
Reducing Power with Activity Trigger Analysis

Jan Lanik∗, Julien Legriel†, Erwan Piriou‡, Emmanuel Viaud†, Fahim Rahim†, Oded Maler∗, and Solaiman Rahim †
∗Verimag, †Atrenta, ‡CEA-LIST

§Email: {jan.lanik,oded.maler}@imag.fr, {julien,emmanuel,fahim,solaiman}@atrenta.com, erwan.piriou@cea.fr

Abstract—In this paper we propose and implement a method-
ology for power reduction in digital circuits, closing the gap
between conceptual (by designer) and local (by EDA) clock gating.
We introduce a new class of coarse grained local clock gating
conditions and develop a method for detecting such conditions
and formally proving their correctness. The detection of these
conditions relies on architecture characterization and statistical
analysis of simulation, all done at the RTL. Formal verification
is performed on an abstract circuit model. We demonstrate a
significant power reduction from 33 to 40% of total power on a
clusterized circuit design for video processing.

I. INTRODUCTION

Power consumption has become a very important parameter
of current electronic designs, for battery-powered devices such
as mobile phones as well as for non-portable applications
due to the requirement for temperature control in high per-
formance modern chips [1]. Although power consumption
can be measured and estimated precisely only after physical
implementation, it turned out to be important to have reliable
power analysis early in the design flow, at the register transfer
level (RTL). Architectural decisions made at the RTL level
can severely impact power consumption and detection of bad
architectural choices at later stages might require an iteration
back to RTL and incur time delays with negative financial
consequences.

A prominent source of power dissipation is dynamic power,
which is consumed when the transistors in the circuit change
their states [2]. A significant part of this power is dissipated in
the clock tree [3]. Clock gating is one of the most efficient
techniques for reducing power dissipation. It is based on
disabling the clock of design blocks when they do not perform
any useful computation. This leads to direct power savings
in the clock tree and, in some cases, in the block itself [1].
The implementation of this technique depends on clock gating
conditions, which specify when an associated block can be
safely deactivated.

Clock gating conditions can be identified at two abstrac-
tion levels. At the architectural (or conceptual) level, large
functional units may be clock-gated using high-level control
signals. For instance, the floating point unit of a processor can
be clock-gated when the currently processed instructions do
not require such a computation. At the local level, registers can
be clock-gated based on a local analysis of the circuit logic.
This typically involves looking at the conditions under which
the register data is being read (e.g., using select conditions),
or propagating enables of upstream/downstream registers.

Local clock-gating has been shown to significantly reduce
dynamic power consumption and is supported by several
EDA tools that identify and implement clock-gating based

on ODC/STC conditions, a technique which has shown some
success [4]. However, a typical issue in this methodology is
the complexity of the enable conditions at the local level.
Sometimes these conditions are too complex and will be
avoided by designers because it is unclear if the change will
be safe at later design stages such as timing closure and
routing. Another issue is the trade-off between the power
savings achieved and the number of required changes in the
RTL. Local conditions typically apply to a single bus or few
flip-flops and complex (and hard to verify) conditions should
be used to obtain significant savings.

Being able to provide simple and easily understandable
power saving opportunities is thus an important requirement
for power reduction tools. We claim that this can be achieved
by detecting clock gating conditions at an intermediate level of
abstraction, coarser than typical local clock gating methods but
small enough to be difficult to spot by manual analysis. Typical
targets for this type of conditions are medium-size functional
units such as HDL modules with significant dynamic power.
There are several advantages in using such clock gating
conditions.

1. We can target simple and architecture-related con-
ditions made of a few control signals which are cheap to
implement in terms of added circuitry. They are more com-
prehensible to designers who can judge their correctness by
themselves and make more confident decisions whether or not
to use them. Ideal conditions are such that the designer himself
could discover by a detailed manual analysis.

2. A single clock gating implementation can save much
larger amount of power if it is used higher in the design
hierarchy which furthermore enhances the complexity/saving
trade-off compared to classical local methods.

Intermediate level clock gating closes a gap between con-
ceptual and local clock gating. Clock gating at this level is very
attractive, because of its potential to provide significant power
savings with minimal changes to the circuit. Moreover, to the
best of our knowledge, conditions for intermediate level clock
gating are currently beyond the scope of what EDA tools can
identify. It is an empirical question whether they are abundant,
at least in some application domains, and how difficult it is to
find them. The preliminary findings from our experiments are
encouraging.

Main contributions

• We introduce a class of clock gating conditions called
activity triggers that target intermediate size design
blocks and which are typically related to architectural
intent.

• We develop an algorithm which heuristically detects
potential activity triggers based on a statistical analysis
of activity files (VCD or FSDB) generated by RTL
simulation of the design. These potential triggers
should be verified by a designer or using formal
methods.

• We formalize the concept of activity triggers and
their associated clock gating conditions. We define the
temporal property corresponding to the fact that the
trigger is correct and the clock gating based on the
trigger is safe. We use model checking to formally
verify the property.

• We propose and discuss a complete methodology
where these techniques, that we have implemented
within a commercial EDA tool, are used in an iterative
semi-automatic fashion for finding activity triggers
and efficient clock gating conditions. We demonstrate
the methodology on an industrial video processing
design, achieving a significant reduction of power.

Organization of the paper

The rest of the paper is organized as follows. Section II
presents related work on power reduction using clock gating
techniques. Section III introduces the idea of activity triggers
and illustrates them on a simple (but yet realistic) design. The
concept of activity triggers is then more formally stated in Sec-
tion IV. The core of our method – the statistical detection and
formal verification of activity trigger is described in Sections
IV and V. The complete proposed methodology is detailed in
Section VI. In Section VII we present the experimental results
on the video processing case study. Finally we conclude in
Section VIII and discuss the future work.

II. RELATED WORK

There are multiple algorithms to compute the conditions
for clock gating. In general, the approaches can be classified
as Observability don’t care (ODC) or Stability condition (STC)
based. ODCs [4]–[8] were originally introduced for application
in logic synthesis. The clock can be gated if outputs of a
module are not observable. STCs [4], [7], [9] utilize the fact
that if the next value of a register is equal to the one that is
already stored in it, the register can be gated and the clock
switching power saved. This is especially useful if an STC
is valid for a larger block of registers, so that gating can
be performed higher in the clock tree. Activity triggers are
essentially STCs that are valid for relatively big design blocks.

