
Automatic Modular Abstractions for Template
Numerical Constraints∗

David Monniaux†

May 26, 2010

Abstract

We propose a method for automatically generating abstract transform-
ers for static analysis by abstract interpretation. The method focuses
on linear constraints on programs operating on rational, real or floating-
point variables and containing linear assignments and tests. Given the
specification of an abstract domain, and a program block, our method
automatically outputs an implementation of the corresponding abstract
transformer. It is thus a form of program transformation.

In addition to loop-free code, the same method also applies for obtain-
ing least fixed points as functions of the precondition, which permits the
analysis of loops and recursive functions.

The motivation of our work is data-flow synchronous programming
languages, used for building control-command embedded systems, but it
also applies to imperative and functional programming.

Our algorithms are based on quantifier elimination and symbolic ma-
nipulation techniques over linear arithmetic formulas. We also give less
general results for nonlinear constraints and nonlinear program constructs.

1 Introduction
Program analysis consists in deriving properties of the possible executions of a
program from an algorithmic processing of its source or object code. Example of
interesting properties include: “the program always terminates”; “the program
never executes a division by zero”; “the program always outputs a well-formed
XML document”; “variable x always lies between 1 and 3”. There has been a
considerable amount of work done since the late 1970s on sound methods of
program analysis — that is, methods that produce results that are guaranteed
to hold for all program executions, as opposed to bug finding methods such as
program testing, which cannot provide such guarantees in general.

Static analysis by abstract interpretation is one of the various approaches
to sound program analysis. Grossly speaking, abstract interpretation casts the

∗♺
asopt

This work was partially funded by the “ASOPT” project of the Agence nationale de

la recherche (ANR)
†David.Monniaux@imag.fr, CNRS / VERIMAG, Centre Équation, 2, avenue de Vignate,

38610 Gières cedex, France. VERIMAG is a joint research laboratory of CNRS, Université
Joseph Fourier and Grenoble-INP.

1

David.Monniaux@imag.fr

problem of obtaining supersets of the set of reachable states of programs into
a problem of finding fixed points of certain monotone operators on certain or-
dered sets, known as abstract domains. When dealing with programs operating
on arithmetic values (integer or real numbers, or, more realistically, bounded
integers and floating-point values), these sets are often defined by numerical
constraints, and ordered by inclusion. One may, for instance, attempt to com-
pute, for each program point and each variable, an interval that is guaranteed
to contain all possible values of that variable at that point. The problem is of
course how to compute these fixed points. Obviously, the smaller the intervals,
the better, so we would like to compute them as small as possible. Ideally, we
would like to compute the least fixed point, that is, the least inductive invariant
that can be expressed using intervals.

The purpose of this article is to expose how to compute such least fixed points
exactly, at least for certain classes of programs and certain abstract domains.
Specifically, we consider programs operating over real variables using only linear
comparisons (e.g. x + 2y ≤ 3 but not x2 ≤ y), and abstract domains defined
using a finite number of linear constraints

∑
i aivi ≤ C, where the ai are fixed

coefficients, C is a parameter (whose computation is the goal of the analysis) and
the vi are the program variables. Such domains evidently include the intervals,
where the constraints are of the form vi ≤ C and −vi ≤ C.

Not only can we compute such least fixed points exactly if all parameters
are known, but we can also deal with the case where some of the parameters are
unknowns, in which case we obtain the parameters of the least fixed point as ex-
plicit, algorithmic, functions of the unknowns. We can thus generate, once and
for all, the abstract transformers for blocks of code: that is, those that map the
parameters in the precondition of the block of code to a suitable postcondition.
For instance, in the case of interval analysis, we derive explicit functions map-
ping the bounds on variables at the entrance of a loop-free block to the tightest
bounds at the outcome of the block, or to the least inductive interval invariant
of a loop. This allows modular analysis: it is possible to analyse functions or
other kind of program modules (such as nodes in synchronous programming) in
isolation of the rest of the code.

A crucial difference with other methods, even on loop-free code, is that we
derive the optimal — that is, the most precise — abstract transformer for the
whole sequence. In contrast, most static analyses only have optimal transform-
ers for individual instructions; they build transformers for whole sequences of
code by composition of the transformers for the individual instructions. Even on
very simple examples, the optimal transformer for a sequence is not the compo-
sition of the optimal transformers of the individual instructions. Furthermore,
most other methods are forced to merge the information from different execu-
tion traces at the end of “if-then-else” and other control flow constructs in a way
that loses precision. In contrast, our method distinguishes different paths in the
control flow graph as long as they do not go through loop iteration.

Our approach is based on quantifier elimination, a technique operating on
logical formulas that transforms a formula with quantifiers into an equivalent
quantifier-free formula: for instance, ∀x (x ≥ y ⇒ x ≥ 1) is turned into the
equivalent y ≥ 1. Essentially, we define the result that we would like to obtain
using a quantified logical formula, and, using quantifier elimination and further
formula manipulations, we obtain an algorithm that computes this result. Thus,
one can see our method as automatically transforming a non executable spec-

2

ification of the result of the analysis into an algorithm computing that result.

In §2, we shall provide background about abstract interpretation and quan-
tifier elimination. In §3, we shall provide the main results of the article, that
is, how to derive optimal abstract transformers for template linear constraint
domains. In §4, we shall investigate various extensions to that framework, still
based on quantifier elimination in linear real arithmetic; e.g. how to deal with
floating-point values. In §5, we shall explain how to move from the single loop
case to more complex control flow. In §6, we shall describe our implementation
of the main algorithm and some limited extensions. In §7, we shall investigate
extensions of the same framework using quantifier elimination on other theories,
namely Presburger arithmetic and the theory of real closed fields (nonlinear real
arithmetic). In §8, we shall list some related work and compare our method to
other relevant approaches. Finally, §9 concludes.

This article is based upon two conference articles [82, 83].

2 Background
In this section, we shall recall a few definitions, notations and results on program
analysis by abstract interpretation, then quantifier elimination.

2.1 Abstract interpretation
It is well-known that, in the general case, fully automatic program analysis is
impossible for any nontrivial property.1 Thus, all analysis methods must have
at least one of the following characteristics:

• They may bound the memory size of the studied program, which then
becomes a finite automaton, on which most properties are decidable.
Explicit-state model-checking works by enumerating all reachable states,
which is tractable only while implicit state model-checking represents sets
of states using data structures such as binary decision diagrams [27].

• They may restrict the programming language used, making it not Turing-
complete, so that properties become decidable. For instance, reachability
in pushdown automata is decidable even though their memory size is un-
bounded [17].

• They may restrict the class of properties expressed to properties of bounded
executions; e.g., “within the first 10000 steps of execution, there is no di-
vision by zero”, as in bounded model checking [13].

• They may be unsound as proof methods: they may fail to detect that the
desired property is violated. Typically, bug-finding and testing programs
are in that category, because they may fail to detect a bug. Some such

1This result, formally given within the framework of recursive function theory, is known as
Rice’s theorem [96, p. 34][92, corollary B]. It is obtained by generalisation from Turing’s halting
theorem. Interpreted upon program semantics, the theorem states that the only properties
of the denotational semantics of programs that can be algorithmically decided on the source
code are the trivial properties: uniformly “true” or uniformly “false”.

3

Listing 1: Original program

i n t x , y ;
bool a ;
i f (x < y) a = f a l s e ;

Listing 2: Boolean program

bool a ;
i f (nondet ()) a = f a l s e ;

Figure 1: Transformation of a program into a Boolean program by erasing the
numeric part and replacing tests over numerical quantities by nondeterministic
choice (nondet() nondeterministically returns true or false).

analysis techniques are not based on program semantics, but rather on
finding patterns in the program syntax [38].

• They may be incomplete as proof methods: they may fail to prove that a
certain property holds, and report spurious violations. Methods based on
abstraction fall in that category.

Abstraction by over-approximation consists in replacing the original problem,
undecidable or very difficult to decide, by a simpler “abstract” problem whose
behaviours are guaranteed to include all behaviours of the original problem.

An example of an abstraction is to erase from the program all constructs
dealing with numerical and pointer types (or replacing them with nondetermin-
istic choices, if their value is used within a test), keeping only Boolean types
(Fig. 1). Obviously, the behaviours of the resulting program encompass all the
behaviours of the original program, plus maybe some extra ones.

Further abstraction can be applied to this Boolean program: for instance,
the “3-value logic” abstraction [91] which maps any input or output variable to
an abstract parameter taking its value in a 3-element set: “is 0”, “is 1”, “can be
0 or 1”;2 for practical purposes it may be easier to encode these values using a
couple of Booleans, respectively meaning “can be 0” and “can be 1”, thus the
abstract values (1, 0), (0, 1) and (1, 1). The abstract value (0, 0) obtained for any
variable at a program point means that this program point is unreachable. Given
a vector of input abstract parameters, one for each input variable of the program,
the forward abstract transfer function gives a correct vector of output abstract
parameters, one for each output variable of the program. Quite obviously, in
the absence of loops, it is possible to obtain a suitable forward abstract transfer
function by applying simple logical rules to the Boolean function defined by the
Boolean program. An effective implementation of the forward abstract transfer
function can thus be obtained by a transformation of the source program.

For programs operating over numerical quantities, a common abstraction is
intervals. [33, 34] To each input x, one associates an interval [xmin, xmax], to each
output x′ an interval [x′min, x

′
max]. How can one compute the (x′min, x

′
max)x∈V

bounds from the (xmin, xmax)x∈V ? The most common method is interval arith-
metic: to each elementary arithmetic operation, one attaches an abstract coun-
terpart that gives bounds on the output of the operation given bounds on the in-
puts. For instance, if one knows [amin, amax] and [bmin, bmax], and c = a+b, then

2For brevity, we identify “false” with 0 and “true” with 1.

4

Listing 3: Program computing zero

double x , y , z ;
/∗ x l i e s in [xmin, xmax] } ∗ /
y = x ;
z = x−y ;

Listing 4: Interval transformer

ymin = xmin ;
ymax = xmax ;
zmin = xmin − ymax ;
zmax = xmax − ymin ;

Figure 2: The transformer for the interval domain obtained by composition
of locally optimal abstract transformers is imprecise. For each statement (on
the left) we use a corresponding optimal transformer (on the right), but the
composition of these transformers is not optimal. For the sake of simplicity, all
variables are considered to be real numbers.

one computes [cmin, cmax] as follows: cmin = amin +bmin and cmax = amax +bmax.
If a program point can be reached by several paths (e.g. at the end of an if-
then-else construct), then a suitable interval [xmin, xmax] can be obtained by
a join of all the intervals for x at the end of these paths: [a, b] u [c, d] =
[min(a, c),max(b, d)]. Again, for a loop-free program, one can obtain a suit-
able effective forward abstract transfer function by a program transformation
of the source code.

The abstract transfer function defined by interval arithmetic is always cor-
rect, but is not necessarily the most precise. For instance, on example in Fig. 2,
the best abstract transfer function maps any input range to zmin = zmax = 0,
since the output z is always zero, while the one obtained by applying interval
arithmetic to all program statements yields, in general, larger intervals. The
weakness of the interval domain on this example is evidently due to the fact
that it does not keep track of relationships between variables (here, that x = y).
Relational abstract domains such as the octagons [74, 76, 77] or convex polyhe-
dra [4, 36, 58] address this issue. Yet, neither octagons nor polyhedra provide
analyses that are guaranteed to give optimal results.

Consider the following program:

Listing 5: Undistinguished paths

i n t x ;
i f (x > 0) x= 1 ; e lse x= −1;
i f (x == 0) x= 2 ;

Obviously, the second test can never be taken, since x can only be ±1; however
an interval, octagon or polyhedral analysis will conclude, after joining the infor-
mations for both branches of the first test, that x lies in [−1, 1] and will not be
able to exclude the case x = 0. The final invariant will therefore be x ∈ [−1, 2].

In contrast, our method, applied to this example, will correctly conclude that
the optimal output invariant for x is [−1, 1]. In fact, our method yields the same
result as considering the (potentially exponentially large) set of paths between
the beginning and the end of the program, and for each path, computing the
least output interval, then computing the join of all these intervals.

We have so far left out programs containing loops; when programs con-
tain loops or recursive functions, a central problem of program analysis is to

5

P0

P1

P∞

Figure 3: The standard widening on convex polyhedra [36, 58], here demon-
strated on polyhedra in dimension 2 (polygons). The widening operator ob-
serves the sets of reachable states P0 and P1 at two consecutive iterations, and
keeps only the constraints (polyhedral faces, here polygon edges) that are stable
across iterations. The resulting P∞ polyhedron is then proposed as an invariant.

6

Listing 6: Circular buffer

i = 0 ;
while (t rue) {

i f (nondet ()) {
i = i +1;
i f (i >= 10) i =0;

}
}

find inductive invariants. In the case of Boolean programs, given constraints
on the input parameters, the set of reachable states can be computed exactly
by model-checking algorithms; yet, these algorithms do not give a closed-form
representation of the abstract transfer function mapping input parameters to
output parameters for the 3-value abstraction. In the case of numerical abstrac-
tions such as the intervals, octagons or polyhedra, the most common way to
find invariants is through the use of a widening operator [34, 35].

Intuitively, widening operators observe the sets of reachable states after N
and N + 1 loop iterations and extrapolate them to a “candidate invariant”. For
instance, the widening operator, observing a sequence of intervals [0, 1], [0, 2],
[0, 3] may wish to try [0,+∞). See Fig. 3 for an example with the standard
widening operator on convex polyhedra.

Let u0 be the set of initial states of a loop, and let→τ be transition relation
for this loop (σ →τ σ

′ means that σ′ is reachable in one loop step from σ).
The set of reachable states at the head of the loop is the least fixed point of
f : u 7→ u ∪ {σ′ | ∃σ ∈ u ∧ σ →τ σ

′}, which is obtained as the limit of the
ascending sequence defined by un+1 = f(un). By abstract interpretation, we
replace this sequence by an abstract sequence u]n defined by u]n+1 = f](u]n), such
that for any n, u]n is an abstraction of un. If this sequence is stationary, that
is, u]N+1 = u]N for some N , then u]N is an abstraction of the least fixed point of
f and thus of the least invariant of the transition relation τ containing u0.

When one uses a widening operator O, the function f](u]n) is defined as
u]nOf

]
p(u]n) where f]p is an abstraction of f . The design of the widening operator

ensures convergence of u]n in finite time. The exceptions to the use of widening
operators are static analysis domains that satisfy the ascending condition, such
as the domain of linear equality constraints [65] and that of linear congruence
constraints [55]: with f] = f]p the sequence u]n always becomes stable within
finite time.

Again, widening operators provide correct results, but these results can be
grossly over-approximated. Much of the literature on applied analysis by ab-
stract interpretation discusses workarounds that give precise results in certain
cases: narrowing iterations [33, 34], widening “up to” [57, §3.2], “delayed” or
with “thresholds” [15], etc.

A simple example of a program with one single variable where narrowing
iterations fail to improve precision is Listing 6. This program is a much sim-
plified version of a piece of code maintaining a circular buffer inside a large
reactive control loop, where some piece of data is inserted only at certain loop

7

iterations. We only kept the instructions relevant to the array index i and
abstracted away the choice of the loop iterations where data is inserted as non-
deterministic nondet().

If we analyse this loop using intervals with the standard widening with a
widening point at the head of the loop, we obtain the sequence [0, 0], [0, 1], [0, 2]
and then widening to [0,+∞). Narrowing iterations then fail to increase the
precision. The reason is that the transition relation for this loop includes the
identity function (when nondet() is false), thus the concrete function whose least
fixed point defines the set of reachable states [35] satisfies X ⊆ φ(X) for all X
(in other word, φ is expansive). Thus, once the widening operator overshoots
the least fixed point, it can never recover it.

A similar problem is posed by:

i = 0 ;
while (t rue) {

i = i +1;
i f (i == 10) i =0;

}

The usual widening iterations overshoot to [0,+∞), and narrowing does not
recover from there. Furthermore, this example illustrates how widening makes
analysis non monotonic: contrary to one could expect, having extra precision
on the precondition of a program can result in worse precision for the inferred
invariants. For instance, consider the above problem and replace the first line by
assume(i>=0 && i<=9). Clearly, the resulting program is an abstraction of the
above example, since it has strictly more behaviours (we allow 1, . . . , 9 as initial
values for i). Yet, the analysis of the loop will yield a more precise behaviour:
the interval [0, 9] is stable and the analysis terminates immediately.

Both these very simple examples can be precisely analysed using widening
up to[57, §3.2], also known as widening with thresholds [15, Sec. 7.1.2]: a pre-
liminary phase collects all constants to which i is compared, and instead of
widening to +∞, one widens to the next larger such constant if it exists — in
this case, since x < 10 stands for x ≤ 9, widening with threshold would widen
to 9, which is the correct value. This approach is not general — it fails if instead
of the constant 10 we have some computed value. Of course, improvements are
possible: for instance, one could analyse all the program up to this loop in order
to prove that certain variables are constant, then use this information for setting
thresholds for further loops. Yet, again, this is not a general approach.

This is the second problem that this article addresses: how to obtain, in
general, optimal invariants for certain classes of programs and numerical con-
straints. Furthermore, our methods provide these invariants as functions of
the parameters of the precondition of the loop; this is one difference with our
proposal, which computes the best, thus, again, they provide effective, optimal
abstract transfer functions for loop constructs.

2.2 Quantifier elimination
Consider a set A of atomic formulas. The set U(A) of quantifier-free formulas
is the set of formulas constructed from A using operators ∧, ∨ and ¬; the set
Q(A) of quantified formulas is the set of formulas constructed from A using

8

the above operators and the ∃ and ∀ quantifiers. Such formulas are thus trees
whose leaves are the atomic formulas. A literal is an atomic formula or the
negation thereof. The set of free variables FV (F) of a formula F is defined
as usual. A quantifier-free formula without variables is said to be ground. A
formula without free variables is said to be closed ; the existential closure of
a formula F is F with existential quantifiers for all free variables prepended;
the universal closure is the same with universal quantifiers. A quantifier-free
formula is said to be in disjunctive normal form (DNF) if it is a disjunction of
conjunctions, that is, is of the form (l1,1 ∧ · · · ∧ l1,n1)∨ · · · ∨ (lm,1 ∧ · · · ∧ lm,nm),
and is said to be in conjunctive normal form (CNF) if it is a conjunction of
disjunctions. Any quantifier-free formula can be converted into CNF or DNF
by application of the distributivity laws (A ∨ B) ∧ C ≡ (A ∧ C) ∨ (B ∧ C) and
(A ∧ B) ∨ C ≡ (A ∨ C) ∧ (B ∨ C), though better algorithms exist, such as
ALL-SAT modulo theory [81].

2.2.1 Linear real inequalities

Let A be the set of linear inequalities with integer or rational coefficients over a
set of variables V . By elementary calculus, such inequalities can be equivalently
written in the following forms: l(v1, v2, . . .) ≥ C or l(v1, v2, . . .) > C, with l
a linear expression with integer coefficients over V and C a constant. Let us
first consider the theory of linear real arithmetic (LRA): models of a formula
F are mappings from F to the real field R, and notions of equivalence and
satisfiability follow. Note that satisfiability and equivalence are not affected
by taking models to be mappings from F to the rational field Q. Deciding
whether a LRA formula is satisfiable is, again, a NP-complete problem known
as satisfiability modulo theory (SMT) of real linear arithmetic. Again, practical
implementations, known as SMT-solvers , are capable of dealing with rather
large formulas; examples include Yices [45] and Z3 [41].3

The theory of linear real arithmetic admits quantifier elimination. For in-
stance, the quantified formula ∀x (x ≥ y =⇒ x ≥ 3) is equivalent to the
quantifier-free formula y ≥ 3. Quantified linear real arithmetic formulas are
thus decidable: by quantifier elimination, one can convert the existential clo-
sure of the formula to an equivalent ground formula, the truth of which is
trivially decidable by evaluation. The decision problem for quantified formulas
over rational linear inequalities requires at least exponential time, thus quanti-
fier elimination is at least exponential. [19, §7.4]. [48, Th. 3] Weispfenning [107]
discusses complexity issues in more detail.

