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1 Introduction

Software architectures [25, 27] describe the high-level structure of a system in terms of compo-
nents and component interactions. They depict generic coordination principles between types of
components and can be considered as generic operators that take as argument a set of compo-
nents to be coordinated and return a composite component that satisfies by construction a given
characteristic property [2].

Many languages have been proposed for architecture description, such as architecture descrip-
tion languages (e.g. [21, 11]), coordination languages (e.g. [24, 1]) and configuration languages
(e.g. [28, 16]). All these works rely on the distinction between behaviour of individual components
and their coordination in the overall system organization. Informally, architectures are charac-
terized by the structure of the interactions between a set of typed components. The structure is
usually specified as a relation, e.g. connectors between component ports.

Architecture styles characterise not a single architecture but a family of architectures shar-
ing common characteristics, such as the type of the involved components and the topology in-
duced by their coordination structure. Simple examples of architecture styles are Pipeline, Ring,
Master/Slave, Pipe and Filter. For instance, Master/Slave architectures integrate two types of
components masters and slaves such that each slave can interact only with one master. Figure 1
depicts four Master/Slave architectures involving two master components M1, M2 and two slave
components S1, S2. Their communication ports are respectively p1, p2 and q1, q2. A Master/Slave
architecture for two masters and two slaves can be represented as one among the following con-
figurations, i.e. sets of connectors: {p1q1, p2q2}, {p1q2, p2q1}, {p1q1, p1q2}, {p2q1, p2q2}. A term
piqj represents a connector between ports pi and qj . The four architectures are depicted in Fig-
ure 1. The Master/Slave architecture style denotes all the Master/Slave architectures for arbitrary
numbers of masters and slaves.

Figure 1
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Figure 1: Master/Slave architectures.

We have recently proposed configuration logics [20] for the description of architecture styles.
These are powerset extensions of interaction logics [3] used to describe architectures. In addition
to the operators of the extended logic, they have logical operators on sets of architectures. We have
studied higher-order configuration logics and shown that they are a powerful tool for architecture
style specification. Nonetheless, their richness in operators and concepts may make their use
challenging.

In this paper we explore a different avenue to architecture style specification based on architec-
ture diagrams. Architecture diagrams describe the structure of a system by showing the system’s
component types and their attributes for coordination, as well as relationships among component
types. Our notation allows the specification of generic coordination mechanisms based on the
concept of connector.

Architecture diagrams were mainly developed for architecture style specification in BIP [2],
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Figure 2

T1
n1

T2
n2

mp:dp mq:dq
qp

T3
n3

mr:dr
r

Figure 2: An architecture diagram.

where connectors are defined as n-ary synchronizations among component ports and do not carry
any additional behaviour. Nevertheless, our approach can be extended for architecture style
specification in other languages by explicitly associating the required behaviour to connectors.

An architecture diagram consists of a set of component types, a cardinality function and a set
of connector motifs. Component types are characterised by sets of generic ports. The cardinality
function associates each component type with its cardinality, i.e. number of instances. Figure 2
shows an architecture diagram consisting of three component types T1, T2 and T3 with n1, n2
and n3 instances and generic ports p, q and r, respectively. Instantiated components have port
instances pi, qj , rk for i, j, k belonging to the intervals [1, n1], [1, n2], [1, n3], respectively.

Connector motifs are non-empty sets of generic ports that must interact. Each generic port p in
the connector motif has two constraints represented as a pair m : d. Multiplicity m is the number of
port instances pi that are involved in the connectors. Degree d specifies the number of connectors
in which each port instance is involved. A connector motif defines a set of configurations, where a
configuration is a set of connectors. The architecture diagram of Figure 2 has a single connector
motif involving generic ports p, q and r.

Figure 3
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Figure 3: Architecture obtained from diagram of Figure 2.

Figure 3 shows the unique architecture obtained from the diagram of Figure 2 by taking n1 = 3,
mp = 1, dp = 1; n2 = 2, mq = 2, dq = 3; n3 = 1, mr = 1, dr = 3. This is the result of composition
of constraints for generic ports p, q and r as depicted in Figure 4. For port p, we have three
instances and as both the multiplicity and the degree are equal to 1, each port pi has a single
connector lead. For port q, we have two instances and as the multiplicity is 2, we have connectors
involving q1 and q2 and their total number is equal to 3 to meet the degree constraint. Finally, for
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port r, we have a single instance r1 that has three connector leads to satisfy the degree constraint.

X

Figure 4
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Figure 4: Composition for the diagram of Figure 2.

The semantics of an architecture diagram consisting of a set of connector motifs {Γi}i∈[1..k] is
defined as follows. The meaning of each connector motif Γi as a set of configurations {γi,j}j∈Ji .
The architecture diagram specifies all the architectures characterised by configurations of connec-
tors of the form: γ1,j1 ∪ · · · ∪ γn,jn , where the indices ji ∈ Ji. In other words, the configuration of
an architecture conforming to the diagram is obtained by taking the union of all sub-configurations
corresponding to each connector motif.

We study a method that allows to characterise compositionally the set of configurations spec-
ified by a given connector motif if consistency conditions are met. It involves a two-step process.
The first step consists in characterising configuration sets meeting the coordination constraints for
each generic port p of the connector motif. In the second step, the configuration of the connector
motif is obtained by fusing one by one connectors obtained from step one so that the multiplicities
and the degrees of the ports are preserved.

We study two types of architecture diagrams: simple architecture diagrams and interval ar-
chitecture diagrams. In the former the cardinality, multiplicity and degree constraints are positive
integers, while in the latter they can be also intervals. We show that interval architecture dia-
grams are strictly more expressive than simple architecture diagrams. For each type of diagrams
we present 1) its syntax and semantics; 2) a set of consistency conditions; 3) a method that allows
to characterise compositionally all the configurations of a connector motif; 4) multiple examples
of architecture style specification. Finally, we present a polynomial-time algorithm for checking
that a given diagram conforms to the architecture style specified by a diagram.

The report is structured as follows. Section 2 presents simple architecture diagrams. Section 3
presents interval architecture diagrams. Section 4 presents a polynomial-time algorithm for check-
ing conformance of diagrams. Section 5 discusses related work. Section 6 concludes the report by
summarising the results and discussing possible directions for future work.

2 Simple Architecture Diagrams

2.1 Syntax and Semantics

We focus on the specification of generic coordination mechanisms based on the concept of con-
nector. Therefore, the nature and the operational semantics of components are irrelevant. We
consider that a component interface is defined by its set of ports, which are used for interaction
with other components. Thus, a component type T has a set of generic ports T.P .

