
Architecture
Internalisation in BIP

EPFL IC IIF RiSD Technical Report
�EPFL-REPORT-196997

http://infoscience.epfl.ch/record/196997

Simon Bliudze, Marius Bozga, Mohamad Jaber and
Joseph Sifakis

February 20, 2014

Abstract: We consider two approaches for building component-based systems, which we call
respectively architecture-based and architecture-agnostic. The former consists in describing coor-
dination constraints in a purely declarative manner through parameterizable glue operators; it
provides higher abstraction level and, consequently, stronger correctness by construction. The
latter uses simple fixed coordination primitives, which are spread across component behaviour; it
is more error-prone, but allows performance optimisation. We study architecture internalization
leading from an architecture-based system to an equivalent architecture-agnostic one, focusing, in
particular, on component-based systems described in BIP.

BIP uses connectors for hierarchical composition of components. We study connector inter-
nalization in three steps. 1) We introduce and study the properties of interaction expressions,
which represent the combined information about all the effects of an interaction. We show that
they are a very powerful tool for specifying and analyzing structured interaction. 2) We formalize
the connector semantics of BIP by using interaction expressions. The formalization proves to be
mathematically rigorous and concise. 3) We introduce the T/B component model and provide a
semantics preserving translation of BIP into this model. The translation is compositional that is,
it preserves the structure of the source models.

The results are illustrated by simple examples. A Java implementation is evaluated on two
case studies.

i

http://infoscience.epfl.ch/record/196997

@TechReport{BBJS14-Internalisation-TR,

author = {Bliudze, Simon and

Bozga, Marius and

Jaber, Mohamad and

Sifakis, Joseph},

title = {Architecture Internalisation in {BIP}},

institution = {EPFL IC IIF RiSD},

month = feb,

year = 2014,

number = {EPFL-REPORT-196997},

note = {Available at: \texttt{http://infoscience.epfl.ch/record/196997}}

}

Architecture Internalisation in BIP

Simon Bliudze ∗ Marius Bozga † Mohamad Jaber ‡ Joseph Sifakis ∗

Abstract

We consider two approaches for building component-based systems, which we call respec-
tively architecture-based and architecture-agnostic. The former consists in describing coordi-
nation constraints in a purely declarative manner through parameterizable glue operators; it
provides higher abstraction level and, consequently, stronger correctness by construction. The
latter uses simple fixed coordination primitives, which are spread across component behaviour;
it is more error-prone, but allows performance optimisation. We study architecture internal-
ization leading from an architecture-based system to an equivalent architecture-agnostic one,
focusing, in particular, on component-based systems described in BIP.

BIP uses connectors for hierarchical composition of components. We study connector
internalization in three steps. 1) We introduce and study the properties of interaction ex-
pressions, which represent the combined information about all the effects of an interaction.
We show that they are a very powerful tool for specifying and analyzing structured interac-
tion. 2) We formalize the connector semantics of BIP by using interaction expressions. The
formalization proves to be mathematically rigorous and concise. 3) We introduce the T/B
component model and provide a semantics preserving translation of BIP into this model. The
translation is compositional that is, it preserves the structure of the source models.

The results are illustrated by simple examples. A Java implementation is evaluated on
two case studies.

1 Introduction

Architectures depict design principles, paradigms that can be understood by all, allow thinking
on a higher plane and avoiding low-level mistakes. They are a means for ensuring correctness by
construction by enforcing global properties characterizing the coordination between components.

Using architectures largely accounts for our ability to master complexity and develop systems
cost-effectively. System developers extensively use libraries of reference architectures ensuring both
functional and non-functional properties, for example fault-tolerant architectures, architectures for
resource management and QoS control, time-triggered architectures, security architectures and
adaptive architectures.

Using architectures allows shifting the focus of developers from lines-of-code to high level
structures ensuring coordination in a component-based system. These structures are constraints
between the coordinated components expressed in terms of communication mechanisms such as
multiparty interaction, message passing, broadcast etc. Formally they can be understood as the
assembly of coordination mechanisms which applied to the coordinated components restrict their
behavior so as to satisfy a global characteristic property.

∗EPFL, Rigorous System Design Laboratory, Station 14, 1015 Lausanne, Switzerland; first-
name.lastname@epfl.ch
†UJF-Grenoble 1 / CNRS, Verimag UMR 5104, F-38041 Grenoble, France; marius.bozga@imag.fr
‡American University of Beirut, Lebanon, mj54@aub.edu.lb

1

There exists an abundant literature on software architectures. Most papers study Architecture
Description Languages (ADLs) for representing and analyzing architectural designs [14]. ADLs
provide both conceptual frameworks and a concrete syntax for characterizing software architec-
tures. They also provide tools for parsing, compiling, analyzing, or simulating architectural de-
scriptions written in their associated language. While all of these languages are concerned with
architectural design, there is no agreement on what is an ADL, what aspects of architecture should
be modeled in an ADL, and which of several possible ADLs is best suited for a particular problem.
Furthermore, the borders between the realm of the ADLs and that of programming languages are
blurring.

Despite the considerable diversity in the capabilities of different ADLs, they all share a common
paradigm that determines a set of concepts and concerns for architectural description. This
paradigm considers that software can be designed as the hierarchical composition of components
by application of architectures. Components are computational elements characterized by their
behavior and their interface. The latter defines points of interaction between a components and
its environment.

ADLs specify the “glue” of architectural designs, usually expressed as the combination of
connections between components. Connections may denote simple interaction mechanisms such
as rendezvous, broadcast and function call. But they also may represent more complex ones such
as protocols, buses and schedulers. In both cases, they are intended to specify two main aspects
of interaction: 1) control-flow that is synchronization constraints; 2) data-flow that is how data
provided by each component are transformed when interactions take place.

Adhering to the architecture paradigm confers numerous advantages. One comes from the fact
that architectures usually enforce by construction some characteristic property characterizing the
coordination between components. If they are sufficiently well-formalized, they can be reused and
this allows correctness for free. Nonetheless, the main advantage is abstraction and separation
of concerns. The designer can focus on aspects of coordination mechanisms by abstracting from
irrelevant details of the behavior of components. These include compatibility of the interfaces,
topology and connectivity, analysis of the overall system throughput and latency based on per-
formance estimates of the integrated components. Furthermore, if the chosen ADL is expressive
enough, it is possible to describe architectures in a purely declarative manner. Here lies the main
distinction between architecture-based and architecture-agnostic description. Architectures can
be understood as constraints that adequately restrict the behavior of the coordinated components
so as to achieve a desired coordination property. They are defined to a large extent, indepen-
dently from the components that make up the system. An alternative approach for building
component-based systems is to consider as irrelevant the distinction between basic components
and their associated coordination mechanisms. A system consists of a set of components—some
providing basic functionality and some ensuring coordination. Dependencies between components
are explicitly described by their behavior (code) via import clauses, function calls and read/write
instructions. We call this approach architecture-agnostic.

In this paper we study architecture internalization as the process leading from an architecture-
based system into an equivalent one that is architecture-agnostic. The latter is obtained as a set of
interacting components by generating additional components ensuring the coordination intended
by the architecture. Two main reasons motivate the study of architecture internalization. One is
the exploration of relationships between architecture-based and architecture-agnostic approaches.
The other is more practically oriented and deals with the possibility to compile declarative-style
architectural constraints into executable code. Figure 1 illustrates the idea.

Architectures can be formally defined as behavior transformers that is, operators transforming
the behavior of their arguments (sets of components) into a new behavior. Is it possible to generate
from an architecture-based system an equivalent architecture-agnostic one, where architecture
glue is cast in dependencies between components explicitly described on their code? This can

2

Coordinator

semantics
Architecture

Figure 1: Arichitecture internalisation

be considered as a code generation problem, provided the communication primitives are readily
executable.

The distinction between architecture-based and architecture-agnostic approaches appears very
early in process algebra theories. CCS proposes a single parallel composition operator based
on matching between input and output actions occurring in the description of processes. For
instance, the semantics of parallel composition between two processes ?a.P and !a.Q is defined
by the rule: ?a.P |!a.Q = τ.(P |Q)+?a.(P |!a.Q)+!a.(?a.P |Q). That is, interactions from a state
are determined by the actions enabled and the rule that input actions may match output actions.
On the contrary, CSP, proposes a parallel composition operator parameterized by a set of actions
that must synchronize. For instance, the semantics of applying the parallel composition operator
|{a}| to two processes a.P and a.Q is defined by the rule: a.P |{a}|a.Q = a.(P |{a}|Q). In this
case, coordination constraints are specified externally and are applied independently of the process
evolution.

The dichotomy illustrated by this example is further accentuated in practice. Architecture-
based approaches are CSP-like and are adopted by ADLs. They consider coordination as external
and independent from the evolution of components. Architectures are to a large extent, entities
distinct from behavior. They are combinations of operators parameterized by the allowed interac-
tions. On the contrary, architecture-agnostic designs are based on a single composition operator.
Coordination is described in terms of communication primitives appearing in their code. This ap-
proach is taken by most programming languages as well as by the various process algebras cloned
from CCS.

We study the internalization problem for component-based systems described in BIP. BIP
allows hierarchical composition of components by using connectors. Components can be considered
as transition systems. A component interface consists of ports that label its transitions with
associated exported variables. Figure 2a depicts two components with ports p, q and associated
variables xp, xq. From some state, a port p can participate in an interaction if the component has
a transition labeled by p which is enabled at this state.

