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Abstract
Two classical sources of imprecision in static analysis by abstract inter-

pretation are widening and merge operations. Merge operations can be done
away by distinguishing paths, as in trace partitioning, at the expense of enu-
merating an exponential number of paths.

In this article, we describe how to avoid such systematic exploration by
focusing on a single path at a time, designated by SMT-solving. Our method
combines well with acceleration techniques, thus doing away with widenings
as well in some cases. We illustrate it over the well-known domain of convex
polyhedra.

1 Introduction

Program analysis aims at automatically checking that programs fit their specifica-
tions, explicit or not — e.g. “the program does not crash” is implicit. Program
analysis is impossible unless at least one of the following holds: it is unsound
(some violations of the specification are not detected), incomplete (some correct
programs are rejected because spurious violations are detected), or the state space
is finite (and not too large, so as to be enumerated explicitly or implicitly). Ab-
stract interpretation is sound, but incomplete: it over-approximates the set of be-
haviours of the analysed program; if the over-approximated set contains incorrect
behaviours that do not exist in the concrete program, then false alarms are pro-
duced. A central question in abstract interpretation is to reduce the number of false
alarms, while keeping memory and time costs reasonable [8].

Our contribution is a method leveraging the improvements in SMT-solving to
increase the precision of invariant generation by abstract fixpoint iterations. On
practical examples from the literature and industry, it performs better than previ-
ous generic technique and is less “ad-hoc” than syntactic heuristics found in some
pragmatic analyzers.
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‡Université Lille 1, LIFL, Villeneuve d’Ascq, France

1

http://asopt.inrialpes.fr


Listing 1: C implementation of y = sin(x)/x − 1, with the −0.01 ≤ x ≤ 0.01
range implemented using a Taylor expansion around zero in order to avoid loss of
precision and division by zero as sin(x) ' x→ 0.

i f ( x >= 0) { xabs = x ; } e lse { xabs = −x ; }
i f ( xabs >= 0 . 0 1 ) {

y = s in ( x ) / x − 1 ;
} e lse {

xsq = x∗x ; y = xsq ∗( −1/6. + xsq / 1 2 0 . ) ;
}

The first source of imprecision in abstract interpretation is the choice of the
set of properties represented inside the analyser (the abstract domain). Obviously,
if the property to be proved cannot be reflected in the abstract domain (e.g. we
wish to prove a numerical relation but our abstract domain only considers Boolean
variables), then the analysis cannot prove it.

In order to prove that there cannot be a division by zero in the first branch
of the second if-then-else of Listing 1, one would need the non-convex property
that x ≥ 0.01 ∨ x ≤ −0.01. An analysis representing the invariant at that point
in a domain of convex properties (intervals, polyhedra, etc.) will fail to prove the
absence of division by zero (incompleteness).

Obviously, we could represent such properties using disjunctions of convex
polyhedra, but this leads to combinatorial explosion as the number of polyhedra
grows: at some point heuristics are needed for merging polyhedra in order to limit
their number; it is also unclear how to obtain good widening operators on such
domains. The same expressive power can alternatively be obtained by considering
all program paths separately (“merge over all paths”) and analysing them indepen-
dently of each other. In order to avoid combinatorial explosion, the trace partition-
ing approach [36] applies merging heuristics. In contrast, our method relies on the
power of modern SMT-solving techniques.

The second source of imprecision is the use of widening operators [14]. When
analysing loops, static analysis by abstract interpretation attempts to obtain an in-
ductive invariant by computing an increasing sequence X1, X2, . . . of sets of states,
which are supersets of the sets of states reachable in at most 1, 2, . . . iterations. In
order to enforce convergence within finite time, the most common method is to
use a widening operator, which extrapolates the first iterates of the sequence to a
candidate limit. Optional narrowing iterations may regain some precision lost by
widening.

Illustrating Example Consider Listing 2, a simplification of a fragment of an
actual industrial reactive program: indexing of a circular buffer used only at certain
iterations of the main loop of the program, chosen non-deterministically. If the
non-deterministic choice nondet() is replaced by true, analysis with widening
and narrowing finds [0, 99]. Unfortunately, the “narrowing” trick is brittle, and on

2



Listing 2: Circular buffer indexing

i n t x = 0 ;
while ( t rue ) {

i f ( nondet ( ) ) {
x = x +1;
i f ( x >= 100) x = 0 ;

} }

Listing 2, widening yields [0,+∞), and this is not improved by narrowing! 1 In
contrast, our semantically-based method would compute the [0, 99] invariant on
this example by first focusing on the following path inside the loop:

Listing 3: Example focus path

assume ( nondet ( ) ) ; x = x +1; assume ( x < 1 0 0 ) ;

If we wrap this path inside a loop, then the least inductive invariant is [0, 99]. We
then check that this invariant is inductive for the original loop.

This is the basic idea of our method: it performs fixpoint iterations by focusing
temporarily on certain paths in the program. In order to obtain the next path, it
performs bounded model checking using SMT-solving.