Again, most quantifier elimination algorithms proceed by induction over
the structure of the formula, and thus begin by eliminating the innermost
quantifiers, progressively replacing branches of the formula containing quan-
tifiers by quantifier-free equivalent branches. By application of the equivalence
∀x F ≡ ¬∃x ¬F , one can reduce the problem to eliminating existential quan-
tifiers only. Consider now the problem of eliminating the existential quantifiers
from ∃ x1 . . . xn F where F is quantifier-free. We can first convert into DNF:
∃x1 . . . xn (C1 ∨ · · · ∨Cm) where the Ci are conjunctions, then to the equivalent

3The yearly SMT-COMP competition has SMT-solvers compete on a large set of bench-
marks. The SMT-LIB site [9] documents various theories amenable to SMT, including large
libraries of benchmarks. Kroening and Strichman [66] is an excellent introductory material
to the algorithms behind SMT-solving.

9

http://www.smtcomp.org/
http://www/smtlib.org

x

y

Figure 4: The gray zone S is the set of (x, y) solutions of formula F , whose atoms
are the linear inequalities corresponding to the lines ∆ drawn with dashes. For
fixed y = y0, the set of x such that F (x, y) is true is made of intervals whose
ends lie within the set I of intersections of the y = y0 line with the lines in
∆, drawn with a small circle. y = y0 therefore has an intersection with S if
and only if a point in I, or an interval with both ends in I ∪ {−∞,+∞}, lies
within S. This condition can be tested using x → ±∞ and all midpoints to
intervals with both ends in I, as per Ferrante and Rackoff [47], or, in addition
to I ∪ {−∞}, for any element of I a point infinitesimally close to the right of
it, as per Loos and Weispfenning [69]. Both methods exploit the fact that the
coordinates of all points from I (intersection of y = y0 and a line from ∆) can
be expressed as affine linear functions of y0.

formula (∃ x1 . . . xn C1)∨· · ·∨(∃ x1 . . . xn Cm). We thus have reduced the quan-
tifier elimination problem for general formula to the problem of quantifier elim-
ination for conjunctions of linear inequalities. Remark that, geometrically, this
quantifier elimination amounts to computing the projection of a convex poly-
hedron along the dimensions associated with the variables x1, . . . , xn, with the
original polyhedron and its projection being defined by systems of linear inequal-
ities. The Fourier-Motzkin elimination procedure [66, §5.4] converts ∃x1 . . . xn C
into an equivalent conjunction. This is what we refer to the “conversion to DNF
followed by projection approach”. This approach is good for quickly proving
that the theory admits quantifier elimination, but it is very inefficient. We shall
now see better methods.

Ferrante and Rackoff [47] proposed a substitution method [19, §7.3.1][87,
§4.2][107]: a formula of the form ∃x F where F is quantifier-free is replaced

10

by an equivalent disjunction F [e1/x] ∨ · · · ∨ F [en/x], where the ei are affine
linear expressions built from the free variables of ∃x F . Note the similarity
to the naive elimination procedure we described for Boolean variables: even
though the existential quantifier ranges over an infinite set of values, it is in fact
only necessary to test the formula F at a finite number of points (see Fig. 4).
The drawback of this algorithm is that n is proportional to the square of the
number of occurrences of x in the formula; thus, the size of the formula can
be cubed for each quantifier eliminated. Loos and Weispfenning [69] proposed
a virtual substitution algorithm4 [87, §4.4] that works along the same general
ideas but for which n is proportional to the number of occurrences of x in
the formula. Our benchmarks show that Loos and Weispfenning’s algorithm
is generally much more efficient than Ferrante and Rackoff’s, despite the latter
method being better known. [80, 81]

The main drawback of substitution algorithms is that the size of the formulas
generally grows very fast as successive variables are eliminated. There are few
opportunities for simplifications, save for replacing inequalities equivalent to
false (e.g. 0 < 0) by false and similarly for true, then applying trivial rewrites
(e.g. false ∨ x x, false ∧ x false). Our experience is that these algorithms
tend to terminate with out-of-memory [80, 81]. Scholl et al. [100] have proposed
using and-inverter graphs (AIGs) and SAT modulo theory (SMT) solving in
order to simplify formulas and keeping their size manageable.

Another class of algorithms improve on the conversion to DNF then pro-
jection approach, by combining both phases: we proposed an eager algorithm
based on this idea [81], then a lazy version, which computes parts of formulas
as needed [80]. Instead of syntactic conversion to DNF, we use a SMT solver to
point to successive elements of the DNF, and instead of using Fourier-Motzkin
elimination, which tends to needlessly blow up the size of the formulas, we use
libraries for computations over convex polyhedra, which can compute a minimal
constraint representation of the projection of a polyhedron given by constraints
(that is, inequalities) — which is the geometrical counterpart of performing elim-
ination of a block of existentially quantified variables. Experiments have shown
that such methods are generally competitive with substitution approaches, with
different classes of benchmarks showing a preference for one of the two families
of methods [80]; for the kinds of problems we consider in this article, it seems
that the SMT+projection methods are more efficient [81].

2.2.2 Presburger arithmetic

The theory of linear integer arithmetic (LIA), also known as Presburger arith-
metic, has the same syntax for formulas, but another semantics, replacing ra-
tional numbers (Q) by integers (Z). Linear inequalities are then insufficient
for quantifier elimination — we also need congruence constraints: ∃k x = 2k
simplifies to x ≡ 0 (mod 2).

Decision of formulas in Presburger arithmetic is doubly exponential, and thus
quantifier elimination is very expensive in the worst case [48]. Presburger [89]

4This method replaces x by a formula that does not evaluate to a rational number, but to a
sum of a rational number and optionally an infinitesimal ε, taken to be a number greater than
0 but less than any positive real; the infinitesimals are then erased by application of the rules
governing comparisons. In practical implementations, one does both substitution and erasure
of infinitesimals in one single pass, and infinitesimals never actually appear in formulas; thus
the phrase virtual substitution.

11

provided a quantifier elimination procedure, but its complexity was impractical;
Cooper [30] proposed a better algorithm [19, §7.2]; Pugh [90] proposed the
“Omega test” [66, §5.5].

The practical complexity of Presburger arithmetic is high. In particular, the
formulas produced tend to be very complex, even when there exists a consider-
ably simpler and “understandable” equivalent formula, as seen with experiments
in §7.1.

Cooper and Pugh’s procedures are very geometrical in nature. Integers,
however, can also be seen as words over the {0, 1} alphabet, and sets of integers
can thus be recognised by finite automata [88, §8]. Addition is encoded as a
3-track automaton recognising that the number on the third track truly is the
sum of the numbers on the first two tracks; equivalently, this encodes subtrac-
tion. Existential quantifier elimination just removes some of the tracks, making
transitions depending on bits read on that track nondeterministic. Negation is
complementation (which can be costly, thus explaining the high cost of quan-
tifier alternation). Multiplication by powers of two is also easily encoded, and
multiplications by arbitrary constants can be encoded by a combination of ad-
ditions and multiplications by powers of two.5 The same idea can be extended
to real numbers written as their binary expansion, using automata on infinite
words.

This leads to an interesting arithmetic theory, with two sorts of variables:
reals (or rationals) and integers. This could be used to model computer pro-
grams, with integers for integer variables and reals for floating-point variables (if
necessary by using the semantic transformations described in § 4.5). Boigelot
et al. [16] described a restricted class of ω-automata sufficient for quantifier
elimination. Becker et al. [11] implemented the Lira tool based on such ideas.
Unfortunately, this approach suffers from two major drawbacks: the practical
performances are very bad for purely real problems [81], and it is impossible to
recover an arithmetical formula from almost all these automata. We therefore
did not pursue this direction.

2.2.3 Nonlinear real arithmetic

What happens if we do not limit ourselves to linear arithmetic, but also allow
polynomials? Over the integers, the resulting theory is known as Peano arith-
metic. It is well known that there can exist no decision procedure for quantified
Peano arithmetic formulas.6 Since a quantifier elimination algorithm would turn
a quantified formula without free variables into an equivalent ground formula,
and ground formulas are trivially decidable, it follows that there can exist no
quantifier elimination algorithm for this theory.

The situation is wholly different over the real numbers. The satisfiability
5This method embeds Presburger arithmetic into a stronger arithmetic theory, represented

by the automata, then performs elimination over these automata. This partly explains why
it is difficult to recover a Presburger formula from the resulting automaton.

6One does not need the full language of quantified Peano formulas for the problem to
become undecidable. It is known that there exists no algorithm that decides whether a given
nonlinear Diophantine equation (a polynomial equation with integer coefficients) has solutions,
and that deciding such a problem is equivalent to deciding Turing’s halting problem. in other
words, it is impossible to decide whether a formula P (x1, . . . , xn) = 0∧ x1 ≥ 0∧ · · · ∧ xn ≥ 0
is satisfiable over the integers. See the literature on Hilbert’s tenth problem, e.g. the book by
Matiyasevich [73].

12

or equivalence of polynomial formulas does not change whether the models are
taken over the real numbers, the real algebraic numbers, or, for the matter, any
real closed field ; this theory is thus known as the theory of real closed fields,
or elementary algebra. Tarski [105, 106] and Seidenberg [101] showed that this
theory admits quantifier elimination, but their algorithms had impractically
high complexity. Collins [28] introduced a better algorithm based on cylindrical
algebraic decomposition. For instance, quantifier elimination on ∃x ax2+bx+c =
0 by cylindrical algebraic decomposition yields(

c < 0 ∧
((

b < 0 ∧ a ≥ b2

4c

)
∨ (b = 0 ∧ a > 0) ∨

(
b > 0 ∧ a ≥ b2

4 c

)))
∨c = 0∨(

c > 0 ∧
((

b < 0 ∧ a ≤ b2

4c

)
∨ (b = 0 ∧ a < 0) ∨

(
b > 0 ∧ a ≤ b2

4c

)))
(1)

Note the cylindrical decomposition: first, there is a case disjunction according
to the values of c, then, for each disjunct for c, a case disjunction for the value
of b; more generally, cylindrical algebraic decomposition builds a tree of case
disjunctions over a sequence of variables v1, v2, . . . , where the guard expressions
defining the cases for vi can only refer to v1, . . . , vi. This decomposition only
depends on the polynomials inside the formula and not on its Boolean structure,
and computing it may be very costly even if the final result is simple. This is
the intuition why despite various improvements [10, 24] the practical complexity
of quantifier elimination algorithms for the theory of real closed fields remain
high. The theoretical space complexity is doubly exponential [21, 40]. This is
why our results in §7.2 are of a theoretical rather than practical interest.

Minimal extensions to this formula language may lead to undecidability.
This is for instance the case when one adds trigonometric functions: it is possible
to define π as the least positive zero of the sine, then define the set of integers as
the numbers k such that sin(kπ) = 0, and thus one can encode Peano arithmetic
formulas into that language [2]. Also, naive restrictions of the language do not
lead to lower complexity. For instance, limiting the degree of the polynomials
to two does not make the problem simpler, since formulas with polynomials of
arbitrary degrees can be encoded as formulas with polynomials of degree at most
two, simply by introducing new variables standing for subterms of the original
polynomials. For instance, ∃x ax3 + bx2 + cx + d = 0 can be encoded, using
Horner’s form for the polynomial, as ∃x∃y∃z z = ax+b∧y = zx+c∧yx+d = 0.
Certain stronger restrictions may however work; for instance, if the variables to
be eliminated occur only linearly, then one can adapt the substitution methods
described in §2.2.1.

3 Optimal Abstraction over Template Linear Con-
straint Domains

When applying abstract interpretation over domains of linear constraints, such
as octagons [74, 76, 77], one generally applies a widening operator, which may
lead to imprecisions. In some cases, acceleration techniques leading to precise
results can be applied [52, 53]: instead of attempting to extrapolate a sequence
of iterates to its limit, as does widening, the exact limit is computed. In this sec-
tion, we describe a class of constraint domains and programs for which abstract

13

transfer functions of loop-free codes and of loops can be exactly computed; thus
the optimality. Furthermore, the analysis outputs these functions in closed form
(as explicit expressions combining linear expressions and functional if-then-else
constructs), so the result of the analysis of a program fragment can be stored
away for future use; thus the modularity. Our algorithms are based on quantifier
elimination over the theory of real linear arithmetic (§2.2).

3.1 Template Linear Constraint Domains
Let F be a formula over linear inequalities. We call F a domain definition
formula if the free variables of F split into n parameters p1, . . . , pn and m state
variables s1, . . . , sm. We note γF : Qn → P(Qm) defined by γF (~p) = {~s ∈
Qm | (~p,~s) |= F}. As an example, the interval abstract domain for 3 program
variables s1, s2, s3 uses 6 parameters m1,M1,m2,M2,m3,M3; the formula is
m1 ≤ s1 ≤M1 ∧m2 ≤ s2 ≤M2 ∧m3 ≤ s3 ≤M3.

In this section, we focus on the case where F is a conjunction L1(s1, . . . , sm) ≤
p1 ∧ · · · ∧Ln(s1, . . . , sm) ≤ pn of linear inequalities whose left-hand side is fixed
and the right-hand sides are parameters. Such conjunctions define the class of
template linear constraint domains [99]. Particular examples of abstract do-
mains in this class are:

• the intervals (for any variable s, consider the linear forms s and −s);
because of the inconvenience of talking intervals of the form [−a, b], we
shall often taking them of the form [xmin, xmax], with the optimal value
for xmin being a greatest lower bound instead of a least upper bound;

• the difference bound matrices (for any variables s1 and s2, consider the
linear form s1 − s2);

• the octagon abstract domain (for any variables s1 and s2, distinct or not,
consider the linear forms ±s1 ± s2) [74]

• the octahedra (for any tuple of variables s1, . . . , sn, consider the linear
forms ±s1 · · · ± sn). [25]

Remark that γF is in general not injective, and thus one should distinguish
the syntax of the values of the abstract domain (the vector of parameters ~p)
and their semantics γF (~p). As an example, if one takes F to be s1 ≤ p1 ∧ s2 ≤
p2 ∧ s1 + s2 ≤ p3, then both (p1, p2, p3) = (1, 1, 2) and (1, 1, 3) define the same
set for state variables s1 and s2. If ~u ≤ ~v coordinate-wise, then γF (~u) ⊆ γF (~v),
but the converse is not true due to the non-uniqueness of the syntactic form.

Take any nonempty set of states W ⊆ Qm. Take for all i = 1, . . . ,m: pi =
sup~s∈W Li(~s). Clearly, W ⊆ γF (p1, . . . , pm), and in fact ~p is such that γF (~p)
is the least solution to this inclusion. pi belongs in general to R ∪ {+∞}, not
necessarily to Q∪ {+∞}. (for instance, if W = {s1 | s21 ≤ 2} and L1 = s1, then
p1 =

√
2). We have therefore defined a map αF : P(Rm)→ {⊥}∪(R∪{+∞})n,

and (αF , γF) form a Galois connection: αF maps any set to its best upper-
approximation.7 The fixed points of αF ◦ γF are the normal forms; the normal
form of x] is the minimal abstract element that stands for the same concrete

7See e.g. [35] for more information on Galois connection and their use in static analysis.
Not all abstract interpretation techniques can be expressed within Galois connections. Indeed,
there are abstract domains where there is not necessarily a best abstraction of a set of concrete

14

set as x].8 For instance, s1 ≤ 1 ∧ s2 ≤ 1 ∧ s1 + s2 ≤ 2 is in normal form, while
s1 ≤ 1 ∧ s2 ≤ 1 ∧ s1 + s2 ≤ 3 is not.

3.2 Optimal Abstract Transformers for Program Seman-
tics

We shall consider the input-output relationships of programs with rational or
real variables. We first narrow the problem to programs without loops and
consider programs built from linear arithmetic assignments, linear tests, and
sequential composition. Noting a, b, . . . the values of program variables a, b . . .
at the beginning of execution and a′, b′, . . . the output values, the semantics of a
program P is defined as a formula JP K such that (a, b, . . . , a′, b′, . . .) |= P if and
only if the memory state (a′, b′, . . .) can be reached at the end of an execution
starting in memory state (a, b, . . .):

Arithmetic Ja := L(a, b, . . .)+KKF
M= a′ = L(a, b, . . .)+K∧b′ = b∧c′ = c∧. . .

where K is a real (in practice, rational) constant and L is a linear form,
and b, c, d . . . are all the variables except a;

Tests Jif c then p1 else p2K
M= (c ∧ Jp1KF) ∨ (¬c ∧ Jp2KF);

Non deterministic choice Ja := randomK M= b′ = b ∧ c′ = c ∧ . . . , for all
variables except a;

Failure JfailK M= false;

Skip JskipK M= a′ = a ∧ b′ = b ∧ c′ = c ∧ . . .

Sequence JP1;P2KF
M= ∃a′′, b′′, . . . f1 ∧ f2 where f1 is JP1KF where a′ has been

replaced by a′′, b′ by b′′ etc., f2 is JP2KF where a has been replaced by a′′,
b by b′′ etc.

In addition to linear inequalities and conjunctions, such formulas contain
disjunctions (due to tests and multiple branches) and existential quantifiers
(due to sequential composition).

Note that so far, we have represented the concrete denotational semantics
exactly. This representation of the transition relation using existentially quan-
tified formulas is evidently as expressive as a representation by a disjunction
of convex polyhedra (the latter can be obtained from the former by quantifier
elimination and conversion to disjunctive normal form), but is more compact in
general.

Consider now a domain definition formula F M= L1(s1, s2, . . .) ≤ p1 ∧ · · · ∧
Ln(s1, s2, . . .) ≤ pn on the program inputs, with parameters ~p and free vari-
ables ~s, and another F ′ M= L′1(s′1, s

′
2, . . .) ≤ p′1 ∧ · · · ∧ L′n(s′1, s

′
2, . . .) ≤ p′n′ on

the program outputs, with parameters ~p′ and free variables ~s′. Sound forward

states, e.g. the domain of convex polyhedra, which has no best abstraction for a disc, for
instance. In this article, all abstractions, except the non-convex ones of § 4.3, are through
Galois connections.

8In the terminology of some authors, these can be referred to as the reduced forms or
closed forms, and the αF ◦ γF operation is a reduction or closure. For instance, in the
octagon abstract domain, the closure αF ◦ γF is implemented by a variant of Floyd-Warshall
shortest path [74, 77].

15

program analysis consists in deriving a safe post-condition from a precondition:
starting from any state verifying the precondition, one should end up in the
post-condition. Using our notations, the soundness condition is written

∀~s, ~s′ F ∧ JP K =⇒ F ′ (2)

The free variables of this relation are ~p and ~p′: the formula links the value of
the parameters of the input constraints to admissible values of the parameters
for the output constraints. Note that this soundness condition can be written as
a universally quantified formula, with no quantifier alternation. Alternatively,
it can be written as a conjunction of correctness conditions for each output
constraint parameter:

C ′i
M= ∀~s, ~s′ F ∧ JP K =⇒ L′i(~s′) ≤ p′i. (3)

Let us take a simple example: if P is the program instruction z := x + y,
F

M= x ≤ p1 ∧ y ≤ p2, F ′
M= z ≤ p′1, then JP K M= z′ = x + y, and the soundness

condition is ∀x, y, z′ (x ≤ p1∧y ≤ p2∧z′ = x+y =⇒ z′ ≤ p′1). Remark that this
soundness condition is equivalent to a formula without quantifiers p′1 ≥ p1 + p2,
which may be obtained through quantifier elimination. Remark also that while
any value for p′1 fulfilling this condition is sound (for instance, p′1 = 1000 for
p1 = p2 = 1), only one value is optimal (p′1 = 2 for p1 = p2 = 1). An optimal
value for the output parameter p′i is defined by O′i

M= C ′i ∧ ∀q′i (C ′i[q
′
i/p
′
i] =⇒

p′i ≤ q′i). Again, quantifier elimination can be applied; on our simple example,
it yields p′1 = p1 + p2.