In BIP, a composite component is an expression of the form {α1, . . . , αm}(B1, . . . , Bn), where
{α1, . . . , αm} is s set of hierarchically structured connectors applied to a set of components de-
scribed by their behavior. A connector is an interaction expression composed of two distinct
parts:

1. A control-flow part specifying a relation between a set of bottom ports and a set of top ports.
The interaction requires strong synchronization of all the ports. The top ports can be used
to export the results of the interaction.

2. A data-flow part specifying the computation associated with the interaction. The computa-
tion can affect variables associated with the ports as well as local variables.

In Figure 2a, we provide the specification of the connector describing the interaction between two
ports p and q. The control flow part is described by the relation w ← pq meaning that for the
interaction w to take place both p and q should participate—{p, q} is the set of bottom ports and

3

xp := xw;xq := xw]

p xp q xq

w xw

(w ← p q).[tt : xw := max(xp, xq) //

(a) Example of a simple BIP connector

s xsp xp q xq

w xw

r xr

(w ← p q).[tt : xw := max(xp, xq) // xp := xw;xq := xw]
(r ← w s).[tt : xr := max(xw, xs) // xw := xr;xs := xr]

(b) Example of a hierarchical BIP connector

(r ← p q s).[tt : xr := max(xp, xq, xs) // xp := xr;xq := xr;xs := xr]

p xp q xq

r xr

s xs

(c) Simple connector equivalent to that in Figure 2b

Figure 2: BIP connectors

{w} is the set of top ports. The data-flow part consists of an upstream computation followed
by a downstream computation separated by “ // ”. The execution of an interaction is atomic.
For the considered example, the interaction between p and q consists in computing max(xp, xq)
and assigning this value to the variables xp and xq. Figure 2b depicts a hierarchical connector r
enforcing the interaction between ports p, q and s. The execution of this interaction results in an
upward computation of max(max(xp, xq), xs) followed by a downward computation assigning this
value to the port variables of the atomic components. As shown in [9], hierarchical connectors can
be flattened into equivalent connectors. Figure 2c shows a connector equivalent to the hierarchical
connector by eliminating the interaction w.

Internalization of connectors in BIP models, consists in replacing them by a set of coordinators
that directly implement their semantics. Coordinators play the role of an Engine that handles each
interaction atomically. The internalized BIP model is the plain composition of the atomic BIP
components with a set of coordinators, in bijection with the BIP connectors. To describe coordi-
nators, we extend the BIP component model. The behavior of the components of the extended
model is a set of transitions labeled with interaction expressions. Their interface is composed
of sets of top and bottom ports and associated variables. As all the interaction capabilities of
components are specified in their behavior, they can be composed without any additional external
information. We show that component composition in the new model, called Top/Bottom model
(T/B model), can be expressed by using a single associative partial operator ‖.

The correspondence between a connector and the associated coordinator is straightforward.
The latter is a T/B component that has the same interface as the connector (same set of top
and bottom ports and associated variables). It exhibits a cyclic behavior by computing the data
transfer functions of the connector.

Figure 3 illustrates the principle of connector internalization on a simple example. The cor-
responding coordinator is a stateless automaton that can perform a transition labeled by the
interaction expression. Black arrows show the bottom-top flow.

We study the connector internalization problem for BIP in three steps. First, we study inter-
action expressions and their properties. We show in particular that they are a very powerful tool

4

Internalisation

p

p

q

q

w
(w ← p q).[guard : up // down]

p

p

q

q

w

(w ← p q).[guard : up // down]

Figure 3: A BIP and the corresponding T/B component

for specifying and analyzing structured interaction. Second, we formalize the connector semantics
of BIP by using interaction expressions. The formalization proves to be mathematically rigorous
and concise. It treats on an equal footing control and data flow aspects. It differs from previous
formalizations that were focusing mainly on control flow. Third, we introduce the T/B component
model and provide a semantics preserving translation of BIP into this model. Furthermore, the
translation is compositional that is, it preserves the structure of the source models. It consists in
compiling a BIP composite component of the form {α1, . . . , αm}(B1, . . . , Bn) into a behaviourally
equivalent T/B component B1 ‖ · · · ‖ Bn ‖ K1 ‖ · · · ‖ Km ‖ A, where components Kj are
coordinators corresponding to αj and A is an arbitration component for conflict resolution.

We discuss an implementation of the T/B components and provide an algorithm for their exe-
cution. The implementation can be used for the execution of BIP components after internalization
of their connectors. The advantage of this implementation is its rigorousness as it fully respects
the formal semantics. Furthermore, it can be used for the execution of general T/B models.

The paper is structured as follows. In Section 2, we introduce the notion of interaction expres-
sions, shared by all the models in the subsequent sections. In Section 3, we provide a formalization
of connectors in BIP and present their properties. In Section 4, we present the T/B component
model, study its properties and present a structured encoding of BIP models. In Section 5, we
provide experimental results about a Java-based implementation.

2 Interactions

2.1 Structured Partial Functions

Let (Di)i∈I be data domains, I a universal index set. For each I ⊆ I, denote by D[I]
∆
=
∏
i∈I Di

the set of unordered tuples u = (ui)i∈I , such that ui ∈ Di, for all i ∈ I. For I = ∅, we have

D[∅] = 1
∆
= {∗}. For each u = (ui)i∈I ∈ D[I] and I ′ ⊆ I define the projection uI′ = (ui)i∈I′ ∈ D[I ′].

We also denote uI′
∆
= uI\I′ the complementary projection. For I, J ⊆ I, the merge of tuples is

the partial operation t : D[I]× D[J]→ D[I ∪ J] defined by putting, for u ∈ D[I],v ∈ D[J],

u t v
∆
=

{
⊥ , if ∃i ∈ I ∩ J : ui 6= vi ,

(wi)i∈I∪J , with ∀i ∈ I, wi = ui and ∀j ∈ J, wj = vj , otherwise.

Consider structured partial functions F : D[I] → D[J]. For each J ′ ⊆ J the projection

FJ′ : D[I] → D[J ′] is defined by putting FJ′(u)
∆
= F (u)J′ , for all u ∈ D[I]. The complementary

projection notation is extended analogously: FJ′
∆
= FJ\J′ . The composition of two structured

partial functions F : D[I] → D[J] and G : D[K] → D[L] is the structured partial function

5

G

FI

K \ J

J ∩K
u (G ◦ F)(u)

J

L

Figure 4: Composition of structured functions

G ◦ F : D[I ∪ (K \ J)]→ D[J ∪ L] defined by putting

(G ◦ F)(u)
∆
=

{
F (uI) tG(FK∩J(uI) t uK\J) , when all sub-terms are defined,

⊥ , otherwise.

The composition of structured functions is graphically illustrated in Figure 4.

Proposition 2.1. Composition of structured partial functions is associative. It is moreover com-
mutative whenever J ∩K = I ∩ L = ∅.

For any I ⊆ I, let XI = {xi :Di | i ∈ I} be a set of typed variables xi with corresponding
domains Di. We write XI :D[I] to denote the product domain of the variables in XI .

Let F : D[I] → D[J] be a structured partial function, such that I ∩ J 6= ∅ and consider a
non-empty set of variables XL :D[L] with L ⊆ I ∩J . The variables XL can be used with F as local
variables to compute values in D[J \L] based on values in D[I \L]; the variables XL are updated
by side effect. We write

F [[XL]] : D[I \ L]→ D[J \ L] . (1)

Let v = (vl)l∈L ∈ D[L] be the valuation of XL and let u = (ui)i∈I\L ∈ D[I \L]. If F is defined on
(u,v), an application of F [[XL]] to u produces the values w = (wj)j∈J\L ∈ D[J \ L] and the new
valuation v′ = (v′l)l∈L ∈ D[L] of XL, such that

(w,v′) = F (u,v) . (2)

Lemma 2.2. Let F1[[XL1
]] and F2[[XL2

]] be two structured partial functions with local variables as
above and assume L1 ∩ L2 = XL1

∩XL2
= ∅. Then holds

F1[[XL1]] ◦ F2[[XL2]] =
(
F1 ◦ F2

)
[[XL1 ∪XL2]] . (3)

To simplify the notation, we will also write
(
F1◦F2

)
[[XL1 , XL2]] for the expression in the right-hand

side of (3).

Structured partial functions with local variables are particularly useful for the definition of the
semantics of assignment expressions of the form (XJ , XL) := e(XI , XL), where e is an expression
on variables XI and XL. Indeed, the expression defines a structured partial function e : D[I∪L]→
D[J ∪ L] and the fact that variables XL appear on both sides of the assignment is reflected by
considering e[[XL]] (see (5) for example).

2.2 Interaction Expressions

Interaction expressions defined below represent the combined information about all the effects of
an interaction involving several ports. We show that they are the basic and general concept for
expressing coordination in both architecture-based and architecture agnostic models.

6

Let P be a set of ports, and assume P ⊆ I. For each p ∈ P, let xp : Dp be a typed vari-
able associated to the port p. The interaction expressions defined below represent the combined
information about all the effects of an interaction involving several ports.