2 Background and Notations in Abstract Interpretation
p1

p2

p3

x := 0

x := x + 1
x ≥

100
x := 0

x < 100

(a) With original variables

p1

p2 : x2 = φ(x1, x2, x3, x4)

p3

x1 = 0

x3 := x2 + 1x3 ≥

100
x4 = 0

x3 < 100

(b) SSA version. x = φ(e1, e2, . . . ) denotes
a SSA φ-node: x takes value e1 if control
flows from the first incoming edge, e2 from
the second. . .

Figure 1: Control flow graph corresponding to listing 2.

We consider programs defined by a control flow graph: a set P of control points,
for each control point p ∈ P a (possibly empty) set Ip of initial values, a set E ⊆
P × P of directed edges, and the semantics τe : P(Σ) → P(Σ) of each edge e ∈ E

1On this example, it is possible to compute the [0, 99] invariant by so called “widening up-to”
[28, Sec. 3.2], or with “thresholds” [8]: essentially, the analyser notices syntactically the comparison
x < 100 and concludes that 99 is a “good value” for x, so instead of widening directly to +∞, it first
tries 99. This method only works if the interesting value is a syntactic constant.
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where P(Σ) is the set of possible values of the tuple of program variables. τe thus
maps a set of states before the transition expressed by edge e to the set of states
after the transition.

To each control point p ∈ P we attach a set Xp ⊆ Σ of reachable values of
the tuple of program variables at program point p. The concrete semantics of
the program is the least solution of a system of semantic equations [14]: Xp =

Ip ∪
⋃

(p′,p)∈E τ(p′,p)(Xp′).
Abstract interpretation replaces the concrete sets of states in P(Σ) by elements

of an abstract domain D. In lieu of applying exact operations τ to sets of concrete
program states, we apply abstract counterparts τ].2 An abstraction τ] of a concrete
operation τ is deemed to be correct if it never “forgets” states:

∀X ∈ D τ(X) ⊆ τ](X) (1)

We also assume an “abstract union” operation t, such that X ∪ Y ⊆ X t Y . For
instance, Σ can be Qn, D can be the set of convex polyhedra and t the convex hull
operation [27, 17, 3].

In order to find an inductive invariant, one solves a system of abstract semantic
inequalities:  ∀p Ip ⊆ Xp

∀(p′, p) ∈ E τ
]
(p′,p)(Xp′) ⊆ Xp.

(2)

Since the τ]e are correct abstractions, it follows that any solution of such a system
defines an inductive invariant; one wishes to obtain one that is as strong as possible
(“strong” meaning “small with respect to ⊆”), or at least sufficiently strong as to
imply the desired properties.

Assuming that all functions τ]e are monotonic with respect to ⊆, and that t is
the least upper bound operation in D with respect to ⊆, one obtains a system of
monotonic abstract equations: Xp = Ip t

⊔
(p′,p)∈E τ

]
(p′,p)(Xp′). If (D,⊆) has no

infinite ascending sequences (d1 ( d2 ( . . . with d1, d2, · · · ∈ D), then one can
solve such a system by iteratively replacing the contents of the variable on the left
hand side by the value of the right hand side, until a fixed point is reached. The
order in which equations are iterated does not change the final result.

Many interesting abstract domains, including that of convex polyhedra, have
infinite ascending sequences. One then classically uses an extrapolation operator
known as widening and denoted by O in order to enforce convergence within finite
time. The iterations then follow the “upward iteration scheme”:

Xp := Xp O

Xp t
⊔

(p′,p)∈E

τ
]
(p′,p)(Xp′)

 (3)

where the contents of the left hand side gets replaced by the value of the right hand
side. The convergence property is that any sequence un of elements of D of the

2Many presentations of abstract interpretation distinguish the abstract element x] ∈ D from the
set of states γ(x]) it represents. We opted not to, for the sake of brevity.

4



form un+1 = un O vn, where vn is another sequence, is stationary [14]. It is sufficient
to apply widening only at a set of program control nodes PW such that all cycles in
the control flow graph are cut. Then, through a process of chaotic iterations [13,
Def. 4.1.2.0.5, p. 127], one converges within finite time to an inductive invariant
satisfying Rel. 2.

Once an inductive invariant is found, it is possible to improve it by iterating
the ψ] function defined as Y = ψ](X), noting X = (Xp)p∈P and Y = (Yp)p∈P, with

Yp = Ipt
⊔

(p′,p)∈E τ
]
(p′,p)(Xp′). If X is an inductive invariant, then for any k, ψ]

k
(X)

is also an invariant. This technique is an instance of narrowing iterations, which
may help recover some of the imprecision induced by widening [14, §4].