If there are n input constraint parameters p1, . . . , pn, then the optimal value
for each output constraint parameter p′i is defined by a formula O′i with n + 1
free variables p1, . . . , pn, p

′
i:

O′i
M= C ′i ∧ ∀p′′i (C ′i[p

′′
i /p
′
i]⇒ p′i ≤ p′i) (4)

Lemma 1. The formula O′i defined at Eq. 4, using the correctness subformula
C ′i from Eq. 3, defines p′i as the least possible value for the parameter of the con-
straint Li after executing the transition JpK from a state verifying constraints F .

Proof. O′i explicitly defines the least possible value of C ′i. C ′i explicitly defines
all the acceptable values for parameter p′i in the postcondition constraint.

This formula defines a partial function from Qn to Q, in the mathematical
sense: for each choice of p1, . . . , pn, there exist at most a single p′i. The values
of p1, . . . , pn for which there exists a corresponding p′i make up the domain of
validity of the abstract transfer function. Indeed, this function is in general not
defined everywhere; consider for instance the program:

i f (x >= 10) { y = n o n d e t e r m i n i s t i c _ c h o i c e _ i n _ a l l _ r e a l s ; }
e lse { y = 0 ; }

If F = x ≤ p1 and F ′ = y ≤ p′1, then O′1 ≡ p1 < 10 ∧ p′1 = 0, and the function
is defined only for p1 < 10, with constant value 0.

At this point, we have a characterisation of the optimal abstract transformer
corresponding to a program fragment P and the input and output domain def-
inition formulas as n formulas (where n is the number of output parameters)

16

Listing 7: Optimal transformer for ymax, corresponding to program y = |x| with
xmin ≤ x ≤ xmax

i f (xmin + xmax >= 0) {
ymax = xmax ;

} e lse {
ymax = −xmin ;

}

O′i each defining a function (in the mathematical sense) mapping the input
parameters ~p to the output parameter p′i.

Another example: the absolute value function y := |x|, again with the inter-
val abstract domain. The semantics of the operation is (x ≥ 0 ∧ y = x) ∨ (x <
0 ∧ y = −x); the precondition is x ∈ [xmin, xmax] and the post-condition is
y ∈ [ymin, ymax]. Acceptable values for (ymin, ymax) are characterised by formula

C ′
M= ∀x xmin ≤ x ≤ xmax =⇒ ymin ≤ |x| ≤ ymax (5)

The optimal value for ymax is defined by O′ M= C ′ ∧ ∀y′max C
′[y′max/ymax] =⇒

ymax ≤ y′max. Quantifier elimination over this last formula gives as characteri-
sation for the least, optimal, value for ymax:

(xmin + xmax ≥ 0 ∧ ymax = xmax) ∨ (xmin + xmax < 0 ∧ ymax = −xmin). (6)

We shall see in the next sub-section that such a formula can be automatically
compiled into code (Listing 7).

3.3 Generation of the Implementation of the Abstract Do-
main

Consider formula 6, defining an abstract transfer function. On this disjunctive
normal form we see that the function we have defined is piecewise linear : several
regions of the range of the input parameters are distinguished (here, xmin +
xmax < 0 and xmin + xmax ≥ 0), and on each of these regions, the output
parameter ymax is a linear function of the input parameters. Given a disjunct
(such as ymax = −xmin∧xmin +xmax < 0), the domain of validity of the disjunct
can be obtained by existential quantifier elimination over the result variable
(here ∃ymax (ymax = −xmin ∧ xmin + xmax < 0)). The union of the domains
of validity of the disjuncts is the domain of validity of the full formula. The
domains of validity of distinct disjuncts can overlap, but in this case, since O′i
defines a partial function in the mathematical sense, that is, a relation R(x, y)
such that for any x there is at most one y such that R(x, y), the functions
defined by such disjuncts coincide on their overlapping domains of validity.

This suggests a first algorithm for conversion to an executable form:

1. Put O′i into quantifier-free, disjunctive normal form C1 ∨ · · · ∨ Cn.

2. For each disjunct Cj , obtain the validity domain Vj as a conjunction of
linear inequalities; this corresponds to a projection of the polyhedron de-
fined by Cj onto variables p1, . . . , pn, parallel to p′i. Then, solve Cj for p′i
(obtain p′i as a linear function vi of the p1, . . . , pn).

17

3. Output the result as a cascade of if-then-else and assignments.

Consider now the example at the end of §3.2 and especially Formula 6,
defining ymax as a function of xmin and xmax: (xmin + xmax ≥ 0 ∧ ymax =
xmax) ∨ (xmin + xmax < 0 ∧ ymax = −xmin). Let us first take the first disjunct
C1

M= xmin + xmax ≥ 0 ∧ ymax = xmax. Its validity domain is ∃ymax C1, that is,
xmin + xmax ≥ 0. Furthermore, on this validity domain, we can solve for ymax

as a function of xmin and xmax, and we obtain ymax = xmax. We therefore can
print out the following test:

i f (xmin + xmax >= 0) {
ymax = xmax ;

}

Now take the second disjunct C2
M= (xmin + xmax < 0 ∧ ymax = −xmin). It

can similarly be turned into another test, which we put in the “else” branch of
the preceding one. We thus obtain:

i f (xmin + xmax >= 0) {
ymax = xmax ;

} e lse
i f (xmin + xmax < 0) {

ymax = −xmax ;
}

Observe that in the above program, the second test is redundant. If we had
been more clever, we would have realized that in the “else” branch of the first
test, xmin + xmax < 0 always holds, and thus it is useless to test this condition.
Furthermore, in an if-then-else cascade obtained with the above method, the
same condition may have to be tested several times. We shall now propose
an algorithm that constructs an if-then-else tree such that no useless tests are
generated.

Algorithm 1 ToITEtree(F, p′, T): turn a formula defining p′ as a function
of the other free variables of F into a tree of if-then-else constructs, assuming
that T holds.
D(= C1 ∨ · · · ∨ Cn)← QElimDNFModulo({}, F, T)
for all Ci ∈ D do
Pi ← QElimDNFModulo(p′, F, T)

end for
P ← Predicates(P1, . . . , Pn)
if P = ∅ then

Ensure: ∃p′ F is always true
O ← Solve(D, p′)

else
K ← Choose(P)
O ← IfThenElse(K,ToITEtree(F, p′, T ∧K),ToITEtree(F, p′, T ∧¬K))

end if

The idea of the algorithm is as follows:

18

• Each path in the if-then-else tree corresponds to a conjunction C of condi-
tions (if one goes through the “if” branch of if (a) and the “else” branch
of if (b), then the path corresponds to a ∧ ¬b).

• The formula O′i is simplified relatively to C, a process that prunes out
conditions that are always or never satisfied when C holds.

• If the path is deep enough, then the simplified formula becomes a con-
junction. This conjunction, as a relation, is a partial function from the
p1, . . . , pn to the p′i we wish to compute. Again, we solve this conjunction
to obtain p′i as an explicit function of the p1, . . . , pn. For instance, in the
above example, we obtain ymax as a function of xmin and xmax.

We say that two formulas A and B are equivalent, denoted by A ≡ B, if
they have the same models, and we say that they are equivalent modulo a third
formula T , denoted by A ≡T B, if A ∧ T ≡ B ∧ T . Intuitively, this means that
we do not care what happens where F is false, thus the terminology “don’t care
set” sometimes found for ¬F .

QElimDNFModulo(~v, F, T) is a function that, given a possibly empty
vector of variables ~v, a formula F and a formula T , outputs a quantifier-free
formula F ′ in disjunctive normal form such that F ′ ≡T ∃~v F and no useless
predicates are used. In [81], we have presented such a function as a variant of
quantifier elimination.

We need some more auxiliary functions. Predicates(F) returns the set of
atomic predicates of F . Solve(C, p′) solves a conjunction of inequalities C for
variable p′. If C does not contain redundant inequalities, then it is sufficient to
look for inequalities of the form p′ ≥ L or p′ ≤ L and output p′ = L.9 Finally
Choose(P) chooses any predicate in the set of predicates P ; one good heuristic
seems to be to choose the most frequent atomic predicate where p′i does not
occur.

Let us take, as a simple example, Formula 6. We wish to obtain ymax as a
function of xmin and xmax, so in the algorithm ToITEtree we set p′ M= ymax.
C1 is the first disjunct xmin +xmax ≥ 0∧ymax = xmax, C2 is the second disjunct
xmin + xmax < 0 ∧ ymax = −xmin. We project C1 and C2 parallel to ymax,
obtaining respectively P1 = (xmin +xmax ≥ 0) and P2 = (xmin +xmax < 0). We
choose K to be the predicate xmin + xmax ≥ 0 (in this case, the choice does not
matter, since P1 and P2 are the negation of each other).

• The first recursive call to ToITEtree is made with T M= (xmin + xmax ≥
0). Obviously, F ∧ T ≡ (ymax = xmax) ∧ T and thus (∃ymaxF) ∧ T ≡ T .
QElimDNFModulo(ymax, F, T) will then simply output the formula “true”.
It then suffices to solve for ymax in ymax = xmax. This yields the formula
for computing the correct value of ymax in the cases where xmin+xmax ≥ 0.

• The second recursive call is made with T M= (xmin + xmax < 0. The result
is ymax = −xmin, the formula for computing the correct value of ymax in
the cases where xmin + xmax < 0.

9In practice, any library for convex polyhedra can provide a basis of the equalities implied
by a polyhedron given by constraints, in other words a system of linear inequalities defining
the affine span of the polyhedron. It is therefore sufficient to take that basis and keep any
equality where p′ appears.

19

These two results are then reassembled into a single if-then-else statement, yield-
ing the program at the end of §3.2.

The algorithm terminates because paths of depth d in the tree of recursive
calls correspond to truth assignments to d atomic predicates among those found
in the domains of validity of the elements of the disjunctive normal form of F .
Since there is only a finite number of such predicates, d cannot exceed that
number. A single predicate cannot be assigned truth values twice along the
same path because the simplification process in QElimDNFModulo erases
this predicate from the formula.

This algorithm seems somewhat unnecessarily complex. It is possible that
techniques based upon AIGs, performing simplification with respect to “don’t
care sets” [100], could also be used.

3.4 Least Inductive Invariants
We have so far considered programs without loops. The analysis of program
loops, as well as proofs of correctness of programs with loops using Floyd-Hoare
semantics, is based upon the notion of inductive invariants. A set of states I
is deemed to be an inductive invariant for a loop if it contains the initial state
and it is stable by the loop iteration — in other words, if it is impossible to
move from a state inside I to a state outside I by one iteration of the loop. The
intersection of all inductive invariants is also an inductive invariant — in fact,
it is the least inductive invariant.

Any property true over the least inductive invariant of a loop is true through-
out the execution of that loop; for this reason, some authors call such properties
invariants (without the “inductive” qualifier), while some other authors call in-
variants what we call inductive invariants.

It would be interesting to be able to compute the least invariant (inductive or
noninductive) within our chosen abstract domain; in other words, compute the
least element in our abstract domain that contains the least inductive invariant
of the loop or program. Unfortunately, this is in general impossible; indeed,
doing so would entail solving the halting problem. Just take any program P ,
create a fresh variable, and consider the program that initialises x to 0, runs P ,
and then sets x to 1. Clearly, the least invariant interval for this program and
variable x is [0, 0] if P does not terminate, and [0, 1] if it does terminate.

We thus settle for a simpler problem: find the least inductive invariant within
our abstract domain, that is, the least element in our abstract domain that is an
inductive invariant. Note that even on very simple examples, this can be vastly
different from computing the least invariant within the abstract domain. Take
for instance the simple program of Fig. 5, which has a couple of real variables
(x, y) and rotates them by 45◦ at each iteration. The (x, y) couple always stays
within the square [−1, 1] × [−1, 1], so this square is an invariant within the
interval domain. Yet this square is not an inductive invariant, for it is not
stable if rotated by 45◦; in fact, the only inductive invariant within the interval
domain is (−∞,+∞) × (−∞,+∞), which is rather uninteresting! Note that
on the same figure, the octagon abstract domain would succeed (and produce a
regular octagon centered on (0, 0)).

20

Figure 5: The least fixed point representable in the domain (lfp(α◦f ◦γ)) is not
necessarily the least approximation of the least fixed point (α(lfp f)) inside the
abstract domain. For instance, if we take a program initialised by x ∈ [−1, 1] and
y = 0, and at each iteration, we rotate the point by 45◦, the least invariant is an
8-point star, and its best approximation inside the abstract domain of intervals
is the square [−1, 1]2. However, this square is not an inductive invariant: no
rectangle (product of intervals) is stable under the iterations, thus there is no
abstract inductive invariant within the interval domain. Using the domain of
convex polyhedra, one would obtain a regular octagon.

21

3.4.1 Stability Inequalities

Consider a program fragment: while (c) { p; }. We have domain definition for-
mulas F M= L1(s1, . . . , sm) ≤ p1∧· · ·∧Ln(s1, . . . , sm) ≤ pn for the precondition of
the program fragment , and F ′ M= L′1(s1, . . . , sm) ≤ p′1∧· · ·∧L′n(s1, . . . , sm) ≤ p′n′

for the invariant.
DefineG = JcK∧JpK. G is a formula whose free variables are s1, . . . , sm, s′1, . . . , s′m

such that (s1, . . . , sm, s′1, . . . , s
′
m) |= G if and only if the state (s′1, . . . , s

′
m) can

be reached from the state (s1, . . . , sm) in exactly one iteration of the loop. A
set W ⊆ Qm is said to be an inductive invariant for the head of the loop if
∀~s ∈W, ∀~s′ (~s, ~s′) |= G =⇒ ~s′ ∈W . We seek inductive invariants of the shape
defined by F ′, thus solutions for ~p′ of the stability condition:

∀~s, ~s′ F ′ ∧G =⇒ F ′[~s′/~s]. (7)

Not only do we want an inductive invariant, but we also want the initial
states of the program to be included in it. The condition then becomes

H
M= (∀~s, F =⇒ F ′) ∧ (∀~s, ~s′ F ′ ∧G =⇒ F ′[~s′/~s]) (8)

This is an invariant condition for the head A of a loop written as:

loop :
/∗ A ∗ /
i f (! c) goto end ;
/∗ B ∗ /
loop body
goto loop ;

end :

Alternatively, one can consider an invariant condition for location B. The
condition then becomes

Halt
M= ∀~s JcK ∧ (F ∨ (∃ ~s′′ JpK[~s′′/~s,~s/~s′] ∧ F ′[~s′′/~s])) =⇒ F ′ (9)

This alternate condition is very similar to the previous one (a universally quan-
tified formula with no alternation, since the ∃ is negated). For the sake of
simplicity, we shall only discuss the treatment of formula H; formula Halt can
be treated in the same way.

This formula links the values of the input constraint parameters p1, . . . , pn
to acceptable values of the invariant constraint parameters p′1, . . . , p′n′ . In the
same way that our soundness or correctness condition on abstract transformers
allowed any sound post-condition, whether optimal or not, this formula allows
any inductive invariant of the required shape as long as it contains the precon-
dition, not just the least one.

The intersection of sets defined by ~p′1 and ~p′2 is defined by min(~p′1, ~p′2).
More generally, the intersection of a family of sets, unbounded yet closed under
intersection, defined by ~p′ ∈ Z is defined by min{p′ | p′ ∈ Z}. We take for Z
the set of acceptable parameters ~p′ such that ~p′ defines an inductive invariant
and ∀~s, F =⇒ F ′; that is, we consider only inductive invariants that contain
the set I = {~s | F} of precondition states.

22

We deduce that p′i is uniquely defined by: p′i = min(∃p′1, . . . , p′i−1, p
′
i+1, . . . ,

p′n′ H) which can be rewritten as

O′i
M= (∃p′1, . . . , p′i−1, p

′
i+1, . . . , p

′
n′ H) ∧ (∀~q′ H[~q′/~p′] =⇒ p′i ≤ q′i) (10)

The free variables of this formula are p1, . . . , pn, p
′
i. This formula defines a

function (in the mathematical sense) defining p′i from p1, . . . , pn. As before, this
function can be compiled to an executable version using cascades or trees of
tests.

Lemma 2. The formula O′i defined at Eq. 10 defines the least value of p′i for an
inductive invariant of the shape defined by F for the transition relation defined
by G.

Proof. Similarly as for lemma 1, the formulaH defined at Eq. 8 defines a set Y of
admissible p′1, . . . , p′n′ such that F M= L1(s1, . . . , sm) ≤ p′1∧· · ·∧Ln(s1, . . . , sm) ≤
p′n′ is an inductive invariant for the loop. Formula O′i defines p′i to be inf{p′′i |
(p′′1 , . . . , p

′′
n) ∈ Y }. in other words, (p′1, . . . , p

′
n′) = inf Y .

Thus the overall operation of the analysis method:
We start from quantified formulas O′i defining the least inductive invariant of

the loop in the abstract domain (Lemma 2). We eliminate quantifiers from these
formulas; since this does not change their models, the resulting formulas without
quantifiers also define the least inductive invariant in the abstract domain.

• Either the problem had no precondition parameters p1, . . . , pn, and thus
each formula O′i has only one variable p′i. It consists of linear (in)equalities,
and has a single model for p′i, which is straightforward to extract. Collect
these values, one obtains the values defining the least invariant (p′1, . . . , p

′
n′)

in the abstract domain.

• Either the problem has precondition parameters and one employs one of
the methods in §3.3 to obtain equivalent executable code.

The overall correctness of the method is quite tautological. We start from a
non-executable specification of the least inductive invariant in the abstract do-
main in the form of quantified formulas. We eliminate the quantifiers from these
formulas, then process them into equivalent executable code. At all steps, we
have preserved logical equivalence with the original definition. In short, we have
synthetized the implementation of the best transformer from its specification.

3.4.2 Simple Loop Example

To show how the method operates in practice, let us consider first a very simple
example (nondet() is a nondeterministic choice):

i n t i =0 ;
while (i <= n) {

i f (nondet ()) {
i = i +1;
i f (i == n) {

i =0 ;

23

}
}

}

Let us abstract i at the head of the loop using an interval [imin, imax]. For
simplicity, we consider the case where the loop is at least entered once, and thus
i = 0 belongs to the invariant. For better precision, we model each comparison
x 6= y over the integers as x >= y + 1 ∨ x <= y − 1; similar transformations
apply for other operators. The formula expressing that such an interval is an
inductive invariant is:

imin ≤ 0 ∧ 0 ≤ imax ∧ ∀i∀i′ ((imin ≤ i ∧ i ≤ imax∧
(((i+ 1 ≤ n− 1 ∨ i+ 1 ≥ n+ 1) ∧ i′ = i+ 1)∨

(i+ 1 = n+ 1 ∧ i′ = 0) ∨ i′ = i)) =⇒ (imin ≤ i′ ∧ i′ ≤ imax)) (11)

Quantifier elimination produces:

(imin ≤ 0 ∧ imax ≥ 0 ∧ imax < n ∧ −imin + n− 2 < 0)∨
(imin ≤ 0 ∧ imax ≥ 0 ∧ imax − n+ 1 ≥ 0 ∧ imax < n) (12)

The formulas defining optimal imin and imax are:

imin ≥ 0 ∧ imin ≤ 0 ∧ n > 0 (13)
(imax = 0 ∧ n > 0 ∧ n < 2) ∨ (imax = n− 1 ∧ imax ≥ 1) (14)

We note that this invariant is only valid for n > 0, which is unsurprising
given that we specifically looked for invariants containing the precondition i = 0.
The output abstract transfer function is therefore:

i f (n <= 0) {
f a i l () ;

} e lse {
iMin = 0 ;
i f (n < 2) {

iMax = 0 ;
} e lse /∗ n >= 2 ∗ /

iMax = n−1;
}

}

The case disjunction n < 2 looks unnecessary, but is a side effect of the use of
rational numbers to model a problem over the integers. The resulting abstract
transfer function is optimal, but on such a simple case, one could have obtained
the same using polyhedra [36] or octagons [74].

