), we must have that c1 : u ↑↓ d and g : (u × u) →
bool. Furthermore, by (19), [c](S) ⊆ [c1](S). Thus, for any (x, f) ∈ [c](S), we also have (x, f) ∈ [c1](S) and the
proposition holds by the induction hypothesis.

Case Dynamic p
Let c = Dynamic p, with some port p ∈ P . Then, by the typing rule for Dynamic (27), we have d = pdown .
Furthermore, by (28), for any (x, f) ∈ [c](S), we have domain(f) = sem(pdown). Thus, the proposition trivially holds.

Case Joined
Let c = Joined c1. Then, by the typing rule of Joined (29), it must be the case that c1 : (u ↑↓ d) ↑↓ d. Further-
more, by (30), for any (x, f) ∈ [c](S), we have f = f1 ∪ f2, with (x, f1) ∈ [c2](S) for some connector c2, such that
(c2, f2) ∈ [c1](S). Hence, domain(f) = domain(f1) = domain(f2).

By Lemma 4.10, c2 ∈ sem(u ↑↓ d), that is, indeed, c2 : u ↑↓ d. Hence, by the induction hypothesis, domain(f1) =
domain(f2) = sem(d). Hence, domain(f) = domain(f1) = domain(f2) = sem(d). �

Proof of Proposition 5.5: For any type d, the mappings F d
up and F u

down are, respectively, covariant and contravariant functors from the
category T to itself.

We will only prove the proposition statement for F d
up . The statement for F u

down is symmetrical.

Proof. To show that F d
up is a functor, we show that identity and composition are preserved.

Identity We have to prove that, for any two types u and d, F d
up(1u) = 1F d

up(u)
. Let u by any type. By definition, 1u is the

identity function identityu : u → u. Therefore, we have that:

F d
up(1u) = Mapped identityu .

We observe that 1F d
up(u)

is the identity function that maps connectors of type u ↑↓ d to themselves. Therefore, for
the identity preservation property to hold, we must have that for any connector c of the correct type the following
holds:

Mapped identityu c = c .

By definition, the above equality is equivalent to the following statement:

∀S ∈ S.[Mapped identityu c](S) = [c](S) .

Let S be any system state. We have that the above statement is trivially true as:

[Mapped identityu c](S) = {(identityu(x), f) | (x, f) ∈ [c](S)}
= {(x, f) | (x, f) ∈ [c](S)}
= [c](S) .

Composition We are left to show that indeed F d
up(g ◦ h) = F d

up(g) ◦ F d
up(h), i.e. that

Mapped (g ◦ h) = (Mapped g) ◦ (Mapped h) ,

that is, for any connector c of appropriate type, we must have that:

42 R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44
Mapped (g ◦ h) c = Mapped g (Mapped h c) .

By Definition 5.1, this equality reduces to:

∀S ∈ S.[Mapped (g ◦ h) c](S) = [Mapped g (Mapped h c)](S) .

Let S be any system state. We trivially have that:

[Mapped (g ◦ h) c](S) = {(g(h(x)),h) | (x,h) ∈ [c](S)}
= {(g(y),h) | (y,h) ∈ [Mapped h c](S)}
= [Mapped g (Mapped h c)](S) . �

Proof of Proposition 5.6: For any type d, the functor F d
up : T → T along with Success and Joined form a monad.

In order to prove the proposition, we consider two families of mappings η : 1T → F d
up and μ : F d

up ◦ F d
up → F d

up , defined
as follows (recall that the objects of T are types):

• for each type u, the mapping ηu : u → F d
up(u) associates, to each v ∈ sem(u), the connector (Success v) : u ↑↓ d;

• for each type u, the mapping μu : (u ↑↓ d) ↑↓ d → u ↑↓ d associates, to each c : (u ↑↓ d) ↑↓ d, the connector
(Joined c) : u ↑↓ d.

We will show that both these families are natural transformations and that, together with F d
up , they satisfy the necessary

coherence conditions.

Proof. η : 1T → F d
up is a natural transformation. We have to prove that the following equality holds for any function

g : a → b:

(ηb ◦ 1T)(g) = F d
up(g) ◦ ηa

Which, in this context, translates to:

Success ◦ g = (Mapped g) ◦ Success
Or, for any value v ∈ sem(a):

Success g(v) = Mapped g (Success v)

Which is trivially true by definition of the semantics.
μ : F d

up ◦ F d
up → F d

up is a natural transformation. We have to prove that the following equality holds, for any function
g : a → b,(

μb ◦ (F d
up ◦ F d

up)
)
(g) = Fup(g) ◦ μa .