Algorithm 1 Classical Algorithm
1: A← ∅;
2: for all p ∈ P such that Ip , ∅ do
3: A← A ∪ {p}
4: end for; . Initialise A to the set of all non empty initial nodes
5: while A is not empty do . Fixpoint Iteration
6: Choose p1 ∈ A
7: A← A \ {p1}

8: for all outgoing edge (e) from p1 do
9: Let p2 be the destination of e :

10: if p2 ∈ PW then
11: Xtemp ← Xp2 O

(
Xp2 t τ

]
e(Xp1)

)
. Widening node;

12: else
13: Xtemp ← Xp2 t τ

]
e(Xp1) ;

14: end if
15: if Xtemp * Xp2 then . The value must be updated
16: Xp2 ← Xtemp;
17: A← A ∪ {p2};
18: end if
19: end for;
20: end while; . End of Iteration
21: Possibly narrow
22: return all Xpis;

A naive implementation of the upward iteration scheme described above is to
maintain a work-list of program points p such that Xp has recently been updated
and replaced by a strictly larger value (with respect to ⊆), pick and remove the
foremost member p, apply the corresponding rule Xp := . . . , and insert into the
work-list all p′ such that (p, p′) ∈ E (This algorithm is formally described in Al-
gorithm 1).
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Example of Section 1 (Cont’d) Figure 1(a) gives the control flow graph obtained
by compilation of Listing 2. Node p2 is the unique widening node.

The classical algorithm (with the interval abstract domain) performs on this
control flow graph of the following iterations :

• Initialisation : Xp1 ← (−∞,+∞), Xp2 ← Xp3 ← Xp4 ← ∅.

• Step 1: Xp2 ← [0, 0], then the transition to p3 is enabled, Xp3 ← [1, 1], then
the return edge to p2 gives the new point x = 1 to Xp2 , the new polyhedron
is then Xp2 = [0, 1] after performing the convex hull. Widening gives the
polyhedron Xp2 = [0,∞).

(The widening operator on intervals is defined as [xl, xr]O[x′l , x
′
r] = [x”l, x”r]

where x”l = xl if xl = x′l else −∞, and x”r = xr if xr = x′r else +∞.)

• Step 2: Xp3 becomes [1,+∞). The second transition from p3 to p2 is thus
enabled, and the back edge to p2 gives the point x = 0 to Xp2 . At the end of
step 2 the convergence is reached.

• If we perform a narrowing sequence, there is no gain of precision because of
the simple loop over the control point p2.

3 Our Method

We have seen two examples of programs where classical polyhedral analysis fails
to compute good invariants. How could we improve on these results?

• In order to get rid of the imprecision in Listing 1, one could “explode” the
control-flow graph: in lieu of a sequence of n if-then-else, with n merge
nodes with 2 input edges, one could distinguish the 2n program paths, and
having a single merge node with 2n input edges. As already pointed out, this
would lead to exponential blowup in both time and space.

• One way to get rid of imprecision of classical analysis (Sec. 2) on the pro-
gram from Fig. 1(a) would be to consider each path through the loop at a
time and compute a local invariant for this path. Again, the number of such
paths could be exponential in the number of tests inside the loop.

The contribution of our article is a generic method that addresses both of these
difficulties.

3.1 Reduced Transition Multigraph and Path Focusing

Consider a control flow graph (P, E) with associated transitions (τe)e∈E , a set of
widening points PW ⊆ P such that removing PW cuts all cycles in the graph, and
a set PR of abstraction points, such that PW ⊆ PR ⊆ P (On the figures, the nodes
in PR are in bold). We make no assumption regarding the choice of PW ; there are
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classical methods for choosing widening points [9, §3.6]. PR can be taken equal to
PW , or may include other nodes; this makes sense only if these nodes have several
incoming edges. Including other nodes will tend to reduce precision, but may
improve scalability. We also make the simplifying assumption that the set of initial
values Ip is empty for all nodes in P \ PR — in other words, the set of possible
control points at program start-up is included in PR.

We construct (virtually) the reduced control multigraph (PR, ER), with edges
ER consisting of the paths in (P, E) that start and finish on nodes in PR, with associ-
ated semantics the composition of the semantics of the original edges τe1→···→en =

τen ◦ · · · ◦ τe1 . There are only a finite number of such edges, because the origi-
nal graph is finite and removing PR cuts all cycles. There may be several edges
between two given nodes, because there may exist several control paths between
these nodes in the original program. Equivalently, this multigraph can be obtained
by starting from the original graph (P, E) and by removing all nodes p in P \ PR as
follows: each couple of edges e1, from p1 to p, and e2, from p to p2, is replaced by
a single edge from p1 to p2 with semantics τp2 ◦ τp1 .

Example of Section 1 (Cont’d) The reduced control flow graph obtained for our
running example is

loop

x := 0
guard x ≥ 99
x := 0

guard x < 99
x := x + 1

Our analysis algorithm performs chaotic iterations over that reduced multi-
graph, without ever constructing it explicitly. We start from an iteration strategy,
that is, a method for choosing which of the equations to apply next; one may for
instance take a variant of the naive “breadth-first” algorithm from §2, but any iter-
ation strategy [9, §3.7] befits us (see also Alg. 1). An iteration strategy maintains a
set of “active nodes”, which initially contains all nodes p such that Ip , ∅. It picks
one edge e from an active node p1 to a node p2, and applies Xp2 := Xp2 tτ

]
e(Xp1) in

the case of a node p2 ∈ PR\PW , and applies Xp2 := Xp2 O(Xp2tτ
]
e(Xp1)) if p2 ∈ PW ;

then p2 is added to the set of active nodes if the value of Xp2 has changed.
Our alteration to this algorithm is that we only pick edges e from p1 to p2 such

that there exist x1 ∈ Xp1 , x2 ∈ τe({x1}) and x2 < Xp2 with the current values of
Xp1 and Xp2 . In other words, going back to the original control flow graph, we
only pick paths that add new reachable states to their end node, and we temporarily
focus on such a path.