We have already noted (§2.1) that even with we replace n by the constant 10,
the classical widening/narrowing approach will fail to identify the least invariant
of this loop, and that extra techniques such have widening with thresholds have
to be used.

24

Listing 8: Rate limiter.

while (t rue) {
. . .
e1 = random () ; assume (e1 >= e1min && e1 <= e1max) ;
e2 = random () ; assume (e2 >= e2min && e2 <= e2max) ;
e3 = random () ; assume (e3 >= e3min && e3 <= e3max) ;
olds1 = s1 ;
i f (nondet ()) {

s1 = e3 ;
} e lse {

i f (e1 − olds1 < −e2) {
s1 = olds1 − e2 ;

}
i f (e1 − olds1 > e2) {

s1 = olds1 + e2 ;
}

}
. . .

}

3.4.3 Synchronous Data Flow Example: Rate Limiter

To go back to the original problem of floating-point data in data-flow languages,
let us consider the following library block: a rate limiter. As seen in Listing 8,
such a block in inserted in a reactive loop, as shown below, where assume(c)
stands for if (c) {} else { fail ();} and fail () aborts execution.

This block has three input streams e1, e2, and e3, and one output stream
s1. In intuitive terms, s1 is the same as e1 but where the maximal slope of
the signal between two successive clock ticks is bounded by e2, thus the name
rate limiter. At some points in time (modelled by nondeterministic choice), the
value of the signal is reset to that of the third input e3.

We are interested in the input-output behaviour of that block: obtain bounds
on the output s1 of the system as functions of bounds on the inputs (e1, e2,
e3). One difficulty is that the s1 output is memorised, so as to be used as an
input to the next computation step. The semantics of such a block is therefore
expressed as a fixed point.

We wish to know the least inductive invariant of the form s1min ≤ s1 ≤ s1max
under the assumption that e1min ≤ e1max ∧ e2min ≤ e2max ∧ e3min ≤ e3max. The
stability condition yields, after quantifier elimination and projection on s1max
of the condition s1max ≥ e1max ∧ s1max ≥ e3max. Minimisation then yields an
expression that can be compiled to an if-then-else tree (Listing 9).

This result, automatically obtained, coincides with the intuition that a rate
limiter (at least, one implemented with exact arithmetic) should not change the
range of the signal that it processes.

This program fragment has a rather more complex behaviour if all variables
and operations are IEEE-754 floating-point, since rounding errors introduce
slight differences of regimes between ranges of inputs. Rounding errors in the

25

Listing 9: If then else tree

i f (e1max > e3max) {
s1max = e1max ;

} e lse {
s1max = e3max ;

}

program to be analysed introduce difficulties for analyses using widenings, since
invariant candidates are likely to be “almost stable”, but not truly stable, be-
cause of these errors. Again, there exist workarounds so that widening-based
approaches can still operate [15, Sec. 7.1.4]. We shall see in §4.5 how to cor-
rectly abstract floating-point behaviour within our framework; unfortunately,
the formulas produced tend to be very large due to many case disjunctions.
The implementation of the abstract transformer produced for the above rate
limiter in floating-point does not fit within one page of article, this is why we
omitted it.

4 Extensions of the framework using real linear
arithmetic

We shall describe here a few extensions to the class of programs and domains
that we can handle, all of which are still based on quantifier elimination over real
linear arithmetic. (In §7, we shall investigate extensions using other arithmetic
theories.)

4.1 Emptiness
We have so far supposed that the statement where the inductive invariant is
computed is reachable, and thus that there exists some nonempty set of ini-
tial states that constrain the inductive invariant from below. More generally,
and especially for the constructs described in §4.4 and §5.1, it may be neces-
sary to encode the bottom element ⊥ of the abstract domain, which represents
the empty set of states. This can be done using one Boolean variable per el-
ement that might be empty: instead of template parameters (p1, . . . , pn), we
will have (b, p1, . . . , pn), with the semantics that γ(false, p1, . . . , pn) = ∅ and
γ(true, p1, . . . , pn) = {~s | ∀i Li(~s) ≤ pi}.

Sankaranarayanan et al. [99] use pi = −∞ for this, but in our framework,
infinities themselves have to be encoded using Booleans, as we’ll see in the next
subsection. Furthermore, if we have an abstract element in normal form with a
constraint Li(v1, . . .) ≤ −∞, it means that all pj are −∞ and thus it is sufficient
to have a single Boolean variable for all of them.

4.2 Infinities
The techniques explained in Sec. 3.1 allow only finite bounds. Consider for
instance the following program:

26

x = 0 ;
while (t rue) {

x = x +1;
}

We would like to obtain as a result of the analysis that x lies in [0,∞). Yet,
what will happen is that the formula describing the couples (xmin, xmax) defining
inductive invariants xmin ≤ x ≤ xmax will be simplified to false.

More annoyingly, with the following program:

x = y ;
while (t rue) {

x = x +1;
}

we would at least hope to infer that xmin = ymin. Yet, if we look for an invariant
of the form xmin ≤ x ≤ xmax, there is no solution for any value of (ymin, ymax)! In
§7.1 we shall see an example where it is actually interesting to infer the domain
of values of the precondition where the least inductive invariant interval is finite,
and that this domain can simply be obtained by existential quantification on the
parameters of the inductive invariant followed by elimination. But in general,
this is not what we want; instead, we would prefer to allow infinite values in the
p and p′.

This can be easily achieved by a minor alteration to our definitions. Each
parameter pi is replaced by two parameters pbi and p∞i . p∞i is constrained to be
in {0, 1} (if the quantifier elimination procedure in use allows Boolean variables,
then p∞i can be taken as a Boolean variable); p∞i = 0 means that pi is finite and
equal to pbi , p∞i = 1 means pi = +∞. Li ≤ pi becomes (p∞i > 0) ∨ (Li ≤ pbi),
Li < pi becomes (p∞i > 0) ∨ (Li < pbi). After this rewriting, all formulas are
formulas of the theory of linear inequalities without infinities and are amenable
to the appropriate algorithms.

Unfortunately, the added combinatorial complexity induced by these Boolean
variables tends to lead to intolerable computation times in the quantifier elimi-
nation procedures. Further work is needed, probably in the direction of better
quantifier elimination procedures for combinations of Boolean and real quanti-
fied variables. Alternatively, one can envision directly including reasoning about
infinities inside these procedures, though this is of course a delicate matter be-
cause of the possibility of generation of indeterminate forms ∞−∞ if formulas
are handled without special care.

4.3 Non-Convex Domains
Section 3.1 constrains formulas to be conjunctions of inequalities of the form
Li ≤ pi. What happens if we consider formulas that may contain disjunctions?

The template linear constraint domains of section 3.1 have a very important
property: they are closed under (infinite) intersection; that is, if we have a
family ~p ∈ W , then there exists p0 such that

⋂
~p∈W γF (~p) = γF (~p0) (besides,

p0 = inf{~p | ~p ∈ W}). This is what enables us to request the least element
that contains the exact post-condition, or the least inductive invariant in the
domain: we take the intersection of all acceptable elements.

27

Yet, if we allow non-convex domains, there does not necessarily exist a least
element γF (~p) such that S ⊆ γF (~p). Consider for instance S = {0, 1, 2} and
F representing unions of two intervals ((−x ≤ p1 ∧ x ≤ p2) ∨ (−x ≤ p3 ∧ x ≤
p4)) ∧ p2 ≤ −p3. There are two, incomparable, minimal elements of the form
γF (~p): p1 = p2 = 0 ∧ p3 = −1 ∧ p4 = 2 and p1 = 0 ∧ p2 = 1 ∧ p3 = −2 ∧ p4 = 2.

We consider formulas F built out of linear inequalities Li(s1, . . . , sn) ≤ pi
as atoms, conjunctions, and disjunctions. By induction on the structure of F ,
we can show that γF : (R ∪ {−∞})n → P(Rn) is inf-continuous; that is, for
any descending chain (~pi)i∈I such that limi ~pi = ~p∞, then γF (~pi) is decreasing
and

⋂
i∈I γF (~pi) = γF (~p∞). The property is trivial for atomic formulas, and is

conserved by greatest lower bounds (∧) as well as binary least upper bounds
(∨).

Let us consider a set S ⊆ P(Rn), stable under arbitrary intersection (or at
least, greatest lower bounds of descending chains). S can be for instance the
set of invariants of a relation, or the set of over-approximations of a set W .
γ−1
F (S) is the set of suitable domain parameters; for instance, it is the set

of parameters representing inductive invariants of the shape specified by F ,
or the set of representable over-approximations of W . γ−1

F (S) is stable under
greatest lower bounds of descending chains: take a descending chain (~pi)i∈I ,
then γF (limi ~pi) = ∩iγF (~pi) ∈ S by inf-continuity and stability of S. By Zorn’s
lemma, γ−1

F (S) has at least one minimal element.
Let P [~p] be a formula representing γ−1

F (S) (Sec. 3.1 proposes formulas defin-
ing safe post-conditions and inductive invariants). The formula G[~p] M= P [~p] ∧
∀~p′ P [~p′] ∧ ~p′ ≤ ~p =⇒ ~p ≤ ~p′ defines the minimal elements of γ−1(S).

For instance, consider ~p = (a, b, c, d), F M= (−x ≤ a ∧ x ≤ b) ∨ (−x ≤
c∧x ≤ d), representing unions of two intervals [−a, b]∪ [−c, d]. We want upper-
approximations of the set {0, 1, 3}; that is P [~p] M= ∀x (x = 0 ∨ x = 1 ∨ x =
3 =⇒ F [~p, x]). We add the constraint that −a ≤ b ∧ b ≤ −c ∧ −c ≤ d,
so as not to obtain the same solutions twice (by exchange of (a, b) and (c, d))
or solutions with empty intervals. By quantifier elimination over G, we obtain
(a = 0 ∧ b = 1 ∧ c = −3 ∧ d = 3) ∨ (a = 0 ∧ b = 0 ∧ c = −1 ∧ d = 3), that is,
either [0, 0] ∪ [1, 3] or [0, 1] ∪ [3, 3].

4.4 Domain Partitioning
Non-convex domains, in general, are not stable under intersections and thus
“best abstraction” problems admit multiple solutions as minimal elements of the
set of correct abstractions. As explained in the preceding subsection, is not very
satisfactory nor efficient for analysis. There are, however, non-convex abstract
domains that are stable under intersection and thus admit least elements as
well as the template linear constraint domains of Sec. 3.1: those defined by
partitioning of the state space.

If, for instance, we know that a program or system behaves differently ac-
cording to the sign of x, then we can decide in advance to partition the state
space into x ≥ 0 and x < 0. On each element of the partition, we can have
a separate template (example Fig. 6). We can accommodate this within our
framework.

More formally, consider pairwise disjoint subsets (Ci)i∈I of the state space
Qm, and abstract domains stable under intersection (Si)i∈I , Si ⊆ P(Ci). El-

28

Figure 6: The state space is partitioned into x < 0 and x ≥ 0, and on each
element of the partition we have a product of intervals, respectively [−5,−2]×
[4, 7] and [1, 7]× [0, 5]. Without the disjunction, we would have had to consider
the much larger set [−5, 7]× [0, 7].

29

ements of the partitioned abstract domain are unions
⋃
i∈I si where si ∈ Si.

If (
⋃
i si,j])j∈J is a family of elements of the domain, then

⋂
j∈J

(⋃
i∈I si,j

)
=⋃

i∈I
⋂
j∈J si,j ; that is, intersections are taken separately in each Ci. in other

words, the parameters of the templates on each element of the partition can be
dealt with independently of each other.

Note the difference with the general disjunctive domains of §4.3: in the
general disjunctive domains, there is no partition fixed a priori, this is why we
may have several incomparable minimal elements [0, 0] ∪ [1, 2] and [0, 1] ∪ [2, 2]
in the domain of disjunctions of two intervals representing the same set {0, 1, 2}.
For a fixed partition Ci and corresponding domains Si, for any set X, for every
i, there is a least element representing X ∩Ci in domain Si. This motivates the
following construct:

Take a family (Fi[~p])i∈I of formulas defining template linear constraint do-
mains (conjunctions of linear inequalities Li(s1, . . . , sn) ≤ pi) and a family
(Ci)i∈I of formulas such that for all i and i′, Ci ∧ Ci′ is equivalent to false
and C1 ∨ · · · ∨ Cl is equivalent to true. F = (C1 ∧ F1) ∨ · · · ∨ (Cl ∧ Fl) then
defines an abstract domain such that γF is a inf-morphism. All the techniques
of §3.1 then apply.

For instance, by choosing C1
M= x ≥ 0, C2

M= x < 0, F1
M= x1

min ≤ x ≤
x1

max ∧ y1
min ≤ x ≤ y1

max, and F2
M= x2

min ≤ x ≤ x2
max ∧ y2

min ≤ x ≤ y2
max, we can

obtain Figure 6.
The above constructions are equivalent to assigning a separate control point

to each element in the partition, with guards leading to these points according
to the Ci, and then performing as described in §5.1.

4.5 Floating-Point Computations
Real-life programs do not operate on real numbers; they operate on fixed-point
or floating-point numbers. Floating point operations have few of the good alge-
braic properties of real operations; yet, they constitute approximations of these
real operations, and the rounding error introduced can be bounded.

In IEEE floating-point [61], each atomic operation (noting ⊕, 	, ⊗, �, √
f

for operations so as to distinguish them from the operations +, −, ×, /, √

over the reals) is mathematically defined as the image of the exact operation
over the reals by a rounding function.10 This rounding function, depending on
user choice, maps each real x to the nearest floating-point value rn(x) (round
to nearest mode, with some resolution mechanism for non representable values
exactly in the middle of two floating-point values), r−∞(x) the greatest floating-
point value less or equal to x (round toward −∞), r+∞(x) the least floating-point
value greater or equal to x (round toward +∞), r0(x) the floating-point value of
the same sign as x but whose magnitude is the greatest floating-point value less
or equal to |x| (round toward 0). If x is too large to be representable, r(x) = ±∞
depending on the size of x

The semantics of the rounding operation cannot be exactly represented inside
the theory of linear inequalities.11 As a consequence, we are forced to use an

10We leave aside the peculiarities of some implementations, such as those of most C compilers
over the 32-bit Intel platform where there are “extended precisions” types used for some
temporary variables and expressions can undergo double rounding [84].

11To be pedantic, since IEEE floating-point formats are of a finite size, the rounding oper-

30

axiomatic over-approximation of that semantics: a formula linking a real number
x to its rounded version r(x).

Miné [75] uses an inequality |r(x)−x| ≤ εrel · |x|+εabs, where εrel is a relative
error and εabs is an absolute error, leaving aside the problem of overflows. The
relative error is due to rounding at the last binary digit of the significand, while
the absolute error is due to the fact that the range of exponents is finite and
thus that there exists a least positive floating-point number and some nonzero
values get rounded to zero instead of incurring a relative error (or get rounded
to a denormal, see below).

Because our language for axioms is richer than the interval linear forms
used by Miné, we can express more precise properties of floating-point round-
ing. We recall briefly the characteristics of IEEE-754 floating-point numbers.
Nonzero floating point numbers are represented as follows: x = ±2em where
1 ≤ m < 2 is the mantissa or significand, which has a fixed number p of bits,
and e (Emin ≤ e ≤ Emax is the exponent). The difference introduced by chang-
ing the last binary digit of the mantissa is ±s.εlast where εlast = 2−(p−1): the
unit in the last place or ulp. Such a decomposition is unique for a given number
if we impose that the leftmost digit of the mantissa is 1 — this is called a nor-
malised representation. Except in the case of numbers of very small magnitude,
IEEE-754 always works with normalised representations. There exists a least
positive normalised number mnormal and a least positive denormalized number
mdenormal, and the denormals are the multiples of mdenormal less than mnormal.
All representable numbers are multiples of mdenormal.

We shall now attempt to define an imprecise axiomatisation of the rela-
tionship between the result of a floating-point operation and the result of the
corresponding ideal operation over real numbers. For this, we shall distinguish
operations plus and minus on the one hand, multiplication and division on the
other hand, since the former have properties of which we can take advantage.

Let us consider addition or subtraction x = ±a ± b. Suppose that 0 ≤
x ≤ mnormal. a and b are multiples of mdenormal and thus a − b is exactly
represented as a denormalized number; therefore r(x) = x. If x > mnormal, then
|r(x)− x| ≤ εrel.x. In other words, if the result of an addition or subtraction is
denormal, then it is exact.12 The cases for x ≤ 0 are symmetrical.

We therefore obtain the following axiomatisation of the rounding of a positive
real number x, result of a floating-point addition or subtraction, to a floating-
point value r, using round-to-nearest:

Round±+(r, x) M= (x ≤ mnormal ∧ r = x)∨ (x > mnormal ∧−εrel.x ≤ r−x ≤ εrel.x)
(15)

We then use this predicate to construct an axiomatisation for rounding of num-

ation could be exactly represented by enumeration of all possible cases; this would anyway be
impossible in practice due to the enormous size of such an enumeration.

12William Kahan has written extensively about the advantages of the existence and proper
handling of denormals, otherwise known as gradual underflow, as opposed to flushing to zero
all numbers too small to be approximated by normal numbers, a process known as flush to
zero. For instance, with gradual underflow, a	 b = 0 is equivalent to a = b, quite a desirable
property. See e.g. [63, p. 6]. Unfortunately, certain architectures do not implement gradual
underflow, for the sake of efficient; then one has to use the Round and not the Round±

predicate.

31

bers of any sign:

Round±(r, x) M= (x = 0 ∧ r = 0) ∨ (x > 0 ∧ Round±+(r, x))∨
(x < 0 ∧ Round±+(−r,−x)) (16)

Equivalently, this last formula can be simplified into the equivalent:

Round±(r, x) M= (−mnormal ≤ x ≤ mnormal ∧ x = r)
∨ (x > mnormal ∧ x(1− εrel) ≤ r ≤ x(1 + εrel))

∨ (x < −mnormal ∧ x(1 + εrel) ≤ r ≤ x(1− εrel)) (17)

Consider now multiplication or division x = a ⊗ b or x = a � b. Here,
we cannot assume that if the result is denormal, then it is exact. A correct
axiomatization of rounding for positive numbers is:

Round+(r, x) M= (x ≤ mnormal ∧ r ≥ 0 ∧ x− εabs ≤ r ≤ x+ εabs)
∨ (x > mnormal ∧ −εrel.x ≤ r − x ≤ εrel.x) (18)

where εabs = mdenormal/2. Now for rounding for any sign:

Round(r, x) M= (x = 0 ∧ r = 0) ∨ (x > 0 ∧ Round+(r, x))∨
(x < 0 ∧ Round+(−r,−x)) (19)

To each floating-point expression e, we associate a “rounded-off” variable
re, the value of which we constrain using Round±(re, e) or Round(re, e). For
instance, a expression e = a⊕ b is replaced by a variable re, and the constraint
Round±(re, a + b) is added to the semantics. In the case of a compound ex-
pression e = ab + c, we introduce e1 = ab, and we obtain Round±(re, re1 +
c) ∧ Round(re1 , ab). If we know that the compiler uses a fused multiply-add
operator, we can use Round(re, ab+ c) instead.

