
Architecture Internalisation in BIP

Simon Bliudze, Joseph Sifakis
EPFL, Station 14

CH-1015 Lausanne,
Switzerland

firstname.lastname@epfl.ch

Marius Bozga
UJF-Grenoble 1 / CNRS

VERIMAG UMR 5104
F-38041 Grenoble, France
marius.bozga@imag.fr

Mohamad Jaber
American University of Beirut

Lebanon
mj54@aub.edu.lb

ABSTRACT
We consider two approaches for building component-based
systems, which we call respectively architecture-based and
architecture-agnostic. The former consists in describing co-
ordination constraints in a purely declarative manner through
parametrizable glue operators; it provides higher abstraction
level and, consequently, stronger correctness by construc-
tion. The latter uses simple fixed coordination primitives,
which are spread across component behaviour; it is more
error-prone, but allows performance optimisation. We study
architecture internalisation leading from an architecture-based
system to an equivalent architecture-agnostic one, focusing,
in particular, on component-based systems described in BIP.
BIP uses connectors for hierarchical composition of compo-
nents. We study connector internalisation in three steps.
1) We introduce and study the properties of interaction ex-
pressions, which represent the combined information about
all the effects of an interaction. We show that they are a
very powerful tool for specifying and analysing structured
interaction. 2) We formalize the connector semantics of BIP
by using interaction expressions. The formalization proves
to be mathematically rigorous and concise. 3) We introduce
the T/B component model and provide a semantics preserv-
ing translation of BIP into this model. The translation is
compositional that is, it preserves the structure of the source
models. The results are illustrated by simple examples. A
Java implementation is evaluated on two case studies.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory; D.3.2 [Programming Languages]: Language Clas-
sifications—Concurrent, distributed and parallel languages

Keywords
BIP; interaction expressions; connectors; data transfer; archi-
tecture internalisation; Top/Bottom component model

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CBSE’14, June 30–July 4, 2014, Marcq-en-Baroeul, France.
Copyright 2014 ACM 978-1-4503-2577-6/14/06 ...$15.00.
http://dx.doi.org/10.1145/2602458.2602477.

1. INTRODUCTION
Architectures depict design principles, paradigms that can

be understood by all, allow thinking on a higher plane and
avoiding low-level mistakes. They are a means for ensuring
correctness by construction by enforcing global properties
characterizing the coordination between components.

Using architectures largely accounts for our ability to mas-
ter complexity and develop systems cost-effectively. Sys-
tem developers extensively use libraries of reference archi-
tectures ensuring both functional and non-functional prop-
erties, for example fault-tolerant architectures, architectures
for resource management and QoS control, time-triggered
architectures and security architectures.

Using architectures allows shifting the focus of developers
from low-level code to high-level structures ensuring coordi-
nation in a component-based system. These structures are
constraints between the coordinated components expressed
in terms of communication mechanisms such as multiparty
interaction, message passing, broadcast etc. Formally they
can be understood as the assembly of coordination mecha-
nisms which restrict the behavior of the coordinated com-
ponents so as to satisfy a global characteristic property.

There exists an abundant literature on software architec-
tures. Most papers study Architecture Description Lan-
guages (ADLs) for representing and analyzing architectural
designs [15]. ADLs provide both conceptual frameworks
and concrete syntax for characterizing software architec-
tures. They also provide tools for parsing, compiling, an-
alyzing, or simulating architectural descriptions written in
their associated language. While all ADLs are concerned
with architectural design, there is no agreement on what is
an ADL, what aspects of architecture should be modeled in
an ADL, and which of several possible ADLs is best suited
for a particular problem. The borders between the realm of
the ADLs and that of programming languages are blurring.

Despite the considerable diversity in the capabilities of
different ADLs, they all share a common paradigm: soft-
ware can be designed as the hierarchical composition of
components by application of architectures. Components
are computational elements characterized by their behavior
and their interface. The latter defines points of interaction
between a component and its environment.

ADLs specify the “glue” of architectural designs, usually
expressed as the combination of connections between com-
ponents. Connections may denote simple interaction mech-
anisms such as rendezvous, broadcast and function call. But
they also may represent more complex ones such as proto-
cols, buses and schedulers. In both cases, they are intended

to specify two main aspects of interaction: 1) control-flow
that is synchronization constraints; 2) data-flow that is how
data of each component are transformed upon interaction.

If the ADL is expressive enough, it is possible to describe
architectures in a purely declarative manner. Architectures
can be understood as constraints that adequately restrict
the behavior of the coordinated components so as to achieve
a desired coordination property. They are defined to a large
extent, independently from the components that make up
the system. We speak then of an architecture-based approach
for building component-based systems. Another approach
considers irrelevant the distinction between atomic compo-
nents and their associated coordination mechanisms: a sys-
tem consists of a set of components—some providing basic
functionality and some ensuring coordination. Dependencies
between components are explicitly described by their behav-
ior (code) via import clauses, function calls and read/write
instructions. We call this approach architecture-agnostic.

The distinction between architecture-based and architec-
ture-agnostic approaches appears very early in process alge-
bra theories. CCS proposes a single parallel composition op-
erator based on matching between input and output actions
occurring in the description of processes. On the contrary,
CSP, proposes a parallel composition operator parameterized
by a set of actions that must synchronize. The dichotomy
illustrated by this example is further accentuated in prac-
tice. Architecture-based approaches adopted by ADLs are
CSP-like. They consider coordination as external and inde-
pendent from the evolution of components. Architectures
are, to a large extent, entities distinct from behavior. They
are combinations of operators parameterized by the allowed
interactions. Architecture-agnostic designs are based on a
single composition operator. Coordination is described in
terms of communication primitives appearing in their code.
This approach is taken by most programming languages and
by the various process algebras cloned from CCS.

In this paper, we study architecture internalisation leading
from an architecture-based system to an equivalent archi-
tecture-agnostic one. Two main reasons motivate this study.
One is the exploration of relationships between architecture-
based and architecture-agnostic approaches. The other is
more practically oriented and deals with the possibility to
compile declarative-style architectural constraints into exe-
cutable code. Is it possible to generate from an architecture-
based system an equivalent architecture-agnostic one, where
architecture glue is cast in dependencies between compo-
nents explicitly described in their code?

We study the internalisation problem for component-based
systems described in BIP [5]. BIP (Behaviour, Interaction,
Priority) is a component-based framework that allows hi-
erarchical composition of components by using connectors.
Components can be considered as transition systems. A
component interface consists of ports that label its transi-
tions with associated exported variables. From some state,
a port p can participate in an interaction if the component
has a transition labeled by p which is enabled at this state.

In BIP, a connector is composed of two distinct parts:
Control-flow part specifies a relation between a set of

bottom ports and a set of top ports. The interaction requires
synchronization of all the ports. The top ports can be used
to export the results of the interaction.

Internalisation

p

p

q

q

w
(w ← p q).[guard : up // dn] (w ← p q).[guard : up // dn]

p

q

q

w

p

Figure 2: A BIP and the corresponding T/B component

Data-flow part specifies the computation associated with
the interaction. The computation can affect local variables
and those associated with the ports.