The ideal clock gating conditions are often very complex
and the cost of the additional clock gating circuitry would be
higher than the savings. Therefore, approximate methods that
compute weaker but simpler conditions were developed [6],
[10], [11]. Our methodology is designed to compute simple
conditions, hence approximation methods are not needed.

When designers are analyzing a circuit in order to find
local clock gating conditions, some clock gating can be already
present. This can be due to clock gating on the architectural
level, or due to reusing parts of the design that are already
clock gated. Some authors [6], [7] focused at strengthening
such clock gating conditions that are already implemented

in the circuit, strengthening conditions that were computed
by other methods and combining them into more powerful
conditions. Conditions discovered by our approach can be used
as an input for these strengthening methods. Conversely, some
partial clock gating in the analyzed design block could be
used for simplifying the formal verification part of our flow,
however this is not implemented. For detection, we ignore
signals that are already used for clock gating, as our main goal
is to find conditions that were not considered by a designer
previously.

Hurst [9] introduces a guess-and-prove approach, which
selects clock gating condition candidates from the existing nets
in the design using heuristic based on timing and structural
considerations. Candidates are then pruned using simulation
and a formal proof is attempted for the remaining nets.
Such conditions have the benefit of being already physically
available in the design, therefore the added clock gating
circuitry is very simple. A similar guess-and-prove approach
was described in [?] where the candidates are not single nets
but pairs of them, such that a simple invariant holds over them
(a particular value of one signal implies a particular value of
other signals). The invariant can be used for ODC based clock
gating (the fanin of the implied signal can be disabled). The
functional correctness has to be formally verified.

Another guess-and-prove method is described in [12] and
[13]. This approach uses machine learning on simulation traces
to infer clock gating conditions that are less complex and
cheaper to implement than those coming from the traditional
structural detection methods (e.g., [4]). In contrast with [9],
simulation traces in [12], [13] are not just only to prune
incorrect candidates, but also to collect the candidates from
the positive examples in the simulation. The conditions are
however very local (the analysis is done on the level of single
registers).

Outside of power reduction context, the idea of mining
simulation traces for useful design intent related invariants was
introduced in [14] for software and later in [15] for hardware.

Our approach is based on a guess-and-prove concept, the
candidates are generated based on a statistical analysis of
a simulation trace, which yields a relatively small set of
candidates for clock gating. Furthermore, we take the user in
the loop, so that he can interactively add constraints, which
may be necessary for the formal check or he can verify
candidates manually if the module is too big for formal check,
but the condition is simple and easy to understood. The main
advantage compared to the previous work, however, is that the
conditions that we collect are usually coarse grained, simple
and closely related to the design intent.

III. ACTIVITY TRIGGERS

Our approach is focused on clock gating conditions that
are not necessarily optimal gating conditions for a particular
register but are simple to implement and shared by many regis-
ters; typically by an entire HDL module. These conditions are
related to different modes in which a digital design operates.
If a circuit operates in multiple different modes, there may be
parts of the circuit that are used only for one of these modes.
Thus, the goal is to find conditions that correspond to moving

line idle

start bit

1 1

0

1

0 0

1

0

two stop bits
line idle

data transmission

Fig. 1. Serial line transmission of the character ‘K’ in the ACSCII encoding

TRANSMITER

RECEIVER

uart

UART

clk

rst

rx

transmit

tx_byte[7:0]

received

recv_byte[7:0]

is_receiving

recv_error

is_transmitting

tx

CNT
o
u
t

re
g

in
p
 r

e
g

CNT

CONTROL

FSM

CONTROL

FSM

Fig. 2. Schema of a simple UART design

in and out of such a state where a part of the circuit is not
used.

To illustrate the concept we use a simple UART (Universal
Asynchronous Receiver/Transmitter) circuit. UART is a com-
mon digital design that can be used to interface fast electronic
circuitry (from now on ‘a computer’) with slow peripheral
devices. A device is connected to the UART by a serial line
that allows to communicate data in a sequential fashion (one
bit at a time). The communication follows a specific protocol.
When there is no data transfer, the value on the serial line is
set to logical 1. When the sender wants to transfer data, first
it sets the serial line to 0 (start bit) for one time frame and
then follows by transferring one byte of data 1 bit per frame
(8 frames). Subsequently, the protocol requires the sender to
insert at least two frames with logical value 1 (stop bits). Then
the sender can continue sending another byte (starting with
start bit) or stays idle until another transmission is needed.
Fig. 1 depicts a transmission of one byte via serial line.

The implementation of UART that we use is based on an
open source design available at “http://opencores.org/project,
osdvu”. It is a simple implementation that supports only the
core functionality. The design (Fig. 2) is divided into two main
modules.

The RECEIVER facilitates the communications sent from a
peripheral device to a computer. It listens at the serial input line
rx. It is idle until the peripheral sets the line to 0 announcing
a start of a transmission. During the next 8 frames the UART
samples value from the serial line in the middle of the time
frame multiple times in order to minimize possible errors.
The collected bits are placed in the output register rx_byte.
After a whole byte is received, the availability of new data is
signaled to the computer by raising flag received (which

IDLE SENDING

DELAY
RESTARTRECOVER

transmit == 1
transm

ission
sent

waiting finished

tra
n
sm

it
=

=
0

Fig. 3. UART transmitter control FSM

will typically generate an interruption in the computer). If
the communication protocol is not followed (e.g. missing stop
bits), the UART goes to an error state (signaled by raising flag
recv_error). The UART recovers from the error by waiting
for a long time (sufficient to perform multiple transmissions)
and then returning to the initial state.

The TRANSMITTER can be used by a computer to send
data to a peripheral device. The computer fills the input bus
tx_byte with a byte of data that it wants to transmit. Then it
sets transmit to 0. The UART transmits the byte to the se-
rial line tx. The UART utilizes the flag is_transmitting
to announce its current state: 0 signalizes to the computer that
the UART is ready to transmit another byte.

