Building Models of Real-Time Systems from
Application Software

JOSEPH SIFAKIS, STAVROS TRIPAKIR\SSOCIATE MEMBER, IEEE AND SERGIO YOVINE

Invited Paper

We present a methodology for building timed models of real-time ~ Currently, validation of real-time systems is done by
systems by adding time constraints to their application software. experimentation and measurement on specific platforms in
The applied constraints take into account execution times of atomlcdorder to adjust design parameters and, it is hoped, achieve

statements, the behavior of the system’s external environment, an f it ith . ts. Th ist f deli
scheduling policies. The timed models of the application obtained contormity with requirements. the existence of modeling

in this manner can be analyzed by using time analysis techniquestéchniques is a basis for rigorous design and should dras-

to check relevant real-time properties. tically ease validation. Modeling systems in the large is an
We show an instance of the methodology developed in the TAXYSmportant trend in software and systems engineering today,

project for the modeling and analysis of real-time systems pro- s demonstrated by the so-called model-based approaches

grammed in the Esterel language. This language has been extende . .
to describe, by using pragmas, time constraints characterizing the 9], [10], [19], [25]. Nevertheless, building models that faith-

execution platform and the external environment. An analyzable fully represent real-time systems is not a trivial problem.
timed model of the real-time system is produced by composing in- For this reason, models are often used at early phases of

strumented C-code generated by the compiler. The latter has beensystem development, at high abstraction level, and they do

re-engineered in order to take into account the pragmas. Finally, st easily carry through the entire design life cycle.
we report on applications of TAXYS to several nontrivial examples.) - ; N
Keywords—Automatic code instrumentation, correct implemen This paper unifies results developed at Verimag (Gieres,
tation, modeling, real-time systems, synchronc;us and asynchronousFr,ance) OV(,ar the past four years into a metho,d0|09y for mod-
execution, timing analysis. eling real-time systems. The methodology is based on the
thesis that a timed model of a real-time system can be ob-
tained by adequately restricting the behavior of its applica-

|. INTRODUCTION tion software with time constraints characterizing the execu-
Modeling plays a central role in systems engineering. The tion platform and the external environment (e.g., execution

use of models can profitably replace experimentation on ac-times, task arrival times, or scheduling policies) [31].

tual systems with incomparable advantages, such as: The paper presents the methodology, discusses problems
1) enhanced modifiability of the model and its parameters; related to its feasibility, and describes its application to syn-
2) ease of construction by integration of models of het- chronous real-time systems. It is organized as follows. Sec-

erogeneous components; tion Il presents current practice and challenges in real-time
3) generality by using abstraction and behavioral nonde- system development. The methodology considers modeling
terminism; as an activity integrated in the system development process.

4) enhanced observability, controllability, and avoidance Getting faithful models requires a clear understanding of the
of probe effect or of disturbances due to experimenta- implementation process and the possibility of relating the ap-

tion; plication software with its run-time behavior. We discuss the
5) possibility of analysis and predictability by application general problem of establishing a connection between the ap-
of formal methods. plication software with its implementation and explain why

current practice does not address the problem in a satisfac-
Manuscript received December 20, 2001; revised August 31, 2002.This tory way.
work was supported in part by the European IST project “Next TTA” under] .
Project IST-2001-32111. ‘ _ _ Section Il presents the general modeling framework. It
The authors are with Verimag, 38610 Gieres, France (e-mail: giscusses general methodological aspects about how the ap-
Joseph.Sifakis@imag.fr; Stavros.Tripakis@imag.fr; Sergio.Yovine@imag lication software can be related to its implementation and
fr). p p

Digital Object Identifier 10.1109/JPROC.2002.805820 proposes a general notion of correct implementation.
0018-9219/03$17.00 © 2003 |EEE

100 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

Section IV presents results of the TAXYS project, an R

= Application software
application of the general methodology to synchronous |

real-time systems developed in Esterel. It provides a simple correétness implementation
example and benchmarks from nontrivial case studies. !

Section V discusses perspectives of application to multi- L---J Real-time system |---
threaded asynchronous real-time systems and reports on on- timin
going work in that direction. analysis

Fig. 1 The implementation process and main challenges.
Il. CURRENT PRACTICE AND CHALLENGES

A. The Divide Between Application Software and Real-Time ¢, example, positive reals to express the delay between

System two events. It is worth noting that, even if the application
Application software is usually written in some high-level software contains statements depending on real time, e.g.,
programming language, such as C, Java, ADA-95 [36], SDL timeouts, they are essentially not different from awaiting an
[20], Esterel [5], or Lustre [17]. To cope with the complexity external event, such as hitting an obstacle.
of applications, software is decomposed into components. Since abstractions break down during implementation,
Conceptually, the programmer reasons in terms of a model ofit is not at all obvious that a real-time system preserves
computation while developing the software. This modelis ei- the properties of its application software. For example, we
ther explicit in languages with formal semantics or implicity may have verified absence of deadlocks using a high-level
assumed by the programmer. Thigh-levelmodel is based model of the application software which assumes actions
on abstractions about the behavior and interaction of com-take zero time. Nevertheless, the real-time system may
ponents. Such abstractions include concurrent execution, in-have deadlocks, owing to the fact that computations take a
stantaneous computation, zero delay, and perfect communi-nonzero amount of time and result in desynchronizations.
cation between components and/or between components and he first challenge, therefore, is to check that a real-time
the external environment, atomicity of actions, and so on. In- system is correct with respect to its application software.
deed, these are very useful abstractions that drastically sim-We call this thecorrectnesgproblem (see Fig. 1). To check
plify description. Moreover, they are necessary for platform correctness formally, we must first build models of both the
independence, which is crucial to software portability and application software and the real-time system. Also, since
reuse. Finally, they often reduce the complexity of analysis, these models use different time axes (logical versus real
which is especially important during the design phase. time), a framework must be developed that relates the two
Application software must be implemented on a particular and encompasses a notion of correctness.
platform. Usually, the implementation process involves more Preserving the properties of the application software not
than compiling. For instance, different parts of the applica- only means preserving a setfohctional(untimed) proper-
tion software, developed by different teams, are sometimesties. It is also necessary to verifonfunctionalproperties.
compiled separately. Then, the various executables need to b&or example, it is critical in most control applications that
integrated, on either a single-processor platform or a multi- the system quickly reacts to changes of the environment. This
processor platform with some communication medium (e.g., can be expressed as a property of the form “whenever event
a bus) linking the processors. In any case, implementationa occurs, eveni will follow at most afterz time units.” This
compromises the abstractions of the high-level programming is a nonfunctional property, because the time units are mea-
model: components must be executed on one or a few pro-sured in real time. We call the problem of checking such non-
cessors (thus, sequentially rather than concurrently), compu-functional properties theming analysigproblem. Like cor-
tation and communication takes time, and so on. Therefore,rectness, timing analysis also requires building a model of
implementation involves resolving a number of issues not al- the real-time system.
ways resolved at application software level, such as resource As presented above, both the correctness and timing anal-
allocation (e.qg., distribution of tasks to different processors, ysis problems aranalysisproblems. They can also be turned
scheduling policy) or task communication and synchroniza- into synthesiproblems, where we look for methods that help
tion (e.g., shared memory, semaphores, queues). resolving the choices that need to be made during implemen-
From the preceding discussion, it becomes apparent thattation. Some of these choices are imposed by external con-
the divide between application software and implementation straints; for example, the execution platform and network
(real-time system) resides in the fact that the high-level may be fixed because of power consumption or economic
model of computation (the model of the application soft- reasons. Many other choices, however, are often left to the
ware) is, in general, different from tHew-level model of programmer or the compiler. For example, the programmer
computation (the one of the real-time system). Software is must decide which concurrent components to group into a
immaterial and, ideally, platform independent; therefore, the single sequential thread. The compiler must decide, in case
high-level model often usedagical-timeaxis, for example, there are two independent computations, in what order to per-
a partial or total ordering of events. The implementation form them. Such decisions are often taken in an arbitrary or
runs on a platform and interacts with its environment in ad hocmanner. Instead, they shoulddpgidedby correctness
real time thus, the low-level model uses a real-time axis, and timing requirements.