Definition 2.3 (Interaction expressions). An interaction is an expression

α(XL) = (P ← Q).[g(XQ, XL) : (XP , XL) := up(XQ, XL) // (XQ, XL) := down(XP , XL)] , (4)

where

� P,Q ⊆ P are, respectively the top and bottom sets of ports ;

� XL : D[L] is the set of local memory variables ;

� g(XQ, XL) is the boolean guard expression ;

� up(XQ, XL) is the upstream data transfer expression ;

� down(XP , XL) is the downstream data transfer expression .

For an interaction expression α(XL) as above, we denote by top(α)
∆
= P the set of the top

ports; bot(α)
∆
= Q the set of the bottom ports and by support(α)

∆
= P ∪Q the set of all ports in

α. Furthermore, we denote gα, upα and downα the corresponding expressions involved in α.

An interaction expression (4) combines two parts: the first one (P ← Q) describes the control
flow, that is the dependency relation between the bottom and the top ports. The expression in
the brackets describes the data flow. The guard g(XQ, XL) materialises the dependency between
the two parts: the interaction is only enabled when the values of the local variables together with
those of variables associated to the bottom ports satisfy a boolean condition. As a side effect, the
firing of an interaction expression can modify the local variables XL.

Notice that an interaction expression can be understood as a generalized synchronous function
call involving a set of callees P and a set of callers Q. When the callers Q are enabled, they offer a
set of parameter values XQ that are used to compute sequentially the two functions up and down.
The computation is possible only if the guard g is true depending on the values of the exported
parameters and the local variables. The up function updates the variables of the callees and the
local variables. The returned values of the caller variables are computed by the down function
that also updates the local variables. As explained in Section 3, when interactions are structured
hierarchically, the callees at one level may become callers for the upper levels.

More formally, the data transfer semantics of α is defined by the pair (α↑[[XL]], α↓[[XL]]) of
parameterised structured partial functions:

α↑[[XL]] : D[Q]→ D[P]

α↓[[XL]] : D[P]→ D[Q]
(5)

defined by (see Figure 5a)

α↑[[XL]](u) =

{
up[[XL]](u) , if g(u,v) = tt

⊥ , otherwise
, for all u ∈ D[Q] ,

where v is the current valuation of variables XL.

α↓[[XL]](u) = down[[XL]](u) , for all u ∈ D[P] .

The top-level semantics of α is defined by
_
α [[XL]] : D[Q]→ D[Q], where

_
α [[XL]] = α↓[[XL]] ◦ α↑[[XL]] . (6)

7

P

downup

P

g(XQ, XL)

XL

QQ

α↑[[XL]] α↓[[XL]]

(a) Data transfer semantics of an interaction ex-
pression

αio

in2

w

in1 outin2

w

in1 out

(b) Graphical illustration of the interaction ex-
pression αio (Example 2.4)

max

max

Max1;Max2

u

z

v
w

rpwvu q

z w

w

u
v

p q ru v

(c) Graphical illustration of the composition of in-
teraction expressions (Example 2.6)

Figure 5: Data transfer for interaction expressions

Example 2.4. Consider the interaction expression

αio(∅) = (w ← out in1 in2).[tt : xw := xout // xin1
, xin2

:= xw]

It does not have any local variables and represents the coordination between an output port
out that delivers simultaneously its value to two input ports in1 and in2 (see Figure 5b). This
interaction can be controlled by a guard to avoid synchronization when the input ports have the
same value as the output:

(w ← out in1 in2).[(xout 6= xin1
) ∨ (xout 6= xin2

) : xw := xout // xin1
, xin2

:= xw]

The interaction expression Max (∅) = (w ← pqr).[tt : xw := max(xp, xq, xr) // xp, xq, xr := xw]
allows the synchronization between ports p, q and r and returns the maximum of the values of
the variables associated with these ports.

Definition 2.5 (Composition of interactions). The composition of interaction expressions is a
partial operation ’;’ defined by putting, for two interaction expressions α1, α2, with, for i = 1, 2,

αi(XLi) = (Pi ← Qi).[gi(XQi , XLi) : (XPi , XLi) := upi(XQi , XLi) //

(XQi , XLi) := downi(XPi , XLi)] ,

8

where L1 ∩ L2 = ∅, L = L1 ∪ L2, XL1
∩XL2

= ∅, and XL = XL1
∪XL2

,

(α1;α2)(XL)
∆
= (P ← Q).[g(XQ, XL) : (XP , XL) := up(XQ, XL) //

(XQ, XL) := down(XP , XL)] , (7)

where

� P = P1 ∪ P2 and Q = Q1 ∪Q2,

� g(XQ, XL) = g1(XQ1 , XL1) ∧
[
g2(XQ2 , XL2) ◦ up1(XQ1 , XL1)

]
P1∪L1

(the projection in the

second conjunct removes the outputs of up1 to keep only the boolean value computed by
g2—cf. Figure 4),

� up(XQ, XL) = up2(XQ2
, XL2

) ◦ up1(XQ1
, XL1

),

� down(XP , XL) = down1(XP1 , XL1) ◦ down2(XP2 , XL2).

Notice that three expressions g(XQ, XL), up(XQ, XL) and down(XP , XL) do not involve variables
in XP1∩Q2

.

Example 2.6. We continue Example 2.4. The composition of two Max interactions, respectively

Max1(∅) = (w ← pqr).[tt : xw := max(xp, xq, xr) // xp, xq, xr := xw]
Max2(∅) = (z ← uvw).[tt : xz := max(xu, xv, xw) // xu, xv, xw := xz]

is the new interaction expression:

(Max1;Max2)(∅) = (wz ← pqruvw).[tt :

xw := max(xp, xq, xr), xz := max(xu, xv,max(xp, xq, xr) // xp, xq, xr, xu, xv, xw := xz]

This composition is illustrated in Figure 5c.

Proposition 2.7. The composition of interaction expressions is associative. Furthermore, when
P1 ∩Q2 = P2 ∩Q1 = XL1

∩XL2
= ∅, it is also commutative.

Proof. This is an immediate consequence of Proposition 2.1.

Under the disjointness condition in Proposition 2.7, we write

α1|α2
∆
= α1;α2 = α2;α1 . (8)

In this case, we will speak of interaction synchronisation. Notice that | is a partial associative and
commutative operator over interaction expressions.

3 Architecture-Based Model: Connectors in BIP

This section provides a brief overview of BIP and a formalisation for simple and hierarchical
connectors in BIP. The latter formalisation comprises abstract syntax and denotational semantics
in terms of partial functions operating on structured domains. In addition, it formalises the
flattening as a rewriting rule on hierarchical connectors and proves its soundness as a semantics-
preserving transformation.

9

3.1 Atomic Components and Simple Connectors in BIP

In BIP, systems are build by composing atomic components with interactions defined using con-
nectors. As in Section 2, let P ⊆ I be a set of ports and assume that a variable xp :Dp is associated
with each port p ∈ P.

Definition 3.1 (Atomic component). An atomic component B is a tuple B = (Σ, P,XL :D[L],−→)
where

� Σ is a finite set of control locations ;

� P ⊆ P is a finite set of ports, called the interface of B ;

� XL :D[L] is a set of local variables indexed by L such that XL ∩XP = ∅ ;

� −→ ⊆ Σ×E ×Σ is a finite transition relation, with E being the set of interaction expressions
of the following form, for p ∈ P and X ⊆ XL,

p(X) = (p← ∅).[g(X) : xp := up(X) //X := down(xp, X)] .

Henceforth, we call interaction expressions of this form actions. Notice that we overload the
notation and use p for both the port and the action. Furthermore, since we do not impose
any specific constraints on expressions up and down, several distinct actions can be used for
transitions associated to the same port p.

We use the notation q
p(X)−−−→ q′ as usual.

Definition 3.2 (Operational semantics of atomic components). The operational semantics of
an atomic component B = (Σ, P,XL : D[L],−→) is given by an LTS σ (B) =

(
Σ × D[L], 2P ×

(
⋃
p∈P Dp)

2,−→
)
, where a state (q, v) consists of a control state of B and the valuation v ∈ D[L] of

local variables; −→ is the minimal transition relation inductively defined by the following rule:

p(X) = (p← ∅).[g(X) : xp := up(X) //X := down(xp, X))]

q
p(X)−−−→ q′ g(v) = tt vpup = upp(v) v′ = down

(
vpdown, upX(v)

)
(q, v)

p−−−−−−→
vpup:vpdown

(q′, v′)

, (9)

where upp and upX are the corresponding components of the up expression; vpup, v
p
down ∈ Dp

are the data values associated to the port p at the upward and downward data transfer phases
respectively.

Example 3.3. The system shown in Figure 6 consists of two identical atomic components that
can toghether move in one of two opposite directions. They have to agree on the distance, based
on their respective energy levels. Each component has two real local variables: e to store the
energy level within the component and dir to store the components opinion on the direction to
follow, as well as a boolean variable leader to remember whether it is a leader or not. In each
operation cycle the i-th component performs the following three steps:

1. In the first step, the component performs the action

connecti(leader) = (connecti ← ∅).[tt : idi := i // leader := (idi = i)] , (10)

where i is the constant component id (see Figure 6) and idi is the variable associated to the
port connecti. In the upstream transfer of (10), the component proposes itself as a candidate
for the leadership. In the downstream transfer, the updated value of idi is compared to the
component id. The result of this comparison is stored in the local variable leader.