Both the TRANSMITTER and the RECEIVER are divided
into three main register subgroups, which can be implemented
as HDL modules but do not have to be if the designer does
not aim for a maximal modularization of the design.

1) CONTROL is a unit, which controls the operation. It
contains a register bus that represents the control FSM
plus a few additional control registers.

2) CNT is a counter that is used to measure the time
elapsed in various FSM states.

3) inp_reg/out_reg are register buses, which are
used to store the received byte in case of the
RECEIVER and the byte that is to be transmitted in
case of the TRANSMITTER.

Consider the control automaton of the TRANSMITTER
module on Fig. 3. Every state corresponds to a mode of
operation of the TRANSMITTER and not all submodules of
the TRANSMITTER are used in every state:

IDLE: Initial state before the beginning of a transmission.
The state is left when the transmit flag is raised. The input
tx_byte is propagated into the input register together with
changing the FSM state. All registers in the TRANSMITTER
are stable in this state.
SENDING: The transmission is performed in this state.
Some registers in CONTROL and CNT submodules are used
extensively.
DELAY RESTART: The TRANSMITTER waits for a
predefined time after the transmission is finished. CNT is
used.

http://opencores.org/project,osdvu
http://opencores.org/project,osdvu

RECOVER: The design waits in case the transmit flag
was not set to 0. No registers are used beside those in the
FSM upon leaving the state.

The registers that are not changing value in a particular
mode can be clock gated. For instance, we can clock gate the
entire transmitter when it is in the mode associated with the
IDLE state of the FSM. However the state cannot be used
as a clock gating condition directly, because clock gating
would prevent the state of the FSM to be changed and the
design would remain in IDLE state indefinitely. Instead, we
identify the conditions associated with entering and leaving
the state. Particularly, the condition associated with enter-
ing the IDLE state and starting the clock gating would be
“FSM==RECOVER && transmit==0”. The condition for
disabling the clock gating and leaving the FSM state would be
simply “transmit==1”.

We can find similar conditions for every state in the FSM
and use them for clock gating of registers that are not used
in that state. Furthermore, some registers are used only in
rare situations. For instance the value in the input registers
can be changed only when taking the transition from IDLE to
SENDING. Hence the clock enabling condition for this register
group would be “FSM==IDLE && transmit==0” and the
clock disabling condition would be“FSM==SENDING”. This
way we can activate the input registers clock only when it is
needed (one out of multiple thousands clock cycles).

The conditions that we identified are defined only on a few
signals, so the additional clock gating logic will be simple and
they are valid for relatively big design blocks (more than just
one bus or a few registers), so they are more coarse than typical
local clock gating conditions.

Ideally, such intermediate level coarser conditions should
be identified by a designer. Then, if their validity is not
obvious, our framework can be used to formally verify it.
However, because of extreme complexity of current designs,
reuse of old modules and purchased IPs, it is usually not
possible for one person to have a detailed knowledge of all low
level aspects of a design. For instance, if the UART was used
in practice, it would be probably just a small part of a much
bigger system and the designer might reuse the UART from
some old project. In such case he would probably regard it as a
black box component and he would not have time to perform a
detailed manual analysis of the internal implementation details.

Hence, intermediate level clock gating conditions are often
not recognized by designers and it is very useful to have an
automatic tool to identify them. Furthermore, we observed
that activity of some modules is not always triggered by a
static condition like a state of a bus (representing an FSM
state for instance) or a signal but often the activity triggering
event corresponds rather to a transition. For instance, setting
an instruction register to a particular value triggers the activity,
which can continue for some time even after the value of the
register is changed. This often occurs in cases in which some
handshake mechanism is implemented.

We introduce the concept of idle modes and activity trig-
gers. An idle mode of a sub-circuit is a mode in which it is
safe to clock gate the sub-circuit. It will be associated with
two events: a stop event, which forces the design to enter a
idle mode, and a start event, which happens always before the

exit from the idle mode. The combination of stop and start
can be used for clock gating and is called an activity trigger.

Furthermore, it is possible that it takes some time for the
module to enter the idle mode after an occurrence of a stop
event. In this case, the module becomes stable only after a
given number of cycles. This parameter is called offset and is
also a part of an activity trigger.

IV. FORMAL MODELING AND VERIFICATION

A digital circuit consists of various combinatorial logic
gates and sequential memory elements. For the purpose of
formal modeling we will consider the state of the circuit to be
the current Boolean valuation of all the signals (inputs, gate
outputs, memory elements). The dynamics of the circuit will
be modeled by a transition relation that conveniently hides all
the structural details. This definition differs from traditional
circuit model in the sense that the states are not restricted
to the states of the sequential elements. This assumes some
discrete time domain and instantaneous signal propagation,
a reasonable assumption for well-timed synchronous circuits.
For simplicity, we assume that every design has one initial
state. In reality, although the initial state of a circuit is typically
undefined, a unique state is often reached via a reset sequence.

Definition 1: A digital circuit (design) is a tuple
(X,Q, T, q0), where

• X is a finite set of variables that correspond to signals
in the circuit.

• Q is the state space of the circuit. Each state is of
the form x : X → B and has to satisfy combinatorial
constrains imposed by the structure of the circuit.

• T ⊆ (Q×Q) is a transition relation describing the
circuit dynamics.

• q0 ∈ Q the initial state of the design.

The semantics of the circuit, the execution traces it gener-
ates, is defined using paths in its automaton model.

Definition 2: An execution trace σ of a circuit
D = (X,Q, T, q0) is a sequence q[0], . . . , q[τ] of states, where

• q[0] = q0,

• For all 1 ≥ i ≥ τ it holds that (q[i− 1], q[i])∈T .

We use notation x[t] to refer to the value of a signal variable
x∈X at the time t when the execution trace is clear from the
context.

We will use linear time temporal logic (LTL) with past
operators (PLTL) [16], [17] to specify execution traces. This
allows us to define the validity of activity triggers as properties
that must hold for every execution of the circuit. Using past
operators is more natural in our context than standard LTL as
the clock gating conditions need to refer to the past behavior
of a circuit.

Definition 3: A PLTL formula over a set of variables X is
defined inductively as follows.

1) For x ∈ X , x is a PLTL formula.