The drawbacks of such axiomatization of floating-point operations are that
they introduce case disjunctions into formulas, leading to extra work for quanti-
fier elimination procedures, and also that they make very unnatural coefficients
appear — that is, rational numbers with large numerator and denominator, such
as 1+εrel or 1−εrel, or very large integers such as 1/mnormal. To go back to our
very simple rate limiter running example (§3.4.3), analysis times are multiplied
by 12 if one stops assuming that floating-point variables behave like reals, and
instead uses some axiomatization [81, p. 9]. Furthermore, the formula produced
is very large and hardly readable, doing many case disjunctions. Perhaps it is
possible to simplify such large formulas by allowing some limited overapproxi-
mation — for instance, we can replace the function mapping p to p′ as defined
by (0 ≤ p ≤ 1 ≤ p′ = p) ∨ (p > 1 ≤ p′ = (1 + ε)p) by the function defined
by 0 ≤ p ∧ p′ = (1 + ε)p, since the latter formula always gives a solution for p′
greater or equal to that of the former. Even better, such simplifications could be
performed during the elimination procedure. Further investigations are needed
in that respect.

32

4.6 Integers
We have mentioned in §2.2.2 that Presburger arithmetic admits quantifier elim-
ination. We therefore could apply quantifier elimination in Presburger arith-
metic, similarly as we do with respect to real linear arithmetic. Unfortunately,
as we shall see in §7.1, such an approach suffers from explosion in the size of
the formulas and the cost of the algorithms.

Instead, we used a relaxation approach: all integers are treated as reals;
strict inequalities a < b where both sides are integers are recoded a ≤ b − 1.
For instance, if the program contains a if-then-else over x ≤ y, then x ≤ y is a
precondition for the “then” branch, and x ≥ y+ 1 is a precondition of the “else”
branch. Note that this means that traces of execution such that y < x < y + 1
are considered to fail.

In some cases, such as the McCarthy 91 function example from §5.2, it is
necessary to constraint the reasoning procedures so that they consider that the
negation of a ≤ b is a ≥ b + 1. We hope that improvements of quantifier
elimination algorithms will be able to allow a more elegant approach.

Another issue is that in many programming languages, integers are bounded
and that arithmetic operations are actually performed modulo 2n (with n typ-
ically 8, 16, 32 or 64). The problem then lies within an enormous, but finite,
state space. Clever techniques for reasoning about bit-vector arithmetic are be-
ing investigated by the SMT-solving community. Again, we hope that future
work will provide good quantifier elimination techniques for this arithmetic, or
combinations thereof with the linear theory of reals.

4.7 Nonlinear constructs
In §7.2 we explain how to fully deal with nonlinear program constructs and
templates, at the expense of very high computational complexity.

A more practical approach is to linearise the program expressions [78][76,
ch. 6]. If we encounter an assignment z := x ∗ y and we know, perhaps through
rough interval analysis, an interval y ∈ [ymin, ymax], we can use the following
abstraction of the semantics of this assignment:

(x ≥ 0 ∧ xymin ≤ z′ ≤ xymax) ∨ (x < 0 ∧ xymax ≤ z′ ≤ xymin) (20)

If we know intervals for both x and y, then we can apply Eq. 20 to both
(x, [ymin, ymax]) and (y, [xmin, xmax]), and take the conjunction of the resulting
formulas.

5 Complex control flow
We have so far assumed no procedure call, and at most one single loop. We
shall see here how to deal with arbitrary control flow graphs and call graph
structures.

5.1 Arbitrary control graph and loop nests
In Sec. 3.4, we have explained how to abstract a single fixed point. The method
can be applied to multiple nested fixed points by replacing the inner fixed point

33

by its abstraction. For instance, assume the rate limiter of Sec. 3.4.3 is placed
inside a larger loop. One may replace it by its abstraction:

i f (e1max > e3max) {
s1max = e1max ;

} e lse {
s1max = e3max ;

}
assume (s1 <= s1max) ;
/∗ and s i m i l a r f o r s1min ∗ /

Alternatively, we can extend our framework to an arbitrary control flow
graph with nested loops, the semantics of which is expressed as a single fixed
point. We may use the same method as proposed by Gulwani et al. [56], §2
and other authors. First, a cut set of program locations is identified; any cycle
in the control flow graph must go through at least one program point in the
cut set. In widening-based fixed point approximations, one classically applies
widening at each point in the cut set. A simple method for choosing a cut set is
to include all targets of back edges in a depth-first traversal of the control-flow
graph, starting from the start node; in the case of structured program, this
amounts to choosing the head node of each loop. This is not necessarily the
best choice with respect to precision, though [56, §2.3]; Bourdoncle [18], Sec. 3.6
discusses methods for choosing such as cut-set.

To each point in the cut set we associate an element in the abstract domain,
parameterised by a number of variables. The values of these variables for all
points in the cut-set define an invariant candidate. Since paths between elements
of the cut sets cannot contain a cycle, their denotational semantics can be
expressed simply by an existentially quantified formula. Possible paths between
each source and destination elements in the cut-set defined a stability condition
(Formula 7). The conjunction of all these stability conditions defines acceptable
inductive invariants. As above, the least inductive invariant is obtained by
writing a minimisation formula (Sec. 3.4).

Let us consider the loop nest in Listing 10. We choose program points A
and B as cut-set. At program point A, we look for an invariant of the form
IA(i, j) M= imin,A ≤ i ≤ imax,A, and at program point B, for an invariant of the
form IB(i, j) M= imin,B ≤ i ≤ imax,B ∧ jmin ≤ j ≤ jmax ∧ δmin ≤ i − j ≤ δmax (a
difference-bound invariant). The (somewhat edited for brevity) stability formula
is written:

∀j IA(0, j) ∧ ∀i∀j ((IB(i, j) ∧ j ≥ i ∧ (i+ 1 ≤ 19∨
i+ 1 = 20 ∨ i+ 1 ≥ 21))⇒ If[i+ 1 = 20, IA(0, j), IA(i+ 1, j)])∧

∀i∀j (IA(i, j)⇒ IB(i, 0)) ∧ ∀i∀j ((IB(i, j) ∧ j < i)
⇒ IB(i, j + 1)) (21)

where If[b, e1, e2] = (b ∧ e1) ∨ (¬b ∧ e2).
Replacing IA and IB into this formula, then applying quantifier elimination,

we obtain a formula defining all acceptable tuples (imin,A, imax,A, imin,B , imax,B , jmin, jmax, δmin, δmax).
Optimal values are then obtained by further quantifier elimination: imin,A =
imin,B = jmin = 0, imax,A = imax,B = 19, jmax = 20, δmin = 1, δmax = 19.

34

Listing 10: Loop nest

i =0 ;
while (t rue) { /∗ A ∗ /

i f (choice ()) {
j =0 ;
while (j < i) { /∗ B ∗ /

/∗ someth ing ∗ /
j = j +1 ;

}
i = i +1;
i f (i ==20) {

i =0 ;
}

} e lse {
/∗ someth ing ∗ /

}
}

The same example can be solved by replacing 20 by another variable n as in
Sec. 3.4.2.

5.2 Procedures and Recursive Procedures
We have so far considered abstractions of program blocks with respect to sets
of program states. A program block is considered as a transformer from a state
of input program states to the corresponding set of output program states. The
analysis outputs a sound and optimal (in a certain way) abstract transformer,
mapping an abstract set of input states to an abstract set of output states.

Assuming there are no recursive procedures, procedure calls can be easily
dealt with. We can simply inline the procedure at the point of call, as done in e.g.
Astrée [14, 15, 37]. Because inlining the concrete procedure may lead to code
blowup, we may also inline its abstraction, considered as a nondeterministic
program. Consider a complex procedure P with input variable x and output
variable x. We abstract the procedure automatically with respect to the interval
domain for the postcondition (zmin ≤ z ≤ zmax); suppose we obtain zmax :=
1000; zmin := x then we can replace the function call by z <= 1000 && z >= x.
This is a form of modular interprocedural analysis: considering the call graph,
we can abstract the leaf procedures, then those calling the leaf procedures and
so on. We can also do likewise for nested loops: abstract the innermost loop,
then the next innermost one, etc. This method is however insufficient for dealing
with recursive procedures.

In order to analyse recursive procedures, we need to abstract not sets of
states, but sets of pairs of states, expressing the input-output relationships of
procedures. In the case of recursive procedures, these relationships are the least
solution of a system of equations.

To take a concrete example, let us consider McCarthy’s famous “91 func-
tion” [70, 71], which, non-obviously, returns 91 for all inputs less than 101:

35

i n t M(i n t n) {
i f (n > 100) {

return n−10;
} e lse {

return M(M(n + 1 1)) ;
}

}

The concrete semantics of that function is a relationship R between its input
n and its output r. It is the least solution of

R ⊇ {(n, r) ∈ Z2 | (n > 100 ∧ r = n− 10)∨
(n ≤ 100 ∧ ∃n2 ∈ Z(n+ 11, n2) ∈ R ∧ (n2, r) ∈ R)} (22)

We look for a inductive invariant of the form I
M= ((n ≥ A)∧(r−n ≥ δ)∧(r−

n ≤ ∆)) ∨ ((n ≤ B) ∧ (r = C)), a non-convex domain (Sec. 4.3). By replacing
R by I into inclusion 22, and by universal quantification over n, r, n2, we obtain
the set of admissible parameters for invariants of this shape. By quantifier
elimination, we obtain (C = 91) ∧ (δ = ∆ = −10) ∧ (A = 101) ∧ (B = 100)
within a fraction of a second using Mjollnir (see Sec. 6).

In this case, there is a single acceptable inductive invariant of the suggested
shape. In general, there may be parameters to optimise, as explained in Sec. 3.4.
The result of this analysis is therefore a map from parameters defining sets
of states to parameters defining sets of pairs of states (the abstraction of a
transition relation). This abstract transition relation (a subset ofX×Y whereX
and Y are the input and output state sets) can be transformed into an abstract
transformer in X] → Y] as explained in Sec. 3.2. Such an interprocedural
analysis may also be used to enhance the analysis of loops [72].

6 Implementations and Experiments
We have implemented the techniques of Sec. 3 in quantifier elimination pack-
ages, including Mathematica13 and Reduce 3.814 + Redlog15 in addition
to our own package, Mjollnir [81].16 We ignore which exact techniques are
implemented within Mathematica. 17 Redlog appears to implement some
virtual substitution method [44, 107].

As test cases, we took a library of operators for synchronous programming,
having streams of floating-point values as input and outputs. These operators

13Mathematica is a commercial computer algebra package available under an unfree license
from Wolfram Research [108].

14Reduce is a computer algebra package from Anthony C. Hearn, now available under a
modified BSD licence.

15Redlog is an extension to Reduce for working over quantified formulas.
16Mjollnir is available under a free license from the author’s home page. In addition to

the author’s own quantifier elimination techniques, it implements Ferrante and Rackoff and
Loos and Weispfenning’s.

17Loos and Weispfenning’s quantifier elimination procedure is used by Mathematica to
perform simplifications over linear inequalities [108, §A.9.5], but we are unsure whether this
is the algorithm called by the Reduce function.

36

http://www.wolfram.com
http://www.reduce-algebra.com/
http://www.redlog.eu
http://www-verimag.imag.fr/~monniaux/mjollnir.html.en

are written in a restricted subset of C and take as much as 20 lines. A front-
end based on CIL [85] converts them into formulas, then these formulas are
processed and the corresponding abstract transfer functions are pretty-printed.
Since for our application, it is important to bound numerical quantities, we
chose the interval domain.

Among the extensions in §4, we implemented those relevant to floating-point
(§4.5) and integers (§4.6), and did more manual experiments with infinities
(§4.2) and recursive functions (§5.2).

For instance, the rate limiter presented in Sec. 3.4.3 was extracted from
that library. Since this operator includes a memory (a variable whose value is
retained from a call to the operator to the next one), its data-flow semantics is
expressed using a fixed-point. When considered with real variables, the resulting
expanded formula was approximately 1000 characters long, and with floating
point variables approximately 8000 characters long. Despite the length of these
formulas, they can be processed by Mjollnir in a matter of seconds. The
result can then be saved once and for all.

Analysers such as Astrée [14, 15, 37] must have special knowledge about
such operators, otherwise the analysis results are too coarse (for instance, the
intervals do not get stabilized at all). The Astrée development team there-
fore had to provide specialized, hand-written analyses for certain operators. In
contrast, all linear floating-point operators in the library were analysed within
a fraction of a second using the method in the present article, assuming that
floating-point values in the source code were real numbers. If one considered
instead the abstraction of floating-point computations using real numbers from
Sec. 4.5, computation times did not exceed 17 seconds per operator; the formu-
las produced are considerably more complex than in the real case. Note that
this computation is done once and for all for each operator; a static analyser
can therefore cache this information for further use and need not recompute ab-
stractions for library functions or operators unless these functions are updated.

Our analyser front-end currently cannot deal with non-numerical operations
and data structures (pointers, records, and arrays). It is therefore not yet capa-
ble of directly dealing with the real control programs that e.g. Astrée accepts,
which do not consist purely of numerical operators. We plan to integrate our
analysis method into a more generic analyser. Alternatively, we plan to adapt
a front-end for synchronous programming languages such as Simulink, a tool
widely used by control/command engineers.

The correctness of the methods described in this article does not rely on any
particularity of the quantifier elimination procedure used, provided one also
has symbolic computation procedures for e.g. putting formulas in disjunctive
normal form and simplifying them. The difference between the various quantifier
elimination and simplification procedures is efficiency; experiments showed that
ours was vastly more efficient than the others tested for this kind of application.
For instance, our implementation of our quantifier elimination algorithm [81]
was able to complete the analysis of the rate limiter of Sec. 3.4.3, implemented
over the reals, in 1.4 s, and in 17 s with the same example over floating-point
numbers, while Redlog took 182 s for the former and could not finish the
latter, and Mathematica could analyse neither (out-of-memory). On other
examples, our quantifier elimination procedure is faster than the other ones, or
can complete eliminations that the others cannot.

37

7 Extensions to other numerical domains
We have so far concerned ourselves solely with real (and possibly Boolean)
variables appearing in linear arithmetic formulas. In §4, we have seen how
to reason over certain other data types (integers, floating-point values), but
again modeling them as real numbers. Yet, in §2.2, we pointed out that linear
real arithmetic is not the only arithmetic theory with quantifier elimination
algorithms; other well-known examples include Presburger arithmetic (linear
integer arithmetic) and the theory of real closed fields (that is, polynomial real
arithmetic).

In this section, we report on using quantifier elimination in both these the-
ories for computing optimal transformers or fixed points. Unfortunately, ex-
periments have shown that the high complexity of the quantifier elimination
algorithms for these theories and the lack of simplifications for the formulas
they produce preclude their use in practice. The results in this section are thus
mainly of theoretical interest.

7.1 Presburger arithmetic
The approach from §4.6 relaxes integers to reals. It therefore yields correct
results, but might lead to overapproximations that could be avoided if inte-
gers were used instead. What if we used quantifier elimination on Presburger
arithmetic instead?

Consider the following simple example:

i n t a , m;
. . .
i = 0 ;
while (i < m) {

i = i +a ;
}

Let us abstract the loop variable a using an interval [l, h]. These bounds
must satisfy I M= l ≤ 0 ≤ h (initialisation of the loop) and

S
M= ∀i (l ≤ i ≤ u⇒ (i > m ∨ l ≤ i+ a ≤ u)) (23)

The condition for the existence of a finite range of values for i is therefore
∃l∃u I ∧ S.18 Intuitively, this condition is equivalent to m < 0 ∨ a ≥ 0. Yet,
the formula produced by the quantifier elimination for Presburger arithmetic
from Redlog yields a very large formula, more than one page long, which we
have therefore omitted.19 Redlog cannot even perform simplifications such as
replacing i = 0 ∨ i = 1 ∨ i = 2 by 0 ≤ i ≤ 2.

In comparison, the real relaxation gives exact and fast results:

SR
M= ∀i (i < l ∨ i > u ∨ i ≥ m+ 1 ∨ l ≤ i+ a ≤ u)) (24)

18This example is motivated by the fact that for a 6= 0, the loop terminates if and only if
[l, u] is finite. It is a simplified version of a loop termination problem from Paul Feautrier and
Laure Gonnord.

19It could be that Redlog gives erroneous answers. At some point, we generated a formula
F with free variables a,m such that Redlog produced falsewhen eliminating quantifiers from
∃m∃a F , and produced truewhen eliminating quantifiers from ∃a∃m F ; at another point we
made Reduce/Redlog crash with a segmentation fault.

38

Eliminating quantifiers from ∃l∃u I ∧ SR yields immediately the answer a ≥
0 ∨m ≤ −1.

7.2 Real polynomial constraint domains
We now consider the abstraction of program states (in RV) using domains de-
fined by polynomial constraints, a natural extension of those seen previously
(§3.1); the orthogonal extensions from § 4 also apply. Instead of quantifier
elimination in linear real arithmetic, we shall use quantifier elimination in the
theory of real closed fields. One difference, though, is that we will not be able
to produce nice, closed form formulas, at least not in general.

7.2.1 Method

We generalise the constructs of §3, except those of § 3.3, to formulas over poly-
nomial inequalities. The same results hold:

• For any loop-free program code, and any template polynomial abstract do-
main with parameters p1, . . . , pn, there is a family of formulas F1, . . . , Fn
that uniquely defines the optimal parameters p′1, . . . , p′n′ of the postcondi-
tion with respect those p1, . . . , pn in the precondition (the free variables
of Fi are among p1, . . . , pn, p

′
i).

• For any loop, and any template polynomial abstract domain with param-
eters p1, . . . , pn, there is a family of formulas F1, . . . , Fn that uniquely
defines the optimal parameters p′1, . . . , p′n′ of the least inductive invariant
for that loop, with respect those p1, . . . , pn in the precondition (the free
variables of Fi are among p1, . . . , pn, p

′
i).

The main obstacle is the high cost of quantifier elimination in the theory of
real closed fields. The other crucial difference is that it is in general impossible to
move from such a formula to a formula computing p′i from p1, . . . , pn, as we did
in § 3.3. By performing the cylindrical algebraic decomposition with variables
p1, . . . , pn first, we could obtain the tree structure with case disjunctions, as the
output of Algorithm 1. But at the leaves, we would obtain formulas defining p′i
as a specific root of a polynomial in the variable p′i, with coefficients themselves
polynomials in p1, . . . , pn.

In Sec. 3.3, we explained how to turn a formula over linear arithmetic
defining a partial function from p1, . . . , pn to p′i — that is, a relation between
(p1, . . . , pn, p

′
i) such that for any choice of p1, . . . , pn there is at most one suitable

p′i — into an algorithmic function, expressed using linear assignments and if-
then-else over linear inequalities. Can we do the same here? That is, can we turn
a formula over nonlinear arithmetic defining a partial function from p1, . . . , pn
to p′i into a simple algorithm written using, say, if-then-else tests and normal
arithmetic operators as well as the n-th root operations n

√ ? For instance, if we
have a formula p′ ≥ 0 ∧ p′2 = 2p, we would like to obtain p′ =

√
2p.