In Fig. 1a, we provide the specification of the connector
describing the interaction between two ports p and q. The
control flow part is described by the relation w ← pq mean-
ing that for the interaction w to take place both p and q
should participate—{p, q} is the set of bottom ports and
{w} is the set of top ports. The data-flow part consists of
an upward computation followed by a downward computa-
tion separated by “ // ”. The execution of an interaction is
atomic. For the considered example, the interaction between
p and q consists in computing max(xp, xq) and assigning this
value to the variables xp and xq. Fig. 1b depicts a hierar-
chical connector r enforcing the interaction between ports
p, q and s. The execution of this interaction results in an
upward computation of max(max(xp, xq), xs) followed by a
downward computation assigning this value to the port vari-
ables of the atomic components. As shown in [10], hierarchi-
cal connectors can be flattened into equivalent connectors.
Fig. 1c shows a connector equivalent to the hierarchical con-
nector by eliminating the interaction w.

Internalization of connectors in BIP models, consists in
replacing them by a set of coordinators that directly im-
plement their semantics. Coordinators play the role of an
Engine that handles each interaction atomically. The in-
ternalised BIP model is the plain composition of the atomic
BIP components with a set of coordinators, in bijection with
the BIP connectors. To describe coordinators, we extend the
BIP component model. The behavior of the components of
the extended model is a set of transitions labeled with in-
teraction expressions. Their interface is composed of sets of
top and bottom ports and associated variables. As all the
interaction capabilities of components are specified in their
behavior, they can be composed without any additional ex-
ternal information. We show that component composition
in the new model, called Top/Bottom (T/B) model, can be
expressed by using a single associative partial operator ‖.

The correspondence between a connector and the associ-
ated coordinator is straightforward. The latter is a T/B
component that has the same interface as the connector
(same set of top and bottom ports and associated variables).
It exhibits a cyclic behavior by computing the data transfer
functions of the connector. Fig. 2 illustrates the principle
of connector internalisation on a simple example. The cor-
responding coordinator is a stateless automaton that can
perform a transition labeled by the interaction expression.
Top and bottom ports are shown by blue outward- and red
inward-facing triangles, respectively.

We study the connector internalisation problem for BIP
in three steps. First, we study interaction expressions and
their properties. We show in particular that they are a very
powerful tool for specifying and analyzing structured inter-
action. Second, we formalize the connector semantics of BIP
by using interaction expressions. The formalization proves

xp := xw;xq := xw]

p xp q xq

w xw

(w ← p q).[tt : xw := max(xp, xq) //

(a) Simple BIP connector

p xp q xq

(w ← p q).[tt : xw := max(xp, xq) // xp := xw;xq := xw]
(r ← w s).[tt : xr := max(xw, xs) // xw := xr;xs := xr]

s xs

w xw

r xr

(b) Hierarchical BIP connector

p xp q xq

r xr

s xs

(r ← p q s).[tt : xr := max(xp, xq, xs) //
xp, xq, xs := xr]

(c) Simple equivalent of Fig. 1b

Figure 1: BIP connectors

G

FI

K \ J

J ∩K

u (G ◦ F)(u)

J

L

Figure 3: Composition of structured functions

to be mathematically rigorous and concise. It treats on an
equal footing control and data flow aspects. It differs from
previous formalizations that were focusing mainly on con-
trol flow. Third, we introduce the T/B component model
and provide a semantics preserving translation of BIP into
this model. The translation is compositional: it preserves
the structure of the source models.

We discuss an implementation of the T/B components and
provide an algorithm for their execution. The implementa-
tion can be used for the execution of BIP components after
internalisation of their connectors. Furthermore, it can be
used for the execution of general T/B models.

The paper is structured as follows. In Sect. 2, we intro-
duce the notion of interaction expressions, shared by all the
models in the subsequent sections. In Sect. 3, we provide a
formalization of connectors in BIP and present their prop-
erties. In Sect. 4, we present the T/B component model,
study its properties and present a structured encoding of
BIP models. In Sect. 5, we provide experimental results
about a Java-based implementation.

2. INTERACTIONS

2.1 Structured Partial Functions
Let (Di)i∈I be data domains, I a universal index set. For

each I ⊆ I, denote by D[I]
∆
=
∏
i∈I Di the set of unordered

tuples u = (ui)i∈I , such that ui ∈ Di, for all i ∈ I. For

I = ∅, we have D[∅] = 1
∆
= {∗}. For each u = (ui)i∈I ∈ D[I]

and I ′ ⊆ I define the projection uI′ = (ui)i∈I′ ∈ D[I ′].

We also denote uI′
∆
= uI\I′ the complementary projection.

For I, J ⊆ I, the merge of tuples is the partial operation
t : D[I]×D[J]→ D[I∪J] defined only if 6 ∃i ∈ I∩J : ui 6= vi,

by putting, for u ∈ D[I],v ∈ D[J], u t v
∆
= (wi)i∈I∪J , with

∀i ∈ I, wi = ui and ∀j ∈ J, wj = vj .
Consider structured partial functions F : D[I] → D[J].

For each J ′ ⊆ J the projection FJ′ : D[I]→ D[J ′] is defined

by putting FJ′(u)
∆
= F (u)J′ , for all u ∈ D[I]. The comple-

mentary projection notation is extended analogously: FJ′
∆
=

FJ\J′ . The composition of two structured partial functions
F : D[I] → D[J] and G : D[K] → D[L] is the structured
partial function G ◦ F : D[I ∪ (K \ J)] → D[J ∪ L] defined,

when all sub-terms are defined, by putting (G ◦ F)(u)
∆
=

F (uI) tG(FK∩J(uI) t uK\J) (see Fig. 3).

Proposition 2.1 Composition of structured partial functions
is associative. It is commutative whenever J∩K = I∩L = ∅.

For any I ⊆ I, let XI = {xi :Di | i ∈ I} be a set of typed
variables xi with corresponding domains Di. We write XI :
D[I] to denote the product domain of the variables in XI .

Let F : D[I]→ D[J] be a structured partial function, such
that I ∩ J 6= ∅ and consider a non-empty set of variables
XL : D[L] with L ⊆ I ∩ J . The variables XL can be used
with F as local variables to compute values in D[J \L] based
on values in D[I \ L]; the variables XL are updated by side
effect. We write F [[XL]] : D[I \ L]→ D[J \ L].

Let v ∈ D[L] be the valuation of XL and let u ∈ D[I\L]. If
F is defined on (u,v), an application of F [[XL]] to u produces
the values w ∈ D[J \ L] and the new valuation v′ ∈ D[L] of
XL, such that (w,v′) = F (u,v).

Lemma 2.2 Let F1[[XL1]] and F2[[XL2]] be two structured
partial functions and assume L1 ∩ L2 = XL1 ∩ XL2 = ∅.
Then holds F1[[XL1]] ◦ F2[[XL2]] =

(
F1 ◦ F2

)
[[XL1 ∪XL2]].

Structured partial functions with local variables are par-
ticularly useful for the definition of the semantics of assign-
ment expressions of the form (XJ , XL) := e(XI , XL), where
e is an expression on variables XI and XL. Indeed, the ex-
pression defines a structured partial function e : D[I ∪L]→
D[J∪L] and the fact that variables XL appear on both sides
of the assignment is reflected by considering e[[XL]].

