
On Under-Determined Dynamical Systems

Oded Maler
CNRS-VERIMAG

University of Grenoble
France

Oded.Maler@imag.fr

ABSTRACT
Under-determined dynamical systems are those that need
additional information in order to produce simulation traces.
This information may correspond to initial conditions, pa-
rameter values or dynamic external influences. The paper
discusses this issue and surveys some common approaches
to reconcile this fact with the practice of simulation.

Categories and Subject Descriptors
I.6.0 [Simulation and Modeling]: General

General Terms
Design, Performance, Verification

Keywords
Hybrid systems, Timed systems, Simulation, Verification

1. INTRODUCTION
The design and analysis of complex systems is often ac-

companied by mathematical and quasi-mathematical models
of dynamical systems. We use the term in a broad sense
which covers all sorts of dynamics and refers to systems
that generate behaviors which are progressions in time of
states (valuation of state variables). In the discrete case
these are automata or other discrete-event models generat-
ing sequences of states and events, while in the continuous
case these can be differential equations generating trajecto-
ries in some Euclidean space or manifold. Hybrid systems
may generate a combination of both while timed systems,
which constitute an extremely important level of abstrac-
tions which is used implicitly in almost any domain, generate
discrete events embedded in the real-time axis. The reader
is referred to [10] for more details and contemplations.

The state space of a system constructed from several com-
ponents is a subset of the product of the local state spaces

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0714-7/11/10 ...$10.00.

of the subsystems. Thus, for any system admitting a signifi-
cant number of components one experiences either the state-
explosion problem (discrete), or the curse of dimensionality
(continuous) or a combination of both (hybrid). Such sys-
tems are not easy to reason about intelligibly by humans
and computer-aided simulation is often used to generate be-
haviors of the system, to provide intuition about what is
going on and check whether the system behaves as expected
or desired.

Simulation may be different in the discrete, timed and
continuous domains. Simulation of continuous systems in-
volves many intricate problems associated with the approx-
imation of the mathematical reals by a finite subset of the
rationals (floating-point numbers) and the discretization of
time. These include all the problems of numerical integra-
tion: error estimation, variable steps, forward and backward
schemes etc. Discrete simulation need not worry about those
but there might still be problems related to the order of si-
multaneous transitions and combinational loops due to the
non-metric structure of the time domain. Hybrid systems
simulation needs to solve the problem of event detection and
may get into so-called Zeno behaviors where infinitely-many
transitions are packed into a bounded time interval.

Abstracting away from these issues, there is one common
fact underlying the very practice of simulation: in order to
generate a single concrete behavior, you need the system to
be fully determined, either statically or on the fly, during
the production of the behavior in question. The next sec-
tion attempts to make sense out of this somewhat cryptic
statement, hopefully resulting in a clear and unified view of
simulation, verification, random testing and parameter-space
exploration, all of which represent different ways to cope
with the tension between the inherent under-determination
of system models and what is needed in order to simu-
late them. I use the term under-determined because the
term non-deterministic is already loaded by various mean-
ings (sometimes conflicting) in different communities.

The rest of the paper is organized as follows. Section 2
introduces dynamical systems and presents several forms of
under-determination ranging from static (punctual) under-
determination which corresponds to ignorance concerning
initial states or parameters to dynamic under-determination
associated with external influences. Then I illustrate two
approaches for coping with under-determination in the con-
tinuous and hybrid domains: adaptive sampling (Section 3)
and reachability computation (Section 4). Section 5 gives a
brief overview of under-determination for timed systems.

2. UNDER-DETERMINATION
A dynamical system lives in a state space X that we as-

sume to be finite dimensional, say Rn or {0, 1}n. A behavior,
that we call from now on a (simulation) trace, is a sequence
x = x[0], x[1], . . ., wher x[t] ∈ X for every t. We use discrete
time with fixed steps throughout the paper but we should
bear in mind that the time index could be any monotonic
sequence t0, t1, . . . of time steps, generated, for example, by
variable step numerical integration. For the simulator to
produce such a trace it needs:

1. A value for x[0];

2. A procedure to compute x[t + 1] from x[t] which has
some resemblance to the presumed real-world dynam-
ics that the model represents.