A simple architecture diagram 〈T , n, C〉 consists of:
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• a set of component types T = {T1, . . . , Tk};
• an associated cardinality function n : T → N, where N is the set of natural numbers (to

simplify the notation, we will abbreviate n(Ti) to ni);

• a set of connector motifs C = {Γ1, . . . ,Γl} of the form Γ = (a, {mp : dp}p∈a), where ∅ 6=
a ⊂

⋃k
i=1 Ti.P is a generic connector and mp, dp ∈ N (with mp > 0) are the multiplicity and

degree associated to generic port p ∈ a.
Figure 5 shows the graphical representation of an architecture diagram with a single connector

motif. It defines different architecture styles, for different values of the multiplicity, degree and
cardinality parameters.

Figure 7

T1
n1

T2
n2

mp:dp mq:dq
qp

Figure 5: A simple architecture diagram.

An architecture is a pair 〈B, γ〉, where B is a set of components and γ is a configuration, i.e.
a set of connectors among the ports of components in B. We define a connector as a set of ports
that must interact. For a component B ∈ B and a component type T , we say that B is of type T
if the ports of B are in a bijective correspondence with the generic ports in T . Let B1, . . . , Bn be
all the components of type T in B. For a generic port p ∈ T.P , we denote the corresponding port
instances by p1, . . . , pn and its associated cardinality by np = n(T ).

Semantics. An architecture 〈B, γ〉 conforms to a diagram 〈T , n, C〉 if, for each i ∈ [1, k], the
number of components of type Ti in B is equal to ni and γ can be partitioned into disjoint sets
γ1, . . . , γl, such that, for each connector motif Γi = (a, {mp : dp}p∈a) ∈ C and each p ∈ a,

1. there are exactly mp instances of p in each connector in γi and

2. each instance of p is involved in exactly dp connectors in γi.

The meaning of a simple architecture diagram is a set of all architectures that conform to it.

We assume that, for any two connector motifs Γi = (a, {mi
p : dip}p∈a) (for i = 1, 2) with the

same set of generic ports a, there exists p ∈ a, such that m1
p 6= m2

p. Two connector motifs with the

same set of generic ports and multiplicities Γi = (a, {mp : dip}p∈a) (for i = 1, 2) can be replaced
by a single connector motif Γ = (a, {mp : d1p + d2p}p∈a), which imposes a weaker constraint. To
be more specific, by this assumption, we lose the ability to guarantee that a set of connectors γ
corresponding to a connector motif (a, {mp : dp}p∈a) not only satisfies the multiplicity and degree
constraints but also can be split into several disjoint subsets γ1, . . . , γn such that for each γi for
i ∈ [1, n] for each p ∈ a and for any pj , pk ∈ p, |{b ∈ γi|pj ∈ b}| = |{b ∈ γi|pk ∈ b}|, i.e. the degree
of all port instances of a generic port are equal.

We consider that the aforementioned assumption does not have significant impact on the
expressiveness of the formalism. On the contrary, it greatly simplifies semantics and analysis. In
particular, it ensures that for any configuration γ there exists at most one partition into disjoint
sets γ1, . . . , γl, which correspond to different connector motifs. In other words, a connector cannot
correspond to two different connector motifs. This greatly simplifies function VerifyMultiplicity

in Subsection 4. Furthermore, it also simplifies the consistency conditions presented in Subsection
2.2. Notice that this assumption allows connector motifs with the same set of generic ports but
different multiplicities.

5



Figure 8 

T1
1

T21:1 3:1
qp defines

3
p1

q1

q2

q3

(a)

Figure 9 

T1
1

T2
1:3 1:1

qp defines
3

p1

q1

q2

q3

(b)

Figure 6: Two examples of simple architecture diagrams.

Multiplicity constrains the number of instances of the generic port belonging to a connector
involved in a motif, whereas degree constrains the number of connectors attached to any instance
of the generic port. Consider the two diagrams shown in Figures 6(a) and 6(b). They have the
same set of component types and cardinalities. Nevertheless, their multiplicities and degrees differ,
resulting in different architectures. Architectures conforming to the two diagrams are also shown
in Figures 6(a) and 6(b).

In Figure 6(a), the multiplicity of the generic port p is 1 and the multiplicity of the generic
port q is 3, thus, any connector must involve one instance of p and three instances of q. Since
there are only three instances of q, any connector must include all of them. The degrees of both
generic ports are 1, so each port is involved in exactly one connector. Thus, the diagram defines
a single architecture with one connector among the four ports.

In Figure 6(b) the multiplicity of both generic ports p and q are 1. Thus, any connector
must involve one instance of p and one instance of q. Since the degree of q is 1 and there are
three instances of q we need three connectors, each involving a distinct instance of q. Thus, the
architecture diagram defines a single architecture with three binary connectors.

2.2 Consistency Conditions

Notice that there exist diagrams that do not define any architecture such as the diagram shown
in Figure 7. Since the multiplicity is 1 for both generic ports p and q, a configuration in a
corresponding architecture must include only binary connectors involving one instance of p and
one instance of q. Additionally, since the degree of both p and q is 1, each port instance must
be involved in exactly one connector. However, the cardinalities impose that there be three
connectors attached to the instances of p, but only two connectors attached to the instances of q.
Both requirements cannot be satisfied simultaneously and therefore, no architecture can conform
to this diagram.

Consider a connector motif Γ = (a, {mp : dp}p∈a) in a diagram 〈T , n, C〉 and a generic port
p ∈ a, such that p ∈ T.P , for some T ∈ T . We denote sp = np · dp/mp the matching factor of p.

A regular configuration of p is a multiset of connectors, such that 1) each connector involves
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Figure 10
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Figure 7: An inconsistent diagram.

mp instances of p and no other ports and 2) each instance of the port p is involved in exactly dp
connectors. Notice the difference between a configuration and a regular configuration of p: the
former defines a set of connectors, while the latter defines a multiset of sub-connectors involving
only instances of the generic port p. Considering the diagram in Figure 2 and the architecture in
Figure 3 the only regular configuration of r is the multiset {r1, r1, r1}. The three copies of the
singleton sub-connector r1 are then fused with sub-connectors piq1q2 (i = 1, 2, 3), resulting in a
configuration with three distinct connectors.

Lemma 2.1. Each regular configuration of a port p has exactly sp connectors.

Proof. 1) we have sp connectors and each connector is a set of mp port instances. Thus the sum
of connectors sizes is sp ·mp; 2) Connectors consist of ports and each port instance is involved in
dp connectors. The total number of ports in connectors is np · dp where np is the number of port
instances. Thus sp ·mp = np · dp or sp = np · dp/mp.