Unfortunately, this is impossible in the general case. The Abel-Ruffini the-
orem, from Galois theory, states that for polynomials in one variable of degrees
higher or equal to 5, there is in general no way to express the value of the roots
using only arithmetic operations (+, −, ×, /) and radicals (n

√). Thus, we can-
not hope to obtain in general a simple algorithm expressing p′i as a function of
p1, . . . , pn using tests, arithmetic operations (+, −, ×, /) and radicals (n

√).

39

Let us now assume that there are no precondition parameters p1, . . . , pn or,
equivalently, that we know exactly their value. Would it be at least possible to
compute the values of the p′i?

p′i is defined as the only solution of a logical formula with a single free vari-
able, built using polynomial arithmetic. By putting this formula into DNF, we
can reduce the problem to computing the only solution, if any, of a conjunction
of polynomial inequalities and equalities. Such a solution can be computed to
arbitrary precision ; in fact, for any ε, one can obtain bounds [l, h] such that
l ≤ p′i ≤ h and h − l ≤ ε. Unfortunately, the cost of such computations is
high. [10]

7.2.2 Experiments

Consider lx ≤ x ≤ hx, ly ≤ y ≤ hy and the problem of generating the optimal
abstract transfer function for the multiplication operation, z := x ∗ y. We wish
to obtain lz and hz such that lz ≤ z ≤ hz, and lz and hz are optimal (lz is
maximal, hz is minimal). We first define the set of admissible (not necessarily
minimal) hz:

A
M= ∀x∀y(lx ≤ x ≤ hx ∧ ly ≤ y ≤ hy ⇒ xy ≤ hz) (25)

Now we define the least value for hz:

O
M= A ∧ ∀h (A[h/hz]⇒ h ≥ hz) (26)

The free variables of this formula are lx, hx, ly, hy and hz.
Mathematica 7 performs quantified elimination by cylindrical algebraic de-

composition on this formula in 4.3 s and yields a large formula (Fig. 7) with
many case disjunctions, most notably on the sign of lx, hx, ly, hy. This is quite
natural: the monotonicity of the function y 7→ xy changes according to the sign
of x. This function is equivalent to the much more terse

hz = max(lxly, hxly, lxhy, hxhy) (28)

This illustrates the limit of our approach on nonlinear problems: even on
simple program constructions and with simple invariants, quantifier elimination
takes nonneglible time and outputs complicated formulas. We therefore did not
pursue this direction further.

8 Related work
Since the first numerical abstract analysis techniques were proposed in the 1970s,
there has been considerable work on improving precision, efficiency, or both.
Without attempting to be exhaustive, we shall now describe a few of the ap-
proaches and how they differ from ours.

8.1 Relational abstract domains and modular analysis
There is a sizeable amount of literature concerning relational numerical abstract
domains; that is, domains that express constraints between numerical variables.
Convex polyhedra were proposed in the 1970s [36, 58], and there have been

40

„
ly < 0 ∧

„„
hy = ly ∧ hx ≥

lxly
hy
∧ hz = lx ly

«
∨(ly < hy ≤ 0 ∧ ((lx ≤ 0 ∧ hx ≥ lx ∧ hz = lxly) ∨ (lx > 0 ∧ hx ≥ lx ∧ hz = hy lx)))

∨
„

hy > 0 ∧
„„

lx < 0 ∧
„„

lx ≤ hx ≤
lx ly
hy
∧ hz = lxly

«
∨

„
hx >

lxly
hy
∧ hz = hxhy

«««
∨(lx = 0 ∧ hx ≥ 0 ∧ hz = hxhy) ∨ (lx > 0 ∧ ((hx = lx ∧ hz = hylx)

∨(hx > lx ∧ hz = hx hy)))))))

∨ (ly = 0∧ ((hy = 0∧hx ≥ lx∧hz = 0)∨ (hy > 0∧ ((lx < 0∧ ((lx ≤ hx ≤ 0∧ hz = 0)

∨(hx > 0∧hz = hxhy)))∨(lx = 0∧hx ≥ 0∧hz = hxhy)∨ (lx > 0∧((hx = lx∧hz = hylx)

∨ (hx > lx ∧ hz = hx hy)))))))

∨
„

ly > 0 ∧
„„

hy = ly ∧
„„

lx < 0 ∧
„„

hx =
lxly
hy
∧ hz = lxly

«
∨

„
hx >

lx ly
hy
∧ hz = hx hy

«««
∨ (lx = 0 ∧ hx ≥ 0 ∧ hz = hxhy)∨„

lx > 0 ∧
„„

hx =
lxly
hy
∧ hz = lxly

«
∨

„
hx >

lx ly
hy
∧ hz = hx hy

«««««
∨(hy > ly ∧ ((lx < 0 ∧ ((hx = lx ∧ hz = lx ly) ∨ (lx < hx ≤ 0 ∧ hz = hx ly)

∨(hx > 0 ∧ hz = hxhy))) ∨ (lx = 0 ∧ hx ≥ 0 ∧ hz = hxhy)

∨(lx > 0 ∧ ((hx = lx ∧ hz = hy lx) ∨ (hx > lx ∧ hz = hx hy))))))) . (27)

Figure 7: This formula is the result of quantifier elimination. It defines hz to
be the least upper bound of xy for x ∈ [lx, hx] and y ∈ [ly, hy].

41

since then many improvements to the technique; a bibliography was gathered
by Bagnara et al. [4]. Algorithms on polyhedra are costly and thus a variety
of domains intermediate between simple interval analysis and convex polyhedra
were proposed [25, 74, 99].

It is possible to use relational abstract domains such as polyhedra to model
the input/output relationship of a program, function or block [58, §7.2, p. 112].
Instead of considering only the current values of the program variables (v1, . . . , vn)
at the various program points, one also considers the initial values (v0

1 , . . . , v
0
n)

of these variables at the beginning of the program, function or block; thus the
computed polyhedra, for instance, relate (v0

1 , . . . , v
0
n, v1, . . . , vn). We employed

this approach when dealing with recursive procedures (§5.2). Such an approach
is modular: one can for instance analyse a procedure in such a way, and plug
the result of the analysis at each point of call; though of course one loses op-
timality. It also provides for modular analysis of loop nests: one first analyses
the innermost loop, and then replace this innermost loop by the result of the
analysis, considered as a nondeterministic program; one then proceeds to the
next innermost loop.

One limit of this approach is that the relationship between input and out-
put is constrained by the abstract domain. Most numerical abstract domains
concern convex relations: difference bound constraints, octagons, polyhedra etc.
are all geometrically convex (given two points a, b in the concretisation, the seg-
ment [a, b] is also in the concretisation). Note that the result of the analysis of
the absolute value function (§3.2), as expressed by Rel. 6, or that of the rate
limiter (§3.4.3), are piecewise linear but not convex.

The idea of producing procedure summaries [103] as formulas mapping input
bounds to output bounds is not new. Rugina and Rinard [97], in the context
of pointer analysis (with pointers considered as a base plus an integer offset),
proposed a reduction to linear programming. This reduction step, while sound,
introduces an imprecision that is difficult to measure in advance; our method,
in contrast, is guaranteed to be “optimal” in a certain sense. Rugina and Ri-
nard’s method, however, allows some nonlinear constructs in the program to be
analysed. Martin et al. [72] proposed applying interprocedural analysis to loops.

Seidl et al. [102] also produce procedure summaries as numerical constraints.
Our procedure summaries are implementations of the corresponding abstract
transformer over some abstract domain, while theirs outputs a relationship be-
tween input and output concrete values. Their analysis considers a convex set of
concrete input-output relationships, expressed as simplices, a restricted class of
convex polyhedra. This restriction trades precision for speed: the generator and
constraint representations of simplices have approximately the same size, while
in general polyhedra exponential blowup can occur. Tests by arbitrary linear
constraints cannot be adequately represented within this framework. Seidl et al.
[102], Sec. 4 propose deferring those constraints using auxiliary variables; this,
however, loses some precision. Their analysis and ours are therefore incompa-
rable, since they make different choices between precision and efficiency.

Lal et al. [67] proposed an interprocedural analysis of numerical properties
of functions using weighted pushdown automata. The “weights” are taken in
a finite height abstract domain, while the domains we consider have infinite
height.

42

8.2 Computations of exact fixed points
The limitations of the widening approach explained in §2.1 have been recognized
for long. There has therefore been extensive research about computing precise
inductive invariants, if possible the least inductive invariant inside the abstract
domain considered.

Several methods have been proposed to synthesize invariants without using
widening operators [29, 32, 98]. In common with us, they express as constraints
the conditions under which some parametric invariant shape truly is an in-
variant, then they use some resolution or simplification technique over those
constraints. Again, these methods are designed for solving the problem for one
given set of constraints on the inputs, as opposed to finding a relation between
the output or fixed-point constraints and the input constraints. In some cases,
the invariant may also not be minimal.

Bagnara et al. [5, 6] proposed improvements over the “classical” widenings
on linear constraint domains [58]. Gopan and Reps [54] introduced “lookahead
widenings”: standard widening-based analysis is applied to a sequence of syntac-
tic restrictions of the original program, which ultimately converges to the whole
program; the idea is to distinguish phases or modes of operation in order to make
the widening more precise. Gonnord [52], Gonnord and Halbwachs [53], Leroux
and Sutre [68] have proposed acceleration techniques: when the transition re-
lation τ is of certain particular forms, it is possible to compute its transitive
closure τ+ exactly or with small imprecision. Typically, acceleration techniques
have difficulties dealing with programs where the control flow is not flat, for
instance when there are paths through a loop body that affect the iteration
variables in different ways, such as the circular buffer example (Listing 6).

Adjé et al. [1], Costan et al. [31], Gaubert et al. [49] proposed a “policy
iteration” or “strategy iteration” approach,20 by downwards iterations providing
successive over-approximations of the least fixed point. Their approach can fail
to converge to the least fixed point, for instance with expansive semantics such
as those of the “circular buffer” example (Listing 6), though for some classes of
programs it converges to the least fixed point [1].

Gawlitza and Seidl [51] proposed another policy iteration approach, which
is guaranteed to provide the least fixed point of the system of abstract equa-
tions. In contrast to the above method, they use upwards iterations, so each
value computed is an under-approximation of the abstract least fixed point.
They extended that approach to template linear constraint domains [50]. The
differences with our approach are twofold:

• Their approach computes the least fixed point of a system of min/max ab-
stract equations, derived from the source code of the program. In intuitive
terms, min’s correspond to conditions (and closures operators in relational
domains), and max’s to “merge points” in the control flow graph (end of
if-then-else). This approach thus incurs the same problem of “undistin-
guished paths” as the example from §2.1. Even then, the policy iteration

20The terminology comes from game theory. In broad terms, their consider equations with
max/min operators, which are similar to the “minimax” operators appearing in the definition
of the value of games in game theory. Choosing which argument of a “min” is used corresponds,
in game theory terms, of choosing a strategy or policy for a player that tries to minimise the
value of the game.

43

algorithm may iterate across a number of iterations exponential in the
number of merge points.

An alternative would be to consider a cut-set for the control flow graph
and distinguish each path between two points in the cut-set. in other
words, for a single loop, one would consider each individual control path
inside the loop body. The number of such paths is exponential in the
number of tests, and thus the “max” operation in the abstract equations
would also have an exponential number of arguments. Such an approach
would compute the same result as ours; however, it would be unworkable
without further work to get rid of the explicitly exponential number of
arguments in the “max” operation.

• Their approach needs all preconditions exactly known. In contrast, we
compute it as an explicit function of the precondition. In short, our in-
variants are parametric in the precondition, while theirs are not.

Gulwani et al. [56] have also proposed a method for generating linear invari-
ants over integer variables, using a class of templates. The methods described
in the present article can be applied to linear invariants over integer variables
in two ways: either by abstracting them using rationals (as in examples in
Sec. 3.4.2, 5.1), either by replacing quantifier elimination over rational linear
arithmetic by quantifier elimination over linear integer arithmetic, also known
as Presburger arithmetic (§4.6). Gulwani et al. instead chose to first consider
integer variables as rationals, so as to be able to compute over rational convex
polyhedra, then bound variables and constraint parameters so as to model them
as finite bit vectors, finally obtaining a problem amenable to SAT solving. Pro-
gram variables are finite bit vectors in most industrial programming languages,
and parameters to useful invariants over integer variables are often small, thus
their approach seems justified. We do not see, however, how their method could
be applied to programs operating over real or floating-point variables, which are
the main motivation for the present article.

8.3 Limitations of template-based approaches
Much, if not all, of the published results on computing least inductive invari-
ants in abstract domains, or at least abstract fixed points, deal with template
domains [49, 50, 56], including intervals [31, 51]. The fundamental reasons for
this are:

• The domain of convex polyhedra is not closed under infinite intersection.
Thus, in general, there is no best abstraction of a set of states. In general,
there is no least inductive invariant inside the domain.

• These methods replace the problem of dealing with arbitrarily complex
shapes such as convex polyhedra by dealing with a vector of real num-
bers in finite, fixed dimension. The coefficients of these vectors are then
amenable to a variety of constraint solving techniques.

A common criticism of template-based approaches, is that they suppose that
one knows the interesting templates beforehands — in the case of linear con-
straint domains, interesting directions in space. In contrast, methods based on

44

general convex polyhedra infer these directions themselves, through the convex
hull and widening operations [36, 58]. For instance, an analysis using standard
polyhedra of the following program will infer that 2x = y, while a template
based approach would succeed in doing so only if a template of the form 2x− y
has been provided:

x = y = 0 ;
while (t rue) {

x = x +1;
y = y +2;

}

We understand and share that criticism. In some cases there exist “nat-
ural” templates, such as intervals, or when dealing with timing or scheduling
constraints, difference bounds vi − vj ≤ C, but in general, finding the correct
templates seems a hard problem. A suggestion is to run iterations using gen-
eral convex polyhedra and look at the stable directions of the faces of these
polyhedra.

We think however that criticism of template domains should be part of wider
considerations on how to choose the proper abstract domain. Abstract inter-
pretation essentially replaces the unsolvable problem of computing the least
inductive invariant of the concrete problem by the solvable problem of comput-
ing an inductive invariant in an abstract domain — in some lucky cases such
as the one dealt with in this article, actually obtaining the least inductive in-
variant in the abstract domain. The choice of the abstract domain is at present
somewhat arbitrary, typically hardwired into the analysis tool, at best chosen
by some command-line flags.

Convex polyhedra [36, 58, 59] are popular because many programming id-
ioms naturally exhibit convexity — for instance, the set of loop indices (i, j, k, . . .)
of nested loops occurring in numerical analysis programs is often convex. Yet,
one can easily think of programs where some interesting properties are not con-
vex (a test |x| ≥ 1, for instance). There are some cases where it is important
not to enforce convexity and instead implement disjunctive domains, capable of
representing properties such as x ≤ −1 ∨ x ≥ 1; an example is trace partition-
ing [93]. Thus, a static analysis tool based on general convex polyhedra also
enforces an a priori convex shape that might not be representative of the useful
program invariants.

While convex polyhedra are not enough, they are often “too much”: their
complexity is too high for many applications. Indeed, even for less costly con-
straint domains such as octagons [74, 77], it is simply too expensive to compute
constraints between all visible program variables, so some analysers choose a pri-
ori to consider relations only between certain variables — an approach knowing
as packing in the Astrée tool [37, 39]. Again, the packing choice is a form of a
priori template guess made by the analyser, using heuristics that look at the
way the program is organized.

Further research is obviously needed in how to choose and adapt abstract do-
mains so that they can represent interesting inductive properties at reasonable
costs. This problem is similar to the problem of finding the correct predicates in
predicate abstraction. For this, various methods for finding predicates in addi-
tion to those syntactically present in the program have been proposed, especially

45

those based on the analysis of spurious counterexamples (counterexample-guided
abstraction refinement or CEGAR).21 Perhaps similar ideas could be employed
for suggesting suitable additional numerical templates, finer-grained packing or
disjunctions.

8.4 Relational domains beyond polyhedra
In earlier works, we have proposed a method for obtaining input-output rela-
tionships of digital linear filters with memories, taking into account the effects of
floating-point computations [79]. This method computes an exact relationship
between bounds on the input and bounds on the output, without the need for
an abstract domain for expressing the local invariant; as such, for this class of
problems, it is more precise than the method from this article. This technique,
however, cannot be easily generalized to cases where the operator block contains
tests and other nonlinear constructs; the semantics of nonlinear constructs must
be approximated by e.g. interval analysis.

There have been several published approaches to finding nonlinear relation-
ships between program variables. One approach obtains polynomial equalities
through computations on ideals using Gröbner bases [94, 95]. This work only
deals with equalities (not inequalities), uses a classical approach of computing
output constraints from a set of input constraints (instead of finding relation-
ships between the two sets of constraints), and deals with loops using a widening
operator. In comparison, our approach abstracts whole program fragments, and
is modular — it is possible to “plug” the result of the analysis of a procedure
at the location of a procedure call, though of course this is less precise than
inlining the procedure.

Since nonlinear relations are notoriously costly to compute upon, Bagnara
et al. [7] have proposed using further abstraction to be able to reduce the prob-
lem to computations over convex polyhedra.

Kapur [64] also proposed to use quantifier elimination to obtain invariants:
he considers program invariants with parameters, and derives constraints over
those parameters from the program. Our work improves on his by noting that
least invariants of the chosen shape can be obtained, not just any invariant; that
the abstraction can be done modularly and compositionally (a program fragment
can be analysed, and the result of its analysis can be plugged into the analysis
of a larger program), or combined into a “conventional” abstract interpretation
framework (by using invariants of a shape compatible with that framework), and
that the resulting invariants can be “projected” to obtain numerical quantities.

9 Conclusion and future prospects
Writing static analysers by hand has long been found tedious and error-prone.
One may of course prove an existing analyser correct through assisted proof tech-
niques, which removes the possibility of soundness mistakes, at the expense of
much increased tediousness. In this article, we proposed instead effective meth-
ods to synthesize abstract domains by automatic techniques. The advantages

21The literature on CEGAR is too vast to be cited here without unfairness. Clarke et al.
[26] introduced this approach for symbolic model checking. Notable applications to software
model checking include the Blast [12] and Slam [8] tools.

46

are twofold: new domains can be created much more easily, since no program-
ming is involved; a single procedure, testable on independent examples, needs
be written and possibly formally proved correct. To our knowledge, this is the
first effective proposal for generating numerical abstract domains automatically,
and one of the few methods for generating numerical summaries. Also, it is also
the only method so far for computing summaries of floating-point functions.

We have shown that floating-point computations could be safely abstracted
using our method. The formulas produced are however fairly complex in this
case, and we suspect that further over-approximation could dramatically reduce
their size. There is also nowadays significant interest in automatizing, at least
partially, the tedious proofs that computer arithmetic experts do and we think
that the kind of methods described in this article could help in that respect.

We have so far experimented with small examples, because the original goal
of this work was the automatic, on-the-fly, synthesis of abstract transfer func-
tions for small sequences of code that could be more precise than the usual
composition of abstract of individual instructions, and less tedious for the anal-
ysis designer than the method of pattern-matching the code for “known” opera-
tors with known mathematical properties. A further goal is the precise analysis
of longer sequences, including integer and Boolean computations. We have
shown in Sec. 4.4 how it was possible to partition the state space and abstract
each region of the state-space separately; but naive partitioning according to n
Booleans leads to 2n regions, which can be unbearably costly and is unneeded
in most cases. We think that automatic refinement and partitioning techniques
[62] could be developed in that respect.