SIFAKIS et al. BUILDING MODELS OF REAL-TIME SYSTEMS FROM APPLICATION SOFTWARE 101

In Section Ill, we propose a modeling framework that ad- is not always easy to meet, in particular when high respon-
dresses the correctness and timing analysis problems. We daiveness to the environment is required. Another drawback is
not address the synthesis problem, although we recognize ithat modularity cannot be easily handled; for instance, it is

as an important challenge [1]. hard to compile synchronous programs separately and then
. link them together or with nonsynchronous implementations.
B. Synchronous and Asynchronous Real Time The latter is a problem in practice, since in large projects,

Current practice in real-time systems design follows two Software is usually provided by different teams. On the other
well-established paradigms, namely, synchronous and asynand, the asynchronous paradigm results in less predictable
chronous. implementations, which are hard to analyze.

The synchronous paradigm [4] has been developed in Foradvanced real-time applications, itis desirable to com-
order to better control reaction times and interaction with bine the synchronous and asynchronous paradigm for both
the external environment. It assumes that a system interact@pplication software and implementation. We need program-
with its environment by performing global computation Mingand specification languages combining the two descrip-
steps. In a step, the system reacts to environment stimulition styles, as some applications have loosely coupled sub-
by propagating their effects through its components in a Systems composed of strongly synchronized components.
well-defined order ¢ausality orde)y. The synchrony as- Even in the case where purely synchronous or asyn-
sumptionstates that the system’s reaction is fast enough chronous programming languages are used, it is interesting
with respect to the environment. In practice, this means thatto mix synchronous and asynchronous implementations
environment changes occurring during a step are treatedto cope with inherent limitations of each paradigm. For
at the next step and implies that responsiveness and preinstance, for synchronous languages, making the scheduling
cision are limited by step duration. Hardware description of components within a step more sophisticated can result in
languages (such as VHDL) and the so-called synchronousa system that is more sensitive to environment changes. Itis
languages (such as Esterel [5], Lustre [17], and Signal [16]), also possible to relax synchrony at implementation level by
adopt the synchronous paradigm. These languages are usediapping components solicited at different rates to different
among others, in signal processing and automatic control Nonpreemptable tasks.
applications. Proposals of real-time versions of object-based languages

Synchronous programs are typically implemented as asuch as Java [21], [28] and UML [15], provide concepts
single task that executes a read/compute/write loop. Simpleand constructs allowing to mix the two paradigms and
scheduling policies are employed to resolve concurrency €ven to go beyond the distinction between synchronous and
of components, e.g., by serialization of the causal order asynchronous. In principle, it is possible to associate with
mentioned above. This is typically done only once, at Objects general scheduling constraints to be met at run-time.
compile-time, avoiding scheduling overhead at run-time. The concept of dynamic scheduling policy should allow
Moreover, an operating system is often unnecessary. Forcombining the synchronous and asynchronous paradigms
correct implementation, care should be taken to verify the or, most importantly, finding intermediate policies corre-
synchrony assumption, for instance, by ensuring that the Sponding to tradeoffs between these two extreme policies.
execution time of a reaction is not too long. The development of technology enabling such a practice is

The asynchronous paradigm arose fromniatitasking ~ certainly an important work direction.
execution model. It does not impose any notion of global ex-
ecution step. The concurrent components (threads, tasks, ofll. M ODELING FRAMEWORK
processes) proceed each at its own pace and communicate,
for instance, by message passing. Therefore, this paradigm iﬁo
particularly suitable for distributed systems. Languages such
as ADA-95 [36], C, and Java adopt the asynchronous para-
digm. When concurrency operators are not explicit, they are
provided through the use of thread libraries. Note that these
languages are more general purpose than the synchronou§- The Elements of the Framework
languages mentioned above. The elements of our modeling framework are depicted in

Implementation of asynchronous languages typically Fig. 2.
relies on an operating system. The latter is responsible The model of the application software is shown at the
for scheduling, which is usually based on static priorities. top of the figure. The application software is made up of a
Real-time scheduling theory (e.g., [11], [12], [18], and [32]) number ofcomponentswhich are conceptually executing
provides techniques, such este-monotonicanalysis [26], concurrently In the figure, a distinction is made between
that guarantee satisfaction of simple time constraints, such axcomponents responsible for the interaction with the envi-
deadlines Unfortunately, these results are often applicable ronment (shaded area on the left of the figure) and com-
only to simple models, and are difficult to generalize. ponents performing the computation (shown on the right).

Neither of the two paradigms faces the implementation Sometimes, owing to the abstractions made at the high level
challenges in a satisfactory manner. One of the difficulties in (e.g., assumptions such that the software is alwegsptive
the synchronous paradigm is that the synchrony assumptionto the environment), the environment interface components

In this section, we propose a modeling framework that al-
ws relating the properties of the application software and
those of the implementation. In our discussion, we will limit
ourselves to single-processor implementations.