10

cnt1 mv2

ready1

ready2

cnt2mv1

(mv0 ← mv1mv2).[d1, d2 > 0 : d0 := min(d1, d2); dir0 := dir1 + dir2 // d1, d2 := d0; dir1, dir2 := dir0]

(cnt0 ← cnt1cnt2).[tt : id0 := rnd(id1, id2) // id1, id2 := id0]

leader := (id2 = 2)]

(cnt2 ← ∅).
[tt : id2 := 2 //

(mv2 ← ∅).[tt :

// e := h2(e, d2, dir2)]

d2 := f2(e); dir2 := dir

(ready2 ← ∅).[leader : dir := rnd(−1,+1) //−]

(ready2 ← ∅).[¬leader : dir := 0 //−]

Local data: e, dir :R; leader :B

(mv1 ← ∅).[tt :

// e := h1(e, d1, dir1)]

d1 := f1(e); dir1 := dir

leader := (id1 = 1)]

(cnt1 ← ∅).
[tt : id1 := 1 //

(ready1 ← ∅).[¬leader : dir := 0 //−]

(ready1 ← ∅).[leader : dir := rnd(−1,+1) //−]

Local data: e, dir :R; leader :B

Figure 6: Leader/Follower example

2. In the second step, the component performs its corresponding action readyi(dir, leader).
The leader randomly picks the direction and stores it in the local variable dir. The follower
stores zero:

Leader: (readyi ← ∅).[leader : dir := rnd(−1,+1) //−] ,

Follower: (readyi ← ∅).[¬leader : dir := 0 //−] .

These actions do not have any downstream data transfer, but only update the local data in
the upstream transfer.

3. In the last step, the leader and the direction of the movement are chosen. The component
performs the action

(movei ← ∅).[tt : di := fi(e); diri := dir // e := hi(e, di, diri)] . (11)

In the upstream transfer of (11), the component exposes the distance it can cover based on
its available energy stored in the local variable e, as well as its direction suggestion stored
in the local variable dir from the previous step. In the downstream transfer, the move is
materialised by updating the energy level of the component, based on the new values of the
direction and distance of the move.

Definition 3.4 (Simple connector). A simple connector is an interaction expression α(XL), such
that top(α) = {w} is a single port w ∈ P, bot(α) = a ⊆ P is an interaction, such that w 6∈ a, and
both up and g expressions do not involve local variables, i.e.

α(XL) = (w ← a).[g(Xa) : (xw, XL) := up(Xa) //Xa := down(xw, XL)] .

Example 3.5. Consider the connector (without local variables) shown in Figure 6:

(connect0 ← connect1connect2).[tt : id0 := rnd(id1, id2) // id1, id2 := id0] .

On every connecti port (i = 1, 2) the value idi represents the id of a component interacting
through this port. The guard of the interaction expression is a constant true, hence no additional
restrictions are imposed on the interaction. As part of the upstream data transfer the connector
randomly picks and propagates one of the proposed id’s. During the downstream data transfer,
the updated value is communicated to both participating ports.

Definition 3.6 (operational semantics). Let B = {B1, . . . , Bn} be a finite set of atomic compo-
nents with Bi = (Σi, Pi, XLi

:D[Li],−→) such that their respective sets of ports and variables are
pairwise disjoint. Let Γ be a set of simple connectors such that for every α ∈ Γ hold

11

...

w xw

p2 xp2

q2 u2 q′2 u
′
2

u′2 := down2(v
′
p2
)

vp2 := up2(u2)

v′p2vp2

pn xpn

qn un q′n u
′
n

u′n := down1(v
′
pn)

vpn := upn(un)

v′pnvpn

p1 xp1

q1 u1 q′1 u
′
1

u′1 := down1(v
′
p1
)

vp1 := up1(u1)

v′p1vp1

vpw

Figure 7: Composition with synchronisation and data transfer

1. top(α) 6∈
⋃n
i=1 Pi,

2. bot(α) ⊆
⋃n
i=1 Pi,

3. |support(α) ∩ Pi| ≤ 1 for all i ∈ [1, n].

Under the conditions above, the semantics of the parallel composition Γ(B) is defined as the
labelled transition system (Σ, P,−→) where

� Σ =
∏n
i=1(Σi × D[Li])

� P = {top(α) |α ∈ Γ}

� −→ is the minimal transition relation iductively defined by the rule

α(XL) ∈ Γ top(α) = w bot(α) = a = {pi | i ∈ I} α? = (|a);α

∀i ∈ I, qi
pi(Xi)−−−−→ q′i ∀i 6∈ I, (qi = q′i ∧ ui = u′

i) (u′
i)i∈I =

[_

α? [[XL]]
(
(ui)i∈I

)]⋃
i∈I Li

(q1,u1), . . . , (qn,un)
w−→ (q′1,u

′
1), . . . , (q′n,u

′
n)

,

(12)
where |a denotes the synchronisation of all actions pi(Xi) with pi ∈ a (cf. (8)).

Notice that the interaction expressions involved in (12) are partial. Hence, for instance, when
the guard of one of the actions is not satisfied, the values (u′

i)i∈I are undefined and, thus, the rule
is not applicable.

Intuitively, an interaction can be fired only if its guard and all guards associated to the cor-
responding component actions are true. When an interaction is fired, its upstream transfer is
computed first using the exposed values offered by the participating components. Then, the
downstream transfer modifies back all the port variables followed by execution of the update
functions associated to component actions. This semantic is illustrated in Figure 7.

Example 3.7. We continue the Example 3.3. The first synchronisation among the atomic com-
ponents is performed through the connector

(connect0 ← connect1connect2).[tt : id0 := rnd(id1, id2) // id1, id2 := id0] (13)

to the actions (10), for i = 1, 2. The id of the leader is randomly selected in the connector and
transferred downstream through both participating ports.

12

In the next step each component idependently performs its corresponding step readyi (see
Example 3.3).

In the final step of the cycle, the components synchronise again by applying the connector

(move0 ← move1move2).[d1, d2 > 0 : d0 := min(d1, d2); dir0 := dir1 + dir2 //

d1, d2 := d0; dir1, dir2 := dir0)] (14)

to the actions (11), for i = 1, 2. The distances each component can cover and their direction
suggestions are combined in the connector to compute the global distance and direction (variables
d0 and dir0), which are propagated further, updated and then distributed down to components.

3.2 Hierarchical Connectors in BIP

Definition 3.8 (Hierarchical connector). A hierarchical connector hα is a term generated by the
grammar

hα ::= α | α〈hα1, . . . , hαn〉 ,

where α denotes an arbitrary simple connector. We extend the top(), bot() and support() notations
to hierarchical connectors by putting

top(α〈hα1, . . . , hαn〉) = top(α) ,

bot(α〈hα1, . . . , hαn〉) =

n⋃
i=1

bot(αi) ,

support(α〈hα1, . . . , hαn〉) = support(α) ∪
n⋃
i=1

support(hαi) .

A hierarchical connector hα = α〈hα1, . . . , hαn〉 is valid iff

1. all sets support(hαi), for i ∈ [1, n], are pairwise disjoint;

2. for all i ∈ [1, n], holds support(hαi) ∩ support(α) = {top(hαi)} and top(hαi) ∈ bot(α) ;

3. all hierarchical sub-connectors hα1, . . . , hαn are valid.

From now on, we tacitly restrict ourselves to valid hierarchical connectors. Their data transfer
semantics is defined structurally as follows:

α〈hα1, . . . , hαn〉↑ = α↑ ◦ (hα1
↑ ◦ · · · ◦ hαn↑)

α〈hα1, . . . , hαn〉↓ = (hα1
↓ ◦ · · · ◦ hαn↓) ◦ α↓

Notice that the order of composition for sub-connector functions is irrelevant as they operate on
disjoint sets of ports.

Example 3.9. We continue the running example of this section. Consider a system shown in
Figure 8, combining that of Figure 6 with a third atomic component of exactly the same type
as the other two. The behavour of the systems is generalised by a hierarchical application of the
same (up to port renaming) connectors move and connect.

13

cnt1mv1

ready1

ready2

cnt2 mv2 cnt3 mv3

ready3

cnt0

mv0

(mv ← mv0mv3).[d0, d3 > 0 : d := min(d0, d3); dir := dir0 + dir3 // d0, d3 := d; dir0, dir3 := dir]

(cnt← cnt0cnt3).[tt : id := rnd(id0, id3) // id0, id3 := id]

ready1

ready1

cnt
1 m

v 1

ready3

ready3

cnt
3

m
v 3

ready2

ready2

cnt
2

m
v 2

Figure 8: Leader/follower example with three atomic components

Definition 3.10 (connector composition). Let α1, α2 be two simple connectors

α1(XL1) = (w1 ← a1).[g1(Xa1) : (xw1 , XL1) := up1(Xa1) //Xa1 := down1(xw1 , XL1)]

α2(XL2) = (w2 ← a2).[g2(Xa2) : (xw2 , XL2) := up2(Xa2) //Xa2 := down2(xw2 , XL2)]

such that moreover a1 ∩ a2 = L1 ∩ L2 = ∅, w2 ∈ a1 and w1 6∈ a2. We define α1 (α2 as the
syntactic glueing of α1 with α2, formally, the simple connector:

(α1 (α2)(XL1
∪XL2

)
∆
= (w1 ← a12).[g12(Xa12) : (xw1

, XL1
, XL2

) := up12(Xa12) //

Xa12 := down12(xw1
, XL1

, XL2
)] ,

where

a12 =
(
a1 \ {w2}

)
∪ a2 , (15)

g12 = (g1 ◦ [up2]{w2}) ∧ g2 , (16)

up12 = [up1 ◦ up2]{w2} , (17)

down12 = [down2 ◦ down1]{w2} . (18)

Recall that composition of structured partial functions preserves the outputs of both operands (see
Figure 4). Therefore, in (16)–(18), we have to take the corresponding projections: to compute the
guard g1 of connector α1, we need only the value provided by the up2 function of the subconnector
α2 through the port w2, but we discard the values of the local variables XL2 . Furthermore, since
the port w2 is removed, when glueing the two connectors, we discard the value of its associated
variable during the upward and downward phases of the data transfer.