2.2 Interaction Expressions
Interaction expressions defined below represent the com-

bined information about all the effects of an interaction
involving several ports. We show that they are the ba-
sic and general concept for expressing coordination in both
architecture-based and architecture agnostic models.

Let P ⊆ I be a set of ports. For each p ∈ P, let xp :Dp
be a typed variable. The interaction expressions represent
the combined information about the effects of an interaction
involving several ports.

Definition 2.3 An interaction is an expression of the form
α(XL) = (P ← Q).[g(XQ, XL) : (XP , XL) := up(XQ, XL) //
(XQ, XL) := dn(XP , XL)], where P,Q ⊆ P are the top and
bottom sets of ports ; XL : D[L] is the set of local vari-
ables ; g(XQ, XL) is the boolean guard ; up(XQ, XL) and
dn(XP , XL) are respectively the up- and downward data
transfer expressions.

For an interaction expression α(XL) as above, we denote

by top(α)
∆
= P , bot(α)

∆
= Q and supp(α)

∆
= P ∪Q the sets of

top, bottom and by all ports in α, respectively. We denote
gα, upα and dnα the corresponding expressions in α.

The first part, (P ← Q), of an interaction expression de-
scribes the control flow, that is the dependency relation be-
tween the bottom and the top ports. The expression in
the brackets describes the data flow. The guard g(XQ, XL)
gives the dependency between the two parts: interaction is
only enabled when the values of the local variables together
with those of variables associated to the bottom ports sat-
isfy a boolean condition. As a side effect, the firing of an
interaction expression can modify the local variables XL.

Notice that an interaction expression can be understood
as a generalized synchronous function call involving a set
of callees P and a set of callers Q. When the callers Q
are enabled, they offer a set of parameter values XQ that
are used to compute sequentially the two functions up and
dn. The computation is possible only if the guard g is true
depending on the values of the exported parameters and the
local variables. The up function updates the variables of the
callees and the local variables. The returned values of the
caller variables are computed by the dn function that also
updates the local variables. As explained in Section 3, when
interactions are structured hierarchically, the callees at one
level may become callers for the upper levels.

Formally, the data transfer semantics of α is defined by
two parameterised structured partial functions α↑[[XL]] :
D[Q]→ D[P] and α↓[[XL]] : D[P]→ D[Q]:

α↑[[XL]](u) = up[[XL]](u) if g(u,v) = tt , for all u ∈ D[Q] ,

α↓[[XL]](u) = dn[[XL]](u) , for all u ∈ D[P] ,

where v is the current valuation of variables XL. The top-

level semantics of α is
_
α [[XL]] : D[Q]→ D[Q], with

_
α [[XL]] =

α↓[[XL]] ◦ α↑[[XL]].

Example 2.4 The interaction expression αio(∅) = (w ←
out in1 in2).[tt : xw := xout // xin1 , xin2 := xw] represents
the coordination between an port out that delivers simulta-
neously its value to two ports in1 and in2. To avoid synchro-
nization when the data at ports in have the same value as
at out, we add a guard: (w ← out in1 in2).[(xout 6= xin1)∨
(xout 6= xin2) : xw := xout // xin1 , xin2 := xw] . The inter-
action expression Max (∅) = (w ← pqr).[tt : xw := max(xp,
xq, xr) // xp, xq, xr := xw] allows the synchronization between
ports p, q and r and returns the maximum of the values as-
sociated to these ports.

Definition 2.5 The composition of interaction expressions
is a partial operation ‘ ;’ defined, for two interaction expres-
sions α1, α2, with XL1 ∩ XL2 = ∅, XL = XL1 ∪ XL2 and
αi(XLi) = (Pi ← Qi).[gi(XQi , XLi) : (XPi , XLi) := upi(XQi ,
XLi) // (XQi , XLi) := dni(XPi , XLi)], for i = 1, 2, by putting

(α1;α2)(XL)
∆
= (P ← Q).[g(XQ, XL) :

(XP , XL) := up(XQ, XL) // (XQ, XL) := dn(XP , XL)] ,

where P = P1 ∪ P2 and Q = Q1 ∪ Q2, up(XQ, XL) =
up2(XQ2 , XL2) ◦ up1(XQ1 , XL1), dn(XP , XL) =
dn1(XP1 , XL1) ◦ dn2(XP2 , XL2), g(XQ, XL) =

g1(XQ1 , XL1) ∧
[
g2(XQ2 , XL2) ◦ up1(XQ1 , XL1)

]
P1∪L1

(the projection in the second conjunct removes the outputs
of up1, keeping only the boolean value of g2—cf. Fig. 3).

Notice that three expressions g(XQ, XL), up(XQ, XL) and
dn(XP , XL) do not involve variables in XP1∩Q2 .

Example 2.6 We continue Ex. 2.4. The composition of two
interaction expressions, Max1(∅) and Max2(∅), respectively

(w ← pqr).[tt : xw := max(xp, xq, xr) // xp, xq, xr := xw]

(z ← uvw).[tt : xz := max(xu, xv, xw) // xu, xv, xw := xz]

is the new interaction expression:

(Max1;Max2)(∅) = (wz ← pqruvw).[tt :

xw := max(xp, xq, xr), xz := max(xu, xv,max(xp, xq, xr) //

xp, xq, xr, xu, xv, xw := xz]

Proposition 2.7 The operator ‘ ;’ is associative. When P1∩
Q2 = P2 ∩Q1 = XL1 ∩XL2 = ∅, it is also commutative.

Under this disjointness condition, we write α1|α2
∆
= α1;α2

= α2;α1 and speak of interaction synchronisation.

3. ARCHITECTURE-BASED MODEL
This section provides a brief overview of BIP and a for-

malisation for simple and hierarchical connectors in BIP.
The latter formalisation comprises abstract syntax and de-
notational semantics in terms of partial functions operating
on structured domains. In addition, it formalises the flatten-
ing as a rewriting rule on hierarchical connectors and proves
its soundness as a semantics-preserving transformation.

3.1 Simple Connectors in BIP
In BIP, systems are build by composing atomic compo-

nents with interactions defined using connectors. As in
Sect. 2, let P ⊆ I be a set of ports and assume that a
variable xp :Dp is associated with each port p ∈ P.

Definition 3.1 An atomic component B is a tuple B =
(Σ, P,XL : D[L],−→) where Σ is a finite set of control loca-
tions ; P ⊆ P is a finite set of ports—the interface of B ;
XL : D[L] is a set of local variables, with XL ∩ XP = ∅ ;
−→ ⊆ Σ×E×Σ is a finite transition relation, with E the set of
interaction expressions of the form p(X) = (p ← ∅).[g(X) :
xp := up(X) //X := dn(xp, X)], for p ∈ P and X ⊆ XL.

Henceforth, we call interaction expressions of this form
actions. We use p for both the port and the action.

