

Institut national de la santé et de la recherche médicale

Technologies Rivancées
ERM 206 INSERM

Dynamical analysis of logical models of genetic regulatory networks

Contents

- Logical modelling of regulatory networks
- Novel algorithms for dynamical analysis
- Application to T cell activation and differentiation
- Conclusions and prospects

Logical modelling of regulatory networks

✓ Logical parameters define the effect of combinations of incoming interactions $K_B(\emptyset)=0$ $K_B(\{A,1\})=1$ $K_B(\{A,2\})=0$

 The dynamics is represented by a State Transition Graph (here, all possible trajectories)

 A graph describes the interactions between genes or regulatory products

✓ **Discrete levels** of expression associated to each gene (logical variables) and interaction

Chaouiya C, Remy E, Mossé B, Thieffry, D (2003). LNCIS 294: 119-26.

Available at http://gin.univ-mrs.fr/GINsim

Gonzalez A, Naldi A, Sánchez L, Thieffry D, Chaouiya C (2006). Biosystems 84: 91-100.

Remy E, Mosse B, Chaouiya C, Thieffry D (2003). *Bioinformatics* **10**: ii172-8.

Feedback circuits & Thomas' rules

- A positive feedback circuit is necessary to generate multiple stable states or attractors
- A negative feedback circuit is necessary to generate homeostasis or sustained oscillatory behaviour

Thomas R (1988). Springer Series in Synergics 9: 180-93.

Mathematical theorems and demonstrations:

- ✓ In the differential framework:
 - Soulé C (2005). *ComPlexUs* **1**: 123–33.
- ✓ In the discrete framework:
 - Remy E, Ruet P, Thieffry D (2006). *LNCIS* **341**: 263-70.
 - Richard A (2006). *PhD thesis*, University of Evry, France.

Dynamical analysis tools

Priorities

- Mixed a/synchronous simulations
 [Fauré et al (2006) Bioinformatics 22: e124-31]
- Decision diagrams (Aurélien NALDI)
 - Stable state identification
 - Feedback circuit analysis
 [Naldi *et al* (2007) *LNCS* 4695: 233-47]
- Petri nets (Claudine CHAOUIYA)
 - Standard Petri nets [Remy *et al* (2006). *LNCS* **4230**: 56-72]
 - Coloured Petri nets [Chaouiya et al (2006) LNCS 4220: 95-112]
- Logical programming
 - Attractor identification

Logical functions as decision trees

Behaviour of B given by the logical function K_B

$$K_{B} = \begin{cases} 1 & if \quad (A_{1} \lor C) \\ 0 & otherwise \end{cases}$$

Logical functions as decision diagrams

Dynamics of B given by the **logical function K_B**

$$K_{B} = \begin{cases} 1 & if \quad (A_{1} \lor C) \\ 0 & otherwise \end{cases}$$

Efficient structure

Canonical representation

(for an ordering of the decision variables)

Determination of stable states

- Stable states: all variables are stable
- Analytic method to find all possible stable states
 - No simulation
 - No initial condition
- Principle
 - Build a stability condition for each variable
 - Combine these partial conditions

2 stable states : 001 et 110

Functionality context

Example: negative circuit inducing a cyclic behaviour

Functionality context

C prevents A from activating B

The circuit is **functional** in a given **context**: in **absence of C**

Functionality context

Functionality context: set of constraints on the expression levels of regulators

Each interaction has its own context

Context of the circuit: combination of all interaction contexts

Functionality of an interaction

- In a circuit (...,A,B,C,...), the functionality of the interaction (A,B) depends on:
 - K_B

B

- the threshold of (A,B)
- the threshold of (B,C)

 Functionality: logical function depending on the regulators of B (represented as a decision diagram)

Functionality of an interaction

- Auto-regulation and (more generally) "short-circuit"
 - Circuit members appear in functionality context
 - Members of the circuit must be able to cross their threshold

Applications

- Cell cycle (DIAMONDS FP6 STREP)
 - Yeast (S. cerevisiae)
 - Generic mammalian core
 - Drosophila (embryos)
- T cell differentiation and activation (ACI IMPbio & ANR BioSys)
 - Differentiation: Th1/Th2, Regulatory T cells, lymphoid lineages
 - TCR signalling
- Drosophila development (with Lucas SANCHEZ)
 - Genetic control of segmentation
 - Compartment formation in imaginal disks

T cell activation and differentiation

Application: TCR signalling

- Circuit analysis: 4 circuits functional among 12
 - 3 positive circuits: auto-regulations on inputs
 → 8 attractors:

one for each input combination

- •1 negative circuit:
 - ZAP70/cCbl (functional in presence of LCK and TCRphos)
 - → cyclic attractor (for 111 input)
- Stable state analysis:

7 stable states

Klamt S et al (2006) BMC Bioinformatics 7:56.

Application: Th differentiation

- 5 functional (positive) circuits among 22
- 4 stable states:
 - Th0 (naive)
 - Th1 and Th1* (cellular response)
 - Th2 (humoral response)

Attractors and feedback circuits

Mutant simulations

Genetic background	Predicted phenotypes	Desactivated Circuits
Wild type	Th0, Th1, Th1*, Th2	5 functional positive circuits
Tbet KO	Th0, Th2	Tbet, GATA3/Tbet
Tbet KI (high)	Th1*	Tbet, GATA3/Tbet
GATA3 KO	Th0, Th1, Th1*	GATA3/Tbet, GATA3/IL4/IL4R/STAT6
GATA3 KI	Th1 & Th1* like, Th2	GATA3/Tbet, GATA3/IL4/IL4R/STAT6
GATA3+Tbet DKO	Th0	T-bet, GATA3/Tbet, GATA3/IL4/IL4R/STAT6
GATA3+Tbet DKI	Th1* like	T-bet, GATA3/Tbet, GATA3/IL4/IL4R/STAT6
IFNγ KI (high)	Th1*	IFNγ circuits

Qualitative agreement with **documented perturbations**

Take-home messages

- Flexibility of logical/discrete modelling
- Versatility (gene regulation, cell cycle, differentiation...)
- Analytical developments (circuits functionality, stable state)
- Insights into topology dynamics relationships
- Implementation of novel algorithms into GINsim

Prospects

- Methodological developments
 - Determination of complex attractors
 - Further elaboration of circuit analysis

- Th model
 - Extension to other regulatory components (IL2)
 - Other differentiative pathways (Treg and T17)
 - Model composition (Tcell activation and differentiation)

Current supports

Inserm

Institut national de la santé et de la recherche médicale