This procedure can be either uniform (“time-invariant”) so
that x[t] = x[t′] implies x[t + 1] = x[t′ + 1], or it might
be a particular choice made on the fly each time x[t + 1] is
computed from x[t]. Systems of the former kind are fully
deterministic “closed” systems, denoted by (X, f) where f :
X → X is a function such that for every t, x[t+1] = f(x[t]).
To generate a trace for such systems one needs only to fix
x[0] and then apply f successively to produce a trace.

Deterministic systems that admit only one conceivable ini-
tial state (these are more common in the discrete domain)
produce a unique trace. Otherwise, the initial state gives us
the first example of under-determination: a piece of infor-
mation which is missing, an empty slot to be filled in order
to produce a trace. We call this under-determination static
or punctual because it requires one state, one point in the
state space to be determined. We defer the discussion of the
methodological implications of this issue after the introduc-
tion of the second type of static under-determination.

As much as one wants to endorse model-based design, we
should not forget that models, especially continuous models
of physical phenomena, are approximations of reality. Hence
considering a precise deterministic model of any non-trivial
natural phenomenon is an act of epistemological arrogance
and self delusion unless one is aware of this fact and takes
precautions. A common practice is to compactly store our
ignorance concerning the real dynamics in parameters. Pa-
rameters are more often associated with numerical dynamics
where the function f becomes a template with some empty
slots that have to be filled by parameter values ranging in
some parameter space P . Each parameter p instantiates f
into a function fp which is then used to compute x[t + 1]
from x[t] for every t.

Let us reflect a bit outside the mathematical model and
illustrate what type of ignorance can be represented by para-
metric under-determination.

• Suppose we attempt to model a biochemical reaction
inside the cell. In this case f may have a general form
derived from mass action rules. These rules have ki-
netic parameters that depend, among other things, on
the affinity between the chemical species. These pa-
rameters cannot be deduced from first principles but
can be measured very roughly by isolated experiments
in conditions different from those inside the cell. As a
result of all these inaccuracies, one should not assume
knowledge of parameter values, only their range;

• Another example is the electrical dynamics of a net-
work of transistors. It is well known that the pro-

duction of semi-conductor devices is a process of high
variability and the characteristics of transistors may
change from one production batch to another and even
in different areas of the same chip. The problem be-
comes more acute when circuits have to be designed
in parallel with the development of the new material
substrate (“technology”) in which they will be realized;

• A last example of a more timed and discrete nature is
taken from design-space exploration for embedded sys-
tems. Suppose we want to evaluate the performance of
some application software running on a multi-core ex-
ecution platform. Such an evaluation is based, among
other things, on the execution times of tasks. When
the software is not completely written and the architec-
ture not yet realized, we will have only rough estimates
of these numbers.

Although conceptually different, parameters and initial
states are mathematically similar. In fact, one can extend
the state space and dynamics to include parameters as static
state variables that do not change once their value at time
0 is determined, that is, replacing (X, f) by (X ′, f ′) where
X ′ = X × P and f ′(x, p) = (fp(x), p). This can be viewed
as if upon initialization the simulator decides which dynam-
ical model fp to use for producing traces. The difference
between a parameter and an initial state is just in the space
they are taken from. Sometimes the state-space may be
high-dimensional with few parameters, sometimes the state-
space is modest and parameters are numerous.

Approaches for handling parameter under-determination
range from complete indifference to pedantic anxiety de-
pending on the application domain and its criticality, the
mathematical properties of the state-space and dynamics as
well as cultural traditions. The most liberal approach to
under-determination is to fix some nominal values for the
parameters and act as if those are the exact values of the
parameters. This practice raises the question: what do we
learn on the real system by running a simulation with these
nominal values? What can we conclude from the properties
of the nominal trace about the traces that will be produced
by other parameters that may happen to be more faithful
to the real dynamics than the nominal ones?