Definition 3.2 The operational semantics of an atomic com-
ponent B = (Σ, P,XL :D[L],−→) is given by an LTS σ (B) =(
Σ × D[L], 2P × (

⋃
p∈P Dp)

2,−→
)
, where a state (q, v) con-

sists of a control state of B and the valuation v ∈ D[L] of
local variables; −→ is the minimal transition relation defined
by the following rule:

p(X) = (p← ∅).[g(X) : xp := up(X) //X := dn(xp, X))]

q
p(X)−−−→ q′, g(v) = tt , vpup = upp(v) , v′ = dn

(
vpdn, upX(v)

)
(q, v)

p−−−−−→
v
p
up:v

p
dn

(q′, v′) ,

where upp and upX are the corresponding components of the
up expression; vpup, v

p
dn ∈ Dp are the data values associated

to the port p at the upward and downward data transfer.

cnt1 mv2

ready1

ready2

cnt2mv1

(mv0 ← mv1mv2).[d1, d2 > 0 : d0 := min(d1, d2); dir0 := dir1 + dir2 // d1, d2 := d0; dir1, dir2 := dir0]

(cnt0 ← cnt1cnt2).[tt : id0 := rnd(id1, id2) // id1, id2 := id0]

ldr := (id2 = 2)]

(cnt2 ← ∅).
[tt : id2 := 2 //

(mv2 ← ∅).[tt :

// e := h2(e, d2, dir2)]

d2 := f2(e); dir2 := dir

(ready2 ← ∅).[ldr : dir := rnd(−1,+1) //−]

(ready2 ← ∅).[¬ldr : dir := 0 //−]

Local data: e, dir :R; ldr :B

(mv1 ← ∅).[tt :

// e := h1(e, d1, dir1)]

d1 := f1(e); dir1 := dir

ldr := (id1 = 1)]

(cnt1 ← ∅).
[tt : id1 := 1 //

(ready1 ← ∅).[¬ldr : dir := 0 //−]

(ready1 ← ∅).[ldr : dir := rnd(−1,+1) //−]

Local data: e, dir :R; ldr :B

Figure 4: Leader/Follower example

Example 3.3 The system shown in Fig. 4 consists of two
identical atomic components that can toghether move in one
of two opposite directions. They have to agree on the dis-
tance, based on their respective energy levels. Each compo-
nent has two real local variables: e to store its energy level
and dir to store its opinion on the direction to follow, as
well as a boolean variable ldr to remember whether it is a
leader or not. In each operation cycle the i-th component
performs the following three steps:

First, the component performs the connect action cnti(ldr)
= (cnti ← ∅).[tt : idi := i // ldr := (idi = i)], where i is the
constant component id (see Fig. 4) and idi is the variable
associated to the port cnti. In the upward transfer, the com-
ponent proposes itself as a candidate for the leadership. In
the downward transfer, the updated value of idi is compared
to the component id. The result of this comparison is stored
in the local variable ldr.

In the second step, the component performs its corre-
sponding action readyi(dir, ldr). The leader randomly picks
the direction and stores it in the local variable dir: (readyi ←
∅).[ldr : dir := rnd(−1,+1) //−]. The follower stores zero:
(readyi ← ∅).[¬ldr : dir := 0 //−]. These actions do not
have any downward data transfer, but only update the local
data in the upward transfer.

In the last step, the leader and the direction of the move-
ment are chosen. The component performs the action move:
(mvi ← ∅).[tt : di := fi(e); diri := dir // e := hi(e, di, diri)].
In the upward transfer, the component exposes the distance
it can cover based on its available energy stored in the local
variable e, as well as its direction suggestion stored in the
local variable dir from the previous step. In the downward
transfer, the move is materialised by updating the energy
level of the component, based on the new values of the di-
rection and distance of the move.

Definition 3.4 A simple connector is an interaction ex-
pression α(XL), such that top(α) = {w} is a single port w ∈
P, bot(α) = a ⊆ P, such that w 6∈ a, and both up and g ex-
pressions do not involve local variables, i.e. α(XL) = (w ←
a).[g(Xa) : (xw, XL) := up(Xa) //Xa := dn(xw, XL)].

Example 3.5 Consider the connector (without local vari-
ables) shown in Fig. 4:

(cnt0 ← cnt1cnt2).[tt : id0 := rnd(id1, id2) // id1, id2 := id0].

On every cnti port the value idi represents the id of a com-
ponent interacting through this port. The guard of the
interaction expression is a constant true, hence no addi-
tional restrictions are imposed on the interaction. As part

of the upward data transfer the connector randomly picks
and propagates one of the proposed id’s. At the downward
data transfer, the updated value is communicated to both
participating ports.

Definition 3.6 Let B = {B1, . . . , Bn} be a finite set of
atomic components with Bi = (Σi, Pi, XLi : D[Li],−→) such
that their respective sets of ports and variables are pairwise
disjoint. Let Γ be a set of simple connectors such that,
for every α ∈ Γ, top(α) 6∈

⋃n
i=1 Pi, bot(α) ⊆

⋃n
i=1 Pi and

|supp(α)∩ Pi| ≤ 1 for all i ∈ [1, n]. The operational seman-
tics of the parallel composition Γ(B) is defined as the LTS
(Σ, P,−→) where Σ =

∏n
i=1(Σi×D[Li]), P = {top(α) |α ∈ Γ},

−→ is the minimal transition relation defined by the rule

α(XL) ∈ Γ top(α) = w bot(α) = a = {pi | i ∈ I}
∀i ∈ I, qi

pi(Xi)−−−−→ q′i ∀i 6∈ I, (qi = q′i ∧ ui = u′
i)

α? = (|a);α (u′
i)i∈I =

[
_
α? [[XL]]

(
(ui)i∈I

)]⋃
i∈I Li

(q1,u1), . . . , (qn,un)
w−→ (q′1,u

′
1), . . . , (q′n,u

′
n) ,

where |a is the synchronisation of all pi(Xi) with pi ∈ a.

Notice that the involved interaction expressions are par-
tial. Hence, for instance, when the guard of one of the ac-
tions is not satisfied, the values (u′

i)i∈I are undefined and,
thus, the rule is not applicable.

Intuitively, an interaction can be fired only if its guard
and all guards associated to the corresponding component
actions are true. When an interaction is fired, its upward
transfer is computed first using the exposed values offered by
the participating components. Then, the downward transfer
modifies back all the port variables followed by execution of
the update functions associated to component actions.

Example 3.7 The first synchronisation among the atomic
components of Ex. 3.3 is performed through the connector
(cnt0 ← cnt1cnt2).[tt : id0 := rnd(id1, id2) // id1, id2 := id0].
The id of the leader is randomly selected in the connector
and transferred downward through both participating ports.
In the next step each component idependently performs its
corresponding step readyi (see Ex. 3.3). Finally, compo-
nents synchronise again through the connector

(mv0 ← mv1mv2).[d1, d2 > 0 :

d0 := min(d1, d2); dir0 := dir1 + dir2 //

d1, d2 := d0; dir1, dir2 := dir0)] .

The distances each component can cover and their direction
suggestions are combined in the connector to compute the

global distance and direction (variables d0 and dir0), which
are propagated further, updated and then distributed down
to components.