2) Let Ψ and Φ be PLTL formulae. The following are
also PLTL formulae:
• ¬Φ
• Φ ∧Ψ
• �Φ (previously Φ)
• ΦSΨ (Φ since Ψ)

The rest of the Boolean and temporal operators can be
derived from ¬,∧,�,S. We also introduce a shortcut for a
multiple application of the � operator, letting �0Φ = Φ and
�iΦ = ��i−1 Φ when i>0.

Definition 4 (PLTL Semantics): Satisfaction of a PLTL
formula Φ by a trace σ at a time t, denoted by (σ, t) |= Φ, is
defined as follows

(σ, t) |= x ⇔ x[t] (in the context of σ)
(σ, t) |= ¬Φ ⇔ (σ, t) 6|= Φ
(σ, t) |= �Φ ⇔ t 6=0 and (σ, t−1) |= Φ
(σ, t) |= ΦSΨ ⇔ ∃j, 0 ≤ j ≤ t such that (σ, j) |= Ψ

∀i, j < i ≤ t such that (σ, i) |= Φ.
(1)

Satisfaction of a formula by an entire trace is defined as
satisfaction (backwards) from its last state.

σ |= Φ⇔ (σ, |σ|) |= Φ (2)

We will use PLTL to define stability and other properties
related to activity triggers.

Definition 5: Let D = (X,Q, T, q0) be a design and let
σ = q[0], . . . , q[τ] be an execution trace. The stability of a
signal x ∈ X is defined as follows

stable(x) = (x ∧�(x)) ∨ (¬x ∧�(¬x)). (3)

Furthermore, we can naturally extend the notion to define
stability of an arbitrary set of signals M ⊆ X .

stable(M) =
∧
x∈M

stable(x). (4)

This notion is important for clock gating because if M repre-
sents a set of sequential elements of the original circuit, these
elements can be gated in clock cycles in which stable(M) is
satisfied.

We can now define activity triggering events that control
the transition of sub-circuits into and out of idle modes where
all their registers are stable. Such events can be, in principle,
sequences specified by any PLTL formulae, but for statistical
detection we restrict them to be transitions on a set of signals.

Definition 6 (Signal transitions): Let σ be an execution
trace and let (x1, · · · , xn) be an ordered set of signals.
Let b1, · · · , bn, b′1, · · · , b′n ∈ B. We say that (x1, · · · , xn)
makes a transition (b1, · · · , bn) → (b′1, · · · , b′n) at time t if
(σ, t) |=

∧i=n
i=0 ((xi ↔ b′i) ∧�(xi ↔ bi)).

An activity trigger for a module M consists of two events
α and β such that α initiates the activity of M and β stops it.
Typically, a module needs a few cycles to stabilize after the
occurrence of β. The length of the stabilization period (offset)
is denoted d. When M is active, the occurrence of β should
enforce M to become idle within d time steps unless it has

been aborted by an occurrence of α. This condition, whose
satisfaction initiates clock gating, is expressed in PLTL as:

�dβ ∧
d∧
i=0

�i¬α.

Clock gating can be continued as long as the start event α has
not been observed.

Definition 7 (Valid activity trigger): Let α, β be signal
transitions (or more generally any PLTL formulae) and d a
positive. A triple (α, β, d) is a valid activity trigger for a
module M if all traces of the circuit satisfy

¬αS

(
�dβ ∧

d∧
i=0

�i¬α

)
⇒ stable(M), (5)

Formal verification

A key feature of our methodology is that it can be formally
verified whether a given candidate is a valid activity trigger for
a module or a set of registers. To prove that an activity trigger
(α, β, d) is indeed valid, we need to show that (5) holds for
all possible behaviors of the system.

To implement this check using a circuit-oriented model
checker we encode the condition stable(M), which monitors
the stability of a set of registers in the sense of (3) and (4),
as an additional signal which is low if the value of some
registers changed in the last clock cycle. Change detection for a
simple memory element is realized by applying ’exclusive nor’
(XNOR) to its input and output. For a more complex register,
we store the previous value in an auxiliary register and apply
the XNOR to the two registers. Combining the results for all
registers we obtain the required signal.

Using this new signal we construct an observer automaton
(Fig. 4) which corresponds to the temporal formula (5). When
this automaton is composed with the circuit automaton, it will
enter the property violation state and only if (5) is violated.
Thus validity of candidate activity triggers amounts to non-
reachability of the error state, which can be proved using any
formal verification tool capable of proving safety properties.
For the tools used in our implementation see Section VI.

If the activity triggers are valid, the monitor automaton can
be used, in principle, to control clock gating, enabled exactly
when it is MODULE IDLE state (Fig. 4). This application of
the monitor is, however, possible only if the inputs α and β
of the automaton are not affected by the clock gating itself.

Constraints

Often it is not possible to prove the validity of an activity
trigger under every possible input, but it is still valid under
all input scenarios that can occur in our system. For instance
we assume by default that the reset signal is used only at the
beginning of any possible execution to initialize the design.
A non-default assumption can for instance fix the value of
some configuration registers or force the input signal values to
follow some protocol. The UART’s communication protocol
can be an example of a complex input assumption. Another
assumption for UART is that the clock driving the input is
much slower than the clock driving the UART. Most of modern

MODULE
ACTIVE

¬β ∨ α

MODULE
IDLE

α ∧ stable

· · ·¬αβ ∨ ¬α ¬α ¬α
d−1 delay nodes

α α α

¬α ∧ stable

PROPERTY
VIOLATION

¬stable

Fig. 4. An automaton for checking validity of activity triggers (5).

electronic designs are configurable and are used as a part of a
bigger system that implies constraints on the input, therefore
it is important to have a mechanism that allows to specify
such constraints so that only constraint-satisfying behavior is
considered by the reachability analysis. In our tool, we use
user-defined constraints during the formal check.

It is typical that industrial designs don’t contain all the
constraints necessary for a successful proof of an otherwise
valid trigger. For such cases we propose an iterative constraint
refinement procedure – when the trigger is disproved, the
designer can manually examine the provided counterexample.
In case the counterexample does represent a behavior that
cannot occur in the circuit, the designer can add a constraint
and run the formal check again. This can be repeated until we
find a realistic counterexample or until the trigger is proven.