102 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

Application software

00000 000000 00000 0000g

whenever the program is ready to accept new inputs, it calls
some device-driver routines that gather data from the sensor
devices, and use them in their computation. Concerning out-
puts, no standard method exists. Sometimes, the outputs are
written throughout the computation by calling special de-
vice-driver routines. Sometimes, the outputs are gathered and

= [A e @ @ @ written at the same time, at the end of the computation or at
mironm i LA the end of a period.
esource management and | ask synchronization

! In Fig. 2, a distinction is made between the environment
Scheduler and the execution platform. Although this distinction reflects
reality, it is sometimes not important at modeling level. In-
deed, for reasons of complexity, the platform cannot be mod-
eled precisely, and is therefore abstracted as a nondetermin-
istic “player” that interacts with the running program in a
similar way as the external environment. In our methodology,
are not explicit, butimplied by the semantics of the language. the execution platform will be abstracted merely as a set of
The same is true concerning the interaction between concur-nondeterministic delays. Accurate bounds on these delays
rent components. are crucial for faithful modeling.
During implementation, the concurrent components are
mapped into one or motasks A task is a sequential process. B. Correctness

Since tasks are sequential, when several high-level concur- We now propose a formal modeling framework that al-

rent components are mapped into the same task, their COMows us to reason precisely about correctness of a real-time

_(I:_lrj]rrengy m?St be tr_ESOI\ﬁg' This is a ?chedulmg rtJrob_Itehr_n. system (implementation) with respect to its application soft-
€ order ot execution of the concurrent components within., .o (specification). In summary, both the application soft-

3 task is detﬁrmined Ieither at compile—timg (as is typically ware and the real-time system are seereastive machines

One In synchronous anguage_s) or at r“f"“me (e.g., RC)OMwhich consume inputs from the environment and produce
[29]). A second level of sc.hedullng is required when therg are outputs. Nevertheless, these machines operate in different
more than one task_s. Th's appears as Scheduler” in F|g_ 2-time domains. Therefore, additional functions are needed in
The schedulmg pollf:y IS usually prowded by the Operating o, qer to relate the two time domains. We introducgiming
system (e.g.tl_xed—prlorlty scheduling) and the choice IS to functions, which map real-time inputs and outputs into log-
apply the policy to the current set of tasks (e.g., assign & jcal-time ones. In what follows; will denote the logical time
priority). It may also be the case, however, that the sched- domain andr’ the real-time domain

uler is “custom-designed” for a particular application (e.g., a Inputs and Outputs:Let In be the set of alinput values

) : ‘ andOut the set of allbutput valuesWe assume an
time ;c]rl%g?red cyclic scr:jeduler) . - dOut th t of alloutput valueswWi that and
Schedulers are timed systems that manage shared reg) i 5renjon closedthat is, they are power sets of a given

sources so as to respect the timing requirements of the taskget For example, if the application is event triggered, then if
and of the environment. Typical timing requirements are a andb are events, thend{ b} is also an event. Union clo-

deadlines about the action completion and task arrival imes. g, ¢ js assumed for technical reasons and is not a restrictive
Usually, schedulers apply scheduling policies to choose assumption.
among pt_andlng requests for access to resources. Methods Inputs and outputs are partial functions on time domains.
for modeling schedulers have been proposed in [2]. We denote by[X — In] (resp.,[X — Out]) the set of all

The interactions between components of the application inputs (resp., outputs) on the time domain
software must also be explicitly implemented. For compo- The Model of the Application Softwaraie view the ap-
nents grouped into the same task, interactions are often im- lication software as a function
plemented by the compiler, using shared variables read an
written by the components. In general, the intertask com-
munication mechanisms provided by the operating system
or any other middleware (e.g., Java Virtual Machine) can o]]
be used. The implementation of component interactions ap- | "€ OUtput off is, in general, a set, meaning that the applica-

pears as “Resource management and Task synchronizationtion'SOftware is allowed to be nondeterministic. This helps,
in Fig. 2. for instance, to model multithreaded programs.

The interface with the environment needs to be imple- ' "€ Model of the Real-Time Systeigimilarly, we view

mented as well. Concerning inputs, this is typically done the real-time system as a function

using two techniques. The first is the useimterrupts and

can be seen amvironment-driverwhenever some external fr:[Tr — In] — 2[Tr—Out] (2)
device detects a change in the environment, it raises an inter-

rupt, and an interrupt handler is called. The second techniqueThe nondeterminism ofr reflects the uncertainty in the be-
is the use osampling and can be seen @sogram driven havior of the execution platform.

Environmdnt

Platform

Fig. 2 The elements of the modeling framework.

f:[T—>In] — [T—Out] 1)

SIFAKIS et al. BUILDING MODELS OF REAL-TIME SYSTEMS FROM APPLICATION SOFTWARE 103

The Untiming Functions:Since the program and the im- f o[T—Out]

plementation are not generally defined on the same time do- T —
main, we need some way to relate the behaviors on the two C
different time domains. This is done with the untiming func-
tions. Yin
The function Yout
Yin ¢ [Tr — In] — [T — In] 3) B fR 2[TR—)Out]

maps every input on the real-time affig to some input on
the logical-time axisl". We have a similar function for out-
puts, namely

Fig. 3 lllustration of the correctness notion.

the specific features of the language used may have an im-
Yout ¢ [Ir — Out] — [T"— Out]. 4) portant impact on the possibility to construct more or less
o)))) efficiently the models and to apply verification techniques.
Examples of untiming functions are given in Section IlI-C. The application software is a reactive program. Thus, the
We consider that all the functions, fr, 9in, andous function f can be defined by the correspondence between
are transducers, i.e., they are monotonic with respect to the(logical-time) inputs and outputs when the program is exe-
prefix order: if¢ is any one of these functions, for apyand cuted.

0=t S, ', ¢(p[0.1]) is th_e prefix of_so_me fur_lct|on_|n the set The functionfr can be obtained by building a model ac-
¢(p[0,¢'])), wherep[0, #] is the restriction op in the interval cording to the decomposition shown in Fig. 2. Models of
[0, £]. .) . tasks and their interaction and of the execution platform can

. Correctness: Correctness is def!ngd with re:spect toanen- o composed by adding time constraints about durations of
wronmqntE C [Tr — In] and un'qmmg functiong);, and atomic actions in tasks and of platform primitives. This re-
PYour. Given a mo_del of the application soft_vvafeand a quires, in particular, decomposing tasks into atomic (nonpre-
mod_el ofthe real-time systef, We say thay implements emptable) sequences of statements, and estimating their ex-
f. with TeSpect taf, ¢is,, aNdtjous, if ecution times on the target platform. Adding timing infor-
mation about execution times (e.g., lower and upper bounds)
allows abstracting from all the details about the underlying
platform.