3.2 Hierarchical Connectors in BIP

Definition 3.8 A hierarchical connector hα is a term gen-
erated by the grammar hα ::= α | α〈hα1, . . . , hαn〉, where α
denotes an arbitrary simple connector. We extend the top(),
bot() and supp() to hierarchical connectors:

top(α〈hα1, . . . , hαn〉) = top(α) ,

bot(α〈hα1, . . . , hαn〉) =
⋃n
i=1 bot(αi) ,

supp(α〈hα1, . . . , hαn〉) = supp(α) ∪
⋃n
i=1 supp(hαi) .

hα = α〈hα1, . . . , hαn〉 is valid iff all sets supp(hαi), for
i ∈ [1, n], are pairwise disjoint; for all i ∈ [1, n], holds
supp(hαi) ∩ supp(α) = {top(hαi)} and top(hαi) ∈ bot(α) ;
and all hierarchical sub-connectors hα1, . . . , hαn are valid.

We tacitly restrict ourselves to valid hierarchical connec-
tors. Their data transfer semantics is defined structurally:

α〈hα1, . . . , hαn〉↑ = α↑ ◦ (hα1
↑ ◦ · · · ◦ hαn↑)

α〈hα1, . . . , hαn〉↓ = (hα1
↓ ◦ · · · ◦ hαn↓) ◦ α↓

Notice that the order of composition for sub-connector func-
tions is irrelevant as they operate on disjoint sets of ports.

Example 3.9 We continue the running example of this sec-
tion. Consider a system shown in Fig. 5, combining that of
Fig. 4 with a third atomic component of exactly the same
type as the other two. The behavour of the systems is gener-
alised by a hierarchical application of the same (up to port
renaming) connectors mv and cnt. Composing the inter-
action expressions for simple connectors cnt0 and cnt gives
(cnt0 cnt ← cnt0 cnt1 cnt2 cnt3).[tt : id0 := rnd(id1, id2);
id := rnd(id1, id2, id3) // id0, id1, id2, id3 := id]. Notice
that, by discarding the port cnt0 and the associated vari-
able id0, we obtain an equivalent simple connector (cnt ←
cnt1 cnt2 cnt3).[tt : id := rnd(id1, id2, id3) // id1, id2, id3 :=
id].

Similarly, any hierarchical connector can be flattened into
a simple one [10], allowing us to extend BIP operational
semantics (Def. 3.6) to hierarchical connectors. This is done
formally in the extended version of this paper [6].

4. ARCHITECTURE AGNOSTIC MODEL

4.1 T/B Component Model
Architecture-agnostic models are obtained from BIP mod-

els as the plain composition of Top/Bottom (T/B) compo-
nents. In the translation, BIP connectors are replaced by
T/B components that play the role of coordinators. These
are extensions of the BIP components whose transitions are
labeled with interaction expressions. The parallel composi-
tion mechanism relies on the matching between bottom and
top ports (as for hierarchical connectors).

Interaction execution exhibits a cyclic pattern. In each
cycle, the data of interacting atomic components are propa-
gated upwards through top ports towards all relevant coor-
dinators. At each stage, the computation can influence the

decision as to what transitions of atomic components are en-
abled. Finally, once a global interaction has been choosen at
the top level, the updated data is propagated back to atomic
components. As above, we assume a universal set of ports
P and, for each port p ∈ P, a typed variable xp :Dp.

Definition 4.1 A T/B component is a tuple T = (Σ, P bot,
P top, XL :D[L],−→), where Σ is a set of states, P bot, P top ⊆
P are finite sets of bottom and top ports; XL : D[L] is a
set of local data variables; −→⊆ Σ × E × Σ is a transition
relation, with E being the set of action expressions α(X),
such that X ⊆ XL, top(α) ⊆ P top, bot(α) ⊆ P bot. We write

q
α(X)−−−→ q′ for

(
q, α(X), q′

)
∈−→.

A T/B component (Σ, P bot, P top, XL :D[L],−→) is an atomic
component, if P bot = ∅; it is a coordinator if P bot 6= ∅, but
P bot ∩ P top = ∅. Finally, if P bot ∩ P top 6= ∅, the T/B com-
ponent is compound (obtained by hierarchically composing
atomic components and coordinators).

Definition 4.2 The operational semantics of a T/B com-
ponent T = (Σ, P bot, P top, XL :D[L],−→) is given by an LTS
σ (T) = (Σ×D[L], 2P ×D[P]2,−→), where a state (q, v) con-
sists of a control state of T and the value v ∈ D[L]; −→ is the
minimal transition relation defined by the following rule:

α(X) = (atop ← abot).[g(Xabot , X) :
(Xatop , X) := up(Xabot , X) // (Xabot , X) := dn(Xatop , X)]

q
α(X)−−−→ q′ g(vbotup , v) = tt vtopup = upatop(vbotup , v)

(vbotdn , v
′) = dn

(
vtopdn , upX(vbotup , v)

)
(q, v)

a−−−−−→
vup:vdn

(q′, v′) ,

where a = atop ∪ abot; upatop and upX are the correspond-
ing components of the up expression; vup,vdn ∈ D[P] are
partial data valuations associated to ports at the upward
and downward data transfer phases respectively (the values
of variables assocaited to ports that do not participate in the
interaction are undefined).

Notice that T/B components and their operational seman-
tics generalise atomic BIP components (Def. 3.2). In par-
ticular, all components in the examples of Sect. 3 are T/B
components without bottom ports.

Note 4.3 Notice that the values vup and vdn do not di-
rectly correspond to inputs and outputs. Indeed, in terms
of the transferred data, the component input is the pair
(vbotup ,v

top
dn), whereas its output is the pair (vtopup ,v

bot
dn).

Recall the generalised function call metaphor (see the dis-
cussion after Def. 2.3). When a transition labelled by α(X)
is called, it is provided the values vbotup . If these values satisfy
the guard g, they are used by the function up to compute
the values vtopup , which are provided to the subsequent callees.

In return, the latter provide the updated values vtopdn , which

are, finally, used by the function dn to compute vbotdn .

4.2 Systems and Composition

Definition 4.4 Let S = {(Σi, P boti , P topi , XLi :D[Li],−→)}ni=1

be a finite set of T/B components and denote P bot
∆
=
⋃n
i=1 P

bot
i

and P top
∆
=
⋃n
i=1 P

top
i . Here and below, we skip the index on

−→ since it is always clear from the context. S is a system iff

cnt1mv1

ready1

ready2

cnt2 mv2 cnt3 mv3

ready3

cnt0

mv0

(mv ← mv0mv3).[d0, d3 > 0 : d := min(d0, d3); dir := dir0 + dir3 // d0, d3 := d; dir0, dir3 := dir]

(cnt← cnt0cnt3).[tt : id := rnd(id0, id3) // id0, id3 := id]

ready1

ready1

cnt
1 m

v 1

ready3

ready3

cnt
3

m
v 3

ready2

ready2

cnt
2

m
v 2

Figure 5: Leader/follower example with three atomic components

the sets of local variables and top ports of all the components
are pairwise disjoint, i.e. ∀i 6= j, Xi∩Xj = P topi ∩P topj = ∅.
A system is closed if P bot = P top.