Connector glueing is used to define flattening on hierarchical connectors. Flattening is formal-
ized as a term rewriting rule ; on hierarchical connectors, that is,

α1〈Γ1, α2〈Γ2〉,Γ3〉; (α1 (α2)〈Γ1,Γ2,Γ3〉 ,

for any simple connectors α1, α2, and arbitrary (potentially empty) lists of connectors Γ1,Γ2,Γ3.
The flattening transformation is graphically illustrated in Figure 9. It can be checked that, given a
valid hierarchical connector as input (on the left), the resulting (hierarchical or simple) connector
(on the right) is also valid. Moreover, flattening preserves the semantics of hierarchical connectors.

Proposition 3.11 (Soundness of flattening). Given a hierarchical connector hα, for any flattening

hα; hα′ holds hα↑ = hα′↑ and hα↓ = hα′↓.

14

Γ1 Γ3

... ...
...

Γ2

γ2

γ1

...

Γ1 Γ3Γ2

γ1 (γ2

;

Figure 9: Flattening rule

Example 3.12. Hierarchical connectors provide a convenient way to construct arbitrary mul-
tiparty interactions by re-using a fixed number of simple connectors. A useful example is time
synchronization in discrete-time systems. Every component i contains a ticki port associated with
an non-negative integer variable ti denoting the allowed time elapse. A global interaction amongst
all components (i.e. all tick ports) is needed to mutually agree on the maximal time elapse at
system level, that is, min(ti), and to progress accordingly. The following simple connector defines
the binary time synchronisation sync(2):

sync
(2)
j,i1,i2

(∅) = (tickj ← ticki1ticki2).[ti1 , ti2 > 0 : tj := min (ti1 , ti2) // ti1 , ti2 := tj]

This binary connector can be used herarchically to obtain larger interactions e.g. a 4-ary time
synchronisation sync(4):

sync
(4)
tj ,i1,i2,i3,i4

≡ sync(2)
j,i12,i34

〈sync(2)
i12,i1,i2

, sync
(2)
i34,i3,i4

〉
The hierarchical connector sync(4) can be flattened successively as

sync
(4)
j,i1,i2,i3,i4

; (sync
(2)
j,i12,i34

(sync
(2)
i12,i1,i2

)〈sync(2)
i34,i3,i4

〉

; (sync
(2)
j,i12,i34

(sync
(2)
i12,i1,i2

) (sync
(2)
i34,i3,i4

and is semantically equivalent to the simple connector:

(tickj ← ticki1ticki2ticki3ticki4).[ti1 , ti2 , ti3 , ti4 > 0 : tj ← min (ti1 , ti2 , ti3 , ti4) // ti1 , ti2 , ti3 , ti4 ← tj] .

4 Architecture Agnostic Model: T/B Components

4.1 T/B Component Model

Architecture-agnostic models are obtained from BIP models as the plain composition of Top/Bot-
tom (T/B) components. In the translation, BIP connectors are replaced by T/B components that
play the role of coordinators. These are extensions of the BIP components whose transitions are
labeled with interaction expressions. The parallel composition mechanism relies on the matching
between bottom and top ports (as for hierarchical connectors).

Interaction execution exhibits a cyclic pattern. In each cycle, the data of interacting atomic
components are propagated upwards through top ports towards all relevant coordinators. At each
stage, the computation can influence the decision as to what transitions of atomic components are
enabled. Finally, once a global interaction has been choosen at the top level, the updated data is
propagated back to atomic components. Below, we present this in a formal manner.

As above (cf. Section 2), we assume a universal set of ports P and, for each port p ∈ P, a
typed variable xp :Dp.

15

Definition 4.1 (T/B components). A T/B component is a tuple T = (Σ, P bot, P top, XL :D[L],−→),
where

� Σ is a set of states,

� P bot, P top ⊆ P are finite sets of respectively bottom and top ports;

� XL :D[L] is a set of local data variables;

� −→⊆ Σ×E ×Σ is a transition relation, with E being the set of action expressions α(X), such

that X ⊆ XL, top(α) ⊆ P top, bot(α) ⊆ P bot. We write q
α(X)−−−→ q′ for (q, α(X), q′) ∈−→.

A T/B component (Σ, P bot, P top, XL :D[L],−→) is a basic component, if P bot = ∅; it is a coordinator
if P bot 6= ∅, but P bot ∩ P top = ∅. Finally, if P bot ∩ P top 6= ∅, the T/B component is compound.

Compound components are obtained by hierarchically composing basic components and coor-
dinators.

Notation 4.2. For a T/B component with the sets of input and output ports respectively P bot

and P top, we will always denote P
∆
= P bot ∪ P top. Conversely, for any object ∗ that can be

viewed as a collection indexed by a subset of ports of P , we denote by ∗bot and ∗top the respective
restrictions of ∗ to P bot and P top.

Definition 4.3 (Operational semantics of T/B components). The operational semantics of a T/B
component T = (Σ, P bot, P top, XL :D[L],−→) is given by an LTS σ (T) = (Σ×D[L], 2P ×D[P]2,−→),
where a state (q, v) consists of a control state of T and the value v ∈ D[L]; −→ is the minimal
transition relation inductively defined by the following rule:

α(X) = (atop ← abot).[g(Xabot , X) : (Xatop , X) := up(Xabot , X) // (Xabot , X) := down(Xatop , X)]

q
α(X)−−−→ q′ g(vbotup , v) = tt vtopup = upatop(vbotup , v) (vbotdown, v

′) = down
(
vtopdown, upX(vbotup , v)

)
(q, v)

a−−−−−−−→
vup:vdown

(q′, v′)

,

(19)
where a = atop ∪ abot; upatop and upX are the corresponding components of the up expression;
vup,vdown ∈ D[P] are partial data valuations associated to ports at the upward and downward data
transfer phases respectively (the values of variables assocaited to ports that do not participate in
the interaction are undefined).

Notice that T/B components and their operational semantics generalise atomic BIP com-
ponents (Definition 3.2). In particular, all components in the examples of Section 3 are T/B
components without bottom ports.

Remark 4.4. For the values vup and vdown, in (19), it is important to notice the difference with
the input/output dichotomy. Indeed, in terms of the transferred data, the component input is the
pair (vbotup ,v

top
down), whereas its output is the pair (vtopup ,v

bot
down).

Recall the generalised function call metaphor (see the discussion after Definition 2.3). When
a transition labelled by α(X) is called, it is provided the values vbotup . If these values satisfy the
guard g, they are used by the function up to compute the values vtopup , which are provided to the

subsequent callees. In return, the latter provide the updated values vtopdown, which are, finally, used
by the function down to compute vbotdown.

16

0 1

32

∅ ← t0

t1 ← t0

∅ ← t1

t2 ← t1

t0

t1

t2

(a) {R0, R1}

20 21

3031

∅ ← t0

∅
←
t 0
t 1 ∅ ←

t
1

t1 ← t0

t
1
←
t
0 t

1

∅ ← t0

t
2
←
t
0 t

1

t
2 ←

t
1

t1 ← t0

t
1 t

2
←
t
0 t

1

t1 t2

t0 t1

(b) R0 ‖ R1

Figure 10: T/B component model for the Mod-4 Counter

4.2 Systems and Composition

Definition 4.5 (Systems). Let S = {Ti = (Σi, P
bot
i , P topi , XLi

:D[Li],−→) | i ∈ [1, n]} be a finite set

of T/B components and denote P bot
∆
=
⋃n
i=1 P

bot
i and P top

∆
=
⋃n
i=1 P

top
i . Here and below, we skip

the index on −→ since it is always clear from the context. S is a system iff the sets of local variables
and top ports of all the components are pairwise disjoint, i.e. ∀i 6= j, Xi ∩Xj = P topi ∩ P topj = ∅.

A system is closed if P bot = P top; otherwise it is open. An open system is bottom-closed if
P bot ⊆ P top.

Definition 4.6 (Composition of T/B components). Let Ti = (Σi, P
bot
i , P topi , XLi :D[Li],−→), for

i = 1, 2, be two T/B components, such that P top2 ∩ P bot1 = ∅ (cf. Definition 4.9 below). Their

parallel composition is a compound T/B component T1 ‖ T2
∆
= (Σ, P bot, P top, XL :D[L],−→), where

Σ = Σ1 × Σ2, P bot = P bot1 ∪ P bot2 , P top = P top1 ∪ P top2 , XL = XL1
∪ XL2

and −→ is the minimal
transition relation inductively defined by the following rules:

q1
α1(X1)−−−−→ q′1

q1q2
α1(X1)−−−−→ q′1q2

,
q1

α1(X1)−−−−→ q′1 q2
α2(X2)−−−−→ q′2

q1q2
(α1;α2)(X)−−−−−−−→ q′1q

′
2

,
q2

α2(X2)−−−−→ q′2

q1q2
α2(X2)−−−−→ q1q

′
2

. (20)

When P top1 ∩ P bot2 = ∅, we put T1 ‖ T2
∆
= T2 ‖ T1. Thus, ‖ is a commutative partial operator

defined when P top2 ∩P bot1 = ∅ or P top1 ∩P bot2 = ∅. When both equalities hold, the transition in the
conclusion of the second rule is labelled by α1 ‖ α2 (cf. (8)), which is symmetric in the order of its
operands. When both P top2 ∩ P bot1 6= ∅ and P top1 ∩ P bot2 6= ∅, this means that there is a data-flow
causality loop among the two components (as in I/O models [10, 13]) and the composition is
undefined.