The attitude toward this question depends on many fac-
tors. The first one is the responsibility of the person that
builds the model and performs the simulation. The follow-
ing, somewhat caricatural, scenario illustrates an extreme
case of lack of real responsibility. Imagine a purely scientific
context, say in certain type of biological research, where a re-
searcher proposes a model to explain some phenomenon. He
or she performs experiments and tunes the model parame-
ters so that the obtained traces resemble observed behaviors.
One such a fit has been achieved, a paper can be published.
The fact that the behavior can be significantly different with
a change of parameters (and the model less robust) will not
have any practical implications unless some referee has time
to invest the effort. Of course, we exaggerate a bit: the mod-
eler may have both mathematical knowledge and integrity
to observe this fact during the tuning process. The impli-
cations are completely different when the model has to be
combined with other models or be used in a real-life context,
for example in pharmacology.

More serious justifications for using nominal values may
come from the mathematical properties of the model. To

some extent, certain kinds of continuous dynamical systems
admit also some continuity in the sensitivity of their qual-
itative properties to parameter values and in this sense a
nominal value p in the parameter space may represent a
large neighborhood of parameter values that lead to similar
behaviors. There are also specialized mathematical tech-
niques (bifurcation analysis) that can compute the range of
parameter variations that preserve the properties of the be-
havior exhibited nominally. Like everything in the continu-
ous domain, these techniques work better for linear systems
and steady-state behaviors and they often break down when
switching discontinuity is introduced as in hybrid systems.
Yet another reason not to worry too much about parameter
variability is in the context of control systems. Such systems
are designed to cope with external disturbances (dynamic
under-determination) and have built-in error-correction mech-
anism based on feedback so that possible deviations of the
system from its nominal behavior are taken into account.

What should one do when there is no a priori reason to be
content with one nominal value? Naturally one would like
to cover as much as possible the non-countable parameter
space. There are two basic approaches:

• Finite sampling : a finite number of parameter values
are chosen and their corresponding traces are gener-
ated by the simulator. The sampling method can vary
from a fixed grid discretization to random sampling,
with or without making probabilistic assumptions and
claims. This way or another, the number of sampling
points needed to achieve a given coverage will grow
exponentially in the corresponding dimension (state
space for initial state, parameter space for parame-
ters). Section 3 illustrates a new technique for param-
eter space exploration that can direct the sampling
toward interesting parts of the parameter space.

• Exhaustive coverage: this is an idea inspired from dis-
crete formal verification. It is essentially a kind of
set-based simulation, which goes by the name of com-
puting reachable sets. Rather than computing single
trajectories, this approach produces tubes of trajecto-
ries, also known as flowpipes, that constitute an over-
approximation of all the states reachable by all trajec-
tories emanating from all initial states under all pa-
rameter values. While this may seem magical from
the point of view of simulation, it is perhaps best
understood as the difference between depth-first and
breadth-first search in the space of system trajectories.
Section 4 explains the essentials of this approach which
works also for dynamic under-determination which is
introduced next.

Systems operate in environments that are by themselves
dynamic. Such environments may influence the behavior
of the system that we simulate in a non-uniform manner
over time. For example, consider the influence of dynamic
temperature variations on the behavior of a transistor or
a chemical reaction, the influence of wind on an airplane,
or the effect of communication traffic congestions on the
response time of an embedded system.

Mathematically, such an open system is defined as (X,V, f)
where V is the domain of input variables and f : X×V → X
is a function such that x[t + 1] = f(x[t], v[t]) for every t.
Such a system exhibits under-determination in each and ev-
ery step and for each simulation trace we generate we need

X0

Figure 1: A trajectory decorated with balls.

to provide the simulator with a sequence of input values
v = v[0], v[1], . . . whose length grows with the duration of
the trace. Although from the point of view of this paper
all inputs are alike, namely, values produced by an external
source whose behavior is not specified in detail inside the
model, it should be kept in mind that in practice they can
be of different sorts, ranging from distinct stimuli that re-
quire a specific reaction to arbitrary disturbances and noise.