Definition 4.5 Let Ti = (Σi, P
bot
i , P topi , XLi : D[Li],−→),

for i = 1, 2, be two T/B components, such that P top2 ∩
P bot1 = ∅ (cf. Def. 4.8 below). Their parallel composition is

a compound T/B component T1 ‖ T2
∆
= (Σ, P bot, P top, XL :

D[L],−→), where Σ = Σ1 × Σ2, P bot = P bot1 ∪ P bot2 , P top =
P top1 ∪P top2 , XL = XL1 ∪XL2 and −→ is the minimal transi-
tion relation defined by the following rules (i 6= j ∈ {1, 2}):

qi
αi(Xi)−−−−→ q′i

qiqj
αi(Xi)−−−−→ q′iqj ,

q1
α1(X1)−−−−−→ q′1 q2

α2(X2)−−−−−→ q′2

q1q2
(α1;α2)(X)−−−−−−−→ q′1q

′
2 .

When P top1 ∩ P bot2 = ∅, we put T1 ‖ T2
∆
= T2 ‖ T1.

Thus, ‖ is a commutative partial operator defined when
P top2 ∩ P bot1 = ∅ or P top1 ∩ P bot2 = ∅. When both equali-
ties hold, the transition in the conclusion of the second rule
is labelled by α1 ‖ α2, which is symmetric in the order of its
operands. When both P top2 ∩ P bot1 6= ∅ and P top1 ∩ P bot2 6= ∅,
this means that there is a data-flow causality loop among
the two components (as in I/O models [11, 14]) and the
composition is undefined.

Example 4.6 Fig. 6a shows a simple model consisting of
two T/B components R0 and R1 without data variables and
transfer, identical up to port renaming. Each models a Mod-
2 counter, which produces one event on its top port (shown
by blue outward-facing triangles) for every second event on
its bottom port (shown by red inward-facing triangles). R0

and R1 share port t1. Fig. 6b shows the T/B component
R0 ‖ R1 (for clarity we omit two transitions indicated by
the dotted green arrow).

Proposition 4.7 Composition operator ‖ is associative.

Definition 4.8 Let S be a system and consider the directed
graph τ(S) = (S,E), having the components of the system as
vertices and the set of edges E = {(Ti, Tj) |P topi ∩ P botj 6= ∅}.
In other words, there is an edge from Ti to Tj if some of the
top ports of the former are bottom ports of the latter. S is
composable iff τ(S) is a directed acyclic graph.

In a composable system S, any pair of components can be
ordered so as to satisfy the requirement of Def. 4.5. Thus, by
Prop. 4.7, the composed T/B component ‖S is well-defined.

As in process calculi like CCS [16], in order for the compo-
sition operator ‖ to be associative, it must allow interleaving
(i.e. independent firing) of transitions involving matchable

ports (compare first and third rules in Def. 4.5 with the sec-
ond rule). The meaning of a complete system is defined as
the largest closed sub-system obtained by pruning out all
the non-matching transitions; thus the following definition.

Definition 4.9 Let S = {(Σi, P boti , P topi , XLi :D[Li],−→)}ni=1

be a closed composable system and let ‖S =
(
Σ, P bot, P top, XL :

D[L],−−→
par

)
. The restriction of S is given by a T/B compo-

nent ρ(S) =
(
Σ, P bot, P top, XL :D[L],−→

pr

)
, where −→

pr
is the

minimal transition relation defined by the rule

q
α(X)−−−→
par

q′ bot(α) = top(α)

q
α(X)−−−→
pr

q′ .

The second premise means that, for every bottom (resp.
top) port, α must also contain the corresponding top (resp.
bottom) port. Restriction, in our context, is the generalisa-
tion of the CCS restriction operator.

Example 4.10 Fig. 6c shows a system comprising T/B com-
ponents R0 and R1 as in Ex. 4.6 and closed with two addi-
tional components: an atomic T/B component that gener-
ates events t0 and a top-level T/B component that consumes
t2. One can easily see that the restriction of this system,
shown in Fig. 6d is, indeed, a Mod-4 counter.

Lemma 4.11 For any transition in the restriction of a closed
composable system, the data transfer coincides with the top-
level semantics of the composition of the corresponding in-
teraction expressions.

4.3 T/B Component Encoding of BIP Models
Any atomic BIP component B = (Σ, P,XL :D[L],−→) can

be trivially encoded as a T/B component by making all ports
of B top ports, i.e. τ(B) = (Σ, ∅, P,XL :D[L],−→). Thus, we
only have to provide the encoding for connectors. Let α(X)
= (w ← a).[g(Xa) : (xw, X) := up(Xa) //Xa := dn(xw, X)]
be a simple connector with a set of local variables X : D.

The T/B component encoding of α is given by τ(α)
∆
=(

{∗}, P, {w}, X :D, {∗ α(X)−−−→ ∗}
)
.

Hierarchical connectors are encoded component-wise:

τ
(
α〈hα1, . . . , hαn〉

) ∆
=
{
τ(α)

}
∪
⋃n
i=1 τ(hαi).

In the BIP operational semantics Def. 3.6, only one con-
nector α ∈ Γ can be fired at a time. On the contrary,
parallel composition of T/B components allows any num-
ber of component transitions to synchronise. To enforce
BIP semantics, for a set of connectors Γ, we add an arbiter:

τ(Γ) =
(
{∗}, PΓ, ∅, {yw :Dw |w ∈ PΓ}{∗

α̃−→ ∗ |α ∈ Γ}
)
,

0 1

32

∅ ← t0

t1 ← t0

∅ ← t1

t2 ← t1

R0

R1

t0

t1

t2

(a)

20 21

3031

∅ ← t0

∅
←
t 0
t 1 ∅ ←

t
1

t1 ← t0

t
1
←
t
0 t

1

∅ ← t0

t
2
←
t
0 t

1

t
2 ←

t
1

t1 ← t0

t
1 t

2
←
t
0 t

1

t1 t2

t0 t1

(b)

R0 R1

t0 ← ∅

∅ ← t2

t0

t1 t2

(c)

20 21

3031

t0 ← t0

t
0 t

1
←
t
0 t

1

t0 ← t0

t 0
t 1
t 2
←
t 0
t 1
t 2

(d)

Figure 6: T/B component model for the Mod-4 Counter

where PΓ =
⋃
α∈Γ top(α), yw are fresh variables and, for

each α ∈ Γ and {w} = top(α), we put α̃(yw) = (∅ ← w).[tt :
yw := xw // xw := yw], that is the data provided by α in the
upward data transfer is reinjected back into the downward
data transfer by α̃.

Theorem 4.12 Let B be a set of atomic BIP components
and Γ be a set of hierarchical connectors and put S = {τ(Γ)}∪⋃
B∈B

{
τ(B)

}
∪
⋃
α∈Γ τ(α). The LTS σ (ρ(S)) and Γ(B) are

isomorphic: there exist agreeing bijections between their sets
of states and transitions.

5. EXPERIMENTAL RESULTS

5.1 Java Implementation
The implementation consists mainly of: 1) atomic com-

ponents; 2) coordinators; and 3) connections. Recall that,
atomic components have no bottom ports. Connections con-
nect top ports to bottom ports. For composable system they
define a hierarchy on T/B components. We assume that a
bottom port is connected to exactly one top port; a top
port may be connected to more than one bottom port (cf.
Def. 4.4). In [6], we provide the Java implementation of the
Mod-4 counter from Ex. 4.6.