Example 4.7 (Mod-4 counter). Figure 10a shows a simple model consisting of two T/B compo-
nents R0 and R1 without data variables and transfer, identical up to port renaming. Each T/B
component models a Mod-2 counter, which produces one event on its top port (shown by blue
disks) for every second event on its bottom port (shown by red disks). R0 and R1 share port t1.
Figure 10b shows the T/B component R0 ‖ R1 (for clarity we omit two transitions indicated by
the dotted green arrow).

Proposition 4.8. Composition operator ‖ in Definition 4.6 is associative.

17

R0 R1

t0 ← ∅

∅ ← t2

t0

t1 t2

(a)

20 21

3031

t0 ← t0

t
0 t

1
←
t
0 t

1

t0 ← t0

t 0
t 1
t 2
←
t 0
t 1
t 2

(b)

Figure 11: T/B component model for the Mod-4 Counter

As a consequence of Proposition 4.8, Definition 4.6 can be extended to a larger class of systems.

Definition 4.9 (Composable systems). Let S be a system and consider the directed graph
τ(S) = (S,E), having the components of the system as vertices and the set of edges E =
{(Ti, Tj) |P topi ∩ P botj 6= ∅}. In other words, there is an edge from Ti to Tj if some of the top
ports of the former are bottom ports of the latter. S is composable iff τ(S) is a directed acyclic
graph.

In a composable system S, any pair of components can be ordered so as to satisfy the require-
ment of Definition 4.6. Hence, by Proposition 4.8, we can define the composed T/B component
‖S.

As in process calculi like CCS [15], in order for the composition operator ‖ to be associative, it
must allow interleaving (i.e. independent firing) of transitions involving matchable ports (compare
first and third rules in (20) with the second rule). When a complete system is built, its meaning is
defined as the largest closed sub-system obtained by pruning out all the non-matching transitions;
thus the following definition.

Definition 4.10 (Restriction). Let S = {Ti = (Σi, P
bot
i , P topi , XLi :D[Li],−→) | i ∈ [1, n]} be a

closed composable system and ‖S =
(
Σ, P bot, P top, XL : D[L],−−→

par

)
be the corresponding com-

pound T/B component. The restriction of S is given by a T/B component ρ(S) =
(
Σ, P bot, P top, XL :

D[L],−→
pr

)
, where −→

pr
is the minimal transition relation inductively defined by the rule

q
α(X)−−−→
par

q′ bot(α) = top(α)

q
α(X)−−−→
pr

q′
. (21)

In (21), the second premise means that, for every bottom (resp. top) port, α must also contain
the corresponding top (resp. bottom) port. The third premise means that, for any top port, α
must also contain some corresponding bottom port, if such bottom port exists. Pruning, in our
context, is the equivalent of the CCS hiding operator.

Example 4.11. Figure 11a shows a system comprising T/B components R0 and R1 as in Ex-
ample 4.7 and closed with two additional components: an atomic T/B component that generates
events t0 and a top-level T/B component that consumes t2. One can easily see that the restriction
of this system, shown in Figure 11b is, indeed, a Mod-4 counter.

Lemma 4.12. For any transition in the restriction of a closed composable system, the data transfer
coincides with the top-level semantics of the composition of the corresponding interaction expres-
sions (see (6)).

18

4.3 T/B Component Encoding of BIP Models

Any atomic BIP component B = (Σ, P,XL :D[L],−→) can be trivially encoded as a T/B component
by making all ports of B top ports, i.e. τ(B) = (Σ, ∅, P,XL : D[L],−→). Thus, we only have to
provide the encoding for connectors. Let

α(X) = (w ← a).[g(Xa) : (xw, X) := up(Xa) //Xa := down(xw, X)]

be a simple connector with a set of local variables X :D. The T/B component encoding of α is

given by τ(α)
∆
=
(
{∗}, P, {w}, X :D, {∗ α(X)−−−→ ∗}

)
.

The encoding of a hierarchical connector is a set of T/B components obtained by separately
encoding each subconnector:

τ
(
α〈hα1, . . . , hαn〉

) ∆
=
{
τ(α)

}
∪

n⋃
i=1

τ(hαi) . (22)

In the BIP operational semantics Definition 3.6, only one connector α ∈ Γ can be fired at a
time. On the contrary, parallel composition of T/B components allows any number of component
transitions to synchronise. In order to enforce BIP semantics, for a set of connectors Gamma, we
add an arbiter T/B component

τ(Γ) =
(
{∗}, PΓ, ∅, {yw :Dw |w ∈ PΓ}{∗

α̃−→ ∗ |α ∈ Γ}
)
,

where PΓ =
⋃
α∈Γ top(α), yw are fresh variables and, for each α ∈ Γ and {w} = top(α), we put

α̃(yw) = (∅ ← w).[tt : yw := xw // xw := yw] ,

that is the data provided by α in the upstream data transfer is reinjected back into the downstream
data transfer by α̃.

Theorem 4.13 (Encoding correctness). Let B be a set of atomic BIP components and Γ be a set
of hierarchical connectors and put

S = {τ(Γ)} ∪
⋃
B∈B

{
τ(B)

}
∪
⋃
α∈Γ

τ(α) .

The LTS σ (ρ(S)) and Γ(B) are isomorphic: there exist agreeing bijections between their sets of
states and transitions.

5 Experimental Results

5.1 Java Implementation

The implementation consists mainly of: (1) atomic components; (2) coordinators; and (3) connec-
tions. Recall that, atomic components have no bottom ports. Connections connect top ports to
bottom ports. For composable system they define a hierarchy on T/B components. We assume
that a bottom port is connected to exactly one top port; a top port may be connected to more than
one bottom port (cf. Definition 4.5). Figure 14 in the appendix shows the Java implementation of
the Mod-4 counter from Example 4.7.

We create a Java thread for each atomic component and one thread that plays the role of an
arbiter for all the coordinators. The implementation of the execution engine would be drastically
optimized in case where the coordinators are deterministic. A coordinator is deterministic if from

19

any state: (1) there exists only one outgoing transition; or (2) the guards of all the outgoing
transitions are mutually exclusive. Non-deterministic coordinators may contain a state with more
than one outgoing transitions that could be enabled at the same time. That is, more than one up
function may be executed. For the sake of clarity, we first provide the algorithm for deterministic
coordinators. Atomic component’s thread cyclically executes the following:

1. Notify the top ports of the current outgoing transitions that have guard true.

2. Notify the arbiter thread.

3. Wait for a notification from the arbiter.

4. Notification received from the arbiter to execute a top port.

5. Execute the action that corresponds to the received top port.

6. Modify the current state according to transition labeled by the received top port.

Below is the algorithm of the atomic component’s thread.

// atomic component ’s thread
run() {

while(true) {
for all current outgoing transitions t {

if guard of t is true {
t.sendPort.notify ();

} }
notify arbiter thread;
wait for arbiter thread;
port = notification received from arbiter thread;
performTransition(port);

}
}

Notification of the top ports is executed by the threads of the atomic components. A notification
will be propagated upward by the atomic component’s thread until it reaches a top level coor-
dinator component (i.e., a coordinator where its current outgoing transition does not have a top
port). That is, notification of a top port is done as follows:

topPort.notify () {
notify bottom ports that are connected to topPort;
for each coordinator component c that has a
bottom port notified {

if exists a current outgoing transition t in c
where all its bottom ports have been notified
and its guard is true {

store the values of the variables of c;
execute its corresponding up function;

if t is labeled by a top port {
t.topPort.notify ();

}
}

}
}

Note that, upstream propagation is done in parallel by the atomic components’ threads. Arbiter
thread resumes its execution when the upstream propagation is completed by all the atomic
components’ threads. Arbiter’s thread cyclically executes the following:

1. Select non-deterministically a top level coordinator component which is enabled (i.e., current
outgoing transition has not top port and it all its bottom ports have been notified). If such
a component does not exist, a deadlock has occurred. Otherwise, we execute the following.

2. Execute the down function of the selected transition and update the state of the coordinator
accordingly.

20

3. Notify all the top ports that are connected to the bottom ports of the selected transition
until we reach atomic components. Execute the down function of the transition that has a
top port notified.

4. When the downstream propagation is completed, notify all the atomic components to execute
their corresponding transitions. Moreover, recover the values of the variables of all the
coordinators that have been notified during the upstream propagation and not being modified
over the down propagation.

Notice that arbiter selects only one top level coordinator even though there exits more than
one top level coordinator that are non conflicting. Two top level coordinators are conflicting if the
downstream propagation will lead to notify the same atomic component but with two different
top ports. Obviously, selecting two top level coordinators that are conflicting will lead to the
violation of the semantics presented in Section 4. Thread arbiter is parameterized to support the
two implementations (one top level selection, or multiple non-conflicting top level selection).