How do we find such edges e out of potentially exponentially many? We ex-
press them as the solution of a bounded reachability problem — how can we go
from control state p1 with variable state in Xp1 to control state p2 with variable state
in Xp2 —, which we solve using satisfiability modulo theory (SMT). (See Alg. 2)
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3.2 Finding Focus Paths

We now make the assumption that both the program transition semantics τe and
the abstract elements x] ∈ D can be expressed within a decidable theory T (this
assumption may be relaxed by replacing the concrete semantics, including e.g.
multiplicative arithmetic, by a more abstract one through e.g. linearization [30]).

Such is for instance the case if the program operates on rational values, so a
program state is an element of Σ = Qn, all operations in the program, including
guards and assignments, are linear arithmetic, and the abstract domain is the do-
main of convex polyhedra over Qn, in which case T can be the theory of linear
real arithmetic (LRA). If program variables are integer, with program state space
Σ = Zn, but still retaining the abstract domain of convex polyhedra over Qn, then
we can take T to be the theory of linear integer arithmetic (LIA). Deciding the sat-
isfiability of quantifier-free formulas in either LIA or LRA, with atoms consisting
in propositional variables and in linear (in)equalities with integer coefficients, is
NP-complete. There however exist efficient decision procedures for such formu-
las, known as SMT-solvers, as well as standardised theories and file formats [6];
notable examples of SMT-solvers capable of dealing with LIA and LRA are Z3
and Yices. Kroening & Strichman [29] give a good introduction to the techniques
and algorithms in SMT solvers.

We assume that the program is expressed in SSA form, with each program
variable being assigned a value at only a single point within the program [18];
standard techniques exist for converting to SSA. Figure 1 gives both “normal” and
SSA-form control-flow graphs for Listing 2.

We transform the original control flow graph (P, E) in SSA form by disconnect-
ing the nodes in PR: each node pr in PR is split into a “source” node ps

r with only
outbound edges, and a “destination” node pd

r with only inbound edges. We call the
resulting graph (P′, E′). Figure 2(a) gives the disconnected SSA form graph for
Listing 2 where p1 and p2 have been split.

We consider execution traces starting from a ps
r node and ending in a pd

r node.
We define them as for doing bounded model checking [2]. To each node p ∈ P′

we attach a Boolean bp or reachability predicate, expressing that the trace goes
through program point p. For nodes p′ not of the form ps

r , we have a constraint
bp′ =

∨
p ep,p′ , for ep,p′ ranging over all incoming edges. To each edge p → p′

we attach a Boolean ep,p′ , and a constraint ep,p′ = bp ∧ τp,p′ . The conjunction ρ of
all these constraints, expresses the transition relation between the ps

r and pd
r nodes

(with implicit existential quantification).
If the transitions τ(p,p′) are non-deterministic, a little care must be exercised for

the path obtained from the bp to be unique. For instance, if from program point p1
one can move non-deterministically to p2 or p3 through edges e2 and e3 an incorrect
way of writing the formula would be (b2 = e2)∧(b3 = e3)∧(e2 = b1)∧(e3 = b1), in
which case b2 and b3 could be simultaneously true. Instead, we introduce special
“choice” variables ci that model non-deterministic choices (Fig. 2).

In order to find a path from program point p1 ∈ PR, with variable state x1,
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ps
1 ps

2

p3

pd
2 : x′2 = φ(x1, x4, x3, x2)

e3x3 = x2 + 1

e5

x3 ≥

100
x4 = 0

e4 x3 < 100
e2e1x1 = 0

(a) Disconnected (SSA) CFG

ps
1 ps

2

p3

pd
2 : x′2 = φ(x1, x4, x3, x2)

e3x3 = x2 + 1

e5

x3 ≥

100
x4 = 0

e4 x3 < 100
e2e1x1 = 0

(b) With a focus path (solid edges) from x2 = 0 at
program point 2 to x′2 = 1 at the same program point

(e1 = (x1 = 0) ∧ bs
1) ∧ (e3 = (x3 = x2 + 1) ∧ bs

2 ∧ cs
2) ∧ (e2 = bs

2 ∧ ¬cs
2) ∧

(e5 = b3∧x3 ≥ 100∧x4 = 0)∧(e4 = b3∧x3 < 100)∧(b3 = e3)∧(bd
2 = e1∨e4∨e5∨e2)

∧ (x′2 = ite(e1, x1, ite(e5, x4, ite(e4, x3, x2))))

Figure 2: Disconnected version of the SSA control flow graph of Fig. 1(b), and the
corresponding SMT formula. ite(b, e1, e2) is a SMT construct whose value is “if b
then the value of e1 else the value of e2”. To each node px corresponds a Boolean
bx and an optional choice variable cx; to each edge, a Boolean ey.

to program point p2 ∈ PR, with variable state x2, we simply conjoin ρ with the
formulas x1 ∈ Xp1 and x2 < Xp2 , with x1, x2, x1 ∈ Xp1 and x2 < Xp2 expressed
in terms of the SSA variables.3 For instance, if Xp1 and Xp2 are convex polyhedra
defined by systems of linear inequalities, one simply writes these inequalities using
the names of the SSA-variables at program points p1 and p2.