At runtime, we create a Java thread for each atomic com-
ponent and a thread that plays the role of an arbiter for
all the coordinators. The implementation of the execution
engine can be drastically optimized in case where the coordi-
nators are deterministic, i.e. if from any state: 1) there exists
only one outgoing transition; or 2) the guards of all the out-
going transitions are mutually exclusive. Non-deterministic
coordinators may contain a state with more than one out-
going transitions that could be enabled at the same time.
That is, more than one up function may be executed. For
the sake of clarity, we first provide the algorithm for deter-
ministic coordinators. Atomic component threads cyclically
execute the following protocol: 1) Notify the top ports of the
current outgoing transitions, whereof the guards are satis-
fied; 2) Notify the arbiter thread; 3) Wait for a notification
from the arbiter; 4) Upon the notification from the arbiter,
execute the action that corresponds to the received top port;
5) Modify the current state according to transition labeled
by the received top port. Below is the algorithm of the
atomic component thread.

// atomic component ’s thread
run() {

while(true) {
for all current outgoing transitions t {

if guard of t is true {
t.sendPort.notify ();

} }

notify arbiter thread;
wait for arbiter thread;
port = notification received from arbiter thread;
performTransition(port);

} }

Notification of the top ports is executed by the threads of
the atomic components. It is propagated upward by the
atomic component thread until it reaches a top-level coordi-
nator component (i.e. a coordinator whereof current outgo-
ing transition does not have a top port).

topPort.notify () {
notify bottom ports that are connected to topPort;
for each coordinator component c that has a
bottom port notified {

if exists a current outgoing transition t in c
where all its bottom ports have been notified
and its guard is true {

store the values of the variables of c;
execute its corresponding up function;

if t is labeled by a top port {
t.topPort.notify ();

} } } }

Note that, upward propagation is done in parallel by the
atomic components’ threads. Arbiter thread resumes its ex-
ecution when the upward propagation is completed by all
the atomic components’ threads. Arbiter’s thread cyclically
executes the following:

1. Select non-deterministically an enabled top-level coor-
dinator component, i.e. such that its the current out-
going transition has no top ports and all its bottom
ports have been notified. (If such a component does
not exist, a deadlock has occurred.)

2. Execute the dn function of the selected transition and
update the state of the coordinator accordingly.

3. Notify all the top ports that are connected to the bot-
tom ports of the selected transition until we reach
atomic components. Execute the dn function of the
transition that has a top port notified.

4. When the downward propagation is completed, notify
all the atomic components to execute their correspond-
ing transitions. Moreover, recover the values of the
variables of all the coordinators that have been no-
tified during the upward propagation without being
modified during the downward propagation.

Notice that arbiter selects only one top-level coordina-
tor even though there exits more than one top-level coordi-
nator that are non conflicting. Two top-level coordinators
are conflicting if the downward propagation will lead to no-
tify the same atomic component but with two different top

ports. Obviously, selecting two top-level coordinators that
are conflicting will lead to the violation of the semantics
presented in Sect. 4. Thread arbiter is parameterized to
support the two implementations (one top-level selection, or
multiple non-conflicting top level selection).

For non-deterministic coordinators, the upward propaga-
tion has to be modified as follows. First the up function does
not modify the actual data of a coordinator but it creates a
copy of its variables. If a transition has a top port, we no-
tify that port with an index which represents the values of
the data that make this transition enabled. Recall that, the
guard of a given transition depends on the value of the vari-
ables of the coordinator and the variables of the top ports
that are connected to the bottom ports of that transition.
So that, before evaluating the guard of a given transition
of a coordinator component, we should first set the indices
of the bottom coordinators. As the upward propagation is
done in parallel, we should also lock those bottom coordina-
tors to avoid the evaluation of other guards that depend on
those coordinators but with different indices.

5.2 Case Studies

5.2.1 Network Sorting Algorithm (NSA)
NSA [2] can be considered as the coordinated product of

2n atomic components, each containing an array of N items.
The goal is to sort the items, so that all the items in the first
component are smaller than those of the second component
and so on. In [10], we have provided a BIP application im-
plementing this algorithm. In order to evaluate the results
of the present paper, we have implemented an internalised
version using T/B components. We have also implemented
a modified version of this model, where we merge some co-
ordinators, which might improve the performance. Detailed
descriptions are available in [6].

Figures 7a and 7b provide benchmarks for NSA by consid-
ering the initial and merged models for the two implementa-
tions (deterministic and non-deterministic). Fig. 7a shows
that the non-deterministic implementation introduces some
overhead. We also study the efficiency of selecting all non-
conflicting top-level coordinators versus selecting only one
top-level coordinator. Fig. 7b shows that the former implies
slightly better performance.

5.2.2 Plain Old Telephone Service (POTS)
We have implemented a T/B component model for POTS

[12], which provides voice connections between pairs of
clients. We distinguish between clients and coordinators.
Clients are atomic components with three states. Ini-
tially a client can start a new call by dialing the callee
id, or it can receive a call from another caller. Then,
a voice connection is established between the two clients.
When a client hangs up the call is disconnected. We
have two-level hierarchy of coordinators. The first level
includes coordinators that collect requests coming from
the clients as follows: 1) CallerAgregration collects dial-
ing requests, 2) CalleeAgregation collects waiting requests,
3) V oiceAgregation1 and V oiceAgregation2 collect voice
requests, 4) DiscAgregation1 and DiscAgregation2 collect
disconnect requests. The second level includes coordinators
that synchronize requests of bottom coordinators. More pre-
cisely, DialWaitSync synchronizes a dialing request (from
CallerAgregation) with its corresponding waiting request

(from CalleeAgregation). V oiceSync synchronizes voice re-
quest (from V oiceAgregation1) with its corresponding voice
request (from V oiceAgregation2). DiscSync synchronizes
a disconnect request (from DiscAgregation1) with its corre-
sponding disconnect request (from DiscAgregation2). More
detailed description is available in [6]. The proposed model
is very concise and can be modified incrementally, e.g. by
adding new clients.

Fig. 7c shows the performance of POTS for three different
values of the number of calls to be satisfied.

6. RELATED WORK
Coordination [13] as a means to alleviate complexity in

complex system design by distinguishing between a com-
puting part comprising components involved in manipulat-
ing data and a coordination part responsible for the har-
monious cooperation between the components. The paper
points out two main approaches to coordination and studies
their relationship. The key concept relating the two ap-
proaches is internalisation meaning that external architec-
tural constraints applied to a set of components are cast
into their code. To the best of our knowledge, there is no
work clearly addressing the problem. In [17], a survey of co-
ordination models and languages is presented and their clas-
sification as either “data-driven” or “control-driven”. Data-
driven coordination languages offer coordination primitives
which are mixed within the purely computational part of
the code. In the control-driven category, there is a com-
plete separation of coordination from computational con-
cerns. The state of the computation at any moment in
time is defined in terms of only the coordinated patterns
that the components involved in some computation adhere
to. There exists a broad literature on bridging the gap be-
tween the design level, as this is expressed by some ADL,
and the implementation level, as this is realized by some
computational model. ArchJava [1, 3] is a small, backwards-
compatible extension to Java that smoothly integrates soft-
ware architecture specifications into Java implementation
code. It seamlessly unifies architectural structure and im-
plementation in one language, allowing flexible implementa-
tion techniques, ensuring traceability between architecture
and code, and supporting the co-evolution of architecture
and implementation. In [18], is presented a methodology for
mapping architectural representations written in ACME a
generic language for describing software architectures, down
to executable code. The mapping process involves the use
of the coordination paradigm. All these works lack for-
mal foundation and do not allow a deep understanding of
the differences between architecture-based and architecture-
agnostic approaches. The T/B-component model has some
similarities with formalisms using an input/output interac-
tion mechanism for the description of hierarchically struc-
tured automata such as Argos [14] and Statecharts [11]. Our
model extends the interaction mechanism with data trans-
fer. To avoid causality anomalies [14], we restrict composi-
tion to composable systems where hierarchical structure of
interaction eliminates by construction cyclic dependencies.