Which, in this context, translates to

Joined ◦ Mapped (Mapped g) = (Mapped g) ◦ Joined
or, for any connector c : (u ↑↓ d) ↑↓ d,

Joined (Mapped (Mapped g) c) = Mapped g (Joined c) .

By definition of the equality on connectors, this is equivalent to the following statement:

∀S ∈ S.[Joined (Mapped (Mapped g) c)](S) = [Mapped g (Joined c)](S)

Let S be any system state. We have that:

[Joined (Mapped (Mapped g) c)](S)

= {
(x, f1 ∪ f2)

∣∣ (c1, f1) ∈ [Mapped (Mapped g) c](S), (x, f2) ∈ [c1](S) and

f1 and f2 are downward compatible
}

= {
(x, f1 ∪ f2)

∣∣ (c1, f1) ∈ [c](S), (x, f2) ∈ [Mapped g c1](S) and

f1 and f2 are downward compatible
}

= {
(g(x), f1 ∪ f2)

∣∣ (c1, f1) ∈ [c](S), (x, f2) ∈ [c1](S) and

f1 and f2 are downward compatible
}

= [Mapped g (Joined c)](S) .

R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44 43
Identity We have to show that, for any type u and any connector c : u ↑↓ v ,

(μu ◦ F d
up(ηu))(c) = (μu ◦ ηF d

up(u)
)(c) = c ,

which translates to:

Joined (Mapped Success c) = Joined (Success c) = c .

For any system state S , we have

[Joined (Mapped Success c)](S)

= {
(x, f1 ∪ f2)

∣∣ (c1, f1) ∈ [Mapped Success c](S), (x, f2) ∈ [c1](S) and

f1 and f2 are downward compatible
}

= {
(x, f1 ∪ f2)

∣∣ (c1, f1) ∈ [c](S), (x, f2) ∈ [Success c1](S) and

f1 and f2 are downward compatible
}

= {
(c1, f1)

∣∣ (c1, f1) ∈ [c](S)
}

= [c](S)

[Joined (Success c)](S)

= {
(x, f1 ∪ f2)

∣∣ (c1, f1) ∈ [Success c](S), (x, f2) ∈ [c1](S) and

f1 and f2 are downward compatible
}

= {
(x, f2)

∣∣ (x, f2) ∈ [c](S)
}

= [c](S) .

Associativity We have to show that, for any type u and any connector c : ((u ↑↓ d) ↑↓ d) ↑↓ d,

(μu ◦ F d
up(μu))(c) = (μu ◦ μF d

up(u)
)(c) ,

which translates to The first law translates in this context to:

Joined (Mapped Joined c) = Joined (Joined c)

For any system state S , we have

[Joined (Mapped Joined c)](S)

= {
(x, f1 ∪ f2)

∣∣ (c1, f1) ∈ [Mapped Joined c](S), (x, f2) ∈ [c1](S) and

f1 and f2 are downward compatible
}

= {
(x, f1 ∪ f2)

∣∣ (c1, f1) ∈ [c](S), (x, f2) ∈ [Joined c1](S) and

f1 and f2 are downward compatible
}

= {
(x, f1 ∪ f2 ∪ f3)

∣∣ (c1, f1) ∈ [c](S), (c3, f3) ∈ [c1](S), (x, f2) ∈ [c3](S) and

f1, f2 and f3 are downward compatible
}

= {
(x, f2 ∪ f3)

∣∣ (c3, f3) ∈ [Joined c](S), (x, f2) ∈ [c3](S) and

f2 and f3 are downward compatible
}

= [Joined (Joined c)](S) �
References

[1] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen, J. Sifakis, Rigorous component-based system design using the BIP framework, IEEE
Softw. 28 (3) (2011) 41–48.