Like static under-determination, the practice of handling
dynamic under-determination is diverse. One may take a
nominal input sequence which can be a constant sequence
(zero or otherwise), a step (a sudden change which remains
constant thereafter), a periodic sinusoid-like input or an ar-
bitrary sequence of elements from V possibly chosen ran-
domly at each step. For the simpler classes of systems, the
response to this nominal input may tell us a lot about the
response to all inputs. Otherwise, covering the space of
inputs by a representative sample is not a trivial matter.
The reason is that a parameter space is finite dimensional
while the space of dynamic inputs has infinitely many di-
mensions. Speaking in terms of discrete time, a parameter
space P = [0, 1]m can be sampled with ε-coverage by [1/ε]m

points while the space of input sequences of length k over
V = [0, 1]m needs [1/ε]mk samples for a similar coverage.

3. SENSITIVITY-BASED SAMPLING
This section illustrates an approach due to [4] for adaptive

sampling for static under-determination. Suppose we want
to verify that all traces of length up to k of a system (X, f)
satisfy some safety property (never reach a bad part of the
state space), given that the initial state is in some set X0.
Numerical simulators that are used to compute x[t] from
x[t − 1] can also provide the sensitivity of x[t] to changes
in x[t − 1]. Based on this information one can decorate
every computed trace x[0], . . . , x[k] by a sequence of “balls”
B[0], . . . , B[k] such that each B[t] is centered around x[t]
and B[t] contains all the states that can be reached after t
steps by traces starting from any point in B[0].

The exploration of X0 starts as follows. First we pick a
point x in the center of X0, let B[0] = X0 and compute the
trajectory and associated balls as shown in Figure 1. One

Figure 2: The three cases: safe, unsafe, unknown.

x2x1

Figure 3: Refining the coverage.

of the following three cases, illustrated in Figure 2, may
happen.

1. None of the balls intersects the set of bad states and
in this case we are safe because these balls constitute
an over-approximation of what may happen starting
from any point in X0;

2. Some x[t] enters the bad region and a concrete counter-
example to the safety of the system is found;

3. Some B[t] intersects the bad set but no x[t] does. Here
we do not know if this represents a real counter-example
or is just a side effect of the over-approximation.

In this last case we backtrack to B[0] and refine our cov-
erage, that is, replace x by two points x1 and x2 and two
(smaller) balls around them that cover X0. For each of those
points we repeat the process as illustrated in Figure 3. Nat-
urally, this procedure tends to refine the sampling in the
suspicious parts of X0. Except for the pathological case
where traces touch the boundary of the bad region without
crossing it (which can be resolved by adding some tolerance
constant), this procedure can prove bounded-horizon safety
for a system admitting a non-countable but static under-
determination using a finite number of simulations. This
technique has been implemented into the tool Breach1 and
has been applied to the process of parameter-space explo-
ration in several domains such as embedded control systems,
analog circuits and biochemical reactions.

1http://www-verimag.imag.fr/~donze/breach_page.
html

x0

Figure 4: Trajectories induced by inputs from x0

and the set of reachable states.

4. COMPUTING REACHABLE SETS
In this section I illustrate the principles of computing

reachable sets for continuous (and hybrid) systems, which
is essentially a set-based extension of numerical integration.
We treat here systems with initial-state under-determination
(which can be easily extended to parameters) and dynamic
input under-determination. Let x ∈ X∗ and v ∈ V ∗ denote
sequences of states and inputs, respectively. An initial state
x and an input sequence v = v[0], . . . , v[t − 1] yield a trace
(trajectory) x = x[0], . . . , x[t] such that x[0] = x and for
every i, x[i] = f(x[i − 1], v[i − 1]). Letting x[t] = x′ we say
then that input v takes the system from x to x′, denoted

as x
v−→ x′, or that x′ is reachable (via v) from x within t

time:

Rt(x, v) = {x′}.

This notion speaks of one initial state, one input sequence
and one time instant. Let us generalize it for a set of initial
states X0 , for all time instants in an interval I = [0, r]
and for all (prefixes of) sequences in V ∗. This yields the
definition of the reachable set:

RI(X0) =
⋃

x∈X0

⋃
t∈I

⋃
v∈V ∗

Rt(x, v).

Figure 4 illustrates the induced trajectories and the reach-
able states for the case where X0 = {x0}.