V/) € E7 wout(fR(p)) g f(z/}in(/))) (5)

where the definition of},,; is extended from inputs/outputs))
to sets of inputs/outputs in the natural way. The functionsy;, and.,: relate inputs and outputs on

The notion of correctness is illustrated by Fig. 3. the real-time axis to inputs and outputs on the logical axis.
As in any implementation relation, we should avoid having ~ %in @bstracts away from real time by mapping into the

trivial implementations. Therefore, we require that same logical instant independent events or events close
enough in the real-time scale. The logical ordering takes
Vo€ E, f(n(p)) # 0= vout(fr(p)) Z0. (6) into account causal relations between events. Tiscan

be considered as an abstract specification of an input event
Timing Analysis: Timing analysis is performed with re- handler (see Section IV-B)

spect to a given environme#t and a given set diming re- If pis aninput of the real-time system, thenp,(p) defines

quirementsP. Formally, P is a relation between inputs and atime basethat is, an increasing sequence of instanf};

outputs in the real-time domain, that B, C [T — In] x in the following manner. Ag);, is a transducer, under some

[Tr — Out]. The meaning is that, given an input T — technical continuity conditions we have that, for any natural

In, an outputr : T — Out is legal iff (p, 7) € P. numbery, there exists a minimal real numbgt, such that
Then, given a model of the real-time systém fr satis- Yin(p(0,t;]) = Yin(p)(j), wherep(0, ;] is the restriction of

fies P, if p in the interval (0¢;]. In other words, the logical input at

instant;j depends only on the input values in the interval (O,
Vpe E, Vme fr(p), (p,m)€P. (7 t;].

In practice, the time bage;) ; can be defined by imposing
separability constraints which guarantee that significant
changes of the environment are not mapped into the same

We now propose a methodology for obtaining the elements logical instant. These constraints can be any combination of:
of the formal modeling frameworK, fr, ¥in, Yout, aNdE. 1) constraints restricting environment state changes within
The methodology is based on the principle that pieces of soft- two consecutive instants of the time base, e.g., values of a
ware that represent system behavior (timed or untimed) arevariable or the integral of some variable remain within some
models. Complex models can be obtained by composition of bounds; and 2) time constraints maintaining the distance be-
software components. In principle, there are no specific re- tween two successive instants of the time base close enough
quirements about the languages used to write the softwareto separate significant input changes, e.g., sampling.The
(e.g., formal semantics, model of execution). Nevertheless, notion of aseparatorevent is useful to define untiming

C. Modeling Methodology

104 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

functions. An event is a separator if distinct occurrences of code, where the added statements encode the execution of the

this event are mapped into distinct logical instants. real-time model, according to the annotated time constraints.
ForT = NandTr = R, some examples of untiming input
functions are the following. V. TAXYS

1) A very simple case comprises sampling functions
where a periodic event is a separator; that is, for
anyp andn € N, ¢i,(p)(n) = p(n - 8), whered
is the sampling period. This is a typical situation in
time-triggered systems [23].

2) Another simple case corresponds to the situation
where all the input events are separators. This means
that the application receives the input events one by
one in the order they arrive; that is, for apyand
n € N, ¥u'(p)(n) = p(t.), where(t,), are the
arrival times of all the events. .

Synchronous languages often assume that the logical inpqu' Overview of the Tool

at instantj depends only on the inputs in the intervgl(, The application software is composed of the Esterel pro-
t;], i.e., gram and a high-level description of the event handler. The

latter determines the way inputs are taken into account by the

Pin(p(0,t5]) = Yin(p)(4) = Yin(p(tj=1.t5]). (8) program to generate an image of the state of the environment

that is consistent with the synchronous semantics. The event

If the input p takes finitely many values in any interval nhandler is specified as a buffer characterized by its size and
of the time base, them,(p)(j) is taken to be equal to the |ist of separator input events. This information is used to
Us, ,<r<t, P(7), i.€., the logical input is the union all the getermine which input events are consumed by the program

The structure of TAXYS is depicted in Fig. 4. A typical
embedded real-time program is decomposed into a control
part, written in Esterel, and a data manipulation and compu-
tation part, written in C. The program is compiled with the
Esterel compiler SAXO-RT [35] that generates sequential C
code. The execution platform is a monoprocessor hardware
architecture [e.qg., a digital signal processor (DSP) without a
real-time operating system] where the Esterel program runs
as a single task.

events that occurred in thh interval. at each reaction.
The untiming functiom),.: can be defined in a similar The real-time system consists of the compiled program
manner. and the event handler, which are composed with the environ-

The model £ of the environment is obtained by using ment that produces the inputs. Conceptually, the behavior of
more or less strong abstractions, which reduce the compleXeach component is modeled as a timed automaton [3], and
(and often not precisely known) dynamics of the environment the model of the overall system is obtained by an appropriate
to a set of input/output behaviors subject to real-time con- composition operator. To extract a timed model from the ap-
straints. For example, we could model the environment as apjication software, we assume that time elapses only when
set of inputs arriving periodically or with a minimum inter- the program is executing the data manipulation functions
arrival time. Although® is not, strictly speaking, part of the ritten in C. These functions are annotated with intervals de-
real-time system’s model, it is necessary to close a system’sfined by the best and the worst execution times, which can
description in order to study the dynamics of the interaction. pe estimated with existing techniques (e.g., profiling, static
analysis, etc.) for analyzing software performance. The as-
sumption that the C code that implements the control struc-

The application of the previously described methodology ture takes no time is not restrictive. It is straightforward to
even to simple real-time systems is not tractable without tool build a finer model that takes into account the execution time
support. It is possible, under some conditions, to relieve the of the control part of the code.
user from tedious modeling work by automating model gen- The behavior of the environment is also given as an anno-
eration. tated Esterel program. Since synchronous programs are de-