For non-deterministic coordinators, the upward propagation has to be modified as follows.
First the up function does not modify the actual data of a coordinator but it creates a copy of its
variables. If a transition has a top port, we notify that port with an index which represents the
values of the data that make this transition enabled. Recall that, the guard of a given transition
depends on the value of the variables of the coordinator and the variables of the top ports that are
connected to the bottom ports of that transition. So that, before evaluating the guard of a given
transition of a coordinator component, we should first set the indices of the bottom coordinators.
As the upward propagation is done in parallel, we should also lock those bottom coordinators to
avoid the evaluation of other guards that depend on those coordinators but with different indices.

5.2 Experiments - case studies

5.2.1 Network Sorting Algorithm

The Network Sorting Algorithm (NSA) [2] can be considered as the coordinated product of 2n

atomic components, each containing an array of N items. The goal is to sort the items, so that
all the items in the first component are smaller than those of the second component and so on.
In [9], we have provided a BIP application implementing this algorithm. In order to evaluate the
results of the present paper, we have implemented an internalized version using T/B components
(see Figure 15 in the appendix for n = 3). We have also implemented a modified version of this
model, where we merge some coordinators, which might improve the performance (see Figure 16
in the appendix).

Figures 12a and 12b provide benchmarks for NSA by considering the initial and merged model
for the two implementations (deterministic and non-deterministic). Figure 12a shows that the non-
deterministic implementation introduces some overhead. We also study the efficiency of selecting
all non-conflicting top level coordinators versus selecting only one top level coordinator. Figure 12b
shows that selecting all non-conflicting top level coordinators slightly improves the performance.

5.2.2 Case Study: POTS

We have implemented a T/B component for the Plain Old Telephone Service (POTS) [11] example
(see Figure 17 in the appendix), which provides voice connections between pairs of clients. We
distinguish between clients and coordinators. Clients are atomic components with three states.
Initially a client can start a new call by dialing the callee id, or it can receive a call from another
caller. Then, a voice connection is established between the two clients. When a client hangs up
the call is disconnected. We have two-level hierarchy of coordinators. The first level includes

21

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70

Ti
m

e
(s

ec
on

ds
)

Number of Base Components

Normal-Deterministic
Merged-Deterministic

Normal-NonDeterministic
Merged-NonDeterministic

(a) Performance (execution time in seconds) of
NSA: Deterministic vs. Non-Deterministic

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

ec
on

ds
)

Size Local Array (x1000)

MultipleTop-Deterministic
OneTop-Deterministic

MultipleTop-NonDeterministic
OneTop-NonDeterministic

(b) Performance (execution time in seconds) of
NSA: One Top vs. Multiple-Top

Figure 12: Performance (execution time in seconds) of NSA.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60

Ti
m

e
(s

ec
on

ds
)

Number of Clients

1000 calls
10000 calls

100000 calls

Figure 13: Performance (execution time in seconds) of POTS.

coordinators that collect requests coming from the clients as follows: (1) CallerAgragration col-
lects dialing requests, (2) CalleAgregation collects waiting requests, (3) V oiceAgregation1 and
V oiceAgregation2 collect voice requests, (4) DiscAgregation1 and DiscAgregation2 collect dis-
connect requests. The second level includes coordinators that synchronize requests of bottom coor-
dinators. More precisely, DialWaitSync synchronizes a dialing request (from CallerAgregation)
with its corresponding waiting request (from CalleAgregation). V oiceSync synchronizes voice
request (from V oiceAgregation1) with its corresponding voice request (from V oiceAgregation2).
DiscSync synchronizes a disconnect request (from DiscAgregation1) with its corresponding dis-
connect request (from DiscAgregation2). Notice that, the proposed model is very concise and
can be modified incrementally e.g. by adding new clients.

Figure 13 shows the performance of POTS for three different values of the number of calls to
be satisfied.

6 Related Work

Coordination [12] as a means to alleviate complexity in complex system design by distinguishing
between a computing part comprising components involved in manipulating data and a coor-

22

dination part responsible for the harmonious cooperation between the components. The paper
points out two main approaches to coordination and studies their relationship. The key concept
relating the two approaches is internalisation meaning that external architectural constraints ap-
plied to a set of components are cast into their code. To the best of our knowledge, there is no
work clearly addressing the problem. In [16], a survey of coordination models and languages is
presented and their classification as either ”data-driven” or ”control-driven”. Data-driven coordi-
nation languages offer coordination primitives which are mixed within the purely computational
part of the code. In the control-driven category, there is a complete separation of coordination
from computational concerns. The state of the computation at any moment in time is defined
in terms of only the coordinated patterns that the components involved in some computation
adhere to. There exists a broad literature on bridging the gap between the design level, as this
is expressed by some ADL, and the implementation level, as this is realized by some computa-
tional model. Archjava [4, 3, 1] is a small, backwards-compatible extension to Java that smoothly
integrates software architecture specifications into Java implementation code. It seamlessly uni-
fies architectural structure and implementation in one language, allowing flexible implementation
techniques, ensuring traceability between architecture and code, and supporting the co-evolution
of architecture and implementation. In [17], is presented a methodology for mapping architectural
representations written in ACME a generic language for describing software architectures, down
to executable code. The mapping process involves the use of the coordination paradigm. All these
works lack formal foundation and do not allow a deep understanding of the differences between
architecture-based and architecture-agnostic approaches. The T/B-component model has some
similarities with formalisms using an input/output interaction mechanism for the description of
hierarchically structured automata such as Argos [13] and Statecharts [10]. Our model extends the
interaction mechanism with data transfer. To avoid causality anomalies [13], we restrict composi-
tion to composable systems where hierarchical structure of interaction eliminates by construction
cyclic dependencies.

7 Conclusion and Future Work

We study a formal framework bridging the gap between architecture description languages and
their implementation. The framework clearly distinguishes between two main approaches for tack-
ling the coordination paradigm. One approach is based on the separation between computational
and coordination mechanisms; the latter are described as constraints that are independent from
the internal behavior of the coordinated components. The other approach consists in internalizing
the constraints by generating a set of coordinators that play the role of an execution engine. For-
mally relating the two approaches opens the way for consistent code generation and guarantees
that important architectural properties are guaranteed to hold in the implementation.

Interaction expressions are a key concept that fully describes the control flow and data flow
involved in an interaction. They are used both to specify connectors, i.e. architectural constraints
as well as executable code in the coordinators. They directly express multiparty interactions and
have features for hierarchical structuring. They can be assimilated to synchronous function calls
from the bottom ports, that return the values computed when an interaction occurs. It is easy
to see that the proposed coordination mechanism is general enough to directly encompass exist-
ing mechanisms. In particular it can express data-driven and event-driven interaction. Usually,
ADLs use connectors that do not involve computation. For example, data-flow is defined by dis-
tinguishing between input and output ports. When an interaction occurs the value of an output
is copied into possibly many inputs. For such languages, the expression of interactions involving
computation requires the use of additional components.

We have already published formal operational semantics for BIP and developed implemen-

23

tations in the form of various execution engines [5]. Nonetheless, so far the relation between
semantics and the corresponding implementation was not fully formalized. The proposed trans-
lation provides a full formalization of the execution engine as a set of interacting coordinators
and an arbiter. Furthermore, it preserves the structure of the BIP models. Each connector is
implemented by a coordinator. Furthermore, by applying the T/B component composition rule
the executable model can be flattened in different possible ways. As shown in [9] flattening allows
the generation of more efficient code.

The implementation of T/B component models can be used either for the execution of BIP
models after internalization of their connectors or for the execution of such models written inde-
pendently of BIP.

We see two main directions for future work. One is to study extensions of interaction expres-
sions to encompass dynamic coordination. This can be achieved by including in the set of local
variables XL, port variables and component variables as for the Dynamic BIP coordination lan-
guage [8]. These variables could be used in the guards and affected by the up and down functions,
making thus possible dynamic configuration of a model.

The second direction is to study techniques for distributing the generated engine in the form
of a T/B component model. So far, we have studied code generation techniques for BIP, that
generate distributed implementations for flattened models [6, 7]. This limits the possibility of
physically distributing coordinators by preserving the architecture hierarchy. The new techniques
will allow full preservation of the coordination structure and enhanced freedom for discovering
optimal implementations.

References

[1] Marwan Abi-Antoun, Jonathan Aldrich, David Garlan, Bradley R. Schmerl, Nagi H. Nahas,
and Tony Tseng. Modeling and implementing software architecture with acme and Arch-
Java. In Gruia-Catalin Roman, William G. Griswold, and Bashar Nuseibeh, editors, 27th
International Conference on Software Engineering (ICSE 2005), 15-21 May 2005, St. Louis,
Missouri, USA, pages 676–677. ACM, 2005.

[2] Miklós Ajtai, János Komlós, and Endre Szemerédi. Sorting in c log n parallel steps. Combi-
natorica, 3(1):1–19, 1983.

[3] Jonathan Aldrich, Craig Chambers, and David Notkin. Architectural reasoning in ArchJava.
In Boris Magnusson, editor, ECOOP 2002 - Object-Oriented Programming, 16th European
Conference, Malaga, Spain, June 10-14, 2002, Proceedings, volume 2374 of Lecture Notes in
Computer Science, pages 334–367. Springer, 2002.