We apply SMT-solving over that formula. The result is either “unsatisfiable”,
in which case there is no path from p1, with variable values x1, to p2, with variable
values x2, such that x1 ∈ Xp1 and x2 < Xp2 , or “satisfiable”, in which case SMT-
solving also provides a model of the formula (a satisfying assignment of its free
variables); from this model we easily obtain such a path, unique by construction
of ρ.

Indeed, a model of this formula yields a trace of execution: those bp predicates
that are true designate the program points through which the trace goes, and the
other variables give the values of the program variables.

Example of Section 1 (Cont’d) The SSA form of the control flow graph of Fig-
ure 1(a) is depicted in Figure 1(b). Fig. 2 shows the disconnected version of the
SSA Graph (the node p2 is now split), and the formula ρ expressing the semantics
is shown beneath it.

Then, consider the problem of finding a path starting in control point 2 inside
polyhedron x = 0 and ending at the same control point but outside of that polyhe-

3The formula defining the set of values represented by an abstract element X has sometimes been
denoted by γ̂ [34].
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dron. Note that because there are two outgoing transitions from node ps
2, which are

chosen non-deterministically, we had to introduce a Boolean choice variable cs
2.

The focus path of Fig. 2(b) was obtained by solving the formula ρ ∧ bs
1 =

false ∧ bs
2 = true ∧ bd

2 = true ∧ (x2 = 0) ∧ ¬(x′2 = 0): we impose that the path
starts at point ps

2 (thus forcing bs
1 = false∧bs

2 = true) in the polyhedron x = 0 (thus
x2 = 0) and ends at point pd

2 (thus forcing bp
2 = true) outside of that polyhedron

(thus ¬(x2 = 0)).

3.3 Algorithm

Algorithm 2 consists in the iteration of the path finding method of Sec. 3.2, coupled
with forward abstract interpretation along the paths found and, optionally, path
acceleration.

3.4 Correctness and Termination

We shall now prove that this algorithm terminates, and that the resulting Xp define
an inductive invariant that contains all initial states Ip. The proof is a variant of the
correctness proof of the chaotic iterations.

The invariant maintained by this algorithm is that all nodes p1 ∈ PR\A are such
that there is no execution trace starting at point p1 in a state x1 ∈ Xp1 and ending
at point p2 in a state x2 < Xp2 . Evidently, if A becomes empty, then this condition
means that Xp is an inductive invariant.

Termination is ensured by the classical argument of termination of chaotic iter-
ations in the presence of widening: they always terminate if all cycles in the control
flow graph are broken by widening points [13, Th. 4.1.2.0.6, p. 128]. In short, an
infinite iteration sequence is bound to select at least one node p in PW an infinite
amount of times, because PW breaks all cycles, but due to the properties of widen-
ing, Xp should be stationary, which contradicts the infinite number of selections.
Our comment at line 20 of Alg. 2 is important for termination: it ensures that for
any widening node p, the sequence of values taken by Xp when it is updated and
reinserted into set A is strictly ascending, which ensures termination in finite time.

3.5 Self-Loops

The algorithm in the preceding subsection is merely a “clever” implementation of
standard polyhedral analysis [17, 27] on the reduced control multigraph (PR, ER);
the difference with a naive implementation is that we do not have to explicitly
enumerate an exponential number of paths and instead leave the choice of the focus
path to the SMT-solver. We shall now describe an improvement in the case of self-
loops, that is, single paths from one node to itself.

Algorithm 3 is a variant of Alg. 2 where self-loops are treated specially:

• The loopiter(τ], X) function returns the result of a widening / narrowing it-
eration sequence for abstract transformer τ] starting in X; it returns X′ such

10



Algorithm 2 Path-focused Algorithm
1: Compute SSA-form of the control flow graph.
2: Choose PR, compute the disconnected graph (P′, E′) accordingly.
3: ρ← computeFormula(P′, E′) . Precomputations
4: A← ∅;
5: for all p ∈ PR such that Ip , ∅ do
6: A← A ∪ {p}
7: end for;
8: while A is not empty do . Fixpoint Iteration on the reduced graph
9: Choose p1 ∈ A

10: A← A \ {p1}

11: repeat

12: res← SmtSolve

ρ ∧ bp1 ∧ x1 ∈ Xp1 ∧
∨

p2 |(p1,p2)∈E′

(
bp2 ∧ x2 < Xp2

)
13: if res is not “unsat” then
14: Compute e′ ∈ E′ from res . Extraction of path from the model