[2] S. Bliudze, J. Sifakis, The algebra of connectors—structuring interaction in BIP, IEEE Trans. Comput. 57 (10) (2008) 1315–1330.
[3] E. Baranov, S. Bliudze, A note on the expressiveness of BIP, in: Proceedings Combined 23rd International Workshop on Expressiveness in Concurrency

and 13th Workshop on Structural Operational Semantics, EXPRESS/SOS 2016, in: EPTCS, vol. 222, 2016, pp. 1–14.
[4] S. Bliudze, J. Sifakis, A notion of glue expressiveness for component-based systems, in: CONCUR 2008, Springer, 2008, pp. 508–522.
[5] S. Bliudze, A. Mavridou, R. Szymanek, A. Zolotukhina, Coordination of software components with BIP: application to OSGi, in: Proceedings of the 6th

International Workshop on Modeling in Software Engineering, MiSE 2014, ACM, New York, NY, USA, 2014, pp. 25–30.
[6] S. Bliudze, A. Mavridou, R. Szymanek, A. Zolotukhina, Exogenous coordination of concurrent software components with JavaBIP, Softw. Pract. Exp.

(2017), http://dx.doi.org/10.1002/spe.2495.

http://refhub.elsevier.com/S2352-2208(16)30178-X/bib62617375323031317269676F726F7573s1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib62617375323031317269676F726F7573s1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib626C6975647A6532303038616C6765627261s1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib426172426C697531362D65787072657373s1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib426172426C697531362D65787072657373s1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib626C6975647A65323030386E6F74696F6Es1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib4D6953453134703235s1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib4D6953453134703235s1
http://dx.doi.org/10.1002/spe.2495

44 R. Edelmann et al. / Journal of Logical and Algebraic Methods in Programming 92 (2017) 19–44
[7] S. Bliudze, J. Sifakis, M.D. Bozga, M. Jaber, Architecture internalisation in BIP, in: Proceedings of the 17th International ACM SIGSOFT Symposium on
Component-based Software Engineering, CBSE ’14, ACM, 2014, pp. 169–178.

[8] G.D. Plotkin, A Structural Approach to Operational Semantics, Tech. Rep. DAIMI FN-19, University of Aarhus, 1981, http://citeseer.ist.psu.edu/
plotkin81structural.html.

[9] R. Milner, Communication and Concurrency, Prentice Hall International Series in Computer Science, Prentice Hall, 1989.
[10] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall International Series in Computer Science, Prentice Hall, 1985.
[11] R. Edelmann, Behaviour–Interaction–Priority in Functional Programming Languages: Formalisation and Implementation of Concurrency Frameworks in

Haskell and Scala, Master’s thesis, Ecole polytechnique fédérale de Lausanne (EPFL), Jan. 2015, http://infoscience.epfl.ch/record/215767.
[12] S. Marlow (Ed.), Haskell 2010 Language Report, Haskell.org, 2010, https://www.haskell.org/definition/haskell2010.pdf.
[13] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman, M. Zenger, An Overview of the Scala Program-

ming Language, Tech. Rep., EPFL, 2004, http://infoscience.epfl.ch/record/52656.
[14] M. Bozga, M. Jaber, N. Maris, J. Sifakis, Modeling dynamic architectures using Dy-BIP, in: Software Composition, SC 2012, in: LNCS, vol. 7306, Springer,

2012, pp. 1–16.
[15] P. Wadler, Monads for functional programming, in: Advanced Functional Programming, Springer, 1995, pp. 24–52.
[16] B. Yorgey, The Typeclassopedia, The Monad.Reader 13 (2009) 17–68.
[17] P. Haller, M. Odersky, Scala actors: unifying thread-based and event-based programming, Theor. Comput. Sci. 410 (2) (2009) 202–220.
[18] J. Launchbury, T. Elliott, Concurrent orchestration in Haskell, SIGPLAN Not. 45 (11) (2010) 79–90, http://dx.doi.org/10.1145/2088456.1863534.
[19] K. Donnelly, M. Fluet, Transactional events, SIGPLAN Not. 41 (9) (2006) 124–135, http://dx.doi.org/10.1145/1160074.1159821.
[20] R. Bruni, H.C. Melgratti, U. Montanari, Behaviour, interaction and dynamics, in: Specification, Algebra, and Software – Essays Dedicated to Kokichi

Futatsugi, in: LNCS, vol. 8373, Springer, 2014, pp. 382–401.
[21] C. Di Giusto, J.-B. Stefani, Revisiting glue expressiveness in component-based systems, in: COORDINATION 2011, Springer, 2011, pp. 16–30.
[22] P. Inverardi, A.L. Wolf, Formal specification and analysis of software architectures using the chemical abstract machine model, IEEE Trans. Softw. Eng.