V. STATISTICAL TRIGGER DETECTION

Power optimization at the architectural level is sometimes
performed by design teams as they analyze the simulation to
find potential optimizations (e.g., idle periods where the clock
is still active) or power bugs in the RTL (e.g., cases where the
idle state of a block is badly implemented and the block still
has activity). As the design scale increases this methodology
may get difficult, prone to error, and time consuming. Also
the use of third party IPs for which little knowledge on the
architectural properties is known may complicate the analysis.
The methodology we propose starts with automatically analyz-
ing the simulation file in a first step, in order to identify the
design blocks of interest (i.e. with significant potential power
savings) as well as to point out the interesting activity events
and signals that trigger them. In a second step, we provide a
formal flow which can verify clock gating conditions based
on activity triggers. This may be done either on the triggers
found during our automatic simulation analysis or on trigger
conditions directly provided by the user. When the verification
is successful, the clock gating condition is proved to be safe
in the sense that a whole block may be clock-gated without
breaking the functional behavior of the design.

In order to detect activity triggers we use a heuristics-based
statistical approach. The idea is based on a hypothesis that the
activity triggering events can be found in a short time window
before and after the idle periods in the simulation traces. The
user performs an RTL simulation of the design, based on a
set of test vectors that should represent standard behavior of
the circuit. Such vectors are commonly used by designers, e.g.,

Fig. 5. Idle periods in a simulation

Fig. 6. Coverage and noise

for functional verification or power estimation. The changes of
signal values during the simulation are stored in a file (VCD or
FSDB). Then our detection tool performs the following steps
in order to find a set of events that have a good chance of
being activity triggers.

1) Design decomposition: First, we need to define the set
of sub-circuits for which we want to analyze the activity. In
general, a sub-circuit can be any set of registers chosen by
some meaningful strategy. Typically, these are RTL modules or
user-defined register groups. For simplicity, we refer to chosen
sub-circuits as modules.

2) Idle periods detection: For every module we analyze
the activity. We identify all the idle periods – i.e., intervals
in which no registers were switching. For such intervals, there
will be a minimal length in order to remove very short periods
that may be noise.

3) Finding potential triggers: For each idle period, we
look for signals having a transition during a short window
before/after the period. The size of this window is a parameter
to the procedure. For instance, if a signal goes 0 → 1 before
every idle period, it is a good stop event candidate. We also
analyze transitions of small buses. For instance if a bus always
goes 0001 → 0010 after an idle period, it is a start signal
candidate. This is especially useful for buses that hold an FSM
state.

To distinguish between potential candidates, we introduce
two statistical indicators for each transition, coverage and
noise. The coverage is the percentage of the idle periods
that may be affected by a transition (i.e., the transition is
observed before the period). The noise is the percentage of
transition occurrences outside of the window before/after the
idle period (Fig. 6). Candidates with high coverage and low
noise are considered to be strong candidates, even though not
all of the true triggers need to have 100 % coverage (not
every idle period has to be controlled by that trigger) and 0%
noise (e.g., a start event happening within an active period
is possible but has no effect). However, experiments show
high/low coverage/noise to be a good indicator.

4) Filtering, ranking and reporting: We employ a number
of heuristics to remove weak candidates or candidates that are

strongly depending on each other.

• We filter out all the transitions that don’t have a good
coverage and noise rankings.

• We perform a structural check to remove signals that
are not in the fanin/fanout of the module. A start event
related to a signal that cannot reach the module in its
fanout cone is eliminated (as it cannot influence the
module). Respectively, a stop event related to a signal
that doesn’t have the module either in the fanin or
fanout cone is eliminated (it cannot influence or be
influenced by the module).

• We remove highly active signals (like clocks), if they
were not already removed due to a high noise ranking.

• We compute shortest path from the signal to the
module. This can be used to filter out candidates that
cannot have a cau sal relation to the activity event.

• We eliminate the candidates that are already used for
clock gating.

To illustrate the detection we will use the UART
RECEIVER module. On Fig. 7 we can see the combined
activity of all nets in the receiver module during a test ex-
ecution. It contains blocks of activity that represent receptions
of one transmission block each. After the statistical analysis
we find that the transition 000→001 of the FSM is reported
as a possible start event and the transition 0→1 of the signal
received is reported as a possible stop event. Both events
have coverage 100% as the receiver’s FSM is moving from
000 (wait for a new transmission) to 001 (start processing a
new transmission) before every block of activity (transmission
processing) in the activity graph (Fig. 7) and we can see the
received flag being raised at the end of each activity period.
Both events have noise 0% as neither of them occurs in any
other place in this simulation trace.

The pair (FSM : 000→001, received : 0→1) forms a
valid activity trigger (with an offset 1), which is then formally
proved by the verification tool. However, the fact that the
start signal is defined on the FSM, which is contained in the
module, means that we cannot use it directly for clock gating
of the entire module (as the FSM would be clock gated and
the module would never be activated again). We can use it to
correctly clock gate all the registers other than FSM though,
which represent most of the module’s power.

Still, there exists an event which is a more desirable can-
didate for clock gating. The UART’s communication protocol
requires that the input serial line rx is set to 0 at the beginning
of an incoming transmission. This event can be used to clock
gate the whole receiver module, including the FSM and it is
defined on one wire, hence the added clock gating circuitry will
be smaller. However, rx is used not only to start the transition,
but also to communicate the content of the transmission, hence
it switches not only before the active periods but many times
also within the active periods. Therefore the noise ranking of
rx is very high and the event is filtered by the detection engine.
An experienced designer can easily recognize that the reported
FSM : 000→001 event is triggered by rx : 1→0 and use the
latter for clock gating, however this phenomenon represents a
room for improvement of the current detection heuristic that
will be addressed in future research.

Fig. 7. Activity of UART receiver module

VI. APPLICATION FLOW

We provide a methodology and a tool for an extensive
analysis of activity triggers in digital designs. In our flow, we
expect the user to provide HDL files describing the design,
the constraint definitions (clocks and resets definitions, input
constraints, etc.), and simulation data (VCD, FSDB). Our tool
provides two core functionalities:

Trigger detection: The input is the design HDL and
simulation data. The data is analyzed by our statistical engine
to infer a set of events that seem to be triggering activity.
These triggers need to be verified by a designer or by the
formal verification tool.

