[image: image1.jpg]D

WIND RIVER

Wind River Systems, Inc. 500 Wind River Way Alameda, CA 94501 phone: 510-748-4100 fax: 510-749-2010 www.windriver.com

Please complete this proposal ONLY if you plan to use Wind River technology for academic research or academic project purposes. E-mail proposals to university@windriver.com
University Research Grant Proposal

École Normale Supérieure
ENS – DI
45, rue d’Ulm

75230 Paris cedex 5

France
June 16, 2003
 AUTONUM * Arabic Goals

Background:

The semantics and abstract interpretation group of the computer science laboratory at the École Normale Supérieure (ENS) focuses on the development of static analyses techniques. Its leading project is now the development of static analysis techniques and tools for synchronous, real-time critical embedded software of the avionics industry. Its industrial partners include Airbus France.
Static analysis is the automatic discovery of properties of software (or hardware) systems without actually running the program, as opposed to dynamic analysis. Except in very particular cases, dynamic analysis – that is, testing the program or hardware on examples – is inherently unsound, since only a finite, relatively small number of cases can be tested, while the full verification of the system would require it to be tested on all possible inputs. Mere dynamic testing is thus unable to prove that, for instance, the system may never crash or encounter an exceptional condition. In contrast, static analysis by abstract interpretation considers all possible inputs to the program, with all possible behaviors of the environment (other programs, other systems, the user, the sensors of the embedded system…). All possible executions of the programs are thus considered, and no error condition can be left undetected. Except in cases where the state space of the program is small or simple enough that it may be exactly and exhaustively explored, and techniques of model checking can be applied, it is in general impossible to analyze the program properties exactly.

Static analysis by abstract interpretation overcomes this difficulty by safe over-approximation: the analyzer considers a superset of all possible behaviors. Thus, no behaviour of the actual, concrete system may be ignored, but spurious behaviors may be introduced; it is possible that the analyzer produces false alarms, that is, warns of possible errors that actually cannot happen in the concrete program. Classical abstractions include interval analysis (computing for each program point and each variable an interval where the value of the variable always lies) and convex polyhedra (computing for each program point a set of linear inequalities that the variables always verify).
The difficulty of designing abstract interpretation-based analyzers is to balance precision (minimizing the number of false alarms, even eliminating them) and reasonable costs in memory and computation times. Precision is important because large amounts of false alarms render useless the results of the analysis: even a seemingly low rate of 1% of lines of codes yielding to false alarms leads to a prohibitively large amount of manual verification (1,000 lines) on programs of 100,000 lines of code. The analyzer is run on commodity hardware (1 Gb RAM current PCs) and should, ideally, be used during the development cycle – thus the constraints on memory and time.
Static analysis by abstract interpretation is increasingly applied in industrial contexts. Let us cite, for instance, specialized software providers such as PolySpace Technologies and AbsInt, which make commercial, industrial static analysis tools; Kestrel’s work at the NASA Ames Research center on the static analysis by abstract interpretation of large-scale critical embedded software in aerospace systems; and Microsoft Research’s SLAM Project for the verification of API constraints of Windows drivers.
The abstract interpretation group at ENS consists in 1 full professor, 1 assistant professor, 2 researchers from CNRS (Centre National de la Recherche Scientifique) and 4 graduate students. It now focuses on the static analysis of large-scale critical software (ASTREE project). Its recent publications on this topic include:
Design and implementation of a special-purpose static program analyzer for safety-critical real-time embedded software, invited chapter. In T. Mogensen, D.A. Schmidt, and I.H. Sudborough, editors, The Essence of Computation: Complexity, Analysis, Transformation, number 2566 in Lecture Notes in Computer Science, pages 85-108. Springer Verlag, 2002.
A static analyzer for large safety-critical software, proceedings of the ACM-SIGPLAN conference on programming languages design and implementation (PLDI 2003).
Currently, the group’s analysis tool (not publicly available) is capable of checking real-life programs of the order of magnitude of 100,000 lines of C code (compiled from a proprietary reactive language similar to Lustre), using thousands of global floating-point variables.
One of the difficulties in applying static analysis in an industrial context is that most static analysis tools operate on the source code of the program. Designers of critical systems would prefer not to trust the compiler and use the tools on the object code, or at least the assembler intermediary code.
Goals of the project using the WindRiver tools:
Our current project concerns the automated proof of the absence of runtime errors in a family large-scale C programs. Runtime errors include out-of-bound array accesses and IEEE floating-point exceptions (division by zero, overflow, invalid operation). Because this family of programs is automatically generated from high-level reactive specifications, we were able to write a specialized analyzer, more precise than commercially available solutions. The main difficulty to overcome was the delicate nature of the floating-point invariants to prove (stability of numerical filters). Memory costs (on the order of 200 Mb RAM) and computation times (on the order of 1 hour for real-life C sources of 70,000 lines of code) are very reasonable. This analyzer has been adapted for use on other software families, including the self-test process of certain embedded hardware systems.

Our current static analysis tools operate at the C source code level. We would like to analyze object code such as the one produced by our industrial partners (PowerPC 755 target platform, WindRiver DIAB compiler), either by transposing results from the analysis of the source code to the object code or by local, automated proofs of equivalence between the source code and the object code. While initial proof-of-concept studies using the GNU C Compiler have shown such methods to be workable, further studies require that the compiler used to produce the analyzed object code to be the same as the one used in the industrial environment.
 AUTONUM * Arabic Research/Project Details

	Research/Project Details

	Title
	ASTREE

	Abstract
	The goal of the project is the automated proof of the absence of runtime errors in a family of large-scale critical embedded programs in the presence of an unknown, partially specified environment. Since general-purpose analyzers give too many false alarms on this class, specialized techniques are used to minimize the number of false alarms.
In addition to the verification of the systems on the C source code, verification of the assembly-level code is desired.

	Web-page
	http://www.di.ens.fr/~cousot/projets/ASTREE/

	
	

	Name
	MACROBUTTON NoMacro [Enter the research/project course name, if applicable]

	Number
	MACROBUTTON NoMacro [Enter the research/project course number, if applicable]

	Enrollment
	1 full professor, 1 assistant professor, 2 researchers, 4 graduate students

	
	

	Host/Target Information

	Host OS
	Linux

	Target
	PowerPC 755

	Wind River Components

	Software Requested
	DIAB Compiler

	Other Donors

	Software
	

	Hardware
	

	Other Donations
	

 AUTONUM * Arabic Contacts

Primary Program Contact
	Name:
	David Monniaux

	Phone:
	+33 1 44 32 21 15

	Email
	David.Monniaux@ens.fr

	Address:
	ENS-DI, 45 rue d’Ulm, 75230 Paris cedex 5, France

Technical Program Contact

	Name:
	Xavier Rival

	Phone:
	+33 1 44 32 21 50

	Email
	Xavier.Rival@ens.fr

	Address:
	ENS-DI, 45 rue d’Ulm, 75230 Paris cedex 5, France

Page 3 of 4