(§3.2)
15: Y ← τ

]
e′(Xp1)

16: if p2 ∈ PW then
17: Xtemp ← Xp2 O

(
Xp2 t Y

)
. Final point p2 is a widening point

18: else
19: Xtemp ← Xp2 t Y
20: end if

. at this point Xtemp * Xp2 otherwise p2 would not have been chosen
21: Xp2 ← Xtemp

22: A← A ∪ {p2}

23: end if
24: until res=“unsat”
25: end while . End of Iteration
26: Possibly narrow (see Sec. 4.1)
27: Compute Xpi for pi < PR

28: return all Xpi

that X ⊆ X′ and τ](X′) ⊆ X′.

• In order not to waste the precision gained by loopiter, the first time we con-
sider a self-loop e′ we apply a union operation instead of a widening; set
U records the self-loops that have already been visited. This is a form of
delayed widening [28].

Termination is still guaranteed, because the inner loop cannot loop forever: it
can visit any self-loop edge e′ at most once before applying widening.
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Algorithm 3 Path-focused Algorithm with Self-Loops. marks changes from
Alg. 2.

1: Compute SSA-form of the control flow graph.
2: Choose PR, compute the disconnected graph (P′, E′) accordingly.
3: ρ← computeFormula(P′, E′) . Precomputations
4: A← ∅;
5: for all p ∈ PR such that Ip , ∅ do
6: A← A ∪ {p}
7: end for;
8: while A is not empty do . Fixpoint Iteration on the reduced graph
9: Choose p1 ∈ A

10: A← A \ {p1}

11: U = ∅ . U is a set of “already seen” edges
12: repeat

13: res← SmtSolve

ρ ∧ bp1 ∧ x1 ∈ Xp1 ∧
∨

p2 |(p1,p2)∈E′

(
bp2 ∧ x2 < Xp2

)
14: if res is not “unsat” then
15: Compute e′ ∈ E′ from res
16: if p1 = p2 then

17: Y ← loopiter(τ]e′ , Xp1)
18: else
19: Y ← τ

]
e′(Xp1)

20: end if
21: if p2 ∈ PW and (p1 , p2 ∨ e′ ∈ U) then
22: Xp2 ← Xp2 O

(
Xp2 t Y

)
. Final point p2 is a widening point

23: else
24: Xp2 ← Xp2 t Y
25: U ← U ∪ {e′}
26: end if
27: A← A ∪ {p2}

28: end if
29: until res=“unsat”
30: end while . End of Iteration
31: Compute Xpis for pi < PR

32: return all Xpis

Example of Section 1 (Cont’d) Let us perform our algorithm on our example :

• Step 1 : Is there a path from control point p1 to control point p2 feasible
(without additional constraint) ? Yes. On Figure 2, the obtained model cor-
responds to the transition from ps

1 to pd
2, and leads to the interval Xp2 = [0, 0].

• Step 2 : Is there a path from p2 with x = 0 to p2 with x , 0 ? The answer
to this query is depicted in Figure 2(b): there is such a path, on which we
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now focus. This path is considered as a loop and we therefore do a local
iteration with widenings (loopiter). Xp2 becomes [0, 1], then after widening
[0,∞]. A narrowing step gives finally Xp2 = [0, 99], which is thus the result
of loopiter.

• Step 3 : Is there a path from p2 with x ∈ [0, 99] to p2 with x′ < [0, 99] ? No.

The iteration thus ends with the desired invariant.

4 Extensions

4.1 Narrowing

Narrowing iterations can also be applied within our framework. Let us assume that
some inductive invariant Xp∈PR has been computed; it satisfies the relation ψ(X) ⊆
X component-wise, noting X = (X1, . . . , X|P|), and ψ(X) denotes (Y1, . . . ,Y|P|) de-
fined as

Yp2 = Ip2 ∪
⋃

e∈ER e from p1 to p2

τe
(
Xp1

)
(4)

The abstract counterpart to this operator is ψ], defined similarly, replacing τ by τ]

and ∪ by t. It satisfies the correctness condition (see Rel. 1) ∀X ∈ D ψ(X) ⊆ ψ](X).
As per the usual narrowing iterations, we compute a narrowing sequence X(k) =

ψ]
k
(X). It is often sufficient to stop at k = 1; otherwise one may stop when X(k+1) *

X(k). Let us now see a practical algorithm for computing Y = ψ](X):
For all p ∈ PR, we initialise Yp := Ip. For all p2 ∈ PR, we consider all paths

e ∈ ER from p1 ∈ PR to p2 such that there exist x1 ∈ Xp1 , x2 ∈ Xp2 , x2 ∈ τe({x1}) as
explained in §3.2. We then update Yp2 := Yp2 t τ

]
e(Xp1).