The main practical application that we envision is to be able to analyse
numerical operator blocks from synchronous programming languages such as
Simulink,22 Scicos,23 Lustre,24 Scade25 or Sao,26 which are widely used
for programming control systems [3], particularly in the automative and avionic
industries. In order to obtain good analysis precision, such blocks often have to
be analysed as a whole instead of decomposing them into individual components
and applying individual transfer functions, as in our rate limiter example. The
static analysis tool Astrée [15, 37, 38, 39, 43, 104] outputs few, if any, false
alarms on some classes of control programs because it has specific specialized
transfer functions for certain operator blocks or coding patterns. Such trans-
fer functions had to be implemented by hand; the techniques described in the
present article could have been used to implement some of them automatically
and even on-the-fly.

22Simulink is a graphical dataflow modeling tool sold as an extension to the Matlab
numerical computation package. It allows modeling a physical or electrical environment along
the computerized control system. A code generator tool can then provide executable code for
the control system for a variety of targets, including generic C. Simulink is available from
The Mathworks.

23Scicos is a graphical dataflow modeling tool coming with the Scilab numerical compu-
tation package, similar in use to Simulink. [22] It is available from INRIA under the GNU
General Public License and also has code generation capabilities.

24Lustre is a synchronous programming language, from which code can be generated for
a variety of platforms [23].

25Scade is a graphical synchronous programming language derived from Lustre. It is
available from Esterel Technologies. It was used for implementing parts of the Airbus A380
fly-by-wire systems, among others. [43, 104]

26Sao is an earlier industrial graphical synchronous programming language, used, for im-
plementing parts of the Airbus A340 fly-by-wire systems [20], among others.

47

http://www.mathworks.com/
http://www.scicos.org/
http://www.esterel-technologies.com/

There are two important drawbacks to our method, which make it currently
only useful for very precise analysis of small parts of programs. The first is that
we need to “see” the whole of the loop or function that we are analysing, the
instructions of which must belong to the class of constructs that we are capable
of dealing with, or at least can be abstracted by them. In contrast, iterative
techniques are more tolerant: they see the program state locally, at each program
point, and the numerical analysis may easily interact with other analyses, such
as pointers [14, 15]. The second issue is the high cost of quantifier elimination.
Despite our work on new algorithms [81], in which we are still making progress,
scalability remains an issue.

Acknowledgements
We would like to thanks the anonymous referees for careful reading.

References
[1] Assalé Adjé, Stéphane Gaubert, and Éric Goubault. Computing the

smallest fixed point of nonexpansive mappings arising in game theory
and static analysis of programs. preprint, arXiv:0806.1160v2, 2008. URL
http://arxiv.org/abs/0806.1160.

[2] Hirokazu Anai and Volker Weispfenning. Deciding linear-trigonometric
problems. In International symposium on symbolic and algebraic compu-
tation (ISSAC). ACM, 2000. ISBN 1-58113-218-2. doi: 10.1145/345542.345567.

[3] Karl Johan Åström and Björn Wittenmark. Computer-controlled systems.
Prentice-Hall, 1997. ISBN 0-13-314899-8.

[4] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma
Polyhedra Library, version 0.9. URL http://www.cs.unipr.it/ppl.

[5] Roberto Bagnara, Patricia M. Hill, Elena Mazzi, and Enea Zaffanella.
Widening operators for weakly-relational numeric abstractions. In Hankin
and Siveroni [60], pages 3–18. ISBN 3-540-28584-9. doi: 10.1007/11547662_3.

[6] Roberto Bagnara, Patricia M. Hill, Elisa Ricci, and Enea Zaffanella. Pre-
cise widening operators for convex polyhedra. Science of Computer Pro-
gramming, 58(1-2):28–56, 2005. doi: 10.1016/j.scico.2005.02.003.

[7] Roberto Bagnara, Enric Rodríguez-Carbonell, and Enea Zaffanella.
Generation of basic semi-algebraic invariants using convex polyhedra.
In Hankin and Siveroni [60], pages 19–34. ISBN 3-540-28584-9. doi:
10.1007/11547662_4.

[8] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani.
Automatic predicate abstraction of C programs. In PLDI, pages 203–213.
ACM, 2001. ISBN 1-58113-414-2. doi: 10.1145/378795.378846.

[9] Clark Barrett, Silvio Ranise, Aaron Stump, and Cesare Tinelli. The sat-
isfiability modulo theories library (SMT-LIB). www.smtlib.org, 2008.

48

http://arxiv.org/abs/0806.1160
http://www.worldcat.org/isbn/1-58113-218-2
http://dx.doi.org/10.1145/345542.345567
http://www.worldcat.org/isbn/0-13-314899-8
http://www.cs.unipr.it/ppl
http://www.worldcat.org/isbn/3-540-28584-9
http://dx.doi.org/10.1007/11547662_3
http://dx.doi.org/10.1016/j.scico.2005.02.003
http://www.worldcat.org/isbn/3-540-28584-9
http://dx.doi.org/10.1007/11547662_4
http://www.worldcat.org/isbn/1-58113-414-2
http://dx.doi.org/10.1145/378795.378846
file:www.smtlib.org

[10] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in
real algebraic geometry. Algorithms and computation in mathematics.
Springer, 2nd edition, 2006. ISBN 3-540-33098-4.

[11] Bernd Becker, Christian Dax, Jochen Eisinger, and Felix Klaedtke. LIRA:
handling constraints of linear arithmetics over the integers and the reals. In
Werner Damm and Holger Hermanns, editors, Computer-aided verification
(CAV), volume 4590 of LNCS, pages 307–310. Springer, 2007. ISBN 978-3-
540-73367-6. doi: 10.1007/978-3-540-73368-3_36.

[12] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.
The software model checker blast. Int. J. of Software Tools for Technol-
ogy Transfer (STTT), 9(5–6):505–525, 2007. doi: 10.1007/s10009-007-0044-z.
Special section FASE ’04/05.

[13] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman,
and Yunshan Zhu. Bounded model checking. Advances in Computers, 58:
118–149, August 2003. doi: 10.1016/S0065-2458(03)58003-2.

[14] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. De-
sign and implementation of a special-purpose static program analyzer
for safety-critical real-time embedded software. In Torben Æ. Mogensen,
David A. Schmidt, and I. Hal Sudborough, editors, The Essence of Com-
putation: Complexity, Analysis, Transformation, number 2566 in LNCS,
pages 85–108. Springer, 2002. ISBN 3-540-00326-6. doi: 10.1007/3-540-36377-
7_5.

[15] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static
analyzer for large safety-critical software. In Programming Language De-
sign and Implementation (PLDI), pages 196–207. ACM, 2003. ISBN 1-
58113-662-5. doi: 10.1145/781131.781153.

[16] Bernard Boigelot, Sébastien Jodogne, and Pierre Wolper. An effective
decision procedure for linear arithmetic over the integers and reals. ACM
Transactions on Computational Logic (TOCL), 6(3):614–633, 2005. ISSN
1529-3785. doi: 10.1145/1071596.1071601.

[17] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analy-
sis of pushdown automata: Application to model-checking. In Antoni W.
Mazurkiewicz and Józef Winkowski, editors, Concurrency Theory (CON-
CUR), volume 1243 of Lecture Notes in Computer Science, pages 135–150.
Springer, 1997. ISBN 3-540-63141-0. doi: 10.1007/3-540-63141-0_10.

[18] François Bourdoncle. Sémantique des langages impératifs d’ordre
supérieur et interprétation abstraite. PhD thesis, École polytechnique,
Palaiseau, 1992.

[19] Aaron R. Bradley and Zohar Manna. The Calculus of Computation: Deci-
sion Procedures with Applications to Verification. Springer, October 2007.
ISBN 3-540-74112-7.

49

http://www.worldcat.org/isbn/3-540-33098-4
http://www.worldcat.org/isbn/978-3-540-73367-6
http://www.worldcat.org/isbn/978-3-540-73367-6
http://dx.doi.org/10.1007/978-3-540-73368-3_36
http://dx.doi.org/10.1007/s10009-007-0044-z
http://dx.doi.org/10.1016/S0065-2458(03)58003-2
http://www.worldcat.org/isbn/3-540-00326-6
http://dx.doi.org/10.1007/3-540-36377-7_5
http://dx.doi.org/10.1007/3-540-36377-7_5
http://www.worldcat.org/isbn/1-58113-662-5
http://www.worldcat.org/isbn/1-58113-662-5
http://dx.doi.org/10.1145/781131.781153
http://www.worldcat.org/issn/1529-3785
http://www.worldcat.org/issn/1529-3785
http://dx.doi.org/10.1145/1071596.1071601
http://www.worldcat.org/isbn/3-540-63141-0
http://dx.doi.org/10.1007/3-540-63141-0_10
http://www.worldcat.org/isbn/3-540-74112-7

[20] Dominique Brière and Pascal Traverse. Airbus A320/A330/A340 elec-
trical flight controls — a family of fault-tolerant systems. In FTCS-23
(Symposium on Fault-Tolerant Computing), pages 616–623. IEEE, June
1993. ISBN 0-8186-3680-7. doi: 10.1109/FTCS.1993.627364.

[21] Christopher W. Brown and James H. Davenport. The complexity of quan-
tifier elimination and cylindrical algebraic decomposition. In ISSAC (Sym-
posium on Symbolic and algebraic computation), pages 54–60. ACM, 2007.
ISBN 978-1-59593-743-8. doi: 10.1145/1277548.1277557.

[22] Stephen L. Campbell, Jean-Philippe Chancelier, and Ramine Nikoukhah.
Modeling and Simulation in Scilab/Scicos. Springer, 2006. ISBN 0-387-
27802-8.

[23] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John A. Plaice. LUS-
TRE: a declarative language for real-time programming. In POPL (Sym-
posium on Principles of programming languages), pages 178–188. ACM,
1987. ISBN 0-89791-215-2. doi: 10.1145/41625.41641.

[24] Bob F. Caviness and Jeremy R Johnson, editors. Quantifier elimination
and cylindrical algebraic decomposition. Springer, 1998. ISBN 3-211-82794-3.

[25] Robert Clarisó and Jordi Cortadella. The octahedron abstract domain. In
Roberto Giacobazzi, editor, Static Analysis (SAS), number 3148 in LNCS.
Springer, 2004. ISBN 3-540-22791-1. doi: 10.1007/b99688.

[26] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement for symbolic model
checking. Journal of the ACM, 50(5):752–794, 2003. ISSN 0004-5411. doi:
10.1145/876638.876643.

[27] Edmund M. Clarke, Jr, Orna Grumberg, and Doron A. Peled. Model
Checking. MIT Press, 1999. ISBN 0-262-03270-8.

[28] George Collins. Quantifier elimination for real closed fields by cylindric
algebraic decomposition. In Automata theory and formal languages (2nd
GI conference), LNCS, pages 134–183. Springer, 1975. ISBN 0-387-07407-4.
reprinted as [24].

[29] Michael A. Colón, Sriram Sankaranarayanan, and Henny Sipma. Linear in-
variant generation using non-linear constraint solving. In Computer Aided
Verification (CAV), number 2725 in LNCS, pages 420–433. Springer, 2003.
ISBN 3-540-40524-0. doi: 10.1007/b11831.

[30] D. C. Cooper. Theorem proving in arithmetic without multiplication.
In Bernard Meltzer and Donald Michie, editors, Machine Intelligence 7,
pages 91–100. Edinburgh University Press, 1972. ISBN 0-85224-234-4.

[31] Alexandru Costan, Stephane Gaubert, Éric Goubault, Matthieu Martel,
and Sylvie Putot. A policy iteration algorithm for computing fixed points
in static analysis of programs. In Etessami and Rajamani [46], pages
462–475. ISBN 3-540-27231-3. doi: 10.1007/11513988_46.

50

http://www.worldcat.org/isbn/0-8186-3680-7
http://dx.doi.org/10.1109/FTCS.1993.627364
http://www.worldcat.org/isbn/978-1-59593-743-8
http://dx.doi.org/10.1145/1277548.1277557
http://www.worldcat.org/isbn/0-387-27802-8
http://www.worldcat.org/isbn/0-387-27802-8
http://www.worldcat.org/isbn/0-89791-215-2
http://dx.doi.org/10.1145/41625.41641
http://www.worldcat.org/isbn/3-211-82794-3
http://www.worldcat.org/isbn/3-540-22791-1
http://dx.doi.org/10.1007/b99688
http://www.worldcat.org/issn/0004-5411
http://dx.doi.org/10.1145/876638.876643
http://www.worldcat.org/isbn/0-262-03270-8
http://www.worldcat.org/isbn/0-387-07407-4
http://www.worldcat.org/isbn/3-540-40524-0
http://dx.doi.org/10.1007/b11831
http://www.worldcat.org/isbn/0-85224-234-4
http://www.worldcat.org/isbn/3-540-27231-3
http://dx.doi.org/10.1007/11513988_46

[32] Patrick Cousot. Proving program invariance and termination by paramet-
ric abstraction, Lagrangian relaxation and semidefinite programming. In
Radhia Cousot, editor, Verification, Model Checking and Abstract Inter-
pretation (VMCAI), number 3385 in LNCS, pages 1–24. Springer, 2005.
ISBN 3-540-24297-X. doi: 10.1007/b105073.

[33] Patrick Cousot. Méthodes itératives de construction et d’approximation de
points fixes d’opérateurs monotones sur un treillis, analyse sémantique des
programmes. State doctorate thesis, Université scientifique et médicale de
Grenoble and Institut National Polytechnique de Grenoble, 1978. URL
http://tel.archives-ouvertes.fr/tel-00288657/en/.

[34] Patrick Cousot and Radhia Cousot. Static determination of dynamic prop-
erties of programs. In Proceedings of the Second International Symposium
on Programming (1976), pages 106–130, Paris, 1977. Dunod. ISBN 2-04-
005185-6. Also known as Actes du deuxième colloque international sur la
programmation.

[35] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks.
J. of Logic and Computation, pages 511–547, August 1992. ISSN 0955-792X.
doi: 10.1093/logcom/2.4.511.

[36] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear
restraints among variables of a program. In Principles of Programming
Languages (POPL), pages 84–96. ACM, 1978. doi: 10.1145/512760.512770.

[37] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, An-
toine Miné, David Monniaux, and Xavier Rival. The ASTRÉE analyzer.
In Shmuel “Mooly” Sagiv, editor, Programming Languages and Systems
(ESOP), number 3444 in LNCS, pages 21–30. Springer, 2005. ISBN 3-540-
25435-8. doi: 10.1007/b107380.

[38] Patrick Cousot, Radhia Cousot, Jerome Feret, Antoine Miné, Laurent
Mauborgne, David Monniaux, and Xavier Rival. Varieties of static ana-
lyzers: A comparison with ASTRÉE. In Theoretical Aspects of Software
Engineering (TASE). IEEE, 2007. ISBN 0-7695-2856-2.

[39] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, An-
toine Miné, David Monniaux, and Xavier Rival. Combination of ab-
stractions in the astrée static analyzer. In Mitsu Okada and Ichiro
Satoh, editors, Advances in Computer Science — ASIAN 2006, vol-
ume 4435 of LNCS, pages 272–300. Springer, 2008. ISBN 978-3-540-77504-
1. doi: 10.1007/978-3-540-77505-8_23. URL http://www.di.ens.fr/~cousot/
COUSOTpapers/ASIAN06.shtml.

[40] James H. Davenport and Joos Heintz. Real quantifier elimination is doubly
exponential. Journal of Symbolic Computation, 5(1–2):29–35, April 1988.
doi: 10.1016/S0747-7171(88)80004-X.

[41] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
C. R. Ramakrishnan and Jakob Rehof, editors, TACAS, volume 4963 of
LNCS, pages 337–340. Springer, 2008. ISBN 3-540-78799-2. doi: 10.1007/978-
3-540-78800-3_24.

51

http://www.worldcat.org/isbn/3-540-24297-X
http://dx.doi.org/10.1007/b105073
http://tel.archives-ouvertes.fr/tel-00288657/en/
http://www.worldcat.org/isbn/2-04-005185-6
http://www.worldcat.org/isbn/2-04-005185-6
http://www.worldcat.org/issn/0955-792X
http://dx.doi.org/10.1093/logcom/2.4.511
http://dx.doi.org/10.1145/512760.512770
http://www.worldcat.org/isbn/3-540-25435-8
http://www.worldcat.org/isbn/3-540-25435-8
http://dx.doi.org/10.1007/b107380
http://www.worldcat.org/isbn/0-7695-2856-2
http://www.worldcat.org/isbn/978-3-540-77504-1
http://www.worldcat.org/isbn/978-3-540-77504-1
http://dx.doi.org/10.1007/978-3-540-77505-8_23
http://www.di.ens.fr/~cousot/COUSOTpapers/ASIAN06.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/ASIAN06.shtml
http://dx.doi.org/10.1016/S0747-7171(88)80004-X
http://www.worldcat.org/isbn/3-540-78799-2
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24

[42] Rocco de Nicola, editor. Programming Languages and Systems (ESOP),
volume 4421 of LNCS, 2007. Springer. ISBN 978-3-540-71316-6.

[43] David Delmas and Jean Souyris. Astrée: From research to industry. In
Nielson and Filé [86], pages 437–451. ISBN 978-3-540-74060-5. doi: 10.1007/978-
3-540-74061-2_27.

[44] Andreas Dolzmann, Andreas Seidl, and Thomas Sturm. Redlog User Man-
ual, 3.1 edition, 2006. for Redlog version 3.06 and Reduce version 3.8.

[45] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver
for DPLL(T). In Thomas Ball and Robert B. Jones, editors, Computer-
aided verification (CAV), volume 4144 of LNCS, pages 81–94. Springer,
2006. ISBN 3-540-37406-X. doi: 10.1007/11817963_11.

[46] Kousha Etessami and Sriram K. Rajamani, editors. Computer Aided Ver-
ification (CAV), number 4590 in LNCS, 2005. Springer. ISBN 3-540-27231-3.
doi: 10.1007/b138445.

[47] Jeanne Ferrante and Charles Rackoff. A decision procedure for the first
order theory of real addition with order. SIAM J. on Computing, 4(1):
69–76, March 1975. ISSN 0097-5397. doi: 10.1137/0204006.

[48] Michael J. Fischer and Michael O. Rabin. Super-exponential complexity
of Presburger arithmetic. In Richard Karp, editor, Complexity of Com-
putation, number 7 in SIAM–AMS proceedings, pages 27–42. American
Mathematical Society, 1974. ISBN 0-8218-1327-7.

[49] Stéphane Gaubert, Éric Goubault, Ankur Taly, and Sarah Zennou. Static
analysis by policy iteration on relational domains. In de Nicola [42], pages
237–252. ISBN 978-3-540-71316-6.

[50] Thomas Gawlitza and Helmut Seidl. Precise relational invariants through
strategy iteration. In Jacques Duparc and Thomas A. Henzinger, edi-
tors, Computer science logic (CSL), volume 4646 of LNCS, pages 23–40.
Springer, 2007. ISBN 978-3-540-74914-1. doi: 10.1007/978-3-540-74915-8_6.

[51] Thomas Gawlitza and Helmut Seidl. Precise fixpoint computation through
strategy iteration. In de Nicola [42], pages 300–315. ISBN 978-3-540-71316-6.
doi: 10.1007/978-3-540-71316-6_21.

[52] Laure Gonnord. Accelération abstraite pour l’amélioration de la précision
en analyse des relations linéaires. PhD thesis, Université Joseph Fourier,
October 2007. URL http://tel.archives-ouvertes.fr/tel-00196899/en/.

[53] Laure Gonnord and Nicolas Halbwachs. Combining widening and acceler-
ation in linear relation analysis. In Kwangkeun Yi, editor, Static analysis
(SAS), volume 4134 of LNCS, pages 144–160. Springer, 2006. ISBN 3-540-
37756-5. doi: 10.1007/11823230_10.