Notice that, for the diagram of Figure 7, we have sp = 3, while sq = 2. To form connectors,
each sub-connector from a regular configuration of p has to be fused with exactly one sub-connector
from a regular configuration of q, and vice-versa. Since, by the above lemma, the sizes of such
regular configurations are different, there is no architecture conforming to this diagram.

Proposition 2.2 provides the necessary and sufficient conditions for a simple architecture di-
agram to be consistent, i.e. to have at least one conforming architecture. The multiplicity of a
generic port must be less than or equal to the number of component instances that contain this
port. The matching factors of all ports participating in the same connector motif must be equal
integers. Finally, there must be enough distinct sub-connectors to build a configuration. Notice
that because of the assumption that we made in Subsection 2.1 this condition can be applied
independently to each connector motif. Since, by the semantics of diagrams, connector motifs cor-
respond to disjoint sets of connectors, these conditions are applied separately to each connector
motif.

Proposition 2.2. A simple architecture diagram has a conforming architecture iff, for each con-
nector motif Γ = (a, {mp : dp}p∈a) and each p ∈ a, we have

1. mp ≤ np,

2. ∀q ∈ a, sp = sq ∈ N,

3. sp ≤
∏
q∈a
(
nq

mq

)
.

Proof. This proposition is a special case of Proposition 3.5.

2.3 Synthesis of Configurations

The synthesis procedure for each connector motif consists of the following two steps: 1) we find
regular configurations for each generic port satisfying the connector motif constraints; 2) we fuse
these regular configurations generating global configurations specified by the connector motif.
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Table 1: Vector representation of regular configurations.

dp = 1 [100001], [010010], [001100].

dp = 2 [110011], [101101], [011110],

[200002], [020020], [002200].

dp = 3 [111111], [210012], [201102], [120021], [021120],

[012210], [102201], [300003], [030030], [003300].

2.3.1 Regular Configurations of a Generic Port

We start with an example illustrating the steps of the synthesis procedure for a port p.

Example 2.3. Consider a port p with np = 4 and mp = 2. There are 6 connectors of multiplicity
2: p1p2, p1p3, p1p4, p2p3, p2p4, p3p4. They correspond to the set of edges of a complete graph with
vertices p1, p2, p3, p4. The regular configurations of p for dp = 1, 2, 3, where each edge appears at
most once (i.e. sets of connectors) are shown in Figure 8.

Figure 11
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Figure 8: Regular configurations of p with np = 4, mp = 2.

We provide below an equational characterisation of all the regular configurations (multisets)
of a given generic port p with given np, mp, and dp. For the np port instances, p1, . . . , pn we have
a set {ai}i∈[1,w] of different connectors, where w =

(
np

mp

)
, to which we associate a column vector

of non-negative integer variables X = [x1, . . . , xw]T .

Consider the Example 2.3 and variables x1, . . . , x6 representing the number of occurrences in
a regular configuration of the connectors p1p2, p1p3, p1p4, p2p3, p2p4, p3p4, respectively. All the
regular configurations (i.e. multisets of connectors), for dp = 1, 2, 3, represented as vectors of the
form [x1, . . . , x6] are listed in Table 1. Notice that vectors for dp > 1 can be obtained as linear
combinations of the vectors describing configuration sets for dp = 1.

Then, for the port p we define an np × w incidence matrix G = [gi,j ]np×w with gi,j = 1 if
pi ∈ aj and gi,j = 0 otherwise. The following equation holds: GX = D, where D = [dp, . . . , dp]
(dp repeated np times). Any non-negative integer solution of this equation defines a regular
configuration of p. For Example 2.3, the equations are:

x1 + x2 + x3 = d,

x1 + x4 + x5 = d,

x2 + x4 + x6 = d,

x3 + x5 + x6 = d ,

i.e.


x1 + x2 + x3 = d,

x3 = x4,

x2 = x5,

x1 = x6 .

(1)

Notice that the vectors of Table 1 are solutions of (1).
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2.3.2 Configurations of a Connector Motif

Let Γ = (a, {mp : dp}p∈a) be a connector motif such that all generic ports of a = {p1, . . . , pv} have

the same integer matching factor s. For each pj ∈ a, let γj = {aji}i∈[1,s] be a regular configuration

of pj . For arbitrary permutations πj of [1, s], a set {a1i ∪
⋃v
j=2 a

j
πj(i)
}i∈[1,s] is a configuration

specified by the connector motif.
In order to provide an equational characterisation of the connector motif, we consider, for each

j ∈ [1, v], a corresponding solution vector Xj of equations GjXj = Dj characterising the regular
configurations of pj (cf. Section 2.3.1). Denote wj the dimension of the vector Xj .

In order to characterise the configurations of connectors conforming to Γ, we consider, for
each configuration, the v-dimensional matrix E = [ei1,...,iv ]w1×···×wv of 0-1 variables, such that
ei1,...,iv = 1 if the connector a1i1 ∪ · · · ∪ a

v
iv

belongs to the configuration and 0 otherwise. By
definition, the sum of all elements in E is equal to s. Moreover, the following equations hold:

x1i = Σi2,i3...,iv ei,i2,...,iv , for i ∈ [1, w1],

x2i = Σi1,i3,...,iv ei1,i,...,iv , for i ∈ [1, w2],
...

xvi = Σi1,i2,...,iv−1 ei1,...,iv−1,i , for i ∈ [1, wv].

(2)

For instance, for a fixed i ∈ [1, w1], all ei,i2,...,iv describe all connectors that contain a1i . The
regular configuration γ1 is characterised by X1, enforcing that a1i belongs to x1i connectors. The
system of linear equations (2), combined with the systems of linear equations GjXj = Dj , for
j ∈ [1, v], fully characterise the configurations of Γ. They can be used to synthesise architectures
from architecture diagrams.

Example 2.4. Consider a diagram
(
{T1, T2}, n, {Γ}

)
, where T1 = {p}, T2 = {q}, n(T1) = n(T2) =

4 and Γ = (pq, {(mp : dp,mq : dq)}) with mp = 2, mq = 3. The corresponding equations
GpX = Dp, GqY = Dq can be rewritten as{

x1 + x2 + x3 = dp,

x3 = x4, x2 = x5, x1 = x6,
and

{
3y1 = dq,

y1 = y2 = y3 = y4.
(3)

Together with the constraints xi = Σjei,j and yj = Σiei,j , for E = [ei,j ]6×4, equations (3)
completely characterise all the configurations conforming to Γ.

The same methodology can be used to synthesise configurations with additional constraints.
To impose that some specific connectors must be included, whereas other specific connectors must
be excluded from the configurations, the corresponding variables in the matrix E are given fixed
values: 1 (resp. 0) if the connector must be included (resp. excluded) from the configurations.
The rest of the synthesis procedure remains the same.