4.2 Acceleration

In Sec. 3.5, we have described loopiter function that performs a classical widening
/ narrowing iteration over a single path. In fact, the only requirement over it is that
loopiter(τ], X) returns X′ such that X ⊆ X′ and τ](X′) ⊆ X′. In other words, X′ is
an over-approximation of τ]

∗
(X), noting R∗ the transitive closure of R.

In some cases, we can compute directly such an over-approximation, some-
times even obtaining τ]

∗
(X) exactly; this is known as acceleration of the loop.

Examples of possible accelerations include the case where τe is given by a differ-
ence bound matrix [12], an octagon [10], ultimately periodic integer relations [11]
or certain affine linear relations [23, 22, 1].

For instance, the focus path of Fig. 2(b) consists in the operations and guards
x = x + 1; x < 100; instead of iterating that path, we can compute its exact acceler-
ation, yielding x ∈ [0, 99].

13



4.3 Partitioning

It is possible to partition the states at a given program point according to some
predicate or a partial history of the computation [36]. This amounts to introducing
several graph nodes representing the same program point, and altering the transi-
tion relation.

4.4 Input-Output Relations

As with other analyses using relational domains, it is possible to obtain abstrac-
tions of the input-output relation of a program block or procedure instead of an
abstraction of the set of states at the current point [1]; this also allows analyzing
recursive procedures [27, Sec. 7.2]. It suffices to include in the set of variables
copies of the variables at the beginning of the block or procedure; then the abstract
value obtained at the end of the block or procedure is the desired abstraction.

5 Implementation and Preliminary Results

Our algorithm has been implemented as an option for Aspic, that computes invari-
ants from counter automata with Linear Relation Analysis ([20]). We wrote an
Ocaml interface to the Yices SMT-solver ([19]), and modified the fixpoint compu-
tation inside Aspic to deal with local iterations of paths. The implementation still
needs some improvements, but the preliminary results are promising, and we de-
scribe some of them in Table 1. We provide no timing results since we were unable
to detect any overcost due to the method. These two examples show that since we
avoid (some) convex hulls, the precision of the whole analysis is improved.

The rate limiter example is particularly interesting, since, like the one in List-
ing 1 (which does not include a loop), it will be imprecisely analyzed by any
method enforcing convex invariants at intermediate steps.

6 Related Work

Our algorithm may be understood as a form of chaotic iterations [13, §2.9.1, p. 53]
over a certain system of semantic questions; we use SMT as an oracle to know
which equations need propagating. The choice of widening points, and the order
in which to solve the abstract equations, have an impact on the precision of the
whole analysis, as well as its running time. Even though there exist few hard
general results as to which strategy is best [13, §4.1.2, p. 125], some methods tend
to experimentally behave better [9].

“Lookahead widening” [24] was our main source of inspiration: iterations and
widenings are adapted according to the discovery of new feasible paths in the pro-
gram. This approach avoids loss of precision due to widening in programs with

14



Table 1: Invariant generation on two simple challenging programs

Program Automaton Result and notes

Listing 4: Boustrophedon

void boustrophedon ( ) {
i n t x ;
i n t d ;
x = 0 ;
d = 1 ;
while ( 1 ) {

i f ( x == 0) d=1;
i f ( x == 1000) d=−1;
x += d ;

}
}

start

lbl_5

true
x:=0
d:=1

stop

(1 <= 0)

lbl_6

true

lbl_13

true
x:=d+x

tp_3

(x = 0)

fp_3

(x < 0)(0 < x)

lbl_9

true
d:=1

true

tp_1

(x = 1000)

fp_1

(1000 < x) (x < 1000)

true
d:=-1

true

The compilation of the
program gives an ex-
panded control structure
where some paths are
“clearly” unfeasible
(e.g. imposing both
x < 0 and x > 1000),
thus the only feasi-
ble ones are guarded
by x < 0, x = 0,
0 < x < 1000, x = 1000
and x > 1000.
The tool finds
the invariant
{0 ≤ x ≤ 1000,−1 ≤ d ≤ 1}
Classical Analysis with
widening “upto” gives
{d ≤ 1, d + 1999 ≥ 2x}
and Gopan and Reps’
improvement is not able
to find x ≥ 0.

Listing 5: Rate limiter

void main ( ) {
f l o a t x_old , x ;
x_old = 0 ;
while ( 1 ) {

x = input ( −1000 ,1000 ) ;
i f ( x >= x_old +1)

x = x_old +1;
i f ( x <= x_old −1)

x = x_old −1;
x_old = x ;

}
}

Source : [32]

start

lbl_3

true
x_old:=0

lbl_6

true
x:=?

lbl_15

true
x_old:=x

lbl_12

(x_old <= x)
(x+1 <= x_old)

x:=x_old-1

stop

(x <= 999) (1001 <= x)

lbl_9

(1000 = x)

(x <= x_old)
(x_old+1 <= x)

x:=x_old+1

In order to properly
analyse such a program,
Astrée distinguishes
all four execution paths
inside the loop through
trace partitioning [36],
which is triggered by
ad hoc syntactic criteria
(e.g. two successive
if-then-else). Our algo-
rithm finds the invariant
{−1000 ≤ xold ≤ 1000},
which is not found by
classical analysis.
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multiple paths inside loops. It has proved its efficacy to suppress some gross over-
approximations induced by naive widening. However, it does not solve the impre-
cisions introduced by convex hull (e.g. it produces false alarms on Listing 1).