21 (4) (1995) 373–386.
[23] D. Le Métayer, Describing software architecture styles using graph grammars, IEEE Trans. Softw. Eng. 24 (7) (1998) 521–533.
[24] J. Magee, J. Kramer, Dynamic structure in software architectures, SIGSOFT Softw. Eng. Notes 21 (6) (1996) 3–14, http://dx.doi.org/10.1145/250707.

239104.
[25] J.S. Kim, D. Garlan, Analyzing architectural styles, J. Syst. Softw. 83 (7) (2010) 1216–1235.
[26] I. Georgiadis, J. Magee, J. Kramer, Self-organising software architectures for distributed systems, in: Self-Healing Systems, ACM, 2002, pp. 33–38.
[27] M.H. Kacem, M. Jmaiel, A.H. Kacem, K. Drira, Evaluation and comparison of ADL based approaches for the description of dynamic of software architec-

tures, in: ICEIS, vol. 3, 2005, pp. 189–195.
[28] M. Belguidoum, F. Dagnat, Dependency management in software component deployment, Electron. Notes Theor. Comput. Sci. 182 (2007) 17–32.

http://refhub.elsevier.com/S2352-2208(16)30178-X/bib42424A5331342D696E7465726E616C69736174696F6Es1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib42424A5331342D696E7465726E616C69736174696F6Es1
http://citeseer.ist.psu.edu/plotkin81structural.html
http://citeseer.ist.psu.edu/plotkin81structural.html
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib6D696C6E65723839s1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib686F6172653835s1
http://infoscience.epfl.ch/record/215767
https://www.haskell.org/definition/haskell2010.pdf
http://infoscience.epfl.ch/record/52656
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib626F7A6761323031326D6F64656C696E67s1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib626F7A6761323031326D6F64656C696E67s1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib7761646C6572313939356D6F6E616473s1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib796F726765793230303974797065636C6173736F7065646961s1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib68616C6C6572323030397363616C61s1
http://dx.doi.org/10.1145/2088456.1863534
http://dx.doi.org/10.1145/1160074.1159821
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib6272756E6931342D6269702D64796E616D696373s1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib6272756E6931342D6269702D64796E616D696373s1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib47697573746F32303131s1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib696E7665726172646931393935666F726D616Cs1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib696E7665726172646931393935666F726D616Cs1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib6C653139393864657363726962696E67s1
http://dx.doi.org/10.1145/250707.239104
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib6B696D32303130616E616C797A696E67s1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib67656F726769616469733230303273656C66s1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib6B6163656D323030356576616C756174696F6Es1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib6B6163656D323030356576616C756174696F6Es1
http://refhub.elsevier.com/S2352-2208(16)30178-X/bib677569646F756D32303037646570656E64656E6379s1
http://dx.doi.org/10.1145/250707.239104

	Functional BIP: Embedding connectors in functional programming languages
	1 Introduction
	2 Overview of Functional BIP
	3 Semantic framework
	3.1 Partial functions
	3.2 Universe of values
	3.3 Types
	3.4 Atoms
	3.5 Ports
	3.6 Connectors
	3.7 System states
	3.8 Assignments
	3.9 Open interactions
	3.10 Downward compatibility

	4 Connector combinators
	4.1 Core combinators
	4.1.1 Bind
	4.1.2 Success and Failure
	4.1.3 OneOf
	4.1.4 BothOf
	4.1.5 Examples

	4.2 Priority combinators
	4.2.1 FirstOf
	4.2.2 Maximal
	4.2.3 Examples

	4.3 Data combinators
	4.3.1 Mapped and ContraMapped
	4.3.2 Guarded
	4.3.3 Feedback
	4.3.4 Examples

	4.4 Dynamic combinators
	4.4.1 Dynamic
	4.4.2 Joined
	4.4.3 Examples

	4.5 Closed semantic function
	4.6 Additional remarks about expressiveness

	5 Algebraic & categorical properties
	5.1 Algebraic properties
	5.2 Categorical properties

	6 Implementation
	7 Related work
	8 Conclusion
	Appendix A Additional proofs
	References