[54] Denis Gopan and Thomas W. Reps. Lookahead widening. In Thomas
Ball and Robert B. Jones, editors, Computer Aided Verification (CAV),
volume 4144 of LNCS, pages 452–466. Springer, 2006. ISBN 3-540-37406-X.
doi: 10.1007/11817963_41.

52

http://www.worldcat.org/isbn/978-3-540-71316-6
http://www.worldcat.org/isbn/978-3-540-74060-5
http://dx.doi.org/10.1007/978-3-540-74061-2_27
http://dx.doi.org/10.1007/978-3-540-74061-2_27
http://www.worldcat.org/isbn/3-540-37406-X
http://dx.doi.org/10.1007/11817963_11
http://www.worldcat.org/isbn/3-540-27231-3
http://dx.doi.org/10.1007/b138445
http://www.worldcat.org/issn/0097-5397
http://dx.doi.org/10.1137/0204006
http://www.worldcat.org/isbn/0-8218-1327-7
http://www.worldcat.org/isbn/978-3-540-71316-6
http://www.worldcat.org/isbn/978-3-540-74914-1
http://dx.doi.org/10.1007/978-3-540-74915-8_6
http://www.worldcat.org/isbn/978-3-540-71316-6
http://dx.doi.org/10.1007/978-3-540-71316-6_21
http://tel.archives-ouvertes.fr/tel-00196899/en/
http://www.worldcat.org/isbn/3-540-37756-5
http://www.worldcat.org/isbn/3-540-37756-5
http://dx.doi.org/10.1007/11823230_10
http://www.worldcat.org/isbn/3-540-37406-X
http://dx.doi.org/10.1007/11817963_41

[55] Philippe Granger. Static analysis of linear congruence equalities among
variables of a program. In TAPSOFT, volume 493 of LNCS. Springer,
1991. doi: 10.1007/3-540-53982-4_10.

[56] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. Pro-
gram analysis as constraint solving. In Programming Language Design
and Implementation (PLDI). ACM, 2008. ISBN 978-1-59593-860-2. doi:
10.1145/1375581.1375616.

[57] Nicolas Halbwachs. Delay analysis in synchronous programs. In Costas
Courcoubetis, editor, Computer Aided Verification (CAV), volume 697 of
LNCS, pages 333–346. Springer, 1993. ISBN 3-540-56922-7. doi: 10.1007/3-
540-56922-7_28.

[58] Nicolas Halbwachs. Détermination automatique de relations linéaires véri-
fiées par les variables d’un programme. PhD thesis, Université scientifique
et médicale de Grenoble and Institut National Polytechnique de Grenoble,
1979. URL http://tel.archives-ouvertes.fr/tel-00288805/en/.

[59] Nicolas Halbwachs, Yann-Erick Proy, and Pascal Raymond. Verification
of linear hybrid systems by means of convex approximations. In Static
analysis (SAS), September 1994. ISBN 3-540-58485-4. doi: 10.1007/3-540-
58485-4_43.

[60] Chris Hankin and Igor Siveroni, editors. Static analysis (SAS), volume
3672 of LNCS, 2005. Springer. ISBN 3-540-28584-9.

[61] IEEE standard for Binary floating-point arithmetic for microprocessor sys-
tems. IEEE, 1985. ANSI/IEEE Std 754-1985.

[62] Bertrand Jeannet. Dynamic partitioning in linear relation analysis. appli-
cation to the verification of reactive systems. Formal Methods in System
Design, 23(1):5–37, July 2003. ISSN 0925-9856. doi: 10.1023/A:1024480913162.

[63] William Kahan. Advantages of gradual over abrupt underflow to zero.
Slides of a keynote talk given at ARITH17, 2005.

[64] Deepak Kapur. Automatically generating loop invariants using quantifier
elimination. In Applications of Computer Algebra (ACA), 2004.

[65] Michael Karr. Affine relationships among variables of a program. Acta
Informatica, 6(2), June 1976.

[66] Daniel Kroening and Ofer Strichman. Decision procedures. Springer, 2008.
ISBN 978-3-540-74104-6.

[67] Akash Lal, Gogul Balakrishnan, and Thomas Reps. Extended weighted
pushdown systems. In Etessami and Rajamani [46], pages 343–357. ISBN
3-540-27231-3. doi: 10.1007/11817963_32.

[68] Jérôme Leroux and Grégoire Sutre. Accelerated data-flow analysis. In
Static Analysis, 14th International Symposium, SAS 2007, Kongens Lyn-
gby, Denmark, August 22-24, 2007, Proceedings, volume 4634 of Lec-
ture Notes in Computer Science, pages 184–199. Springer, 2007. doi:
10.1007/s10009-008-0064-3.

53

http://dx.doi.org/10.1007/3-540-53982-4_10
http://www.worldcat.org/isbn/978-1-59593-860-2
http://dx.doi.org/10.1145/1375581.1375616
http://www.worldcat.org/isbn/3-540-56922-7
http://dx.doi.org/10.1007/3-540-56922-7_28
http://dx.doi.org/10.1007/3-540-56922-7_28
http://tel.archives-ouvertes.fr/tel-00288805/en/
http://www.worldcat.org/isbn/3-540-58485-4
http://dx.doi.org/10.1007/3-540-58485-4_43
http://dx.doi.org/10.1007/3-540-58485-4_43
http://www.worldcat.org/isbn/3-540-28584-9
http://www.worldcat.org/issn/0925-9856
http://dx.doi.org/10.1023/A:1024480913162
http://www.worldcat.org/isbn/978-3-540-74104-6
http://www.worldcat.org/isbn/3-540-27231-3
http://www.worldcat.org/isbn/3-540-27231-3
http://dx.doi.org/10.1007/11817963_32
http://dx.doi.org/10.1007/s10009-008-0064-3

[69] Rüdiger Loos and Volker Weispfenning. Applying linear quantifier elim-
ination. The Computer Journal, 36(5):450–462, 1993. Special issue on
computational quantifier elimination.

[70] Zohar Manna and John McCarthy. Properties of programs and partial
function logic. In Bernard Meltzer and Donald Michie, editors, Machine
Intelligence, 5, pages 27–38. Edinburgh University Press, 1969. ISBN 0-
85224-176-3.

[71] Zohar Manna and Amir Pnueli. Formalization of properties of func-
tional programs. Journal of the ACM, 17(3):555–569, 1970. doi:
10.1145/321592.321606.

[72] Florian Martin, Martin Alt, Reinhard Wilhelm, and Christian Ferdinand.
Analysis of loops. In Kai Koskimies, editor, Compiler Construction (CC),
volume 1383 of LNCS, pages 80–94. Springer, 1998. ISBN 3-540-64304-4. doi:
10.1007/BFb0026424.

[73] Yuri V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, 1993. ISBN
0262132958.

[74] Antoine Miné. The octagon abstract domain. In Axel Simon, Andy King,
and Jacob M. Howe, editors, WCRE (Analysis, Slicing, and Transforma-
tion), pages 310–319. IEEE, 2001. doi: 10.1109/WCRE.2001.957836.

[75] Antoine Miné. Relational abstract domains for the detection of floating-
point run-time errors. In David Schmidt, editor, Programming Languages
and Systems (ESOP), number 2986 in LNCS, pages 3–17. Springer, 2004.
ISBN 3-540-21313-9. doi: 10.1007/b96702.

[76] Antoine Miné. Domaines numériques abstraits faiblement relationnels.
PhD thesis, École polytechnique, 2004. URL http://tel.archives-ouvertes.
fr/tel-00136630/fr/.

[77] Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation, 19(1):31–100, 2006. doi: 10.1007/s10990-006-8609-1.

[78] Antoine Miné. Symbolic methods to enhance the precision of numerical
abstract domains. In Verification, Model Checking, and Abstract Inter-
pretation (VMCAI’06), volume 3855 of LNCS, pages 348–363. Springer,
January 2006. ISBN 3-540-31139-4. doi: 10.1007/11609773.

[79] David Monniaux. Compositional analysis of floating-point linear numer-
ical filters. In Etessami and Rajamani [46], pages 199–212. ISBN 3-540-
27231-3. doi: 10.1007/b138445.

[80] David Monniaux. Quantifier elimination by lazy model enumeration. In
Computer aided verification (CAV), LNCS. Springer, 2010. To appear.

[81] David Monniaux. A quantifier elimination algorithm for linear real arith-
metic. In Iliano Cervesato, Helmut Veith, and Andrei Voronkov, editors,
Logic for Programming Artificial Intelligence and Reasoning (LPAR), vol-
ume 5330 of LNAI, pages 243–257. Springer, 2008. ISBN 978-3-540-89438-4.
doi: 10.1007/978-3-540-89439-1_18.

54

http://www.worldcat.org/isbn/0-85224-176-3
http://www.worldcat.org/isbn/0-85224-176-3
http://dx.doi.org/10.1145/321592.321606
http://www.worldcat.org/isbn/3-540-64304-4
http://dx.doi.org/10.1007/BFb0026424
http://www.worldcat.org/isbn/0262132958
http://www.worldcat.org/isbn/0262132958
http://dx.doi.org/10.1109/WCRE.2001.957836
http://www.worldcat.org/isbn/3-540-21313-9
http://dx.doi.org/10.1007/b96702
http://tel.archives-ouvertes.fr/tel-00136630/fr/
http://tel.archives-ouvertes.fr/tel-00136630/fr/
http://dx.doi.org/10.1007/s10990-006-8609-1
http://www.worldcat.org/isbn/3-540-31139-4
http://dx.doi.org/10.1007/11609773
http://www.worldcat.org/isbn/3-540-27231-3
http://www.worldcat.org/isbn/3-540-27231-3
http://dx.doi.org/10.1007/b138445
http://www.worldcat.org/isbn/978-3-540-89438-4
http://dx.doi.org/10.1007/978-3-540-89439-1_18

[82] David Monniaux. Automatic modular abstractions for linear con-
straints. In Benjamin C. Pierce, editor, Symposium on Principles of
programming languages (POPL). ACM, 2009. ISBN 978-1-60558-379-2. doi:
10.1145/1480881.1480899.

[83] David Monniaux. Optimal abstraction on real-valued programs. In Nielson
and Filé [86], pages 104–120. ISBN 978-3-540-74060-5. doi: 10.1007/978-3-540-
74061-2_7.

[84] David Monniaux. The pitfalls of verifying floating-point computations.
Transactions on programming languages and systems (TOPLAS), 30(3):
12, May 2008. ISSN 0164-0925. doi: 10.1145/1353445.1353446. URL http:
//hal.archives-ouvertes.fr/hal-00128124/en/.

[85] George C. Necula, Scott McPeak, Shree P. Rahul, and Westley Weimer.
CIL: Intermediate language and tools for analysis and transformation of
C programs. In R. Nigel Horspool, editor, Compiler Construction (CC),
volume 2304 of LNCS, pages 209–265. Springer, 2002. ISBN 3-540-43369-4.
doi: 10.1007/3-540-45937-5_16.

[86] Hanne Riis Nielson and Gilberto Filé, editors. Static analysis (SAS),
volume 4634 of LNCS, 2007. Springer. ISBN 978-3-540-74060-5.

[87] Tobias Nipkow. Linear quantifier elimination. In Alessandro Armando,
Peter Baumgartner, and Gilles Dowek, editors, Automated reasoning (IJ-
CAR), volume 5195 of LNCS, pages 18–33. Springer, 2008. ISBN 978-3-540-
71069-1. doi: 10.1007/978-3-540-71070-7_3.

[88] Dominique Perrin. Finite automata. In Jan van Leeuwen, editor, Handbook
of Theoretical Computer Science, vol. B, chapter 1. MIT Press, 1990. ISBN
0444880747.

[89] Mojżesz Presburger. Über die Vollstandigkeit eines Gewissen Systems der
Arithmetik Ganzer Zahlen, in Welchem die Addition als Einzige Operation
Hervortritt. In Comptes-rendus du premier congrès des mathématiciens
des pays slaves, pages 92–101, Warsaw, 1929.

[90] William Pugh. The Omega test: a fast and practical integer programming
algorithm for dependence analysis. In Supercomputing ’91, pages 4–13.
ACM, 1991. ISBN 0-89791-459-7. doi: 10.1145/125826.125848.

[91] Thomas W. Reps, Shmuel Sagiv, and Reinhard Wilhelm. Static program
analysis via 3-valued logic. In Rajeev Alur and Doron Peled, editors,
Computer Aided Verification (CAV), volume 3114 of LNCS, pages 15–30.
Springer, 2004. ISBN 3-540-22342-8. doi: 10.1007/b98490.

[92] Henry Gordon Rice. Classes of recursively enumerable sets and their de-
cision problems. Transactions of the American Mathematical Society, 74
(2):358–366, March 1953.

[93] Xavier Rival and Laurent Mauborgne. The trace partitioning abstract do-
main. Transactions on Programming Languages and Systems (TOPLAS),
29(5):26, 2007. ISSN 0164-0925. doi: 10.1145/1275497.1275501.

55

http://www.worldcat.org/isbn/978-1-60558-379-2
http://dx.doi.org/10.1145/1480881.1480899
http://www.worldcat.org/isbn/978-3-540-74060-5
http://dx.doi.org/10.1007/978-3-540-74061-2_7
http://dx.doi.org/10.1007/978-3-540-74061-2_7
http://www.worldcat.org/issn/0164-0925
http://dx.doi.org/10.1145/1353445.1353446
http://hal.archives-ouvertes.fr/hal-00128124/en/
http://hal.archives-ouvertes.fr/hal-00128124/en/
http://www.worldcat.org/isbn/3-540-43369-4
http://dx.doi.org/10.1007/3-540-45937-5_16
http://www.worldcat.org/isbn/978-3-540-74060-5
http://www.worldcat.org/isbn/978-3-540-71069-1
http://www.worldcat.org/isbn/978-3-540-71069-1
http://dx.doi.org/10.1007/978-3-540-71070-7_3
http://www.worldcat.org/isbn/0444880747
http://www.worldcat.org/isbn/0444880747
http://www.worldcat.org/isbn/0-89791-459-7
http://dx.doi.org/10.1145/125826.125848
http://www.worldcat.org/isbn/3-540-22342-8
http://dx.doi.org/10.1007/b98490
http://www.worldcat.org/issn/0164-0925
http://dx.doi.org/10.1145/1275497.1275501

[94] E. Rodríguez-Carbonell and D. Kapur. Automatic generation of poly-
nomial invariants of bounded degree using abstract interpretation. Sci-
ence of Computer Programming, 64(1):54–75, 2007. ISSN 0167-6423. doi:
10.1016/j.scico.2006.03.003.

[95] Enric Rodríguez-Carbonell and Deepak Kapur. An abstract interpreta-
tion approach for automatic generation of polynomial invariants. In SAS
(Static Analysis), number 3148 in LNCS. Springer, 2004.

[96] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Com-
putability. MIT Press, 1987. ISBN 0-262-68052-1.

[97] Radu Rugina and Martin Rinard. Symbolic bounds analysis for point-
ers, array indices, and accessed memory regions. ACM Trans. on Pro-
gramming Languages and Systems (TOPLAS), 27(2):185–235, 2005. doi:
10.1145/349299.349325.

[98] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. Constraint-
based linear-relations analysis. In Static Analysis (SAS), number 3148 in
LNCS, pages 53–68. Springer, 2004. doi: 10.1007/b99688.

[99] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. Scalable
analysis of linear systems using mathematical programming. In Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI), volume 3385
of LNCS, pages 21–47. Springer, 2005. doi: 10.1007/b105073.

[100] Christoph Scholl, Stefan Disch, Florian Pigorsch, and Stefan Kupfer-
schmid. Computing optimized representations for non-convex polyhe-
dra by detection and removal of redundant linear constraints. In Stefan
Kowalewski and Anna Philippou, editors, Tools and Algorithms for Con-
struction and Analysis of Systems (TACAS), volume 5505 of LNCS, pages
383–397. Springer, 2009. ISBN 978-3-642-00767-5. doi: 10.1007/978-3-642-00768-
2_32.

[101] Abraham Seidenberg. A new decision method for elementary algebra.
Annals of Mathematics, 60(2):365–374, September 1954. URL http://www.
jstor.org/stable/1969640.

[102] Helmut Seidl, Andrea Flexeder, and Michael Petter. Interprocedurally
analysing linear inequality relations. In de Nicola [42], pages 284–299.
ISBN 978-3-540-71316-6. doi: 10.1007/978-3-540-71316-6_20.

[103] Micha Sharir and Amir Pnueli. Two approaches to inter-procedural data-
flow analysis. In Neil Jones and Steven Muchnik, editors, Program Flow
Analysis: Theory and Application. Prentice-Hall, 1981.

[104] Jean Souyris and David Delmas. Experimental assessment of Astrée on
safety-critical avionics software. In Francesca Saglietti and Norbert Oster,
editors, SAFECOMP, volume 4680 of LNCS, pages 479–490. Springer,
2007. ISBN 978-3-540-75100-7. doi: 10.1007/978-3-540-75101-4_45.

[105] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry.
University of California Press, 1951. reprinted as [106].

56

http://www.worldcat.org/issn/0167-6423
http://dx.doi.org/10.1016/j.scico.2006.03.003
http://www.worldcat.org/isbn/0-262-68052-1
http://dx.doi.org/10.1145/349299.349325
http://dx.doi.org/10.1007/b99688
http://dx.doi.org/10.1007/b105073
http://www.worldcat.org/isbn/978-3-642-00767-5
http://dx.doi.org/10.1007/978-3-642-00768-2_32
http://dx.doi.org/10.1007/978-3-642-00768-2_32
http://www.jstor.org/stable/1969640
http://www.jstor.org/stable/1969640
http://www.worldcat.org/isbn/978-3-540-71316-6
http://dx.doi.org/10.1007/978-3-540-71316-6_20
http://www.worldcat.org/isbn/978-3-540-75100-7
http://dx.doi.org/10.1007/978-3-540-75101-4_45

[106] Alfred Tarski. A decision method for elementary algebra and geometry.
Technical Report 109, The RAND Corporation, 1957. Second edition
(original 1948, revised 1951), reprint of [105].

[107] Volker Weispfenning. The complexity of linear problems in fields. Journal
of Symbolic Computation, 5(1–2):3–27, February 1988. ISSN 0747-7171. doi:
10.1016/S0747-7171(88)80003-8.

[108] Stephen Wolfram. The Mathematica Book. Wolfram Research, 2005.
Manual coming with version 5.2 of Mathematica.

57

http://www.worldcat.org/issn/0747-7171
http://dx.doi.org/10.1016/S0747-7171(88)80003-8

	Introduction
	Background
	Abstract interpretation
	Quantifier elimination
	Linear real inequalities
	Presburger arithmetic
	Nonlinear real arithmetic

	Optimal Abstraction over Template Linear Constraint Domains
	Template Linear Constraint Domains
	Optimal Abstract Transformers for Program Semantics
	Generation of the Implementation of the Abstract Domain
	Least Inductive Invariants
	Stability Inequalities
	Simple Loop Example
	Synchronous Data Flow Example: Rate Limiter

	Extensions of the framework using real linear arithmetic
	Emptiness
	Infinities
	Non-Convex Domains
	Domain Partitioning
	Floating-Point Computations
	Integers
	Nonlinear constructs

	Complex control flow
	Arbitrary control graph and loop nests
	Procedures and Recursive Procedures

	Implementations and Experiments
	Extensions to other numerical domains
	Presburger arithmetic
	Real polynomial constraint domains
	Method
	Experiments

	Related work
	Relational abstract domains and modular analysis
	Computations of exact fixed points
	Limitations of template-based approaches
	Relational domains beyond polyhedra

	Conclusion and future prospects