Depending on the language in which the application soft- terministic, Esterel has been extended with a nondetermin-
ware is written, it is sometimes possible to establish a corre- istic choice statement (calleghausgto model nondetermin-
spondence between atomic sequences of actions at task levastic behavior of the environment [35]. This statement is not
(target code) and sequences of statements at application softto be used for programming the application software. Clearly,
ware level (source code). In such a case, the source code cahaving the same language for the program and the environ-
be annotated with time constraints on the execution time of mentis not a fundamental issue. Nevertheless, it greatly sim-
the target code on the given platform. Such constraints can beplified the development of the tool suite and enhanced its us-
derived using, for instance, execution time estimation tech- ability.
niques [27]. The program and the environment are compiled with

There are tools, such as METAH [8] and GIOTTO [19], SAXO-RT. The compiler has been re-engineered to use the
that provide support for building and analyzing models of annotations (pragmas) and the specification of the event
real-time software. Our methodology, implemented in the handler to appropriately instrument the implementation (C
tool TAXYS [6], [13], is based on the idea that compila- code). The role of the instrumentation is to substitute the
tion or synthesis techniques can be used for this purpose. Inactual execution times of the C functions by the intervals
TAXYS, the compiler is engineered to generate instrumented provided by the annotations. This is done in such a way

D. Tool Support

SIFAKIS et al. BUILDING MODELS OF REAL-TIME SYSTEMS FROM APPLICATION SOFTWARE 105

External
Event
Handler

Environment =
ESTEREL
+ Pragmas

Application =
ESTEREL
+ Pragmas

SAXO-RT
Compiler

SAXO-RT
Compiler

KRONOS

Algorithms and
Data Structures

Timing Diagnostics

Fig. 4 TAXYS.

that the execution of the instrumented C code generates the

timed automaton model of the system. In other words, the
instrumented implementation is an implicit representation
of the timed model (as the implementation is an implicit
representation of the synchronous model).

The instrumented implementation is linked with the
KRONOS [14] timing verification library to obtain the
on-the-fly model checker of the real-time system. This
allows checking correctness and verifying timing require-
ments.

B. Checking Correctness

TAXYS checks correctness [see Condition (5)] by ver-
ifying a reachability property on the timed model of the
real-time system. What follows is an explanation of how this
is actually done.

Let f be the model of the Esterel program. We denote
by fa the function modeling the execution of the program
according to the time constraints derived from the annota-
tions associated with the C function, characterizes the

timed automaton constructed by the compiler. Hence, for any

in € In, andy € Tr, we have that

falin,x) = (f(in),x") 9)

wherey’ > yx is the time that the outpyt(in) is produced
when the input valuén is provided at timey (i.e.,x’ — x is
the execution time foin).

The modelfg of the real-time system is the result of the
composition of the event handlkrand of the functiory as
depicted in Fig. 5. We assume th@a{), is the time base
defined by the response times ¢k. That is, if an input
value is provided at timgy, then fa will terminate the cor-
responding computation at timg..1, which is also the start

———m———————— e

. 1
Environment !
1
1
1

Sensor [65.70] J-SensorData
1
1
1
1
1

PulsePeriod
Pulse [100,100]

1

1

1

|

R - -
! Shared ! !
! variable !
_____ a2 . \
|

1

Handler

]
1
1
1
1
1
1
1
1
1
1
1
1
1
\

N

Fig. 6 Simple example.

Thus, the correctness condition, of (5) is reduced to

Vpe E.VE e N. f(h(p,xx)) C f(in(p)(F)).

Thus, it is sufficient to show that the event handler satisfies

(12)

Vp € E.VE € N. h(p, xx) C ia(p)(k). (13)

Let (¢;),; be the time base induced by, (p) and defined
by the arrival times of the separator events. To respect the
semantics of Esterel, the functign, is such that

d)ln(p)(]) = d)in(/)(tj—htj]) = U

tj_1<7<t;

p(T). (14)

The event handler model records all the events occurred in
the interval {;_1, ¢;]. Notice that by definition, there is only
one separator in any interval. The contents of the event han-
dler are consumed at timeg,. To respect the correctness
condition (13), the event handler at tijyg should contain

all the events in the intervaly_1, tx]. Thus,t; < xi. Fur-
thermore . < tr+1 as the event handler should not contain
two separators in the same interval.

The model of the event handler is a buffer with a partic-
ular error state. This state is reached when the environment
generates a separator and there is already a separator in the
buffer.

Hence, checking correctness amounts to verifying that the
error state is not reachable.

C. A Simple Example
We illustrate the approach with a simple example depicted

time of the next computation step. We assume that the event, Fig. 6. The program is composed of two parallel modules

handler computes in zero time an outgi(p, xx) € In.
Thus, the modefx of the real-time system is such that, for
any inputp € £

fr(p) = (fa(h(p, xk), xx))k = (f(h(p, Xk))s Xk41)k-
(10)
In our case, the functiott,,; simply forgets real-time infor-
mation, i.e.,

Yout(Fr(P)) = (F(h(p, X1)))k- (11)

106

that control some physical device. The filtéris triggered

by the inputSensorData cyclically emitted by a sensor with

a minimum delay of 65 ms and a maximum of 70 ms be-
tween each occurrence performs some computation using
the data and stores the result in a shared variable (which is
not modeled). This computation takes between 20 and 25 ms.
The computed value is then used by the contrdlldo ap-
proximate the state of the device at that moment and apply
the desired control. The controll€ris periodically triggered

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

module Program:
procedure FO (O, COQO ;
input SensorData, PulsePeriod ;
output Data, Control ; module Environment:
loop output SensorData, PulsePeriod ;
await SensorData loop
%{SD:=age(SensorData)}/ ; npause
call FQ) %{65<X<70, X:=0}% ;
%{[20,251}% ; emit SensorData
emit Data end loop
end loop [
I loop
loop npause
await PulsePeriod %{Y=100, Y:=0}% ;
%{PP:=age (PulsePeriod) }} ; emit PulsePeriod ;
call C() end loop
%{[10,15], PP<40 A SD<85}% ; end module
emit Control ;
end loop
end module

Fig. 7 (Left) Program. (Right) Environment.

by the inputPulsePeriod. Computing the control takes be- arrows in Fig. 8 and 9 represent eager transitions that must
tween 10 and 15 ms. Controls should be applied every 100happen as soon as they become enabled. The “react” transi-
ms with an admissible delay of at most 40 ms. The value usedtion is the beginning of a reaction that starts as soon as there
to compute the control must be less than 85 ms old. is an eventin the buffer. Notice that, between the two possible