The previous remark equating the relation between simu-
lation and reachability computation to the relation between
depth-first and breadth-first exploration of the space of tra-
jectories corresponds to the commutativity of union:⋃

t∈I

⋃
v∈V ∗

Rt(x, v) =
⋃

v∈V ∗

⋃
t∈I

Rt(x, v).

Simulation corresponds to the expression on the right-hand
side: each time we pick one v ∈ V ∗ and simulate the system
until time t. Reachability computation correspond to the
expression on the left: each time we increment time and
compute states reachable via all inputs v ∈ V t from those
reachable via inputs in V t−1. This is possible because the
reachability operator admits the semigroup property with
respect to time, namely:

R[0,t1+t2](X) = R[0,t2](R[0,t1](X)).

Hence, the computation of RI(X) for an interval I = [0, r]
can be achieved by the following incremental algorithm:2

Algorithm 1 (Abstract Reachability).
Input: A set X0 ⊂ X
Output: Q = R[0,r](X0)

P := Q := X0

repeat i = 1, 2 . . .
P := R1(P)
Q := Q ∪ P

until i = r

If we are interested in reachability for unbounded time hori-
zon, the termination condition i = r should be replaced by
P ⊆ Q, that is, the newly-computed reachable states are
included in the set of states already computed.

The concrete realization of Algorithm 1 for various types
of dynamics, using various classes of geometrical objects to
store (approximations of) the sets encountered during the
computation, is an adaptation of the basic idea of algo-
rithmic verification (model checking) to the continuous and
hybrid domains. This is a challenging problem involving
discrete algorithmics, numerical analysis and computational
geometry of very high dimensionality, much beyond what
one typically encounters in graphics or robotics. I will give
a flavor of this domain using systems with linear dynamics.3

An open dynamical system (X,V, f) is linear when

f(x, v) = Ax+Bv

with A and B being matrices of the appropriate dimensions.
To simplify notation let B be the unit matrix hence f(x, v) =
Ax+ v. The basic step in the algorithm is the computation
of R1, the f -image of a set P :

P ′ = {Ax+ v : x ∈ P, v ∈ V } = AP ⊕ V

where ⊕ is the Minkowski sum of two sets defined as

A⊕B = {a+ b : a ∈ A ∧ b ∈ b}.

Assume P is a convex polytope (a bounded convex poly-

hedron) represented by its set of vertices P̃ , which is the
minimal set of points for which P is the convex hull, P =
conv(P̃). The convex hull of a set {x1, . . . , xl} is the set of
all convex combinations of its elements, that is, points of the
form x = λ1x1 + · · ·+λlxl such that

∑l
i=1 λi = 1 and λi ≥ 0

for every i. To compute AP = {Ax : x ∈ P} we take advan-

tage of the fact that P = conv(P̃) implies AP = conv(AP̃).
In other words, applying A to the vertices of P we obtain
the vertices of P ′ as illustrated in Figure 5. This simple
idea already solves the problem of exhaustive exploration
of a static under-determination space associated with ini-
tial states. For dynamic disturbances, the problem is more
difficult and we illustrate several approaches for handling it.

One approach is to take the expression AP ⊕ V literally
and compute the Minkowski sum as illustrated in Figure 6.

2We use R1 as a shorthand for R[1,1]. In continuous time P
is initially set to R[0,1](X0).
3To avoid a common confusion, let me stress that I refer
to systems which in continuous time are defined by linear
differential equations of the form ẋ = Ax and in discrete
time by recurrence equations of the form xi = A′xi+1 where
A′ is obtained from A via the matrix exponential associated
with the time discretization constant.

x′4 = Ax4

x′6 = Ax6
x′1 = Ax1

AP

x′3 = Ax3

x′2 = Ax2

x′5 = Ax5

x1

x2

x5

x6

x3

P
x4

Figure 5: Computing AP from P by applying A to
the vertices.

P ⊕ V

P

V

Figure 6: Adding an input polytope V to a polytope
P leads to a polytope P ⊕V with more vertices. The
phenomenon is more severe in higher dimensions.