Formal verification tool: The input consists of an HDL
description of a design, an activity trigger specification and a
time budget for verification. The trigger specifications can be
supplied manually or taken from the trigger detection engine.
The tool uses ABC’s [18], [19] PDR engine (property directed
reachability [20], [21]) in attempt to prove the validity of the
trigger, while running BMC (bounded model checking [22])
and Rarity Simulation [23] engines in parallel, which allows
to disprove some incorrect triggers faster than only with PDR.
The result of the formal check can be either ”VALID” if
the trigger was proven, ”INVALID” if the verification engine
found an counterexample, which is saved, or ”TIMEOUT” in
case that the time budget was exceeded.

We propose a semi-automatic flow for the designers to be
able to exploit the clock gating opportunities maximally.

1) Run statistical trigger detection on trace files generated
during the simulation. The tool will create a list of possible
activity triggers for every module where some promising
candidate is identified according to the heuristics described
in Section V.

2) Run the formal check with a reasonable time budget
for every detected candidate. The candidates that are proven
at this stage can be used directly for clock gating.

3) For the candidates that are disproved or which were
not proven within the allocated time, these that have a high
potential power reduction (number of affected registers) should
be selected for a manual examination. Sometimes it can be

Fig. 8. A video processing architecture

obvious that a trigger candidate is correct and the designer
may use it directly based on his expert assessment.

4) Otherwise, the designer should examine the counterex-
ample trace of the failing triggers. If he realizes that the trace
corresponds to a behavior that would not be possible in real
execution of the circuit, he can specify input constraints as
System Verilog Assertions (SVA [?]) and add them to the
design files. This process of adding constraints can be repeated
multiple times. Constraints that fix some configuration inputs
or registers are usually necessary for the formal check to be
successful if the design is configurable.

5) In case the designer suspects that the activity is limited
to just a part of a module, it is possible to run the verification
for a specified group of registers only.

For reasons explained before, the detection method per-
forms best when the design is highly modularized. For in-
stance, in the original version of the UART example, the
receiver and the transmitter functionalities are im-
plemented in the same Verilog module. This leads to a strong
interference between different scenarios, e.g., the active pe-
riods resulting from reception in UART are marked as ‘not
covered’ when evaluated w.r.t. a trigger that is valid for the
transmitter. Furthermore, it is not possible to prove validity
of any trigger, without manually specifying the group of
registers for which the trigger is valid (some triggers are
valid for the receiver, some for the transmitter, but
not for both). Highly modularized design, where receiver,
transmitter and ideally also FSM, CNT (etc.) allows the
tool to detect and verify opportunities that would be otherwise
missed due to activity interference.

VII. EXPERIMENTAL RESULTS

In order to demonstrate the efficiency of our methodology
we applied it to a real case study: a cluster for video processing
called SENDS (Smooth ENgine for Data Stream, Figure 8).

SENDS is part of a larger, clusterized and configurable
architecture for video processing. This architecture is coupled
with a CMOS image sensor integrated on the same chip, from

which it takes a pixel stream as input. The circuit can be con-
figured to perform (concurrently or sequentially) several low-
level processes such as various filtering, contrast enhancement,
denoising or YUV to RGB conversion. These computations
constitute a pre-processing step for more involved image
processing such as complex features extraction. This kind of
architecture is used, for instance, in smart cameras.

The SENDS design is organized around a FSM controlling
the datapath scheduling and reception/emission of the pixel
stream. The datapath can be configured. In this particular case
it features smoothing engines, which operate concurrently. The
IP is connected to its interface through a bus, and it has several
inputs for configuration, control and synchronization, as well
as data/control inputs related to the pixel stream. The data
consists of columns of pixels each coming from the sensor. A
pixel has 3 components: Red, Green, and Blue, 8 bits each.
The processing is performed on a pixel window, where the
pixel in the center is computed based on neighboring pixels.
The number of concurrently processed windows corresponds
to the number of processing units available in the architecture.

The pixel stream is first collected in the neighbors module.
When the neighbors register file has been filled with sufficient
data, it notifies the unit control (uc) by raising the signal
start_uc. Then the unit control sends appropriate instruc-
tions (in particular pixels addresses to be processed) to the
macro_pe module. The macro_pe triggers the data retrieval
in the neighbors register file and launches the smoothing pro-
cess. When the computation is finished it notifies the uc which
in turns notifies the serializer using signal end_process.
The filtered pixels are then sent by the macro_pe to the
serializer which outputs the result.

There are several activity triggers which may be identified
for different modules of the SENDS architecture. In particular,
the smoothing engines are all controlled by the pair of signals
(start_uc, end_process), and they could be clock gated
whenever they are non active, waiting for sufficient pixels to
come into the neighbors so that a new pixel window may
be processed. Given that the smoothing engines consume the
biggest part of the dynamic power, this activity trigger should
be a valuable power reduction opportunity.

We applied the methodology described in this paper to the
SENDS design, using different test benches corresponding to
different image processing algorithms. Our statistical detection
was able to correctly identify the activity trigger (start_uc,
end_process) for the smoothing engines in all the test
benches, as well as other activity triggers for the unit control
and the serializer. We also applied the detection algorithm to
the top level design composed of 4 SENDS clusters working
in parallel. We were able to detect the corresponding pair for
each individual cluster in the design, which shows that the
statistical detection scales up to a higher design level. For each
of those experiments, the detection took less than 20min of
computation.

For the case of a single SENDS cluster, we clock gated
the macro_pe using the detected activity trigger. This was
straightforward given that a single signal transition con-
trols the wake-up (start_uc: 0 → 1) and the shutdown
(end_process: 0 → 1). We did this experiment for two
different image processes using 3x3 and 5x5 pixel windows.

Fig. 9. Mean power consumption depending on the pixel neighborhood width
before and after power optimization with the new elaborated optimization rule

We then estimated the power savings by running an RTL power
estimation tool before and after the modification (technology
is CMOS TSMC 45nm worst-case). For the test benches that
we used, the clock gating brought power savings of 33% for
the 3x3 case and 40% for the 5x5 case.