The Esterel code of the program is depicted in Fig. 7. The orderings which are consistent with the semantics of Esterel,
comments betwee¥{ and}% are the annotations carrying the sequential code generated by the compiler SAXO-RT
the timing information. The execution times are given as schedules the filteF first when both events are simultane-
intervals. VariablesSD and PP are clocks as in the timed ously present. The event handler is shown in Fig. 10. The
automata theory, that is, they are continuous variables thatcapacity of the buffer is one, and both events are specified to
progress at equal rate. The assignm8bt=age(Sen- be separators. The clo¢ks used to record the time elapsed
sorData) setsSDto the time elapsed since the arrival in since the arrival of the last event or, equivalently, to measure
the buffer of the evenBensorData consumed in the cur- the age of the event.
rent reaction. The constraiRP<40 A SD<85 expresses To verify the correctness of this example, TAXYS runs in
the requirements: the deadline for emitting the control is 40 less than a second, generates about 300 symbolic states and
ms and the data used to compute it is at most 85 ms old. Theconcludes that the real-time system s correct (i.e., the “error”
code of the environment is depicted in Fig. 7. Variab¥es state of the event handler is not reached) and that the timing
andY are clocks that are reset to 0 each time the environmentrequirements are satisfied. A symbolic state is composed of
emitsSensorData andPulsePeriod |, respectively. the state of the program (i.e., a valuation of the sig8ais-

The corresponding (extended) timed automata models aresorData andPulsePeriod as present or not, and a con-
depicted in Fig. 8 and 9. Recall that the automata are not con-trol point), the state of the event handler (i.e., a configuration
structed explicitly. Their behavior is generated on the fly by of the queue), the state of the environment (similar to the
the verification engine (see Fig. 4) by executing the instru- program), and a constraint on the clocks (i.e., a difference
mented C code produced by the compiler SAXO-RT. Dotted bounds matrix structure used by KRONOS.)

SIFAKIS et al. BUILDING MODELS OF REAL-TIME SYSTEMS FROM APPLICATION SOFTWARE 107

if Control then Control!

if Data then Data! react!
..................................... >
P PlsePer10d=false SensorData=false, - : SensorData=true
10<=CPU<=15 ‘_C.f)ntrol.—false Data:=false "’ 'CPU:=0
Control:=true ’ : SD:=age(SensorData)
PulsePeriod=true _ 20<=CPU<=25
CPU:=0 Data:=true
PP:=age(PulsePeriod)
Fig. 8 Program’s model.
65<=X<=70, X:=0 Y=100, Y:=0 émz
8 kHz
SensorData! PulsePeriod! h_’71 _in SkHz.()}n[g”fzz decad()

flfo _HP_a
ﬁfa _canalB_in
de ression() j

- fifo_t data h2z1_in
decompression()

fifo_rs232_out

N

Fig. 9 Environment’'s model.

buf={}, SensorData? buf={ }, PulsePeriod?
buf:=SensorData buf:=PulsePeriod
t:=0 t:=0

‘ buf != {}, PulsePeriod?
buf={PulsePeriod}, react? buf={ SensorData}, react?

fifo_micro_a

PulsePeriod:=true SensorData:=true
age(PulsePeriod):= age(SensorData):=t £722_encod()
buf:={ l buf:={1}

fifo_canalB_out
Fig. 10 Handler's model.
Fig. 11 ISDN prototype phone.

D. Experimental Results

TAXYS has been applied in several industrial case studies: code. The code of the full application developed by Alcatel

Radio Link of a GSM TerminalThis case study is re- consists of 815 lines of Esterel and 48 000 lines of C. The
ported in [7]. It consists in the programming and verification application was validated for 62 test environments provided
of the radio link of a global system for mobile communi- by Alcatel. Four scenarios were found to lead to deadline vi-
cations (GSM) terminal developed by Alcatel. We describe olations caused by a wrong scheduling of calls. These errors
here a small part of the application, which is composed of two were corrected by slightly changing the Esterel code.

modules. When the eveiitrepar arrives, the first module ISDN Prototype PhoneThis case study is reported in
takes 50 ms to prepare the radio front end of the mobile ter- [13]. It deals with a prototype phone carrying simultaneously
minal in order to receive data. Then, when the elarieipt voice and data produced by a graphic tablet, implemented on

arrives, it goes through a demodulation phase, that takes bea 32 million instructions per second DSP. The prototype has
tween 80 and 100 ms, followed by a decoding phase that fin- an audio input channel sampled at 8 kHz that is connected
ishes in 20 ms. The second module is triggered by the eventto the microphone, an RS232 input channel carrying data
Freq and calculates the frequencies on which the data arefrom the graphic tablet, and an input channel sampled at 8
going to be received, and completes in 40 ms. The compu-kHz to retrieve audio and graphic data sent by the network
tations are subject to the time constraints annotated in the(TNR) (see Fig. 11). Processing audio data consumes 3900

108 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

20ms @ So-===- =| cani [«
. 2
atmiol6 ~ — t canread | S_II_ISI. -
(g | ' 4ms
icanbrake! T o=

i .
cansteer; | atmioe =

ylong_brake lo

r--<t---

I

|

I lat steerl]long radar o1
: ng_outpuq

pctiol0 2ms

= veh ols [77 =t
ST o eng_spdl

Lo lat_output
long_outpui 1
path101 fault_feedjfck /1Om8-T2ck
P i 4., marker pos|

: edback . 277" Jat input_ma,
long_inpy e =-—-—— radio maneuver & hSt ‘1 Ii e
200 hmﬁ?e;i‘;;rﬁsqs lat_mput_sensors; I 4 -1,
- il I ' veh_lat ¢
l button_status -, buttons butlorn_status

HMI computer 30ms ‘_lr_mpumg

Fig. 12 Automated vehicle control software architecture.