Example 2.5. Figure 9 shows the architecture diagram from Example 2.4, with dp = 2 and
dq = 3. We want to synthesise the configurations of this diagram with the following additional
constraints: connectors p1p2q1q2q3 and p1p3q2q3q4 must be included, whereas connector p2p4q1q2q4
must be excluded from the synthesised configurations.

First, we compute the vectorsX and Y that represent the regular configurations of generic ports
p and q, respectively. Variables x1, . . . , x6 represent the number of occurrences in a configuration
of the connectors p1p2, p1p3, p1p4, p2p3, p2p4, p3p4, respectively. Variables y1, . . . , y4 represent
the number of occurrences in a configuration of the connectors q1q2q3, q1q2q4, q1q3q4, q2q3q4,
respectively.
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Figure 12
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Figure 9: Architecture diagram of Example 2.5.

Vector X can take one of the following values for dp = 2: [110011], [101101], [011110], [200002],
[020020] or [002200] (Example 2.3). Regular configurations of q are characterised by the equations
3y1 = d and y1 = y2 = y3 = y4 (Example 2.4). For d = 3 there is a single solution Y = [1111].

We now consider the matrix E, where we fix e1,1 = e2,4 = 1 and e5,2 = 0 to impose the
additional synthesis constraints:

E =



y1 y2 y3 y4

x1 1 e1,2 e1,3 e1,4
x2 e2,1 e2,2 e2,3 1
x3 e3,1 e3,2 e3,3 e3,4
x4 e4,1 e4,2 e4,3 e4,4
x5 e5,1 0 e5,3 e5,4
x6 e6,1 e6,2 e6,3 e6,4


Since, for all i ∈ [1, 6], we have xi = Σj ei,j , we observe that x1, x2 ≥ 1. The only valuation of

X that satisfies this constraint is [110011]; as mentioned above, the only possible valuation of Y
is [1111].

The sum of rows 3 and 4 of E is 0, so all their elements must be 0s. The sum of rows 1 and 2
as well as the sum of columns 1 and 4 is 1. Since there exists already an element with value 1, all
other elements in these rows and columns must be 0s. This gives us the following multidimensional
matrix:

E =



y1 y2 y3 y4

x1 1 0 0 0
x2 0 0 0 1
x3 0 0 0 0
x4 0 0 0 0
x5 0 0 e5,3 0
x6 0 e6,2 e6,3 0


The sums of the rest rows and columns give us the correct values of the other three elements.

The complete solution is the following:

E =



y1 y2 y3 y4

x1 1 0 0 0
x2 0 0 0 1
x3 0 0 0 0
x4 0 0 0 0
x5 0 0 1 0
x6 0 1 0 0

,

which corresponds to the configuration {p1p2q1q2q3, p1p3q2q3q4, p2p4q1q3q4, p3p4q1q2q4}.
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2.4 Architecture Style Specification Examples

Example 2.6. The Star architecture style consists of a single center component of type T1 =
{p} and n2 components of type T2 = {q}. The central component is connected to every other
component by a binary connector and there are no other connectors. The diagram in Figure 10
graphically describes the Star architecture style.

Figure 13

defines p1

q1

q2T21:n2 1:1
qT1 p

center

n2

qn2

n2

…

1

Figure 10: Star architecture style.

Example 2.7. We now consider the multi-star extension of the Star architecture style, with n
center components of type T1, each connected to d components of type T2 by binary connectors.
As in Example 2.6, there are no other connectors. The diagram of Figure 11 graphically describes
this architecture style.

definesT21:d 1:1
qT1

n

p
center

n d.
d d…

n

p1 q2

…

q1

qd

pn

…

q(n-1)d+1

q

q(n-1)d+2

n d.

Figure 11: Multi-star architecture style.

3 Interval Architecture Diagrams

To further enhance the expressiveness of diagrams we introduce interval architecture diagrams
where the cardinalities, multiplicities and degrees parameters can be intervals. With simple ar-
chitecture diagrams we cannot express properties such as “component instances of type T are
optional”. For instance, let us consider the example of Figure 1 that shows four Master/Slave
architectures involving two masters and two slaves. In this example, one of the masters might
be optional, i.e. it might not interact with any slaves. As illustrated in Figure 1, in the first
and second architectures each master interacts with one slave, however, in the third and fourth
architectures a single master interacts with both slaves while the other master does not interact
with any slaves. In other words, the degree of the generic port m varies from 0 to 2 and cannot
be represented by an integer.
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3.1 Syntax and Semantics

An interval architecture diagram 〈T , n, C〉 consists of:
• a set of component types T = {T1, . . . , Tk};
• a cardinality function n : T → N2, associating, to each Ti ∈ T , an interval n(Ti) = [nli, n

u
i ] ⊂

N (thus, nli ≤ nui );

• a set of connector motifs C = {Γ1, . . . ,Γl} of the form Γ =
(
a, {ty[ml

p,m
u
p ] : ty[dlp, d

u
p ]}p∈a

)
,

where ∅ 6= a ⊂
⋃k
i=1 Ti.P is a generic connector and ty[ml

p,m
u
p ], ty[dlp, d

u
p ], with [ml

p,m
u
p ],

[dlp, d
u
p ] ⊂ N non-empty intervals and ty ∈ {mc, sc} (mc means “multiple choice”, whereas

sc means “single choice”), are, respectively, multiplicity and degree constraints associated to
p ∈ a.

Semantics. An architecture 〈B, γ〉 conforms to an interval architecture diagram 〈T , n, C〉 if, for
each i ∈ [1, k], the number of components of type Ti in B lies in [nli, n

u
i ] and γ can be partitioned into

disjoint sets γ1, . . . , γl, such that for each connector motif Γi =
(
a, {ty[ml

p,m
u
p ] : ty[dlp, d

u
p ]}p∈a

)
∈ C

and each p ∈ a:

1. there are mp ∈ [ml
p,m

u
p ] instances of p in each connector in γi; in case of a single choice

interval the number of instances of p is equal in all connectors in γi;

2. each instance of p is involved in dp ∈ [dlp, d
u
p ] connectors in γi; in case of a single choice

interval, the number of connectors involving an instance of p is the same for all instances of
p.

The meaning of an interval architecture diagram is a set of all architectures that conform to it.

In other words, each generic port p has an associated pair of intervals defining its multiplicity
and degree. The interval attributes specify whether these constraints are uniformly applied or
not. We write sc[x, y] (single choice) to mean that the same multiplicity or degree is applied to
each port instance of p. We write mc[x, y] (multiple choice) to mean that different multiplicities
or degrees can be applied to different port instances of p, provided they lie in the interval.