P ′ ⊃ P ⊕ V

P
V

Figure 7: Applying to each face of P the element of
V which pushes it outwards to the maximum. The
result will typically not have more facets or vertices
but it is a superset of P ⊕ V (shaded triangles rep-
resent the over-approximation error).

The problem is that unlike linear transformations, the sum
operation increases the number of vertices. Its successive ap-
plication will prohibitively increase the number of points to
which A is applied. Consequently, methods for reachability
under inputs need some compromise between exact compu-
tation that leads to explosion and approximations that keep
the representation size small but may accumulate errors to
the point of becoming useless, a phenomenon known in nu-
merical analysis as the “wrapping effect”.

To over-approximate the reachable set while keeping its
complexity more or less fixed, assume P to be represented
in (or converted into) inequality representation (intersection
of halfspaces). For each supporting halfspace Hj defined by
ajx ≤ bj , let vj ∈ V be the input vector which pushes Hj

in the “outermost” way, that is, the one which maximizes
the product v · aj with the normal to Hj . In the discrete
time setting described here, vj is some vertex of V for every
j. We then apply to each Hj the transformation Ax+Bvj

and the intersection of the halfspaces thus obtained is an
over-approximation of AP ⊕ V (see Figure 7).

It turned out to be possible to have both accuracy and
efficiency due to the following observation. If we look at two
consecutive sets Pi and Pi+1 in the computation, they have
the form

Pi = AiP0 ⊕Ai−1V ⊕Ai−2V ⊕ . . .⊕ V

and

Pi+1 = Ai+1P0 ⊕AiV ⊕Ai−1V ⊕ . . .⊕ V.

As one can see, these two sets “share” a lot of common terms
that need not be recomputed. Algorithms based on this fact
keep a symbolic “lazy” representation of the reachable set on
which the transition from i to i+1 always involves the same
number of linear transformations. While this representation
is not very useful for Boolean operations or for visualization,
each Pi can be efficiently and tightly over-approximated by
a simpler type of set, but this object is not used to compute
Pi+1 and hence the wrapping effect is avoided.

This concludes our short excursion into the exhaustive
exploration of dynamic under-determination in the context
of continuous systems, which can be extended to (and in
fact has been motivated by) hybrid systems by intersect-
ing reachable sets with the switching surfaces (transition
guards). The idea of applying set-based computation to hy-
brid systems was among the first contributions of the verifi-
cation community to hybrid systems research [1] and was ini-
tially applied to hybrid automata with very simple dynamics
in each state, namely constant derivative which in discrete
time can be written as f(x, v) = x+ c+ v for a constant c.
The pioneering tool for computing reachable states for such
systems was HyTech [6] which has been superseded after a
decade by the more modern Phaver [5]. The approach for
linear systems based on polytopes has been developed inde-
pendently in [2] and [3] leading to the tools CheckMate and
d/dt, respectively. Other approaches for computing reach-
able sets represent such sets using ellipsoids [7], are inspired
by the numerical solution of partial-differential equations
[11] or combine reachability with optimization [12]. The ef-
ficient yet precise algorithmic scheme for linear reachability
is described in detail in [8] where support functions [9] are
used as a general symbolic representation of convex sets.
The tool SpaceEx: the State-Space Explorer4, developed at

4http://spaceex.imag.fr

verimag under the direction of G. Frehse, robustly inte-
grates and improves many of these ideas.

5. TIMED SYSTEMS
In this section I briefly illustrate how these concepts are

instantiated in timed systems. Imagine a stream of com-
putational jobs arriving for execution on a platform con-
sisting of several machines. Each job is modeled as a task
graph with tasks related by precedence constraints. These
tasks are scheduled to execute on the machines that they
occupy for their respective durations. For a deterministic
setting, assume all jobs are identical, arrive periodically with
a fixed period, and are scheduled to execute by a determin-
istic scheduler. In this case the system can be simulated by
a timed discrete-event simulator which maintains the state
of the system as a queue of pending events and advances
time progressively to the next events (task termination or
job arrival). The formulation of such a system as a dynami-
cal system can be done using timed automata that combine
discrete states and clock variables that measure the time
elapsed since the initiation of tasks which are still active in
a given state. Practitioners who are content with the sim-
ulator “semantics” will not bother to make the dynamical
system formulation as they do not see the added value of
the formal investment.