Table 1 at the University of California at Berkeley [34]. This soft-
Experimental Results for the Prototype Phone. ware is responsible for controlling a set of cars moving au-
Name | Buff. | Symb. Verif. Diagnostic to_nomously in _eplatoonformation (one car behind the other,
size | States Time with a small distance, e.g., 4-6 m, between them), on the
ISDN; 5 2 200 127 s incorrect highway and at high speed (e.qg., 65 mi/h). The software con-
ISDN, 6 10 849 58 OK sists of a set of processes running concurrently on a PC,
ISDN3 5 15 894 6.29 s incorrect reading data from various sensors (e.g., radar, speedometer,
ISDNy | 6 | 633 472 | 10 mn 47 s OK accelerometer, magnetometer), writing to actuators (throttle,
ISDN; | 5 22 695 136 s incorrect brake, and steering), and using radio to communicate data
ISDNg | 6 > 107 ? aborted to other vehicles. Fig. 12 shows the tasks and their interac-

tions. Each arrow labeled with a variable name means that the

central processing unit (CPU) cycles over the 4000 CPU cy- originator of the arrow updates the variable, and the target of
cles available every 125s. Graphic data are compressed the arrow reads the variable. Periodic tasks are those labeled
by a vectorization a|gorithm that consumes Sporadica”y be- with a periOd in milliseconds. Event-driven tasks are those
tween 15000 and 20 000 CPU Cyc|es_ The program COﬂSiStSWith dashed arrow pointing into them, labeled with the name
of 258 lines of Esterel and 3000 lines of C code. We have Of the variable the task sets a trigger for. The control part of
used TAXYS to analyze the relationship between the size of the system has been reprogrammed in Esterel. Fig. 13 shows
the input buffers and the arrival rate of graphic data. We have the Esterel code of two of the tasks. The size of the buffer
analyzed the behavior of the system with three different en- is one, andatmioel is the separator event. We have veri-
vironment models. For each one, we have experimented W|thf|ed with TAXYS that the implementation is correct and that
buffers of sizes 5 and 6. ISDN; andISDN,, the envi- all periodic tasks complete their execution before the next
ronment model is composed of two strictly periodic and in- Period. TAXYS explored the entire reachable set (2022 sym-
dependent tasks (the first carrying audio data at 8 kHz andbolic states) in a less than a second.
the second the graphic tablet data at 100 Hz)ISIDN 3
andISDN,, the second task is aperiodic and emits bursts at
rates varying nondeterministically between 25 and 100 Hz. V. CONCLUSION
In ISDN; andISDNg, there is an additional periodic task _ _
that models switching between several audio modes. In all e propose a modeling methodology for real-time sys-
cases, the 8-kHz periodic event is specified to be separator!€ms. The methodology is based on the composition of timed
The results presented in Table 1 show that the buffer needsModels obtained by instrumenting software components
to be of at least size 6 for the implementation to be correct. US€d in the implementation. TAXYS is an application of the
The current prototype was unable to handle the complexity Methodology to the simple case of synchronous real-time
of ISDN. applicatiqns implemented as a single task. TAXYS combines
Automated Vehicle Control SoftwareFhis case study is ~ three major advantages.
reported in [33]. It involves the software developed by the 1) It is easy to use because the model of the real-time
PATH Advanced Vehicle Control and Safety Systems project system is generated automatically by compilation of

SIFAKIS et al. BUILDING MODELS OF REAL-TIME SYSTEMS FROM APPLICATION SOFTWARE 109

module veh_lat:

procedure p_veh lat() () ;

input atmioel ;

output lat_input_mag ;

loop

loop

await atmioel
%{x:=age(atmioel) }%;

call p_veh_lat() ()
%{[210, 2301}%;

emit lat_input_mag ;

module hst:
procedure p_hst() () ;

input lat_input_mag ;

await lat_input_mag ;

call p.hst() ()

end loop

end module

%{[325, 3451, x<2000}%;

end loop

end module

Fig. 13 Esterel program augmented with timing information.

annotated programs. The user has to learn only a min- REFERENCES

imal annotation language to express timing specifica- [y
tions.

2) The generated model faithfully represents the behavior
of the real-time system. This is because the model of
the latter is the code generated by the Esterel compiler,
instrumented with statements that model the passage [3]

(2]

K. Altisen, G. Goessler, A. Pnueli, J. Sifakis, S. Tripakis, and S.
Yovine, “A framework for scheduler synthesis,” in Proc. 20th IEEE
Real-Time Syst. Symp., 1999, pp. 154-163.

K. Altisen, G. Goessler, and J. Sifakis, “Scheduler modeling based
on the controller synthesis paradignd,” Real-Time Systvol. 23,

pp. 55-84, 2002.

R. Alur and D. L. Dill, “A theory of timed automata,Theoret.
Comput. Scj.vol. 126, pp. 183-235, 1994.

of time. [4] A.Benveniste and G. Berry, “The synchronous approach to reactive

3) Possibility of analysis as the generated model is simple
enough and is based on well-founded semantics. [5]

The application of the general modeling methodology to
other languages is more difficult and raises some nontrivial
problems.

First, the modeling methodology is implicitly related to
an implementation methodology for building the real-time
system as a succession of steps involving the development
of software components and their integration. The lack of a
clearly defined implementation methodology is an obstacle (8]
to the application of the modeling methodology. 9]

Second, when the application software is written in gen-
eral purpose languages, such as C or Java, without built-in re-
active execution semantics, model generation requires anal- [10]
ysis to identify observable states and associated computation
steps. The analysis task can be further hardened by features
such as multiple threads and dynamic process creation. [11]

Finally, a key issue for the application of the methodology [12]
is the use of adequate composition operators for modeling
software consisting of heterogeneous components, such as [13]
synchronous and asynchronous, or event triggered and time
triggered [24], [22]. Related to this is the problem of cor-
rectly adding time constraints to untimed models. “Correct”

means, for instance, to avoid artifacts of the mathematical [14]
model (e.g.zenobehaviors) that do not correspond to real
phenomena. Also, in order to have a modular modeling ap- 5]

proach, it is desirable that time constraints are added in a
compositional manner [30].

110

and real-time systemsProc. IEEE vol. 79, pp. 1270-1282, Sept.
1991.

G. Berry and G. Gonthier, “The Esterel synchronous programming
language: Design, semantics, implementatid®gi. Comput. Pro-
gram, vol. 19, no. 2, pp. 87-152, 1992.

[6] V. Bertin, E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D.

Weil, and S. Yovine, “Taxys = Esterel + Kronos: A tool for verifying
real-time properties of embedded systemsPiiac. 40th IEEE Conf.
Decision and Contrglvol. 3, 2001, pp. 2875-2880.

[7] V. Bertin, M. Poize, J. Pulou, and J. Sifakis, “Toward validated

real-time software,” presented at the 12th Euromicro Conf.
Real-Time Systems, Stockholm, Sweden, June 2000.

P. Binns and S. Vestal, “Scheduling and communication in metah,”
in Proc. Real-Time Syst. Sym@993, pp. 194-200.

——, “Formalizing software architectures for embedded sys-
tems,” in Lecture Notes in Computer Science, Embedded Soft-
ware Heidelberg, Germany: Springer-Verlag, 2001, vol. 2211,
pp. 451-468.