We assume that, for any two connector motifs Γi = (a, {ty[ml
p,m

u
p ]i : ty[dlp, d

u
p ]i}p∈a) (for

i = 1, 2) with the same set of generic ports a, there exists p ∈ a such that [ml
p,m

u
p ]1 ∩ [ml

p,m
u
p ]2 =

∅. Similarly to simple architecture diagrams, without significant impact on the expressiveness
of the formalism, this assumption greatly simplifies semantics and analysis. In particular, it
ensures that for any configuration γ there exists at most one partition into disjoint sets γ1, . . . , γl,
which correspond to different connector motifs, which simplifies function VerifyMultiplicity in
Section 4. Furthermore, it simplifies the consistency conditions in Proposition 3.5 that can now
be applied independently to each connector motif.

Example 3.1. The diagram in Figure 12 defines the set of architectures shown in Figure 1.
Notice that the degree of the generic port p is the multiple choice interval [0, 2], since one master
component may be connected to two slaves, while the other master may have no connections.

Proposition 3.2. Interval architecture diagrams are strictly more expressive than simple archi-
tecture diagrams.

Proof. Any parameter x of a simple architecture diagram can be represented as sc[x, x] in interval
architecture diagrams. Thus, any simple architecture diagram can be represented as an interval
architecture diagram. The diagram of Example 3.1 cannot be expressed with simple architecture
diagrams, proving that interval architecture diagrams are strictly more expressive.
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Figure 15

M
2

S1:mc[0,2] 1:1 qp
2

Figure 12: Architecture diagram of Figure 1.

3.2 Consistency Conditions

Similarly to simple architecture diagrams, there are interval diagrams that do not define any
architectures. Proposition 3.5 provides the necessary and sufficient conditions for the consistency
of interval architecture diagrams. A connector cannot contain more port instances than there
exist in the system. Thus, the lower bound of multiplicity should not exceed the maximal number
of instances of the associated component type. For all generic ports of a connector motif, there
should exist a common matching factor that does not exceed the maximum number of different
connectors between these ports. These conditions are a generalisation of Proposition 2.2. Lemmas
3.3 and 3.4 are auxiliary for proving Proposition 3.5.

Lemma 3.3. Consider a set of generic ports P and a set of s connectors over these ports. Assume
that connector k ∈ [1, s] contains mk,p port instances of p ∈ P and a port instance pj ∈ p is an
element of exactly dp,j connectors. The following equality holds ∀p ∈ P,

∑s
k=1mk,p =

∑
pj∈p dp,j.

Proof. Consider a generic port p ∈ P . Consider a bipartite graph G = (U, V,E) defined by two
disjoint sets of vertices: set of vertices U where each vertex corresponds to one port instance, and a
set of vertices V where each vertex corresponds to one connector. The graphG has an edge between
vertices u ∈ U and v ∈ V if the port associated to u is an element of the connector associated to
v. A vertex vk ∈ V associated with connector k is adjacent to exactly mk,p vertices associated
with ports p of the connector k. Therefore, the number of edges between U and V is equal to∑s
k=1mk,p. Furthermore, the degree of a vertex uj ∈ U is equal to dp,j because pj is an element of

dp,j connectors. Therefore, the number of edges between U and V must also be equal to
∑
pj∈p dp,j .

Combining this with our previous observation, we obtain that
∑s
k=1mk,p =

∑
pj∈p dp,j . The same

reasoning can be applied to any generic port p ∈ P giving the same equality.

Lemma 3.4. Let P be a set of generic ports with two associated parameters: np representing a
number of port instances p ∈ P and [dlp, d

u
p ] for dlp ∈ N, dup ∈ N,, dlp ≤ dup representing the desired

degree interval. Consider a set of s distinct connectors A over P , such that for a port p ∈ P , a
connector a ∈ A contains ma,p instances of p, where ma,p ≤ np, and np ·dlp ≤

∑
a∈Ama,p ≤ np ·dup .

Then it is possible to construct a set of s distinct connectors A′ such that a connector a contains
ma,p instances of p with the degree of an instance pj being equal to dp,j ∈ [dlp, d

u
p ].

Proof. Let dp,i be a degree of the port pi in A, i.e. dp,i = |{a ∈ A|pi ∈ a}|. Let us define a
function f : 2A → N such that f(A) = Σp∈PΣpi∈p mindp∈[dlp,dup ] |dp,i− dp|. Function f(A) achieves

its minimal value f(A) = 0 if and only if the degree dp,i ∈ [dlp, d
u
p ] for all ports. That is, if

f(A) = 0, we construct A′ by the assignment A′ = A.
Suppose now that we have A for which f(A) 6= 0. Since f(A) 6= 0, this means that there is at

least one port pi such that dp,i < dlp or dp,i > dup . Without loss of generality we can assume the
first case (the other case is symmetric). From Lemma 3.3, we know that

∑s
k=1mk,p =

∑
pj∈p dp,j .

Thus, for at least one port pj ∈ p holds dp,j > dlp.
Now, observe that for the two ports pi and pj , dp,j > dp,i. This means that we can redefine

at least one connector by replacing port pi with port pj without having duplicated connectors
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(otherwise, by the pigeonhole principle port pj would already be an element of two identical
connectors). Consider a new set of s connectors Anew obtained by applying the port replacement
procedure. Its value function is at most f(Anew) ≤ f(A) − 1 < f(A). Since initial value f(A)
is bounded, the consecutive application of the port replacement procedure eventually leads to set
Anew for which f(Anew) = 0. Therefore, it is possible to construct set A′.

To simplify the presentation of Proposition 3.5 we use the following notion of choice function.
Let IT and I be the sets of, respectively, typed intervals and intervals, as in the definition of
interval diagrams above. A function g : IT → I is a choice function if it satisfies the following
constraints:

g(ty[x, y]) =

{
[x, y], if ty = mc,

[z, z], for some z ∈ [x, y], if ty = sc.

Proposition 3.5. An interval architecture diagram 〈T , n, C〉 is consistent iff, for each T ∈ T ,
there exists a cardinality ni ∈ [nli, n

u
i ] and, for each connector motif (a, {Mp : Dp}p∈a) ∈ C and each

p ∈ a, there exist choice functions gmp , g
d
p, such that, for [ml

p,m
u
p ] = gmp (Mp) and [dlp, d

u
p ] = gdp(Dp)

hold:

1. ml
p ≤ np, for all p ∈ a, (where np = ni for p ∈ T.P ),

2. (S ∩ U ∩ N) 6= ∅, where

(a) S =
⋂
p∈a sp with sp =


[
np · dlp
mu
p

,
np · dup
ml
p

], if ml
p > 0,

[
np · dlp
mu
p

,∞), if ml
p = 0,

(b) U = [1,
∏
p∈a

∑
m∈[ml

p,m
u
p ]

(
np

m

)
].