Under-determination can enter the picture in many forms.
Identity of jobs may differ between instances, arrival rate
may have jitter or become completely sporadic, external
workload from other unmodeled parts of the system or ma-
chine faults may influence machine availability and so on and
so forth. Let us focus on one type of under-determination,
the duration of tasks, which for each task Ti we consider to
be in an interval [ai, bi]. Static under-determination would
mean that once a duration di ∈ [ai, bi] has been chosen, all
instances of task Ti will have that duration. This is a finite-
dimensional parameter space which is a hyper-rectangle cor-
responding to the product of all duration intervals of the task
types. Dynamic under-determination obtains when each in-
stance of a task may choose a different value inside its du-
ration interval, which means that each trace of the system
corresponds to a point in an infinite-dimensional rectangle.

Exhaustive coverage can be achieved by zone-based reach-
ability computation for timed automata. This procedure
can detect combinations of task durations that lead to bad
states such as deadline violation. This approach suffers from
two drawbacks: first, it is computationally expensive, hav-
ing to manipulate high-dimensional polytopes in the clock
space (they are simpler than arbitrary polytopes, though)
as well as discrete states whose number may grow exponen-
tially with the number of tasks. Secondly, it has a worst-case
flavor not compatible with performance evaluation of soft
real-time systems: it will always include in its output pes-
simistic scenarios where each task instance takes the upper
bound of its duration interval. To alleviate these problems
one may assume a probability distribution over the dura-
tion space, conduct random simulations and collect statis-
tics. The second problem can be treated alternatively by
generalized (stochastic) reachability where not only reach-
able states are computed but also their distributions. This,
however, does not make the computation easier.

6. DISCUSSION
Although large parts of what is presented here is known, at

least implicitly, to those working in model-based design and
analysis of systems, it is hoped that the presentation helps to
bridge the gap between the practice of simulation and the
more advanced but expensive approaches based on formal
verification. In particular, it gives some idea about what
verification tools for continuous, timed and hybrid systems
can do.

Acknowledgement: E. Asarin, D. Nickovic and T. Dang
gave some useful comments and advice.

7. REFERENCES
[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A.

Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science,
138(1):3–34, 1995.

[2] A. Chutinan. Hybrid System Verification using
Discrete Model Approximations. PhD thesis, Carnegie
Mellon University, 1999.

[3] T. Dang. Verification and Synthesis of Hybrid
Systems. PhD thesis, Institut National Polytecnique
de Grenoble, 2000.

[4] A. Donze. Trajectory-based Verification and Controller
Synthesis for Continuous and Hybrid Systems. PhD
thesis, Université Grenoble 1 – Joseph Fourier, 2007.

[5] G. Frehse. Compositional Verification of Hybrid
Systems using Simulation Relations. PhD thesis,
Radboud Universiteit Nijmegen, 2005.

[6] P.-H. Ho. Automatic Analysis of Hybrid Systems. PhD
thesis, Cornell University, 1995.

[7] A. A. Kurzhanskyi. Modeling and Software Tools for
Freeway Operational Planning. PhD thesis, UC
Berkeley, 2007.

[8] C. Le Guernic. Reachability Analysis of Hybrid
Systems with Linear Continuous Dynamics. PhD
thesis, Université Grenoble 1 – Joseph Fourier, 2009.

[9] C. Le Guernic and A. Girard. Reachability analysis of
linear systems using support functions. Nonlinear
Analysis: Hybrid Systems, 4(2):250 – 262, 2010.

[10] O. Maler. Control from computer science. Annual
Reviews in Control, 26(2):175–187, 2002.

[11] I. Mitchell. Application of Level Set Methods to
Control and Reachability Problems in Continuous and
Hybrid Systems. PhD thesis, Stanford University, 2002.

[12] F. D. Torrisi. Modeling and Reach-set Computation for
Analysis and Optimal Control of Discrete Hybrid
Automata. PhD thesis, ETH Zurich, 2003.