Of course, the activity trigger for the smoothing engines
can also be identified manually with a detailed understanding
of the SENDS architecture and how it is used and config-
ured at the top level. However, such power optimization is
typically finer grained that what is performed manually at
the architectural level, and it could easily be missed. This
optimization is somehow at an intermediate level between what
is done at the architecture/system level (such as shutting down
a whole cluster when it is not used) and what is done at
the local register level such as ODC/STC. Furthermore we
ran a commercial tool for power reduction using ODC/STC
based methods on the SENDS design, and it was unable to
find a simple and effective condition like the one we find
with our methodology. Some clock-gating opportunities were
identified at the register level, but the enable conditions were
really complex, not comprehensible to designers that know the
architecture. In total ODC/STC based power reduction brought
only 1 % power savings for the same test benches.

Concerning the formal part, the initial result for the activity
trigger (start_uc, end_process) was unproved as we
obtained a counter-example. Looking at the violating trace
we could quickly observe that the behavior was spurious.
To eliminate the behavior we added the following two SVA
constraints: 1) A constraint for the architecture configuration
(size of pixel window, number of parallel smooth engines to
use etc.). The constraint basically consisted in setting the value
of a configuration register appropriately. 2) A constraint to
limit the pixel stream throughput. This was necessary to avoid
the behavior where the system gets overloaded with more data
than it can handle (in practice, the pixel stream is coming
from the camera which has a limited frame rate). To set this
constraint we specified a minimum amount of time between
changes at the neighbors module input. With these constraints
our tool was able to formally prove the activity trigger property
in about 5 hours of running the formal engine. Therefore, in
addition to detecting the optimization automatically, we were
able to provide a strong guarantee that the clock gating based
on the activity trigger does not break the functional behavior
of the IP.

design power power covered # registers reg-covered
1 4.169 mW 75.84% 26680 37.17%
2 7.163 mW 54.93% 9128 56.38%
3 0.479 mW 49.62% 1352 82.84%
4 7.145 mW 49.47% 9128 13.56%
5 5.314 µW 31.04% 326 33.74%
6 0.606 mW 16.30% 2070 6.96%
7 8.891 mW 15.58% 690 28.70%
8 92.491 mW 6.77% 30520 4.65%
9 55.851 mW 4.54% 107848 8.14%
10 92.444 mW 2.87% 114546 1.56%
11 1.430 µW 1.61% 162 14.81%
12 4.079 mW 0.70% 5292 0.15%
13 149.955 mW 0.61% 111012 1.11%
14 400.937 mW 0.31% 160530 1.58%
15 8.013 mW 0.05% 43504 0.01%
16 2.799 mW 0.02% 38158 0.04%

TABLE I. AUTOMATED RUN – FORMAL VERIFICATION RESULTS

Furthermore, to explore the applicability of our method
to a wider set of designs, we tested our tool on a set of 49
industrial designs in a fully automated mode (i.e., we run the
formal check on all the candidates generated by the detection
tool without specifying any SVA constraints). We were able
to identify a good number of triggers using the statistical
detection for most of the designs. On the other hand the results
of the formal check were not conclusive as we got only a few
proofs but also some failures and many timeouts. Given our
experience on the SENDS design and other test cases, this
can be explained by the fact that SVA constraints are usually
needed before we can prove the activity trigger property, at
least when the activity trigger applies to a medium-size block.
Additionally, in this fully automatic experiment we had to set
quite a small timeout for the formal check of 15 min per
property. We did a more in depth analysis for few designs
where the activity triggers looked promising. In particular we
could see some triggers related to FIFOs (e.g., when a FIFO is
full or empty this entails that some other modules get blocked),
and DMA (e.g., a module is waiting for a DMA request to be
processed).

We present in table I the formal verification results for
the designs whose triggers could be proved automatically.
The ‘power’ column of the table indicates the dynamic power
consumption of the circuit as computed by a power estimation
tool and the ‘power covered’ column show what fraction
of this power is consumed by the modules for which we
found and formally verified some activity triggers. Note that
this is an upper bound on the power reduction and the real
savings depend on the relative duration of the idle periods. The
‘#registers’ column contains the total number of registers in the
circuit while the column ‘reg-covered’ shows the percentage
of registers that fall within the scope of the triggers.

As discussed before, the percentage of automatically
proven triggers is quite small compared to all opportunities
detected by the statistical engine. We learned from the SENDS
experience that in most cases additional constraints are needed
for a successful formal proof. However, the main observation
to be taken from Table I is the relatively good scalability of
the formal verification. We are able, within 15 minutes limit,
to formally prove some activity triggers for design blocks that
contain thousands of registers and consume enough dynamic
power to be interesting for clock gating.

VIII. CONCLUSION AND FUTURE WORK

We developed and implemented a method for semi-
automatic detection of activity triggers in electronic circuits
as well as formal verification of their correctness. We demon-
strated that the method can achieve a significant power re-
duction on an image processing architecture with which we
had a good knowledge of design intent. We also applied the
method in a fully automatic manner to larger set of industrial
designs with some more modest results. The lesson from this
experience is that a proper modularization, specification of
input constraints and some intervention of a human designer
are in most cases crucial for a successful application of the
method. The major current limitations of the approach are:

1) The sensitivity of the statistical detection procedure to
interference, especially in designs that are not highly
modularized;

2) The need for extensive simulation data in order to
detect triggers. This prevents the use of the method
in very early stages of the design flow when such
simulation data may not be available;

3) The usual limitations related to the complexity of the
formal check.

Addressing these issues is part of ongoing future work. We
will use automatic modularization, e.g., every bus analyzed
separately, to cope with the noise that comes from a small
part of the analyzed module. Furthermore, we plan to improve
the trigger detection engine, possibly using machine learning
(as in [12], [13]) or design intent detection heuristics inspired
by [15]. Some triggers may be purely functional, independent
on the environment. We work on structural analysis of such
triggers that would allow us to identify them without simula-
tion, much earlier in the design flow, contributing to the general
‘shift to the left’ in the silicon industry.