Proof. Necessity →: Consider an architecture conforming to the diagram. Consider values nT ∈
[nlT , n

u
T ] for each T ∈ T equal to the number of components of the corresponding type in the

architecture. Consider a connector motif Γ = (a, {Mp : Dp}p∈a) ∈ C and consider functions gmp , g
d
p

for each generic port p ∈ a consistent with the architecture, i.e. if the multiplicity (degree) of p
in the sub-configuration corresponding to the connector motif Γ in the architecture is equal to v
and the multiplicity (degree) interval has type sc then the corresponding gmp (gdp) returns [v, v].

Condition 1 is trivially obtained - np < ml
p cannot occur as the multiplicity of ports cannot be

greater than the number of component instances. In order to show condition 2 we apply Lemma
3.3, ∀p ∈ a,

∑s
k=1mk,p =

∑
pj∈p dp,j , where s is the number of connectors in the architecture

corresponding to Γ. The lower bound on the left hand side is s ·ml
p, while the upper bound on the

right hand side is np · dup : these two bounds give us s ≤ np·dup
ml

p
(if ml

p = 0, s→∞). By inspecting

the upper bound of the left hand side and the lower bound of the right hand side, we obtain

s ≥ np·dlp
mu

p
. Thus, s ∈ S. For the set U , notice that

∏
p∈a

∑
m∈[ml

p,m
u
p ]

(
np

m

)
is equal to the number

of different ways one could connect ports in a, so that port p ∈ a has np instances and connector
k contains mk,p ∈ [ml

p,m
u
p ] ports pi ∈ p. Therefore, s ∈ U , otherwise, by the pigeonhole principle

there would exist duplicated connectors. Thus, s ∈ S and s ∈ U and s ∈ N so their intersection
is not empty. This reasoning can be applied to any connector motif, proving the necessity of the
consistency conditions.

Sufficiency ←: We prove this part by construction. Consider values nT and functions g for
which all conditions are satisfied. Consider a set of behaviours, such that each type T ∈ T has nT
instances. In order to construct an architecture we need only a set of connectors. We construct
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sets for each connector motif independently, taking their union in the final step. Consider a
connector motif Γ = (a, {Mp : Dp}p∈a) ∈ C. Suppose that there are no degree constraints. As
in the first part of the proof, we know that condition 2 implies that the number of connectors
is bounded by

∏
p∈a

∑
m∈[ml

p,m
u
p ]

(
np

m

)
, where ml

p ≤ np, which is satisfied by condition 1. Since∏
p∈a

∑
m∈[ml

p,m
u
p ]

(
np

m

)
is the number of different ways one could connect ports in a, so that

generic port p ∈ a has np instances and connector k contains mk,p ∈ [ml
p,m

u
p ] port instances

of generic port p, it follows that it is always possible to select s distinct connectors (distinct by
the set of port instances they contain), where a port instance pi ∈ p is allowed to have a degree
dp,i 6∈ [dlp, d

u
p ]. Now, consider one such set A of s connectors. Since condition 2 is satisfied, we

know that np · dlp ≤
∑
k∈Amk,p ≤ np · dup for all p ∈ a, so we can apply the result of Lemma 3.4.

More precisely, we can iterate over ports in a (in arbitrary order), and balance the degrees of port
instances pi ∈ p, achieving the degree dp,i ∈ [dlp, d

u
p ]. Since by Lemma 3.4 each iteration preserves

the distinctness of connections, once the entire iterative procedure finishes, we obtain a set of s
distinct connectors for which each port instance has the degree that takes values in [dlp, d

u
p ], and

this holds for all p ∈ a. Considering such sets for each connector motif and taking their union, we
obtain an architecture that conforms to the diagram.

3.3 Synthesis of Configurations

The equational characterisation in Section 2.3 can be generalised, using systems of inequalities with
some additional variables, to interval architecture diagrams. Below, we show how to characterise
the configurations induced by n instances of a generic port p with the associated degree interval
ty[dlp, d

u
p ].

For a given multiplicity m, let X = [x1, . . . , xw]T be the column vector of integer variables,
corresponding to the set {ai}i∈[1,w] (with w =

(
n
m

)
) of connectors of multiplicity m, involving port

instances p1, . . . , pn. Let G be the incidence matrix G = [gi,j ]n×w with gi,j = 1 if pi ∈ aj and
gi,j = 0 otherwise. The configurations induced by the n instances of p are characterised by the
equation GX = D, where D = [d1, . . . , dn]T and the additional (in)equalities:

d1 = · · · = dn = d and dlp ≤ d ≤ dup , for ty = sc,

dlp ≤ d1 ≤ dup , . . . , dlp ≤ dn ≤ dup , for ty = mc.
(4)

Example 3.6. As in Example 2.3, consider a generic port p and n = 4, m = 2. For the degree
interval sc[1, 3], the corresponding constraints are 1 ≤ d ≤ 3, x1 + x2 + x3 = d, x4 = x3, x5 = x2,
x6 = x1.

For the degree interval mc[1, 3] the corresponding constraints are 1 ≤ di ≤ 3, for i ∈ [1, 4],
x1 +x2 +x3 = d1, x1 +x4 +x5 = d2, x2 +x4 +x6 = d3, x3 +x5 +x6 = d4. By solving this system
we get: 

0 ≤ xi for i ∈ [1..6],

x6 ≤ 3,

x5 ≤ 3− x6,
x4 ≤ 3− x6,
x4 ≤ 3− x5,
1− x5 − x6 ≤ x3 ≤ 3− x5 − x6,
1− x4 − x6 ≤ x2 ≤ 3− x4 − x6,
x2 ≤ 3− x3,
1− x4 − x5 ≤ x1 ≤ 3− x4 − x5,
1− x2 − x3 ≤ x1 ≤ 3− x2 − x3.
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Figure 16
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Figure 13: Master/Slave architecture style.
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Figure 14: A Master/Slave architecture.

Suppose that the multiplicity of p in the motif is given by an interval ty[ml
p,m

u
p ]. Contrary

to the degree, multiplicity does not appear explicitly as a variable in the constraints. Instead, it
influences the number and nature of elements in both the matrix G and vector X.

Therefore, for single choice (i.e. ty = sc), the configurations induced by n instances of p
are characterised by the disjunction of the instantiations of the system of equalities combining
GmXm = D with (4), for m ∈ [ml

p,m
u
p ].

For multiple choice (i.e. ty = mc), all the configurations are characterised by the system
combining (4) with ∑

m∈[ml
p,m

u
p ]

(GmXm) = D .

