
An Overview and Synthesis

on Timed Process Algebras �y

Xavier Nicollin Joseph Sifakis

Laboratoire de G�enie Informatique

IMAG�Campus B�P� ��X
����	 Grenoble Cedex
 FRANCE

Abstract

We present an overview and synthesis of existing results about process algebras for the

speci�cation and analysis of timed systems� The motivation is double� present an overview

of some relevant and representative approaches and suggest a unifying framework for them�

After presenting fundamental assumptions about timed systems and the nature of abstract

time� we propose a general model for them� transition systems whose labels are either elements

of a vocabulary of actions or elements of a time domain� Many properties of this model are

studied concerning their impact on description capabilities and on realisability issues�

An overview of the language features of the process algebras considered is presented� by

focusing on constructs used to express time constraints� The presentation is organised as

an exercise of building a timed process algebra from a standard process algebra for untimed

systems� The overview is completed by a discussion about description capabilities according

to semantic and pragmatic criteria�

� Introduction

The paper presents an overview and synthesis of existing results about process algebras for
the speci�cation and analysis of timed systems� It has been motivated both by the drastically
increasing number of contributions in the area and by the authors� conviction that most of the
existing work admits a unifying common framework� Thus� the motivation is double� �rst�
the presentation of an overview of some relevant and representative approaches in the area
and second� the proposal of a framework for these approaches� The paper presents the rather
incomplete and eventually biased authors� point of view than a survey of existing work in the
area�

Although emphasis is put on algebraic behavioural speci�cation formalisms� we believe that most
of the ideas presented here have a more general applicability scope� as they are independent of
the features and the nature of the description formalism considered� For instance� general ideas
about the nature of time and the underlying model of timed systems may be used when designing
logical speci�cation languages� the results on process algebras can be easily transposed on other
behavioural speci�cation formalisms like automata� timed graphs� timed transition systems� etc�

�Presented at CAV���� �Alborg� Denmark� July ����
yWork supported by the ESPRIT BRA SPEC

�

A timed system is usually considered to be a system with a global parameter �state variable	
called time� used to constrain the occurrences of the actions� Introducing time requires consistent
assumptions about its progress with respect to the evolution of the system� correspondence
between instants �domain of de�nition of the time parameter	 and action occurrences� duration
of the actions�

Most of the existing description formalisms for timed systems adopt implicitly the following view
concerning their functioning�

� A timed system is the composition of cooperating sequential components �processes	� Each
component has a state variable de�ned on an appropriate time domain D with a binary
operation
 which has essentially the properties of addition on non negative numbers� A
component may modify its state either by executing some �atomic	 action or by increasing
its time variable �letting time progress	�

� System time progresses synchronously in all processes� i�e�� from a given global state� time
increases by a quantity d if all the components accept to do so�

� An execution sequence is a sequence of two�phase steps� In the �rst phase �� of a step�
components may execute� either independently or in cooperation� a �nite though arbitrarily
long sequence of actions� In the second phase ��� components coordinate to let time
progress by some �nite or in�nite amount� A new step begins when the second phase
terminates� Figure � illustrates this principle for two interacting processes�

step

������

���� �� �� ��

Figure �� two�phase functioning schema

The functioning described combines both synchronous and asynchronous cooperation in two
alternating phases� one where all the components agree for the time to progress� and an eventually
terminating asynchronous computation phase during which the progress of time is blocked�

Most modes of cooperation of concurrent systems can be obtained by simplifying this functioning
scheme� In fact� in the so called asynchronous cooperation only the action execution phase exists�
In synchronous languages like Lustre �CHPP��� Esterel �BC�� and the StateCharts �Har��� a
step corresponds implicitly to one time unit and only the �nal state reached at the end of an
asynchronous computation phase can be observed� This state is obtained by composing the

�

e�ects of the actions �microsteps in the current terminology	 and its computation raises some
well�known causality problems� The so called synchronous cooperation� encountered in process
algebras like SCCS �Mil��� CIRCAL �Mil��� and Meije �AB��� corresponds to a particular case
of this functioning� where in addition� a process cannot perform more than one action in a step�

Such a mode of two�phase functioning is quite appropriate and natural for modelling reactive
systems� For instance� the functioning of hardware and of systems for real�time control ide�
ally follows this principle� a phase of asynchronous evolution is followed by a phase in which
conceptually time progresses�

In a recent paper �NSY���� it is proposed a model for hybrid systems which adopts such a two�
phase functioning principle� The phase where actions � �instantaneous� discrete changes of the
state space � are executed is followed by a phase where state is transformed according to a law
depending on time progress�

Considering such a mode of functioning allows to correlate the speeds of a system�s components�
as the �ow of asynchronous computation can be cut by time progress phases in some appropriate
manner� Furthermore� it introduces a concept of duration for an execution step and allows to
assign durations to sequences of actions�

One might object that this two phase functioning assumption cannot faithfully model real systems
where actions always take some non�zero time� In fact� direct consequences of this assumption
are the following�

� Atomic actions take no time� This simpli�es theoretical development and does not go
against generality as non atomic actions can be modelled by sequences of atomic ones� It
has been advantageously adopted by programming languages like Esterel �BC���

� The time considered is abstract in the sense that it is used as a parameter to express con�
straints about instants of occurrences of actions� The implementability of such constraints
taking into account speeds and execution times of processors� is a separate though not
independent issue� This distinction between abstract and concrete or physical time is an
important one� It allows simpli�cations that are convenient at conceptual level as it leads
to simpler and more tractable models� For instance� the assumption that an action may
take zero time� though not realistic for physical time� is quite convenient for abstract time�
Of course� such an abstraction should take into account realisability issues by integrating
requirements for safe implementations� For instance� eventual termination of the asyn�
chronous computation phase is such a requirement� for a correct implementation it should
be possible to determine the clock period as the upper bound of step durations computed
so as to take into account execution time of sequences of ideally zero time actions�

It has been often argued that models where any action takes some non zero time � its execution
time � allow more faithful descriptions� In fact such an assumption destroys abstractness of
time as speci�cations depend on speci�c implementation choices� It will be shown that the zero
duration assumption for atomic actions is more general and leads to much simpler theories�

The overview is carried out by considering successively the choices for a designer of a timed
process algebra� at model level and at language level�

The choice of the model determines the semantics and thus the intrinsic expressivity of a process

�

algebra� As various types of semantics have been used for the algebras considered� we take
operational semantics � strong bisimulation semantics � as a basis of the comparison� The
reason is that most algebras have been given such semantics or some operational semantics can
be deduced in most of cases� In our comparison we take into account features allowing abstraction
�silent actions� hiding	 only as long as they enhance expressivity�

The languages used for timed process algebras can be viewed as extensions of the languages
used for untimed process algebras by adding some speci�c constructs or by assuming that in
some cases pre�xing by an action may delay� Some criteria for the comparison of the languages
considered are the minimality of the set of the operators and their appropriateness for a natural
and direct description�

The paper is organised as follows�

� Section � is devoted to the presentation of a general model for timed systems de�ned for an
arbitrary time domain� The model is transition systems labelled with either action names
from an arbitrary action alphabet or by elements of an appropriate time domain D� Some
general properties of this model are discussed as well as their importance concerning the
capability to characterise time constraints of various types�

� In section �� we present a comparison of the expressive capabilities of the following timed
process algebras �presented in alphabetic order	�

� ACP� �Real Time ACP	 of J�C�M� Baeten and J�A� Bergstra �BB��� Klu����

� ATP �Algebra of Timed Processes	 of the authors �NRSV��� NS���� We sometimes
make reference to a variant of ATP presented in �NSY����

� TCSP �Timed CSP	 of G�M� Reed and A�W� Roscoe �RR� DS�� Sch����

� TeCCS �Temporal CCS� or TCCS	 of F� Moller and C� Tofts �MT����

� TiCCS �Timed CCS� or TCCS	 of Wang Yi �Wan��� Wan����

� TPCCS �Timed Probabilistic CCS	 of H� Hansson and B� Jonsson� We focus only on
features relative to time�

� TPL �Temporal Process Language	 of M� Hennessy and T� Regan �HR��� HR����

� U�LOTOS �Urgent LOTOS	 of T� Bolognesi and F� Lucidi �BL����

We especially focus on constructs used to describe time constraints and their semantics�
The presentation is organised as an exercise for building a timed process algebra from a
standard process algebra for untimed systems�

� The models

In this section� we present a general model for timed systems� We consider labelled transition
systems whose states are process expressions� and whose labels are either elements a of a vo�
cabulary of actions A or elements d of a time domain D� A may contain non�visible �internal	
actions denoted by � � visible actions are denoted by ��

�

P a� Q means that the process P may perform the atomic and timeless action a and then it
behaves as Q�

P d� Q means that the process P may idle for d time units after which it behaves as Q�

Before discussing the properties of such models� we propose a general de�nition of time domains�

��� Time domain

De�nition� A time domain is a commutative monoid �D�
� �	 satisfying the following require�
ments�

� d
 d� � d� d� � �

� the preorder � de�ned by d � d� � �d�� � d
 d�� � d� is a total order

The following properties can be easily proved�

� � is the least element of D

� for any d� d�� if d � d�� then the element d�� such that d
 d�� � d� is unique� It is denoted
by d� � d

We denote D � f�g by D�� We also write d � d� instead of d � d� � d �� d��

D is called dense if 	d� d� � d � d�
 �d�� � d � d�� � d�

D is called discrete if 	d �d� � d � d� � 	d�� � d � d��
 d� � d��� Since the order is total� d� is
unique and is called the successor of d� denoted by succ�d	� An important property of a discrete
domain is that for any d� succ�d	 � d
 succ��	� That is� any element of D can be obtained
from � by adding as many succ��	 as necessary�

Examples of time domains are IN �discrete	� jQ� and IR� �dense	� or even the singleton f�g�

In the transition relation de�ned in the beginning of this section� we do not allow � to be a label�
that is� labels are elements of A �D��

��� The time domain in the algebras considered

TCSP and ACP� are explicitly de�ned over a dense time domain�

For TiCCS� TeCCS and U�LOTOS� the choice of a discrete or dense time domain is important
neither for the syntax nor for the semantics� However� the axiomatisation strongly depends on
this choice� especially for that of parallel composition� In TeCCS a complete set of axioms is
provided in the discrete case� In �Wan���� Wang explains how an expansion theorem can be given
in the dense case� This is possible only if we have a way of recording and use the instant when
an action is performed�

�

TPCCS� TPL and ATP are de�ned over a discrete time domain� Extending them to a dense
time domain requires some modi�cation of the syntax� In �NSY���� a generalisation of ATP�
parametrised by an arbitrary time domain� has been proposed�

��� Model properties

In this section we give an overview of the most important model properties and their importance
for the characterisation of features of timed systems�

����� Time determinism

It is usually admitted that when a process P is idle �does not perform any action	 for some
duration d� then the resulting behaviour is completely determined from P and d� In other words�
the progress of time should be deterministic� This property� satis�ed by the models of all the
algebras� we consider� can be expressed by

	P� P �� P ��� d � P
d
� P � � P

d
� P ��
 P � � P ��

where � is the syntactic equality�

����� Time additivity

In order to ensure the soundness of the notion of time� it is usually required that

� a process which can idle for d
d� time units� can idle for d and then for d� time units� and
vice�versa

� in both cases� the resulting behaviour is the same

We call this property time additivity �time continuity in �Wan���	� It is present in all the algebras
and it is formally de�ned by

	P� P �� d� d� � ��P �� � P
d
� P �� � P ��

d�
� P �	 � P

d
 d�
� P �

����� Deadlock�freeness

In untimed systems� a blocked or terminated process is represented by a deadlock in the model�
since it cannot perform any action� For timed systems� it is natural to demand that� a terminated
process does not block time� because of the strong synchrony hypothesis concerning time progress�
If no distinction is made between termination and deadlock� this implies that there is no sink
state in the model� which can be written as

	P �l � A �D� �P
� � P

l
� P �

�

In algebras like TeCCS� U�LOTOS and ACP�� there exist processes whose models do not satisfy
this property� and thus they can block the progress of time Such time�locks may be used to detect
some timing inconsistencies in speci�cations�

����	 Action urgency

In all the considered algebras� there are processes which must perform an action without letting
time pass� that is�

�P� a� P � � P
a
� P � � 	d � P

d
��

This de�nes a notion of urgency for actions� as a process may block the progress of time and
enforce the execution of an action before some delay�

However� in TPCCS� TPL� TCSP and TiCCS� urgency is possible � and is enforced � for
invisible actions only� this can be expressed by

	P� P �� d� Q � P
�
� P �
 P

d
�� Q

This property is called minimal delay� maximal progress or tau�urgency� In CCS�based algebras�
it is strongly related to the communication mechanism� Indeed� a communication in CCS yields
a tau action� thus� this property allows to ensure that two processes communicate as soon as
they are ready to do so�

In models without the general action urgency� it is not possible� for instance� to characterise the
situation where a process sends a message at most � time units after it has been requested to do
so�

����
 Persistency

In some algebras �TiCCS� U�LOTOS and TCSP	� the progress of time cannot suppress the ability
to perform an action� This property� called persistency� is expressed by

	P�Q� P �� d� a � P
a
� P � � P

d
� Q
 �P �� � Q

a
� P ��

This property is not satis�ed by ATP� TPL� TPCCS� TeCCS and ACP�� In the latter two� it is
even possible� for instance� to specify a process which may perform an action a at time �

�
or an

action b at time �

�
� In TPCCS� TPL and ATP� such a behaviour does not exist� In the generic

version of ATP presented in �NSY���� where the time domain may be dense� the models satisfy
a weaker requirement than persistency� which we call interval persistency� This property asserts
that if a process may let time progress� then any action it can perform remains possible during
some time interval� This is expressed by

	P �d � � 	d� ���� d�� 	Q�P �� a � P
d�
� Q � P

a
� P �
 �P �� � Q

a
� P ��

�

Notice that this property is always true for a discrete time domain� Like ATP� TPL and TPCCS
could be easily adapted to a dense domain� in which case their models would also have the
interval persistency property�

����� Finite variability and bounded variability

A process has the �nite variability �non�Zenoness� well�timedness	 property if it can perform
only �nitely many actions in a �nite time interval� The only algebra for which every process
satisfy this requirement is TCSP� This is achieved by enforcing a system�delay between two
actions of a sequential process� This assumption seems in fact to be the only solution to ensure
�nite variability� but it yields a complicated theory� and destroys abstractness of time�

To de�ne formally this property� consider the family of relations
�a� d	
�
 for �a� d	 � A D� on

processes� de�ned by

P
�a� d	
�
 R � P

d
� Q � Q

a
� R

A time trace of a process P is a maximal sequence �a�� d�	 �a�� d�	 ��� �ai� di	 ��� such that

�P�� P�� ���� Pi� ��� � P
�a�� d�	
�
 P�

�a�� d�	
�
 P� ���

�ai� di	
�
 Pi ���

We represent by T �P 	 the set of traces of P �

P satis�es the �nite variability property if and only if

	d 	� � �a�� d�	 �a�� d�	 ��� � T �P 	 ��
�i � j � length��	 �

jX
k�i��

dk � d

�
A
 j � i ��

A stronger requirement should be satis�ed by models in order that they represent implementable
behaviours � we consider a behaviour to be implementable if it can be executed on a processor
where the measure of time is provided by a discrete clock� We call this requirement bounded
variability� it demands that for any duration d� there is an upper bound n of the number of
actions performed within any time interval of length d�

This can be stated formally� for a given process P � by

	d �n 	� � �a�� d�	 �a�� d�	 ��� 	i� j ��
�i � j � length��	 �

jX
k�i��

dk � d

�
A
 j � i � n

This property guarantees implementability in the sense that one can establish a correspondence
between model time d and a clock period for safe implementations� From this de�nition� for
model time d one can take a clock period greater than or equal to n�d� where d� is an upper
bound of atomic action durations� Bounded variability is satis�ed by none of the considered
algebras�

����� Bounded control

If we consider again realisability issues� for the same reasons as above� the set of initial actions
of a process should not change too fast in a given time interval�

Given a process P � represent by init�P 	 the set of the actions it can perform� i�e��

init�P 	 � fa j �P � � P
a
� P �g

A model has the bounded control property if there exists d such that for all states P and P �

in the model� if P d�� P � and init�P 	 �� init�P �	� then d� � d� In fact� the modi�cation of the
initial actions corresponds to a change of the �control state� of the process� Bounded control
expresses the fact that for any d� there is a bounded number of such changes in any time interval
of duration d� and it means that it is possible to �nd a clock period which allows to handle these
changes�

The bounded control property is satis�ed for models de�ned over a discrete time domain� and
for models of TCSP�

��� Discussion

An important question is which properties are essential and how their presence or absence in�u�
ences description capabilities�

Most of the existing work adopt time determinism and additivity� Deadlock�freeness is not in
our opinion an essential model property� Time�lock is of course an abnormal situation but in
some theories it can correspond to non�realisable speci�cations�

A property like persistency seems to be a strong requirement which is very often adopted without
justi�cation� Saying that time progress does not change system�s capabilities to perform actions
seems to be counterintuitive as time is often used precisely as a parameter to control action
executability �as in timeouts	� This property� often combined with urgency with respect to �

only� allows to express the fact that some action may be executed during some time interval� but
cannot guarantee obligation of execution� This corresponds� we believe� to a major distinction
concerning description capabilities of formalisms�

Implementability properties prevent from having an unbounded number of state changes within
�nite time� which is an essential requirement for discrete machines� Both bounded variability
and bounded control properties allow to establish a relationship connecting abstract �model	
time with a processor�s discrete clock period�

In the sequel� we consider models that are time deterministic and additive� As D is usually
in�nite� the models are generally in�nitely branching transition systems� Figure � represents the
model of the process �P timeout��	 Q� which behaves as P before time � or as Q at time �� for
D � IN� D � f�� ���� �� ���� ���g and D dense�

�

P
P

Q

QP

P

P
PP

P

P

Q

PP

P

�

D dense

���

D � f�� ���� �� ���gD � IN

���

�

	
	

	
��

�

P

Figure �

� The Languages � How to Cook your own Timed Process

Algebra

In this section we present an overview of the language features of the process algebras considered�
We especially focus on constructs used to describe time constraints� their semantics� and the
extension of the semantics of standard operators for timed transitions�

The presentation is organised as an exercise of building a timed process algebra TPA from a
standard process algebra for untimed systems� Given such an untimed process algebra UPA we
review the di�erent ways of extending it encountered in the literature�

To make the comparison as concrete as possible� we de�ne the meaning of constructs in terms of
the common reference model presented in the previous section� The interpretation of the original
semantics into this common framework required some simpli�cations that� we hope� do not bias
the comparisons�

��� General principles

����� Process algebra

A process algebra PA is de�ned as a quadruple �OP�L�ROP
L ��	 where

� OP is a set of operators de�ning the language of PA

� L is a set of transition labels

��

� ROP
L is a set of structural operational semantics rules �a la Plotkin �Plo�� associating with

a term of PA a transition system labelled on L �a model	

� �� PA PA is a behavioural equivalence de�ned over the models� It it usually required
that this equivalence be a congruence� since a compositional semantics is an crucial issue
for a language

��� Timed process algebra

We consider here an untimed process algebra UPA � �OP�A�ROP
A ��	� where A is a vocabulary

of actions and � is the strong equivalence relation �Mil�� Mil���

The timed process algebra TPA � �OP �OP �� L� ROP�OP �

L �
T
�	 is de�ned from UPA by adding a

set OP � of time�constraining operators�

Time�constraining operators are operators which can transform untimed processes into time�
constrained ones� Examples of such operators are� time�lock constructs� operators which delay
the execution of a process� operators which impose some urgency on the execution of a process�
timeout operators� watchdog operators�

Processes of TPA are timed systems� Following the ideas in previous section� we decide to
represent their models by transition systems labelled on L � A �D�� Moreover� we require that
the models of processes of TPA be time�deterministic and time�additive�

We choose for the equivalence relation
T
� the strong equivalence with respect to L�transitions�

In UPA� time progress does not have to be represented in the models� since by de�nition� it has
no in�uence on the behaviour of an untimed process� In order to embed UPA in TPA� we have
to choose the timed model corresponding to an untimed process �its time�equivalent	� This must
take into account the following requirements�

Semantics conservation� the untimed process and its time�equivalent should have the same
behaviour as long as we observe execution of actions only� This imposes that the rules ROP