Our method analyzes separately the paths between cut-nodes. We have pointed
out that this is (almost) equivalent to considering finite unions of elements of
the abstract domain, known as the finite powerset construction, between the cut-
nodes.4 The finite powerset construction is however costly even for loop-free
code, and it is not so easy to come up with widening operators to apply it to
codes with loops or recursive functions [4]; for limiting the number of elements
in the unions, some may be lumped together (thus generally introducing further
over-approximation) according to affinity heuristics [37, 33].

Still, in the recent years, much effort has been put into the discovery of dis-
junctive invariants, for instance in predicate abstraction [25]. Of particular note is
the recent work by Gulwani and Zuleger on inferring disjunctive invariants [26] for
finding bounds on the number of iterations of loops. We improve on their method
on two points:

• In contrast to us, they assume that the transition relation is given in disjunc-
tive normal form [26, Def. 5], which in general has exponential size in the
number of tests inside the loop. By using SMT-solving, we keep the DNF
implicit and thus avoid this blowup.

• By using acceleration, we may obtain more precise results than using widen-
ing, as they do for lattices that do not satisfy the ascending chain condition.

Nevertheless, their method allows expressing disjunctive invariants at loop
heads, and not only at intermediate points, as we do. However, we think it is
possible to get the best of both worlds and combine our method with theirs. In or-
der to obtain a disjunctive invariant, they first choose a “convexity witness” (given
that the number of possible witnesses is exponential, they choose it using heuris-
tics) [26, p. 7], and then they compute a “transitive closure” [26, Fig. 6], which is
a form of fixed point iteration of input-output relations (as in our Sec. 4.4) over an
expanded control-flow graph. The choice of the convexity witness amounts to a
partitioning of the nodes and transition (Sec. 4.3). Thus, it seems to possible to ap-
ply their technique, but replace their fixed point iteration [26, Fig. 6] by one based
on SMT-solving and path focusing, using acceleration if possible.

In recent years, because of improvement in SMT-solving, techniques such as
ours, distinguishing paths inside loops, have become tractable [31, 7, 32, 21]. An
alternative to using SMT-solving is to limit the number and length of traces to
consider, as in trace partitioning [36], used in the Astrée analyzer [16, 15, 8], but

4It is equivalent if the only source of disjunctions are the splits in the control flow, and not atomic
operations. For instance, if the test |x| ≥ 1 is considered an atomic operation, then we could take the
disjunction x ≥ 1 ∨ x ≤ −1 as output. We can rephrase that as a control flow problem by adding
a test x ≥ 0, otherwise said to express |x| as a piecewise linear function with explicit tests for splits
between the pieces.
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the criteria for limitation tend to be ad hoc. In addition, methods for abstracting the
sets of paths inside a loop, weeding out infeasible paths, have been introduced [5].

With respect to optimality of the results, our method will generate the strongest
inductive invariant inside the abstract domain if the domain satisfies the ascending
chain condition and no widening is used; for other domains, like all methods using
widenings, it may or may not generate it. In contrast, some recent works [21]
guarantee to obtain the strongest invariant for the same analysis problem, at the
expense of restriction to template linear domains and linear constructions inside
the code.

7 Conclusion and future work

We have described a technique which leverages the bounded model checking ca-
pacities of current SMT solvers for guiding the iterations of an abstract inter-
preter. Instead of normal iterations, which “push” abstract values along control-
flow edges, including control-flow splits and merges, we consider individual paths.
This enables us, for instance, to use acceleration techniques that are not available
when the program fragment being considered contains control-flow merges. This
technique computes exact least invariants on some examples on which more con-
ventional static analyzers incur gross imprecision or have to resort to syntactic
heuristics in order to conserve precision.

We have focused on numerical abstractions. Yet, one would like to use similar
techniques for heap abstractions, for instance. The challenge will then be to use
a decidable logic and an abstract domain such that both the semantics of the pro-
gram statements and the abstract values can be expressed in this logic. This is one
direction to explore. With respect to the partitioning technique, 4.3, we currently
express the partition as multiple explicit control nodes, but it seems desirable, for
large partitions (e.g. according to Boolean values, as in B. Jeannet’s BDD-Apron
library) to represent them succinctly; this seems to fit nicely with our succinct en-
coding of the transition relation as a SMT-formula.

Another direction is to evaluate the scalability of these methods on larger pro-
grams. The implementation needs to be tested more to evaluate the precision of
our method on middle-sized programs, the main advantage is that Aspic imple-
ments some of the acceleration techniques. Analyzers such as Astrée scale up to
programs running a control loop several hundreds of thousands of lines long; trans-
lating such a loop to a SMT formula and solving for this formula and additional
constraints does not seem tractable. It is possible that semantic slicing techniques
[35] could help in reducing the size of the generated SMT problems.
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