[4] Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: connecting software archi-
tecture to implementation. In Will Tracz, Michal Young, and Jeff Magee, editors, Proceedings
of the 22rd International Conference on Software Engineering, ICSE 2002, 19-25 May 2002,
Orlando, Florida, USA, pages 187–197. ACM, 2002.

[5] Ananda Basu, Philippe Bidinger, Marius Bozga, and Joseph Sifakis. Distributed semantics
and implementation for systems with interaction and priority. In FORTE, volume 5048 of
LNCS, pages 116–133. Springer, 2008.

[6] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, and Joseph Sifakis.
From high-level component-based models to distributed implementations. In EMSOFT, pages
209–218, 2010.

24

[7] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, and Joseph Sifakis. A
framework for automated distributed implementation of component-based models. Distributed
Computing, 25(5):383–409, 2012.

[8] Marius Bozga, Mohamad Jaber, Nikolaos Maris, and Joseph Sifakis. Modeling dynamic
architectures using Dy-BIP. In Software Composition, volume 7306 of LNCS, pages 1–16.
Springer, 2012.

[9] Marius Bozga, Mohamad Jaber, and Joseph Sifakis. Source-to-source architecture transforma-
tion for performance optimization in BIP. IEEE Trans. Industrial Informatics, 6(4):708–718,
2010.

[10] David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Program.,
8(3):231–274, 1987.

[11] Jonathan D. Hay and Joanne M. Atlee. Composing features and resolving interactions. In
SIGSOFT FSE, pages 110–119. ACM, 2000.

[12] Thomas W. Malone and Kevin Crowston. The interdisciplinary study of coordination. ACM
Comput. Surv., 26(1):87–119, 1994.

[13] Florence Maraninchi and Yann Rémond. Argos: an automaton-based synchronous language.
Comput. Lang., 27(1/3):61–92, 2001.

[14] Nenad Medvidovic and Richard N. Taylor. A framework for classifying and comparing ar-
chitecture description languages. In Mehdi Jazayeri and Helmut Schauer, editors, Software
Engineering - ESEC/FSE ’97, 6th European Software Engineering Conference Held Jointly
with the 5th ACM SIGSOFT Symposium on Foundations of Software Engineering, Zurich,
Switzerland, September 22-25, 1997, Proceedings, volume 1301 of Lecture Notes in Computer
Science, pages 60–76. Springer, 1997.

[15] Robin Milner. Communication and Concurrency. Prentice Hall International Series in Com-
puter Science. Prentice Hall, 1989.

[16] George A. Papadopoulos and Farhad Arbab. Coordination models and languages. Advances
in Computers, 46:329–400, 1998.

[17] George A. Papadopoulos, Aristos Stavrou, and Odysseas Papapetrou. An implementation
framework for software architectures based on the coordination paradigm. Sci. Comput.
Program., 60(1):27–67, March 2006.

25

Appendix: Additional Figures

public class Generator extends AtomicComponent {
private State s0 = new State(this);
public TopPort t0 = new TopPort(this);
public Generator(Compound compound) {

super(compound);
setInitial(s0);
addTransition(new Transition(s0 ,s0,t0) {

// default guard and action
});

}
}

public class Modulo2 extends Coordinator {
private Sate s0 = new State(this);
private State s1 = new State(this);
public TopPort t1 = new TopPort(this);
public BottomPort t0 = new BottomPort(this);

public Modulo2(Compound compound) {
super(compound);
setInitial(s0);
addTransition(new Transition(s0 , s1 , null , t0) { });
addTransition(new Transition(s1 , s0 , t1, t0) { });

}
}

public class Modulo4 extends Compound {
public Modulo4 () {

// Behavior Component
Generator g = new Generator(this);

// Coordiantor Components
Modulo2 R0 = new Modulo2(this , "R0");
Modulo2 R1 = new Modulo2(this , "R1");

// Connections
R0.t0.connect(g.t0);
// For R1 , t0 instead of t1, since we reuse the same class Modulo2
R1.t0.connect(R0.t1);

}
}

Figure 14: Java implementation of the Mod-4 Counter (Example 4.7)

26

p1 p2

s0
Exchange

− // swap(p1.getV ar(1), p2.getV ar(0))]

array[n]

indexMax

indexMin
s0

Atomic

min

work

(min,max)

(∅ ← p1 p2).[p1.getV ar(1) > p2.getV ar(0) :

max

(work ← ∅).[tt :
− // array[indexMin] := min;

array[indexMax] := max;]

p2p1

(work ← p1 p2).[p1.getV ar(1) ≤ p2.getV ar(0) :

work

(min,max)

s0
min

max

Finish

min.set(p1.getV ar(0));max.set(p2.getV ar(1)) //
p1.getV ar(0).set(min); p2.getV ar(1).set(max);]

Atomic Atomic Atomic Atomic Atomic Atomic Atomic

F inishExchangeF inishExchangeF inishExchangeF inishExchange

Exchange F inish

Exchange

Exchange F inish

Atomic

Figure 15: Network Sorting Algorithm in T/B component

Exchange

min

work

(min,max)

(∅ ← p1 p2).[p1.getV ar(1) > p2.getV ar(0) :

max

(work ← ∅).[tt :
− // array[indexMin] := min;

array[indexMax] := max;]

s0
Exchange

− // swap(p1.getV ar(1), p2.getV ar(0))]

s0

(work ← p1 p2).[p1.getV ar(1) ≤ p2.getV ar(0) :

min.set(p1.getV ar(0));max.set(p2.getV ar(1)) //

(∅ ← p1 p2).[p1.getV ar(1) > p2.getV ar(0) :

− // swap(p1.getV ar(1), p2.getV ar(0))]

work

Atomic Atomic Atomic Atomic Atomic Atomic Atomic Atomic

p1.getV ar(0).set(min); p2.getV ar(1).set(max);]

(min,max) FinishExchange

FinishExchange F inishExchangeF inishExchangeF inishExchange

F inishExchangeF inishExchange

p1 p2

array[n]

indexMax

indexMin

p2p1

min

max

s0

Atomic

Figure 16: Network Sorting Algorithm in T/B component —Merging Exchange and Finish Coor-
dinators

..

.

.

.

.

...

.

.

.

.

.

.

.

s0

(dial← dial1).[tt :

to.set(dial1.getV ar(1)) //−]
from.set(dial1.getV ar(0);

s0

(dial← dialN).[tt :

to.set(dialN .getV ar(1)) //−]
from.set(dialN .getV ar(0);

to

from

to

from

to

from

id

(wait← waitN).[tt :
to.set(waitN .getV ar(0)) //
waitN .getV ar(1).set(from)]

s0

CalleeAgregation

from

to wait1.getV ar(1).set(from)]

(from, to)

voiceAgregation1

(voiceAgregation1 ← voice1).[tt :
from.set(voice1.getV ar(0));

(voiceAgregation1 ← voice1).[tt :
from.set(voiceN .getV ar(0));

V oiceAgregation1

to.set(voice1.getV ar(1)) //−]

voiceNvoice1 voice2

to.set(voiceN .getV ar(1)) //−]

discAgregation1

discAgregation1

discNdisc1 disc2

discAgregation2

discAgregation2

discNdisc1 disc2

voiceAgregation2

V oiceAgregation2

voiceNvoice1 voice2

(id, from)

wait1 voice1

(from, to) (from, to)

disc1dial1

Client1
initial{to.set(randomExcept(id))}
(id, from)

dial2 wait2 voice2 disc2

Client2

dialN waitN voiceN discN

ClientN

s1s0 s2

(voice1 ← ∅).[tt : − //−]

(dial1← ∅).[tt : − // from.set(id)]

(disc1← ∅).[tt : − // to.set(randomExcept(id)]

(wait1 ← ∅).[tt : − // to.set(id)]

voiceAgregation1 voiceAgregation2

s0

dial wait

− //wait.getV ar(0).set(dial.getV ar(1))]

(∅ ← voiceAgregation1 voiceAgregation2).[
voiceAgregation1.getV ar(0) = voiceAgregation2.getV ar(0)∧
voiceAgregation1.getV ar(1) = voiceAgregation2.getV ar(1) : − //−]

V oiceSync

s0

DialWaitSync

discAgregation1 discAgregation2

DiscSync

discAgregation1.getV ar(1) = discAgregation2.getV ar(1) : − //−]
discAgregation1.getV ar(0) = discAgregation2.getV ar(0)∧

(∅ ← discAgregation1 discAgregation2).[

s0

(∅ ← dial wait).[dial.getV ar(1) = wait.getV ar(1) :

dialNdial2

CallerAgregation

dial

(from, to)

dial1

wait

waitNwait1 wait2

(from, to)

(wait← wait1).[tt :
to.set(wait1.getV ar(0)) //

Figure 17: A T/B component for POTS

27

	Introduction
	Interactions
	Structured Partial Functions
	Interaction Expressions

	Architecture-Based Model: Connectors in BIP
	Atomic Components and Simple Connectors in BIP
	Hierarchical Connectors in BIP

	Architecture Agnostic Model: T/B Components
	T/B Component Model
	Systems and Composition
	T/B Component Encoding of BIP Models

	Experimental Results
	Java Implementation
	Experiments - case studies
	Network Sorting Algorithm
	Case Study: POTS

	Related Work
	Conclusion and Future Work