Notice that the above modifications to accommodate for interval-defined multiplicity are or-
thogonal to those in (4), accommodating for interval-defined degree. Similarly to the single-choice
case for multiplicity, for interval-defined cardinality, the configurations are characterised by taking
the disjunction of the characterisations for all values n ∈ [nlp, n

u
p ].

Based on the above characterisation for the configurations of one generic port, global config-
urations can be characterised by systems of linear constraints in the same manner as for simple
architecture diagrams.

3.4 Architecture Style Specification Examples

Example 3.7. The diagram of Figure 13 describes a particular Master/Slave architecture style.
We require that each slave interact with at most one master and that each master be connected
to the same number of slaves.

Multiplicities of both generic ports p and q are equal to 1, allowing only binary connectors
between a master and a slave. The single choice degree of generic port p ensures that all port
instances are connected to the same number of connectors which is a number in [1, n2]. The
multiple choice degree of generic port q ensures that all port instances are connected to at most
one master. A conforming architecture for n1 = 2 and n2 = 5 is shown in Figure 14.

Example 3.8. The diagram in the top of Figure 15 describes the Repository architecture style
involving a single instance of a component of type R and an arbitrary number of data-accessor
components of type A. We require that any data-accessor component must be connected to the
repository. In the bottom of Figure 15, we show conforming architectures for for 3 data-accessors.
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Figure 15: Repository architecture style.

Example 3.9. The Pipes and Filters architecture style [7] involves two types of components, P
and F , each having two ports in and out. Each input (resp. output) of a filter is connected to
an output (resp. input) of a single pipe. The output of any pipe can be connected to at most
one filter. Figure 16 graphically describes the Pipes and Filters architecture style. A conforming
architecture for n1 = 3 and n2 = 4 is shown in Figure 17.

Figure 18

F
n1

P1:1 1:mc[0,n1]
inout

n2

in out
1:1 1:mc[0,1]

Figure 16: Pipes and Filters architecture style.

Example 3.10. The Peer-to-Peer architecture style [7] involves one component type P with
generic ports req (request) and pro (provide). Figure 18 graphically describes the Peer-to-Peer
architecture style. Peers request and provide services by using binary connectors between their
req and pro ports. A conforming architecture for n1 = 4 is also shown in Figure 18.

Example 3.11. The Map-Reduce architecture style [6] allows processing large datasets, such as
those found in search engines and social networking sites. Figure 19 graphically describes the
Map-Reduce architecture style. A conforming architecture for n1 = 3 and n2 = 2 is shown in
Figure 20.

A large dataset is split into smaller datasets and stored in the global filesystem (GFS). The
Master is responsible for coordinating and distributing the smaller datasets from the GFS to each
of the map worker components (MW ). The port in of each MW is connected to the Mcontrol
and read ports of the Master and the GFS, respectively. Each MW processes the datasets and
writes the result to its dedicated local filesystem (LFS) through a binary connector between their
out and write ports. The connector is binary since no MW is allowed to read the output of
another MW . Each reduce worker (RW ) reads the results from multiple LFS as instructed by

44
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out1in1 F

out2in2 F

out3in3 P out3in3 F out4in4 P

Figure 19

in1

Figure 17: A Pipes and Filters architecture.
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Figure 20
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Figure 18: Peer-to-Peer architecture style.
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Figure 19: Map-Reduce architecture style.
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Figure 20: A Map-Reduce architecture.
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the Master component. To this end, the in port of each RW is connected to the Rcontrol and
read ports of the Master and some LFS, respectively. Then, each RW combines the results to
produce a final result written back to the GFS through a binary connector between their out and
write ports. No RW is allowed to read the output of another RW .

4 Checking Conformance of Diagrams

Algorithm 1 can be used to check whether an architecture 〈B, γ〉 conforms to an interval architec-
ture diagram 〈T , n, C〉. This algorithm has polynomial-time complexity.

Algorithm 1 checks the validity of the following three statements: 1) the number of components
of each type T is equal to n(T ); 2) there exists a partition of γ into γ1, . . . , γl such that each γi
corresponds to a different connector-motif Γi ∈ C of the diagram and satisfies its multiplicity
constraints; 3) for each connector motif Γi and its corresponding γi, the number of times each
port instance participates in γi satisfies the degree requirements. The aforementioned statements
correspond to functions VerifyCardinality, VerifyMultiplicity and VerifyDegree, respectively.

We use two auxiliary functions. Function generic(p) takes a port instance and returns a
corresponding generic port. Function typeof(B) returns the component type of component B.
Operation map[key] + + increases the value associated with the key by one if the key is already
in the map, otherwise it adds a new key to the map with value 1.

Algorithm 1: VerifyArchitecture

Data: Architecture 〈B, γ〉, diagram 〈T , n, C〉
Result: Returns true if the architecture satisfies the diagram 〈T , n, C〉. Otherwise, it

returns false.
begin

if not VerifyCardinality(B, 〈T , n, C〉) then
return false;

/* Splits connectors between connector motifs according to multiplicities constraints.*/
Sγ ←− VerifyMultiplicity(γ, C);
if Sγ = ∅ then

return false;

/* Verifies degree constraints for all generic ports of all connector motifs. */
for Γ ∈ C do

if VerifyDegree(Sγ [Γ],Γ) 6= true then
return false;

return true;

5 Related Work

A plethora of approaches exist for architecture specification. Patterns [5, 10] are commonly used
for specifying architectures in practical applications. The specification of architectures is usually
done in a graphical way using general purpose graphical tools. Such specifications are easy to
produce but the meaning of the design may not be clear since the graphical conventions lack
formal semantics and thus, are not amenable to formal analysis.
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Function VerifyCardinality(B, 〈T , n, C〉)
Data: Set of components B, diagram 〈T , n, C〉
Result: Returns true if the number of components of each type in B lies in the

corresponding cardinality interval specified in the diagram. Otherwise, it returns
false.

begin
/* Creates a map with key: component type, value: number of instances */
countTypes←− {};
for Bi ∈ B do

countTypes[typeof(Bi)] + +;

for Ti ∈ T do
if countTypes[Ti] 6∈ n(Ti) then

return false;

return true;

Researchers have developed a number of Architecture Description Languages (ADLs) for archi-
tecture specification [21, 29, 23]. Nevertheless, according to [19], architectural languages used in
practice mostly originate from industrial development instead of academic research. Practitioners
insist on using UML rather than ADLs. UML and some of the ADLs lack formal semantics. ADLs
that have formal semantics require the use of formal languages. According to [19], ADLs that rely
on formal languages have proven to be difficult for practitioners to master. Keeping this in mind,
we have created architecture diagrams that combine the benefits of graphical languages and rig-
orous formal semantics. By relying on the minimal set of notions, we emphasize the conceptual
clarity of our approach.