J. R. Burch, R. Passeronne, and A. Sangiovanni-Vincentelli, “Using
multiple levels of abstractions in embedded software desighgm

ture Notes in Computer Science, Embedded Softwateidelberg,
Germany: Springer-Verlag, 2001, vol. 2211, pp. 324-343.

A. Burns and A. WellingsReal-Time Systems and Programming
Languages Reading, PA: Addison-Wesley, 2001.

G. ButtazzoHard Real-Time Computing SystemdNorwell, MA:
Kluwer, 1997.

E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and
S. Yovine, “Taxys: A tool for the development and verification
real-time embedded systems,” ibecture Notes in Computer
Science, Computer Aided VerificationHeidelberg, Germany:
Springer-Verlag, 2001, vol. 2102, pp. 391-395.

C. Daws, A. Olivero, S. Tripakis, and S. Yovine, “The tool Kronos,”
in Lecture Notes in Computer Science, Hybrid Systems IllI: Verifi-
cation and Contral Heidelberg, Germany: Springer-Verlag, 1996,
vol. 1066, pp. 208-219.

“Response to the OMG RFP for Schedulability, Performance, and
Time Revised Submission,” Open Management Group, OMG doc.
no. ad/2001-06-14, 2001.

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32

(33]

P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire, “Pro- [34] P. Varaiya, “Smart cars on smart roads: Problems of contfeEE
gramming real-time applications with signaRtoc. |IEEE vol. 79, Trans. Automat. Contrvol. 38, pp. 195-207, Feb. 1993.

pp. 1321-1336, Sept. 1991. [35] D.Weil, V. Bertin, E. Closse, M. Poize, P. Venier, and J. Pulou, “Effi-
N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The syn- cient compilation of Esterel for real-time embedded systemsiitin
chronous dataflow programming language Lustrieroc. |IEEE Conf. Compilers, Architectures, and Synthesis for Embedded Syst.
vol. 79, pp. 1305-1320, Sept. 1991. 2000, pp. 2-8.

M. G. Harbour, M. H. Klein, R. Obenza, B. Pollak, and T. Ralya, [36] D.WheelerADA 95: The Lovelace Tutorial New York: Springer-

A Practitioner's Handbook for Real-Time Analysis: Guide to Verlag, 1996.

Rate-Monotonic Analysis for Real-Time Systenisorwell, MA:

Kluwer, 1993.

T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-
triggered language for embedded programming,Létture Notes

in Computer Science, Embedded Softwardeidelberg, Germany:
Springer-Verlag, 2001, vol. 2211, pp. 166-184.

“Specification and Description Language (SDL),” International
Telecommunication Union—Standardization Sector, Genéve, Z-100,
1999.

“Real Time Core Extensions for the Java Platform,” J-Consortium,
Specification no. T1-00-01, 2000.

H Kopetz, “The temporal specification of interfaces in distributed
real-time systems,” irLecture Notes in Computer Science, Em-
bedded Software Heidelberg, Germany: Springer-Verlag, 2001,
vol. 2211, pp. 223-236.

H. Kopetz and G. Grunsteidl, “TTP—A protocol for fault-tolerant
real-time systems,Computervol. 27, no. 1, pp. 14-23, Jan. 1994.

E. Lee and A. Sangiovanni-Vincentelli, “A unified framework for
comparing models of computationEEE Trans. Computer-Aided
Design vol. 17, pp. 1217-1229, Dec. 1998.

E. Lee and Y. Xiong, “System-level types for component-based de-
sign,” in Lecture Notes in Computer Science, Embedded Software
vol. 2211. Heidelberg, Germany, 2001, pp. 237-253.

C. L. LiuandJ. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real-time environment]” ACM vol. 20, pp. 46-61,
Jan. 1973.

P. Puschner and A. Burns, “A review of WCET analysR¢al Time
Syst, vol. 18, no. 2/3, 2000.

G. Bollella, J. Gosling, B. M. Brosgol, P. Dibble, S. Furr, D. Hardin,
and M. Turnbull,The Real-Time Specification for JavaReading,
MA: Addison-Wesley, 2000.

M. Saksena, P. Freedman, and P. Rodziewicz, “Guidelines for au-
tomated implementation of executable object oriented models for
real-time embedded control systems,Proc. 18th IEEE Real-Time
Syst. Sympl1997, pp. 240-251.

S. Bornot and J. Sifakis, “An algebraic framework for urgendsy;”
form. Comput.vol. 163, pp. 172—202, 2000.

J. Sifakis, “Modeling real-time systems—Challenges and work di-
rections,” inLecture Notes in Computer Science, Embedded Soft-
ware Heidelberg, Germany: Springer-Verlag, 2001, vol. 2211, pp.
373-389.

J. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo,
Deadline Scheduling for Real-Time Systems: EDF and Related
Algorithms Norwell, MA: Kluwer, 1998.

S. Tripakis and S. Yovine, “Timing analysis and code generation of
vehicle control software using Taxys,” Electronic Notes in The-
oretical Computer Science, RV’2001 Runtime Verificatioi. 55,
2001.

Joseph Sifakiss CNRS Researcher and Director
of the at Verimag laboratory, Grenoble, France.
He worked on both theoretical and practical as-
pects of concurrent systems specification and ver-
ification. He contributed to the development of
verification methods and tools by model checking
for untimed and timed systems.

His current research work aims at developing
methods for modeling real-time systems with
emphasis on composability and compositionality
techniques.

Stavros Tripakis (Associate Member, IEEE)
received the B.Sc. degree in computer science
from the University of Crete, Heraklion, Greece,
in 1992, and the Ph.D. degree in formal veri-
fication and synthesis for timed automata from
Verimag, Grenoble, France, in 1998.

He was a Postdoctoral Researcher at the Uni-
versity of California, Berkeley, in 1999 and 2000.
He currently holds a CNRS Researcher position
at Verimag. His research interests include formal
methods, networks, and embedded systems.

Sergio Yovine graduated in computer science
from Escuela Superior Latino Americana de
Informética, Buenos Aires, Argentina, in 1989.
He received the Ph.D. degree in computer
science from Institut National Polytechnique de
Grenoble, Grenoble, France, in 1993.

He was Research Engineer at the University of
California, Berkeley, in 1997 and 1998. He cur-
rently holds a CNRS Researcher position at Ver-
imag, Grenoble, France. He works on modeling
and analysis of real-time and hybrid systems.

SIFAKIS et al. BUILDING MODELS OF REAL-TIME SYSTEMS FROM APPLICATION SOFTWARE 111

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