7. CONCLUSION AND FUTURE WORK
We study a formal framework bridging the gap between

architecture description languages and their implementa-
tion. The framework clearly distinguishes between two main

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70

Ti
m

e
(s

ec
on

ds
)

Number of Base Components

Normal-Deterministic
Merged-Deterministic

Normal-NonDeterministic
Merged-NonDeterministic

(a) Deterministic/Non-Deterministic

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

ec
on

ds
)

Size Local Array (x1000)

MultipleTop-Deterministic
OneTop-Deterministic

MultipleTop-NonDeterministic
OneTop-NonDeterministic

(b) One Top/Multiple-Top

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60

Ti
m

e
(s

ec
on

ds
)

Number of Clients

1000 calls
10000 calls

100000 calls

(c) POTS

Figure 7: Performance (execution time in seconds) of the case-study examples: (a),(b) NSA; (c) POTS

approaches for tackling the coordination paradigm. One ap-
proach is based on the separation between computational
and coordination mechanisms; the latter are described as
constraints that are independent from the internal behavior
of the coordinated components. The other approach consists
in internalising the constraints by generating a set of coor-
dinators that play the role of an execution engine. Formally
relating the two approaches opens the way for consistent
code generation and guarantees that important architectural
properties are guaranteed to hold in the implementation.

Interaction expressions are a key concept, fully describing
the control- and data-flow involved in an interaction. They
are used both to specify connectors, i.e. architectural con-
straints, and executable code in the coordinators. They di-
rectly express multiparty interactions and have features for
hierarchical structuring. They can be assimilated to syn-
chronous function calls from the bottom ports, that return
values computed when the interaction occurs. The proposed
coordination mechanism is general enough to directly en-
compass existing mechanisms. In particular it can express
data-driven and event-driven interaction. Usually, ADLs
use connectors that do not involve computation. For ex-
ample, data-flow is defined by distinguishing between input
and output ports. When an interaction occurs the value of
an output is copied into possibly many inputs. For such lan-
guages, the expression of interactions involving computation
requires the use of additional components.

We have already published formal operational semantics
for BIP and developed implementations in the form of var-
ious execution engines [4]. Nonetheless, so far the relation
between semantics and the corresponding implementation
was not fully formalized. The proposed translation provides
a full formalization of the execution engine as a set of inter-
acting coordinators and an arbiter. It preserves the struc-
ture of the BIP models: each connector is implemented by a
coordinator. Furthermore, by applying the T/B component
composition rule the executable model can be flattened in
different possible ways. As shown in [10] flattening allows
the generation of more efficient code.

The implementation of T/B component models can be
used either for the execution of BIP models after internali-
sation of their connectors or for the execution of such models
written independently of BIP.

We see two main directions for future work. One is to
study extensions of interaction expressions to encompass dy-
namic coordination. This can be achieved by including in
the set of local variables XL, port and component variables
as in the Dy-BIP coordination language [9]. These could be
used in the guards and affected by the up and dn functions,
making possible dynamic configuration of a model.

The second direction is to study techniques for distribut-
ing the generated engine in the form of a T/B component
model. So far, we have studied code generation techniques
for BIP, that generate distributed implementations for flat-
tened models [7, 8]. This limits the possibility of physically
distributing coordinators by preserving the architecture hi-
erarchy. The new techniques will allow full preservation of
the coordination structure and enhanced freedom for discov-
ering optimal implementations.

8. REFERENCES
[1] Marwan Abi-Antoun et al. Modeling and implementing

software architecture with ACME and ArchJava. In ICSE,
pages 676–677. ACM, 2005.

[2] Miklós Ajtai, János Komlós, and Endre Szemerédi. Sorting in
c log n parallel steps. Combinatorica, 3(1):1–19, 1983.

[3] Jonathan Aldrich, Craig Chambers, and David Notkin.
ArchJava: connecting software architecture to implementation.
In ICSE, pages 187–197. ACM, 2002.

[4] Ananda Basu et al. Distributed semantics and implementation
for systems with interaction and priority. In FORTE, volume
5048 of LNCS, pages 116–133. Springer, 2008.

[5] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling
heterogeneous real-time components in BIP. In SEFM06,
pages 3–12, September 2006. Invited talk.

[6] Simon Bliudze et al. Architecture internalisation in BIP.
Technical Report EPFL-REPORT-196997, February 2014.
http://infoscience.epfl.ch/record/196997.

[7] Borzoo Bonakdarpour et al. From high-level component-based
models to distributed implementations. In EMSOFT, pages
209–218, 2010.

[8] Borzoo Bonakdarpour et al. A framework for automated
distributed implementation of component-based models.
Distributed Computing, 25(5):383–409, 2012.

[9] Marius Bozga et al. Modeling dynamic architectures using
Dy-BIP. In SC, LNCS 7306, pages 1–16. Springer, 2012.

[10] Marius Bozga, Mohamad Jaber, and Joseph Sifakis.
Source-to-source architecture transformation for performance
optimization in BIP. IEEE Trans. Industrial Informatics,
6(4):708–718, 2010.

[11] David Harel. Statecharts: A visual formalism for complex
systems. Sci. Comput. Program., 8(3):231–274, 1987.

[12] Jonathan D. Hay and Joanne M. Atlee. Composing features
and resolving interactions. In FSE, pages 110–119. ACM, 2000.

[13] Thomas W. Malone and Kevin Crowston. The interdisciplinary
study of coordination. ACM Comp. Surv., 26(1):87–119, 1994.

[14] Florence Maraninchi and Yann Rémond. Argos: an
automaton-based synchronous language. Comput. Lang.,
27(1/3):61–92, 2001.

[15] Nenad Medvidovic and Richard N. Taylor. A framework for
classifying and comparing architecture description languages.
In ESEC/FSE, LNCS 1301, pages 60–76. Springer, 1997.

[16] Robin Milner. Communication and Concurrency. PHI Series
in Computer Science. Prentice Hall, 1989.

[17] George A. Papadopoulos and Farhad Arbab. Coordination
models and languages. Adv. in Computers, 46:329–400, 1998.

[18] George A. Papadopoulos, Aristos Stavrou, and Odysseas
Papapetrou. An implementation framework for software
architectures based on the coordination paradigm. Sci.
Comput. Program., 60(1):27–67, March 2006.