Architecture diagrams were developed to accommodate architecture specification in BIP [2],
wherein connectors are n-ary relations among ports and do not carry any additional behaviour.
This strict separation of computation from coordination allows reasoning about the coordination
constraints structurally and independently from the behaviour of coordinating components. How-
ever, our approach can be extended to describe architecture styles in other coordination languages
by explicitly associating the required behaviour to connector motifs. In particular, this can be ap-
plied to specify connector patterns in Reo [1], by associating multiplicity and degree to source and
sink nodes of connectors. The main difficulty is to correctly instantiate the behaviour depending
on the number of ends in the connector instance.

Alloy [13] has been used for architecture style specification, in the ACME [14] and Darwin [8]
ADLs. The connectivity primitives in [14, 8] are binary predicates and cannot tightly charac-
terize coordination structures involving multiparty interaction. To specify an n-ary interaction,
these approaches require an additional entity connected by n binary links with the interacting
ports. Since the behaviour of such entities is not part of the architecture style, it is impossible to
distinguish, e.g. between an n-ary synchronisation and a sequence of n binary ones.

Architecture diagrams consist of component types and connector motifs, respectively compa-
rable to UML components and associations [12, 22]. One important difference between connector
motifs used in our architecture diagrams and UML associations is that the latter cannot specify
interactions that involve two or more instances of the same component type [22]. In UML, the term
“multiplicity” is used to define both 1) the number of instances of a UML component and 2) the
number of UML links connected to a UML component. In architecture diagrams, we call these,
respectively, “cardinality” and “degree”. We use the term “multiplicity” to denote the number
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Function VerifyMultiplicity(γ, C)
Data: Configuration γ, Set of connector motifs C
Result: Returns a partition Pγ of γ such that each part corresponds to one Γ ∈ C.

Connectors in each part satisfy multiplicity constraint of the corresponding
connector motif. If no partition exists, returns ∅.

begin
/* Creates a map for the partition with key: connector motif and value:
sub-configuration.*/
partition←− {};
for Γ ∈ C do

partition[Γ]←− ∅;

/* Creates a map for the single choice intervals with key: generic port of a connector
motif and value: chosen value.*/
scV alues←− {};

for k ∈ γ do
/* Creates a map with key: generic port and value: number of instances of the
generic port in the connector. */
portsCount←− {};
for pi ∈ k do

portsCount[generic(pi)] + +;

x←− false;
/* Tries to find a connector motif such that connector satisfies its constraints.*/
for Γ = (a, {ty[ml

p,m
u
p ] : dp}p∈a) ∈ C do

if a = keys(portsCount) then
y ←− true;
/* Checks the multiplicity intervals.*/
for p ∈ a do

if portsCount[p] 6∈ [ml
p,m

u
p ] then

y ←− false;
break;

/* Additional check in case of the single choice interval.*/
if ty[ml

p,m
u
p ] = sc[ml

p,m
u
p ] then

if hasKey(scV alues, 〈Γ, p〉) && scV alues[〈Γ, p〉] 6= portsCount[p]
then

y ←− false;
break;

else
scV alues[〈Γ, p〉]←− portsCount[p];

if y then
partition[Γ]←− partition[Γ] ∪ k;
x←− true;
break;

/* A connector does not satisfy constraints of any connector motif. */
if x = false then

return ∅;

return partition;
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Function VerifyDegree(γi, Γ)

Data: Configuration γi, Connector motif Γ = (a, {mp : ty[dlp, d
u
p ]}p∈a)

Result: Returns true if the degree requirements are satisfied. Otherwise returns false.
begin

/* Creates a map with key: port and value: number of connectors it appears in.*/
degrees←− {};

for k ∈ γi do
for pi ∈ k do

degrees[pi] + +;

/* Creates a map for the single choice intervals with key: generic port and value: chosen
value.*/
scV alues←− {};

for pi ∈ keys(degrees) do
p←− generic(pi);
if degrees[pi] 6∈ [dlp, d

u
p ] then

return false;

/* Additional check in case of the single choice interval.*/
if ty[dlp, d

u
p ] = sc[dlp, d

u
p ] then

if hasKey(scV alues, p) && scV alues[p] 6= degrees[pi] then
return false;

else
scV alues[p]←− degrees[pi];

return true;

of components of the same class that can be connected by the same connector. The distinction
between multiplicity and degree is key for allowing n-ary connectors involving several instances of
the same component type.

A large body of literature, originating in [9, 18], studies the use of graph grammars and trans-
formations [26] to define software architectures. Although this work focuses mainly on dynamic
reconfiguration of architectures, e.g. [4, 15, 17], graph grammars can be used to define architec-
ture styles: a style admits all the configurations that can be derived by its defining grammar. A
limitation of this approach already outlined in [18] is the difficulty of understanding the architec-
ture style defined by a grammar. Our approach allows intuitive specification of architecture styles
since all constraints appear directly in the architecture diagram for which we provide denotational
semantics.

6 Conclusion and Future Work

We study architecture diagrams, a graphical language rooted in well-defined semantics for the
description of architecture styles. We study two classes of diagrams. Simple architecture diagrams
express uniform degree and multiplicity constraints. They are easy to interpret and use but they
have limited expressive power. Interval architecture diagrams are strictly more expressive. They
cannot be modelled as the union of simple architecture diagrams, because they allow heterogeneity
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of multiplicity and degree. Architecture diagrams provide powerful and flexible means for graphical
specification of architectures with n-ary connectors. Using architecture diagrams instead of purely
logic-based specifications confers the advantages of graphical formalisms.

In an ongoing project partially financed by the European Space Agency, we are already using
architecture diagrams to describe some of the architectures in the case studies of the project.
We are currently working on extending the current notation with arithmetic constraints and im-
plementing the synthesis procedure described in this technical report with the JaCoP1 constraint
solver. In the future, we plan to extend connector motifs with data flow information. We also plan
to study the expressive power of architecture diagrams and compare it with that of configuration
logics.
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(re)configuration language. ACM SIGSOFT Software Engineering Notes, 26(5):21–32, 2001.

24

http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/


[29] Eoin Woods and Rich Hilliard. Architecture description languages in practice session report.
In Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture, pages
243–246. IEEE Computer Society, 2005.

25


	Introduction
	Simple Architecture Diagrams
	Syntax and Semantics
	Consistency Conditions
	Synthesis of Configurations
	Regular Configurations of a Generic Port
	Configurations of a Connector Motif

	Architecture Style Specification Examples

	Interval Architecture Diagrams
	Syntax and Semantics
	Consistency Conditions
	Synthesis of Configurations
	Architecture Style Specification Examples

	Checking Conformance of Diagrams
	Related Work
	Conclusion and Future Work