The success of the formal part strongly depends on the de-
signers’ readiness to provide detailed input constraints that can
be quite complex. We observed that some natural constraints
such as alternation of start and stop events are often present,
and hence can be used even if they are not specified. If the
formal proof succeed under this assumption, it can be reported
as a hint to the user. More constraint hints can be obtained by
data mining the simulation traces.

REFERENCES

[1] H. Jacobson, P. Bose, Z. Hu, A. Buyuktosunoglu, V. Zyuban, R. Eicke-
meyer, L. Eisen, J. Griswell, D. Logan, B. Sinharoy, and J. Tendier,
“Stretching the limits of clock-gating efficiency in server-class pro-
cessors,” in Proceedings of the International Symposium on High-
Performance Computer Architecture, 2005, pp. 238–242.

[2] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power cmos
digital design,” IEICE Transactions on Electronics, vol. 75, no. 4, pp.
371–382, 1992.

[3] L. Benini and G. DeMicheli, Dynamic power management: design
techniques and CAD tools. Springer Science & Business Media, 2012.

[4] L. Benini, G. De Micheli, E. Macii, M. Poncino, and R. Scarsi,
“Symbolic synthesis of clock-gating logic for power optimization of
synchronous controllers,” ACM Transactions on Design Automation of
Electronic Systems, vol. 4, no. 4, pp. 351–375, Oct. 1999. [Online].
Available: http://portal.acm.org/citation.cfm?doid=323480.323482

[5] V. Tiwari, S. Malik, and P. Ashar, “Guarded evaluation: Pushing power
management to logic synthesis/design,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 17, no. 10,
pp. 1051–1060, 1998.

[6] P. Babighian, L. Benini, and E. Macii, “A scalable ODC-based algo-
rithm for RTL insertion of gated clocks,” in Proceedings - Design,
Automation and Test in Europe Conference and Exhibition, vol. 1, 2004,
pp. 500–505.

[7] R. Fraer, G. Kamhi, and M. K. Mhameed, “A new paradigm for
synthesis and propagation of clock gating conditions,” in Proceedings
of the 45th Annual Design Automation Conference, ser. DAC ’08.
New York, NY, USA: ACM, 2008, pp. 658–663. [Online]. Available:
http://doi.acm.org/10.1145/1391469.1391638

[8] J. Cong, B. Liu, and Z. Zhang, “Behavior-level observability dont-cares
and application to low-power behavioral synthesis,” 2009.

[9] A. P. Hurst, “Automatic synthesis of clock gating logic with controlled
netlist perturbation,” in Proceedings - Design Automation Conference,
2008, pp. 654–657.

[10] E. Arbel, O. Rokhlenko, and K. Yorav, “SAT-based synthesis of clock
gating functions using 3-valued abstraction,” in Formal Methods in
Computer Aided Design, FMCAD 2009, 2009, pp. 198–204.

[11] E. Arbel, C. Eisner, and O. Rokhlenko, “Resurrecting infeasible
clock-gating functions,” DAC ’09, p. 160, 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1629911.1629957

[12] P. Babighian, G. Kamhi, and M. Vardi, “Interactive presentation:
Powerquest: trace driven data mining for power optimization,” in DATE.
EDA Consortium, 2007, pp. 1078–1083.

[13] R. Wiener, G. Kamhi, and M. Y. Vardi, “Intelligate: scalable dynamic
invariant learning for power reduction,” in Integrated Circuit and System
Design. Power and Timing Modeling, Optimization and Simulation.
Springer, 2009, pp. 52–61.

[14] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,”
Software Engineering, IEEE Transactions on, vol. 27, no. 2, pp. 99–
123, 2001.

[15] S. Hangal, N. Chandra, S. Narayanan, and S. Chakravorty, “Iodine: a
tool to automatically infer dynamic invariants for hardware designs,” in
Proceedings of the 42nd annual Design Automation Conference. ACM,
2005, pp. 775–778.

[16] O. Lichtenstein, A. Pnueli, and L. Zuck, “The glory of the past,” in
Logics of Programs, ser. Lecture Notes in Computer Science, R. Parikh,
Ed. Springer Berlin Heidelberg, 1985, vol. 193, pp. 196–218. [Online].
Available: http://dx.doi.org/10.1007/3-540-15648-8 16

[17] Z. Manna and A. Pnueli, Temporal verification of reactive systems:
safety. Springer Science & Business Media, 2012.

[18] B. L. Synthesis and V. Group, “ABC: A system for sequential synthesis
and verification. http://www.eecs.berkeley.edu/ alanmi/abc/.”

[19] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-
strength verification tool,” in Computer Aided Verification, 22nd
International Conference, CAV 2010, Edinburgh, UK, July 15-
19, 2010. Proceedings, 2010, pp. 24–40. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-14295-6 5

[20] N. Een, A. Mishchenko, and R. Brayton, “Efficient implementation of
property directed reachability,” in Formal Methods in Computer-Aided
Design (FMCAD), 2011. IEEE, 2011, pp. 125–134.

[21] A. R. Bradley, “Sat-based model checking without unrolling,” in Verifi-
cation, Model Checking, and Abstract Interpretation. Springer, 2011,
pp. 70–87.

[22] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in Tools and Algorithms for Construction
and Analysis of Systems, 5th International Conference, TACAS, 1999,
pp. 193–207.

[23] S. Chatterjee, A. Mishchenko, R. K. Brayton, and A. Kuehlmann,
“On resolution proofs for combinational equivalence,” in Proceedings
of the 44th Design Automation Conference, DAC 2007, San Diego,
CA, USA, June 4-8, 2007, 2007, pp. 600–605. [Online]. Available:
http://doi.acm.org/10.1145/1278480.1278631

http://portal.acm.org/citation.cfm?doid=323480.323482
http://doi.acm.org/10.1145/1391469.1391638
http://portal.acm.org/citation.cfm?doid=1629911.1629957
http://dx.doi.org/10.1007/3-540-15648-8_16
http://dx.doi.org/10.1007/978-3-642-14295-6_5
http://doi.acm.org/10.1145/1278480.1278631

	Introduction
	Related work
	Activity triggers
	Formal modeling and verification
	Statistical trigger detection
	Design decomposition
	Idle periods detection
	Finding potential triggers
	Filtering, ranking and reporting

	Application flow
	Experimental results
	Conclusion and future work
	References