A

of UPA remain valid in TPA� as far as they are applied on terms of UPA�

Isomorphism� we also require that for any terms P � Q of UPA P � Q if and only if P
T
�Q� This

requirement guarantees that the theory of processes of UPA is isomorphic to that of the
restriction of TPA to operators of UPA� Thus� any theoretical development in UPA about
an untimed process remains valid in TPA� and conversely�

In the sequel we consider a standard process algebra UPA and apply these principles�

��� Syntax and semantics of UPA

The language of terms of UPA is described by the following syntax� where Nil is is a constant�
a and � are elements of A� � �� � � and X is an element of a set of process variables X �

P ��� Nil j X j aP j P
Q j P k Q j Pn� j recX � P

��

All the operators except k are taken from CCS �Mil��� We choose pre�xing instead of sequential
composition to simplify the presentation� since it usually yields a simpler theory� The restriction
operator Pn� prevents P from performing the visible action ��

We do not impose any choice of parallel composition operator� which can be CCS�like� ACP�like
�in which case we must de�ne a communication function for actions	� or CSP or LOTOS�like �it
should then be parametrised by sets of actions	�

For such a language� we suppose that a standard operational semantics is de�ned� in terms of
transition systems labelled by element of A �actions	� by the following axiom and rules

aP
a
� P

P
a
� P �

P
Q
a
� P �

Q
a
� Q�

P
 Q
a
� Q�

P
b
� P � � b �� �

Pn�
b
� P �n�

P ��recX � P 		X �
a
� P �

recX � P
a
� P �

We do not provide the semantic rules for the parallel composition operator� we only demand that
it has an interleaving semantics� as we take the models to be transition systems labelled on A�

��� Embedding UPA in a TPA

We �rst have to de�ne how to add time to an untimed process� taking into account the require�
ments presented in ����

Isomorphism� A simple answer to the isomorphism requirement is obtained by considering
that time progress is possible without e�ect at any point of the execution of an untimed
process� We obtain then the timed model of a term P of UPA by adding loops of the form

P d� P for any d of D�� Another possibility is to allow P to idle if and only if it cannot
perform any action u of some subset U of urgent actions of A� For instance� U may be
the subset of internal actions of A� This induces urgency in the models for states with a u
among their initial actions� We can express this solution by the rule

	u � U� P
u
��

P
d
� P

The latter principle is implicitly adopted in TiCCS� TPL and TPCCS with U � f�g�
whereas the former one is adopted in U�LOTOS� ACP�� TeCCS and ATP� We can consider
the �rst solution as a particular case of the second one� with U � ��

In TCSP� the solution adopted �adding a system delay after execution of an action in a
sequential process and before each recursive call	 does not satisfy the requirement� For
instance� the process recX � aX is not equivalent to the process a recX � aX in TCSP

��

while they are equivalent in untimed CSP� Hence� the laws of CSP are no longer valid in
TCSP�

Notice that the correspondence between operators of UPA and their equivalent in TPA is
not immediate in ACP�� TeCCS and ATP�

� In basic ACP�� some of the operators of ACP are not present� but may be derived
�for instance the atomic action constants	�

� In TeCCS and ATP� the timed process a P does not correspond to the untimed pro�
cess a P � In fact� the latter corresponds� in TeCCS to
 a P � and in ATP to ba Pc��
Similarly� in TeCCS� Nil does not correspond to �� but to
�� The confusion for
pre�xing may be removed if we denote it di�erently in the timed algebra�

In the sequel� we consider the general solution to the isomorphism requirement� with a set
of urgent actions U �

Semantics conservation� The other requirement demands that the operational semantics rules
for time�equivalent of untimed processes of UPA remain valid in TPA� For instance� in TPA�
there should be a rule

P� P �� Q � UPA � P
a
� P �

P
Q
a
� P �

Since it is syntactically possible to determine whether a term of TPA is built using operators
of UPA only� we can de�ne a predicate InUPA�P 	� whose value is true if P is in UPA� The
rule may then be rewritten in

InUPA�P 	� InUPA�P �	� InUPA�Q	� P
a
� P �

P
Q
a
� P �

However� if we want to obtain a compositional semantics of TPA� the premise
P� P �� Q � UPA is not enough� it should be replaced by

�P�� P
�

�� Q
�

� � InUPA�P�	� InUPA�P �

�	� InUPA�Q�	� P
T
�P�� P

� T�P �

�� Q
T
�Q�

This kind of premise is clearly not acceptable in a structural operational semantics rule�
since it is not based on a syntactic predicate� but on an semantic one� indeed� it means
that we have to decide operationally whether some process of TPA has a model equivalent
to a process of UPA�

We have thus to admit that this rule� and all the other rules of ROP
A in UPA� are also valid

in TPA�

��

��	�� Timed transitions of UPA operators

Concerning the de�nition of timed transitions� the semantics of OP in TPA must be de�ned so
that

	u � U� P
u
��

P
d
� P

for any P where only elements of OP occur�

Of course� such a rule should not be applicable to any TPA process� It can be checked that the
semantic rules for TPA below satisfy the following properties�

� Their restriction to time�equivalents of UPA gives the same derivations as the above rule�

� They preserve time determinism and additivity�

Moreover� they are perfectly acceptable for TPA processes�

Nil
d
� Nil

a �� U

aP
d
� aP

P
d
� P � � Q

d
� Q�

P
 Q
d
� P �
 Q�

P
d
� P �� Q

d
� Q�� 	u � U �

�
P kQ

u
�� � 	d��d 	P � � P kQ

d�
� P �
 P �

u
��

�

P k Q
d
� P � k Q�

P
d
� P �

Pn�
d
� P �n�

P ��recX � P 		X �
d
� P �

recX � P
d
� P �

The rule for parallel composition means that the composition of P and Q can idle for d if both
can do so� and moreover� if the composition cannot perform an urgent action before d�

The rules for
� k and restriction apply when the operands of the operators have d�transitions�
However� in TPS� there may be processes without such transitions� We have to decide what is
the e�ect of these operators in this case�

� For parallel composition� it is not possible to add a rule without violating the strong
synchrony hypothesis�

��

� In Pn�� if � is in U and is the only urgent action that P may perform� then the rules for
restriction yield a state which is� either a sink state� or a state where non�urgent actions
are made urgent� If we do not want such behaviours� we have to add the following rule�

	u � U � P
u
�
 u � �

Pn�
d
� Pn�

� For the alternative choice� we may decide that if P may idle� but not Q� then P
 Q may
idle� by adding the rule

P
d
� P � � Q

d
��

P
 Q
d
� P �

and its symmetric�

This semantics for
 is adopted in ACP�� In TeCCS� two alternative choice operators are
de�ned� the weak choice operator� for which the latter rules are added� and the strong
choice one� where they are not� The other algebras propose the strong choice operator �we
only consider the external choice of TCSP� which is strong	�

��� Time�constraining operators

We present time�constraining operators used in the process algebras considered� The aim of
the presentation is a classi�cation and comparison without caring about minimality� We also
emphasise the e�ect of the operators on the properties of the models�

��
�� Time�lock

It is a constant � representing the process performing no transition� It is a basic operator of
TeCCS� and it can be derived in U�LOTOS� In ACP�� the process
�d	 is a time�lock at time d�

Naturally� a time�lock process may be present only if the deadlock�freeness property is not re�
quired�

��
�� Delay operators

Operators for delaying processes are the most common ones in process algebras� Their e�ect
consists in postponing the execution of a process by a parameter d� We can classify them into
three groups�

��

Finite idling is de�ned with various syntaxes as a basic operator in TiCCS� TeCCS� TPL�
U�LOTOS and TCSP� We denote it by a pre�xing operator �d	� where d � �� �d	P behaves as
P after exactly d time units� Its semantics is given by the following rules�

d� � d

�d	P
d�
� �d� d�	P

�d	P
d
� P

Finite idling may be modelised in ATP� TPCCS and ACP�� though its de�nition is not trivial
in the latter� especially in the absolute time version�

Time�stamped actions� In ACP�� the basic construct of the algebra is obtained by imposing
a time�stamp to actions� Two versions are presented� with absolute or relative time�stamps� In
the absolute case a�d	 performs a at time d since the beginning of the process� whereas in the
relative case� a�d� performs a d time units after the previous action has been performed� In the
latter case� and if we consider it as a pre�xing operator� its semantics may be described by

d� � d

a�d�
d�
� a�d� d��P

a���P
a
� P

Time�stamped actions induce the general urgency property in the models� It can be modelled
only in algebras where this property is allowed� In ACP�� due to the choice for the semantics of
alternative choice� it suppresses also any kind of persistency in the transition systems�

Unbounded idling is de�ned in algebras where there may be urgent actions� like TeCCS and
ATP� Its purpose is to suppress this urgency� However� it has a di�erent semantics in these two
algebras�

� in TeCCS� the unary operator
 has the following semantics�

P
a
� P �

 P
a
� P �

 P
d
�
 P

� in ATP� the operator b c� has the following semantics�

P
a
� P �

bPc�
a
� bP �c�

P
d
� P �

bPc�
d
� bP �c�

	d�� P
d�
��

bPc�
d
� bPc�

The di�erence is that in TeCCS� if P cannot execute immediately an action� then the process

 P may only idle forever� whereas in ATP� the process P is allowed to let time progress�

Such operators are trivially de�nable in the other algebras� with the restriction that in those
where � is urgent� it is not possible to delay it�

��

Integral� In ACP�� the integral operator
R
v�V P �v	 for a process P parametrised by a time

variable v behaves as P where v may be replaced by any value of the subset V of D� A simple
use of this operator is

R
v�I a�v�� where I is an interval� This process may perform an a at any

time in I � Thus� it delays the execution of a by some value v in I � It can be described in TeCCS
and ATP� provided the interval is right�closed�

Notice that in TiCCS� pre�xing a�v P is equivalent to an integral� where the interval I is the
whole domain� The value v may be used in delay values in P � Such a construct is useful to
provide an expansion theorem for parallel composition when the time domain is dense�

��
�� Urgency operators

Immediate actions� In TeCCS and ATP� pre�xing by an action �aP 	 impose that this action
be performed immediately� To avoid confusion with the pre�xing operator of UPA� we denote
this urgent pre�xing by �aP � Its semantics is given by the unique axiom �aP a� P � It is also
expressible in the algebras where urgency of actions are allowed� that is in U�LOTOS and ACP��
if in the latter we allow the time�stamp �� Conversely� it has no equivalent in the other algebras
considered�

Time�stamped actions ACP��� They have been presented above� They have the double
e�ect of delaying and imposing urgency once the delay has expired� We could call them a
punctuality feature�

As soon as possible� In U�LOTOS� the primitive operator asap enforces the urgency of a
set of actions in the whole execution of a process� For sake of simplicity� we only present its
semantics in the case where this set of actions is reduced to a singleton�

P
a�
� P �

asapa inP
a�
� asapa inP

�

P
a
�� � P

d
� P �� 	d��d 	Q� P

d�
� Q
 Q

a
��

asapa inP
d
� asapa inP

�

The second rule means that the asapa inP can idle for d if P can do so� and cannot perform an
a before d�

This very powerful operator is expressible in ACP�� ATP and TeCCS� and clearly not in the
other algebras�

��
�	 Timeout operators

A timeout is an operator with two arguments P and Q and a parameter d � D�� We call P the
body and Q the exception of the timeout�

A timeout for P � Q and d behaves as P if an initial action of P is performed within time d�
otherwise it behaves as Q� after time d�

��

Depending on the interpretation of �initial action� and �within time d�� several variants of
timeout operators have been proposed�

a� P
d
� Q in ATPD ��NSY���	 with the following semantics�

P
a
� P �

P
d
� Q

a
� P �

P
d�
� P � � d� � d

P
d
� Q

d�
� P �

d�d�

� Q

P
d
� P �

P
d
� Q

d
� Q

P
d
� P � � Q

d�
� Q�

P
d
� Q

d
 d�
� Q�

The last rule is necessary to preserve time additivity�

With this operator an action that P may perform after some time is also interpreted as an
�initial action� of P � �Within time d� is interpreted as �before time d�� we call timeouts
with such a interpretation strong timeouts�

b� bPcd�Q	 in ATP �start�delay operator	 with the following semantics�

P
a
� P �

bPcd�Q	
a
� P �

P
d�
� P � � d� � d

bPcd�Q	
d�
� bP �cd�d

�

�Q	

	d� P
d�
�� � d�� � d

bPcd�Q	
d��
� bPcd�d

��

�Q	

bPcd�Q	
d
� Q

Q
d�
� Q�

bPcd�Q	
d
 d�

� Q�

This operator di�ers from the previous one in that it also allows to postpone the urgent
actions P may perform� It is a strong timeout too�

c� P �d Q in TPCCS is a strong timeout with a strict interpretation of initial actions�

P
a
� P �

P �d Q
a
� P �

d� � d

P �d Q
d�
� P �d�d� Q

P �d Q
d
� Q

Q
d�
� Q�

P �d Q
d
 d�

� Q�

d� The timeout of TCSP is a weak one� in the sense that at time d both the body and the
exception can be executed� that is� P may start in the interval ���d�� and Q may be chosen
at d� The weak timeout preserves persistency in the models� The interpretation of initial
actions is the same as in case a� In the semantics� an urgent internal action � is used to
enforce a choice between P and Q at time d� The weak timeout can be expressed in terms
of the strong one� but the converse is not true�

�

��
�
 Watchdog operators

A watchdog is an operator with two arguments P �body	 and Q �exception	 and a parameter d
in D��

It behaves as P until time d� At time d� P is �aborted� and Q is started�

Such operators are proposed in ATP �execution delay	 and TCSP �time interrupt	� As for the
timeouts� the watchdog is strong in ATP� and weak in TCSP �in the latter� P may still perform
some action at time d� which is not the case in ATP	�

In TCSP� if P terminates successfully� the watchdog is cancelled� In ATP� there is no operational
notion of termination� However� the watchdog may be cancelled if P performs a special action
�� called cancel� We present hereafter the semantics of the watchdog of ATP�

P
a
� P � � a �� �

dP ed�Q	
a
� dP �ed�Q	

P
�
� P �

dPed�Q	
�
� P �

P
d�
� P � � d� � d

dP ed�Q	
d�
� dP �ed�d

�

�Q	

P
d
� P �

dPed�Q	
d
� Q

P
d
� P � � Q

d�
� Q�

dPed�Q	
d
 d�

� Q�

� Discussion

The paper is an overview and synthesis of existing results about timed process algebras� It
hopefully contributes to the clari�cation of the following three di�erent problems� designers of
timed speci�cation languages should in principle address�

�� What are the underlying principles of functioning of timed systems In the introduction�
we formulate some assumptions about the two�phase mode of functioning and provide
pragmatic justi�cations� This functioning corresponds to some abstraction of the reality
which has the advantage of clearly separating the actions from the time progress issue�
It is argued that adopting such an �orthogonality� principle between actions and timed
transitions is more paying than other approaches imposing some non�zero durations to
actions� In the latter� time is not abstract� i�e�� independent of implementation choices�

�� What is a general model for timed systems� and what are its most relevant properties
Following assumptions about the functioning of timed systems� we take as models transi�
tion systems whose labels are either elements of an action vocabulary or elements of an
appropriately chosen time domain�

Concerning the properties studied� they can be classi�ed as follows�

� time determinism and additivity characterise fundamental properties of time�

� properties characterising the expressivity of the model� like presence of time�locks and
the di�erent types of persistency or urgency�

��

� realisability properties�

The choice of a particular class of models should be determined for a given time domain
as a compromise between realisability and expressivity�

�� How an untimed speci�cation language can be consistently extended so as to obtain a
timed speci�cation language We suggest a principle which has been more or less followed
in several cases of consistent extensions �except for TCSP	� Concerning the description
capabilities of the language� it is di!cult to make a precise comparison due to the di�erences
of the semantic framework adopted� However� an important distinction appears concerning
the expression of urgency�

This is a �rst partial synthesis of results in the area� which hopefully contributes to structuring
them and suggests an approach for tackling the problem of introducing time in process algebras�

References

�AB�� D� Austry et G� Boudol� Alg�ebre de processus et synchronisation� Theoretical Computer
Science� ��� ����

�BB��� J� C� M� Baeten et J� A� Bergstra� Real time process algebra� Technical report CS�
R����� Centre for Mathematics and Computer Science� Amsterdam� The Netherlands�
�����

�BC�� G� Berry et L� Cosserat� The Esterel synchronous programming language and its
mathematical semantics� Dans LNCS ���� Proceedings CMU Seminar on Concurrency�
pages ��"��� Springer Verlag� ����

�BL��� T� Bolognesi et F� Lucidi� LOTOS�like process algebra with urgent or timed interac�
tions� Dans K� Parker et G� Rose� #editeurs� Proceedings of the fourth international con�
ference on Formal Description Techniques �FORTE�� North�Holland� novembre �����

�CHPP�� P� Caspi� N� Halbwachs� D� Pilaud et J� Plaice� Lustre� a declarative language for
programming synchronous systems� Dans �	th symposium on Principles Of Program�
ming Languages� M$unich� Germany� janvier ����

�DS�� J� Davies et S� Schneider� An introduction to Timed CSP� Technical report PRG����
Oxford University Computing Laboratory� UK� ao%ut ����

�Har�� D� Harel� Statecharts � a visual approach to complex systems� Science of Computer
Programming� "�����"���� ����

�HR��� M� Hennessy et T� Regan� A Temporal Process Algebra� Technical report �&��� Uni�
versity of Sussex� UK� avril �����

�HR��� M� Hennessy et T� Regan� A process algebra for timed systems� Technical report �&���
University of Sussex� UK� avril �����

��

�Klu��� A� S� Klusener� Completeness in real time process algebra� Technical report CS�R�����
Centre for Mathematics and Computer Science� Amsterdam� The Netherlands� janvier
�����

�Mil�� R� Milner� A Calculus of Communicating Systems� Dans LNCS �
� Springer Verlag�
����

�Mil�� R� Milner� Calculi for synchrony and asynchrony� Theoretical Computer Science� ���
����

�Mil��� G� J� Milne� The formal description and veri�cation of hardware timing� IEEE Trans�
actions on Computers� �� ��	� juillet �����

�MT��� F� Moller et C� Tofts� A temporal calculus of communicating processes� Dans J� C� M�
Baeten et J� W� Klop� #editeurs� LNCS 	��� Proceedings of CONCUR �� �Theories of
concurrency� uni�cation and extension�� pages ���"���� Amsterdam� The Netherlands�
ao%ut ����� Springer Verlag�

�NRSV��� X� Nicollin� J��L� Richier� J� Sifakis et J� Voiron� ATP� an algebra for timed processes�
Dans Proceedings of the IFIP TC
 working conference on Programming Concepts and
Methods� Sea of Galilee� Israel� avril �����

�NS��� X� Nicollin et J� Sifakis� The algebra of timed processes ATP� theory and application�
Information and Computation� �to appear	� d#ecembre �����

�NSY��� X� Nicollin� J� Sifakis et S� Yovine� FromATP to timed gaphs and hybrid systems� Dans
J� W� de Bakker� C� Huizing� W� P� de Roever et G� Rozenberg� #editeurs� LNCS ����
Proceedings of REX workshop �Real�time� theory in practice�� Mook� The Netherlands�
juin ����� Springer Verlag�

�Plo�� G� D� Plotkin� A structural approach to operational semantics� Technical report DAIMI
FN���� 'Arhus University� Computer Science department� 'Arhus� Denmark� ����

�RR� G� M� Reed et A� W� Roscoe� A timed model for Communicating Sequential Processes�
Theoretical Computer Science� � �pp ���"���	� ���

�Sch��� S� Schneider� An operational semantics for Timed CSP� Programming Research Group�
Oxford University� UK� f#evrier �����

�Wan��� Wang Yi� Real�time behaviour of asynchronous agents� Dans J� C� M� Baeten et J� W�
Klop� #editeurs� LNCS 	��� Proceedings of CONCUR �� �Theories of concurrency�
uni�cation and extension�� pages ���"���� Amsterdam� The Netherlands� ao%ut �����
Springer Verlag�

�Wan��� Wang Yi� CCS
 time � an interleaving model for real time systems� Dans
J� Leach Albert� B� Monien et M� Rodr#(guez Artalejo� #editeurs� LNCS ���� Proceedings
of ICALP ��� Madrid� Spain� juillet ����� Springer Verlag�

��

