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Abstract. We present a systematic translation from timed models of genetic reg-
ulatory networks into products of timed automata to which one can apply verifi-
cation tools in order learn about the possible qualitative behaviors of the network
under a whole range of uncertain delay parameters. We have developed a tool
chain starting from a high-level description of the network down to an exhaustive
analysis of its behavior. We have demonstrated the potential applicability of this
framework on several examples.

1 Introduction

The evolving domain ofSystems Biology attempts to advance the quality of biological
models to become closer to models of simpler hard sciences like Physics. Given the
complexity of such models and the difficulty in obtaining experimental results for de-
termining exact model parameters, it is no big surprise thatthe engineering disciplines
in general, and various “semantics and verification” sub communities, are among those
who try to sell their modeling and analysis methodologies tobiologists. The current
paper is no exception as it attempts to demonstrate the applicability of timed systems
for modeling and analysis of genetic regulatory networks.

We are concerned with models that cover a subset of what is going on inside a single
cell where the major actors aregenes at certain levels of activation (“expression”) and
theproducts, typically proteins that they produce in a cell. The interaction between these
entities is often modeled by biologists using various formsof interaction diagrams that
indicate the mutual influences among these entities. At thislevel of abstraction one may
associate continuous variables to genes (to indicate the level of gene expression) and to
products (to indicate their concentration in the cell). Based on the corresponding inter-
action diagrams, one can, in principle, derive dynamical models that track the evolution
of these quantities over time. At this level of description,the dynamical model will be
essentially a system of nonlinear differential equations1 derived from the corresponding
chemical processes.

A major problem with such models is that the parameters of theequations are very
difficult to obtain experimentally and can be known only within very large uncertainty

? This work was partially supported by the French-Israeli projectComputational Modeling of
Incomplete Biological Regulatory Networks.

1 Or a hybrid automaton with nonlinear dynamics in each mode, to accommodate for discrete
modeling of changes in gene expression.



margins. Such systems can, in principle, be analyzed using novel hybrid systems veri-
fication techniques, but although such techniques have recently matured for linear sys-
tems [ADF+06], their adaptation to nonlinear systems is only in its infancy. An alter-
native well-known modeling approach is based ondiscrete models where genes can
be eitheron or off and the values of the product concentrations are discretized into a
finite number of levels. In the extreme case when products canbe only “absent” and
“present” one can obtain an abstract Boolean model with a finite automaton dynam-
ics of the form we all love and appreciate. Historically asynchronous Boolean model
was first proposed by Kauffman [K69] followed by an alternativeasynchronous model,
proposed by Thomas in a series of papers and an influential book [TD90]. The ratio-
nale for Thomas’ asynchronous model is that if two processesare active in parallel,
one producing productp1 and another producingp2, it is very unlikely that both of
them will terminate simultaneously in the “next” time step.Termination here means
that their product concentrations will cross their respective thresholds betweenpresent
andabsent. The asynchronous model allows the processes to complete inany order.

While these asynchronous networks are more faithful to reality, they ignore infor-
mation which may be known about the relativespeeds of the processes, information
that can be exploited to restrict the set of possible qualitative behaviors of the automa-
ton. And indeed, recently Siebert and Bockmayr [SB06] proposed to enrich Thomas’
model withtiming information and replace automata with timed automata. They have
used the toolUPPAAL to analyze such a model of a small network. In a completely
different context, Maler and Pnueli [MP95] gave a formal treatment of asynchronous
networks of Boolean gates withuncertain (bi-bounded) delays and a systematic method
for translating such networks into timed automata. This framework has been since
then the basis of numerous efforts for verification and timing analysis of such cir-
cuits [BMT99,BJMY02,BBM03]. In this paper we adapt this framework for the timed
modeling of genetic regulatory networks and provide a tool chain for translating such
networks into products of timed automata and analyzing its behaviors. The main im-
provement over [SB06] is in thesystematic translation from timed gene networks to
timed automata. At this point we do not claim having discovered any new biological
result but rather demonstrate that timed models of non trivial phenomena can indeed be
analyzed by our existing timed automata tools.

The rest of the paper is organized as follows. In Section 2 we describe our mod-
eling framework based on genes, products, Boolean functions and delay operators. In
Section 3 we show how such models are transformed into timed automata and discuss
some anomalies inherent in discrete and timed modeling of continuous processes. To
make such models more faithful to reality, we extend the framework of [MP95] in Sec-
tion 4 to any finite number of concentration levels. Some experimental results on several
examples are reported in Section 5, followed by some discussion of ongoing and future
work. We assume familiarity with timed automata and presentthem in a quite informal
manner to facilitate their comprehension by potential users.



2 Boolean Delay Networks

Let G = {g1, . . . , gn} be a set of “genes” viewed as Boolean variables which can
be eitheron or off. Let P = {p1, . . . , pn} be a set of “products” or “proteins” that
we assume to be represented by Boolean variables as well, where pi = 0 means that
the corresponding product is found in low concentration andpi = 1 indicates that its
concentration is high (absent/present in discrete parlance). We assume here that each
genegi is responsible for the production of one product typepi. Intuitively whengi

is 1 it will tend to producepi so that the latter, if absent, will sooner or later become
present. On the other hand ifgi is off, so will becomepi eventually due to degradation.
In control terms the value ofgi can be seen as areference signal for the desired value
of pi, a value that it will reach if the process is not disturbed.

The feedback in the system is based on changing the state of the genes according
to the concentration levels of the products. Among the common types of interaction
between genes and the proteins they produce we mention:

– Self-inhibition: the presence ofpi turnsgi off;
– A cascade of activations: whenpi becomes present it turns on somegj .

More generally, we assume the value of eachgi to be aBoolean function fi of p1, . . . , pn.
We assume such a change in gene activation to beinstantaneous upon the change in
(discretized) concentration, if the latter changes the value of the corresponding Boolean
function. On the other hand, the production and degradationof products is modeled as
taking some time between initiation and termination.

This difference in modeling is justified by the nature and time scales of the un-
derlying chemical processes. Producing one molecule of theproduct is already a very
complex process involving numerous reactions. Changing the state ofpi from absent
to present may involve producing thousands of such molecules. Although some of this
can be done in parallel (or more accurately, withpipelining) it still may take a lot of
time. On the other hand, activating or inhibiting a gene is a relatively-simpler and faster
process where some molecule binds to some site and enables orinhibits the production
process.2

Our modeling approach is based on the premise that at every time instantt, the state
of a genegi is determined by the values of theP -variablesat time t via a Boolean
functionfi. On the other hand, the influence of eachpi on gi is not immediate and is
best expressed via adelay operator, a function whose output follows the input after
some delay. Figure 1 illustrates graphically the relationship betweenG andP using a
block-diagram formalism. Thefi-boxes react immediately to a change in their inputs
and altergi, and the latter influencespi after some delay specified by theDi-boxes.
Looking closer, each delay operatorDi can be characterized by a table of the following

2 The dependence of such a binding event upon the presence level of some p is more of a
stochastic nature as the more molecules we have, more this is likely to happen. In fact, the
“real” story is more complex as the activation of a gene is not a Boolean business either, and
there are different levels of gene expression, each leading to different production rates and
delays. These rates depend on the concentration of the products via stochastics, but all this is
beyond the scope of the present paper.
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Fig. 1. A graphical representation of a gene network. Thefi’s are arbitrary Boolean functions of
P and theDi’s are the delay operators.

form:

pi gi p′i ∆
0 0 0 −
0 1 1 [l↑, u↑]
1 0 0 [l↓, u↓]
1 1 1 −

(1)

In this table,p′i indicates the value of the product the systems “aims at” and should
eventually reach. Whenpi andgi agree (00 or 11) the system is in astable state and
p′i = pi. In state01 the product starts being produced and will become1 if undisturbed.
The time delay for moving from absence to presence is expressed using the interval
I↑ = [l↑, u↑] to be explained in the sequel. Likewise, at state10 the product degrades
and will become0 within I↓ = [l↓, u↓] time. To better explain the delay operator let us
start with a deterministic delay model. Letd↑ = l↑ = u↑ andd↓ = l↓ = u↓. A typical
behavior of this operator is illustrated in Figure 2-(a) where genegi is turned on at time
t and thenpi follows and becomes present at timet + d↑. Later, att′, genegi is turned
off andpi completes its degradation to low level att′ + d↓.

It is, however, unrealistic to assumeexact delays given the inherent noise in bi-
ological systems and general experimental limitations. Even in the absence of those,
deterministic delays should be excluded due to the fact thatdiscrete state0 represents
a range of concrete concentrations and it is clear that from each of them it will take a
different amount of time to cross the threshold to reach the domain of1. This feature
is covered by our non-deterministic delay operator which allows the response ofpi to
occur anywhere in the interval[t + l, t + u], see Figure 2-(b).



We use Boolean signals3 to formalize theDi operators. ABoolean signal x is a
function from the time domainR+ to B = {0, 1} which admits a partition ofR+ into
a countable set of (left-closed right-open) intervalsI0, I1, . . . where eachIi is of the
form [ti, ti+1) such that ift andt′ belong to the same interval,x(t) = x(t′). We will
assume here, just for ease of notation, that all input signals start with0, hencex is 0 in
all intervalsIj with evenj, and1 whenj is odd. The setJ(x) = t1, t2, . . . is called the
jump set of x, that is, the set of time points where the value of the signal changes.

Definition 1 (Delay Operator). Let x and y be two Boolean signals with J(x) =
{t1, t2, . . .} and J(y) = {s1, s2, . . .}, and let Di be a delay operator characterized by
the delay parameters l↑i , u↑

i , l↓i and u↓
i . We say that y ∈ Di(x) if for every j

sj ∈ [tj + l↑i , tj + u↑
i ] if j is odd

sj ∈ [tj + l↓i , tj + u↓
i ] if j is even

(b)

t t + l↑ t + u↑ t′ t′ + l↓ t′ + u↓

gi

pi

(a)

t t′t + d↑

gi

pi

t′ + d↓

Fig. 2. (a) Deterministic delaypi = Di(gi); (b) Non-deterministic delaypi ∈ Di(gi).

We can now define the semantics of the network (1), that is all the temporal behav-
iors it may generate over the values of theG andP variables. These are all the signals
satisfying the following system of signal inclusions4 for i = 1, . . . , n:

gi = fi(p1, . . . , pn)
pi ∈ Di(gi)

(2)

3 Modeling with Timed Automata

Our translation from delay equations to timed automata is compositional as we build a
timed automaton for each equation and inclusion in (2) so that the composition of these

3 To avoid confusion with other meanings of “signals” in Biology, we stress that the wordsignal
is used here in the sense used in of signal processing, that is, a functionfrom time to some
domain, a waveform, a temporal pattern.

4 If the delay was deterministic, the second line would be replaced bypi = Di(gi) and there
would be a unique solution from any given initial state.



automata generates exactly the set of signals satisfying the equations. For each instan-
taneous relationgi = fi(p1, . . . , pn) we construct a one-state automaton over(n + 1)-
dimensional signals whose self-loop transitions are labeled by tuples(gi, p1, . . . , pn)
that satisfy the equation. The heart of our modeling approach is the automaton for the
delay operator which can be seen as the continuous-time analog of the one-bit shift
register.

The timed automaton of Figure 3-(a) realizes the delay operator p ∈ D(g). We
annotate states by the values ofg andp wherep stands forp = 0 andp stands for
p = 1. At statepg the product is absent, the gene is off and the automaton may stay
in this stable state forever as long asg, which is viewed as aninput for this automaton,
remains off. Wheng is turned on, the clockc is reset to zero and the automaton moves
to the excited stategp in which it can stay as long asc < u↑ but can leave to stable state
gp, where the gene is on and the product is present, as soon asc ≥ l↑.

The uncertainty in process duration is expressed in this automaton by the possibility
to stay at an unstable state untilc = u but leave it as soon asc ≥ l. An alternative
modeling style is to move the non determinism to the triggering transition and making
the stabilizing transition deterministic as in Figure 3-(b). Here instead of being reset to
zero, the clock is set non deterministically to a value in[0, u−l] and the transition guard
is replaced withc = u. In both cases the result is the same, there are uncountably-many
behaviors (and outputs) that the automaton may exhibit in the presence of one input. We
will use the second approach in this paper as it extends more naturally from Boolean to
multi-valued domains.

(b)

c = u↓

c < u↑

c < u↓

gp gp

gp gp

c = u↑c ≥ l↑

c ≥ l↓

c < u↓

gp gp

gp gp

c < u↑

(a)

g = 1/

c := 0

g = 0/
c := 0

c := [0, u↑ − l↑]
g = 1/

g = 0/
c := [0, u↓ − l↓]

Fig. 3. Timed automaton models for the delay operator: (a) non determinism in the stabilizing
transition; (b) non determinism in the exciting transition.

Before proceeding further let us contemplate a bit on the relation between the delay
bounds and the underlying continuous process. Figure 4 illustrates hypothetical produc-
tion and decay processes to which such a timed discrete abstraction could correspond.
To simplify the discussion assume that the concentration ofp grows at a fixed ratek↑



wheng is turned on, and decreases with ratek↓ wheng is off.5 The mapping from the
concrete domain of concentrations, the interval[0, 1] to {0, 1} is based on partitioning
the interval intop0 = [0, θ] andp1 = [θ, 1]. The delay intervalD↑ should thus indicate
the minimal and maximal times it takes for a trajectory starting at any point in p0 to
cross theθ-threshold top1. Following this reasoning we obtain

D↑ = [l↑, u↑] = [0, θ/k↑] and D↓ = [0, θ/k↓].

The zero lower bounds come from the fact that the starting point can be a point inp0

which is as close as we want to θ. Not having a positive lower bound is sometimes
considered an undesirable feature in timed models as it may create zero-time oscilla-
tions between0 and1, also known as Zeno behaviors. However, in our context, having
a positive lower bound would exclude behaviors which are legitimate in the continuous
context as we illustrate below.

θ

p

t
u↓

Decay

p1

p0

θ

t

p

u↑

Production

p0

p1

Fig. 4.An example of a continuous process which may underly the delay.

Consider, for example, the negative feedback loop of Figure5-(a) where the pres-
ence ofp turnsg off and its absence turnsg on. Modeling the same phenomenon as a
continuous system we will have a one-dimensional vector field like the one depicted in
Figure 5-(b) which points toward the equilibriumθ from both sides. In the real noisy
process, it is possible that the concentration will fluctuate around the equilibrium as in
Figure 5-(c), but viewed discretely this is a Zeno behavior.A positive lower bound will
prevent such behaviors and will force the system to stay, quite arbitrarily, on one side
of θ for some time. On the other hand, the continuous “inverse image” of an oscillation
between0 and1 includes unrealistic behaviors such as the one of Figure 5-(d) where the
system exhibits large oscillations. Our modeling strategyis to use zero lower bounds
but reduce their negative effects by moving from Boolean to multi-valued abstractions
as will be described in Section 4. The automaton obtained forthe negative feedback
loop is shown in Figure 6-(a).

5 Approximate bounds can be derived for less trivial continuous dynamics using methods similar
to those described in [HHW98,SKE00,F05].
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Fig. 5.(a) a negative feedback loop; (b) the corresponding one-dimensional continuous dynamical
system; (c) a possible behavior of the underlying continuous dynamics;(d) a behavior which is
impossible in the continuous system but is valid in the abstract timed model.

(a) (b)

c = u↓

c < u↑

c < u↓

gp gp

gp gp

c = u↑

g = 0/

c = u↓

c < u↑

c < u↓

gp gp

gp gp

c = u↑

c := [0, u↑] c := [0, u↓] c := [0, u↓]
g = 1/
c := [0, u↑]

g = 1/g = 0/

Fig. 6. (a) The automaton for the negative feedback network of Figure 5-(a). The automaton
leaves statesgp andgp immediately upon entrance; (b) A timed automaton model for the delay
operator with zero lower bounds and the possibility of regret transitions from gp to gp and from
gp to gp.



The alert reader might have noticed that we have not considered yet the case where
the gene is turned offbefore the product becomes fully present. Such a situation may
occur if the activation function of the gene depends on otherproducts. In the automaton
model this situation corresponds tog being turned on and then turned off at stategp
beforep becomes present (or the symmetric case wheng is turned on at stategp). This
is modeled by theregret (or abort) transitions of the automaton of Figure 6-(b) that
go from the excited state back to a stable state. Again, if we look at the continuous
process, we cannot really know if it was aborted close to or far from the threshold, but
since, using zero lower bounds, excitations are always accompanied by assignments of
the formc := [0, u], the timed model is conservative and covers all cases.

We construct such an automaton for each inclusionpi ∈ Di(gi) and a one-state
automaton for each instantaneous relationgi = fi(p1, . . . , pn). Composing these au-
tomata we obtain a timed automaton that captures all the behaviors of the network
[MP95]. We have implemented, within the IF tool suite [BGO+04], a translator from
Boolean delay networks into timed automata which are then analyzed to produce the
reachability graph which shows all the possible qualitative behaviors of the network
when timing constraints are taken into account. These behaviors constitute a subset of
what would be possible using an untimed model.

4 Multi-Valued Models

The quality of the model can be improved significantly if we refine the discrete abstrac-
tion to admitseveral levels of concentration. To this end we replace the abstract set
{0, 1} by a finite set{0, 1, . . . ,m − 1}, associated with a set of thresholds0 < θ1 <
θ2 < . . . , < θm−1 < 1 so that statei corresponds to the intervalpi = [θi, θi+1]. For
each direction of evolution (production and degradation) we define an upper and lower

bound for moving between neighboring regions. To be more precise, letv
t

−→ v′ de-
note the fact that the underlying continuous process may go fromv to v′ in t time. Then
the delay parameters are defined as

l↑i = min{t : θi
t

−→ θi+1} u↑
i = max{t : θi

t
−→ θi+1}

l↓i = min{t : θi
t

−→ θi−1} u↓
i = max{t : θi

t
−→ θi−1}

Wheneverg = 1, the product level will move frompi to pi+1 within the [l↑i , u↑
i ] time

interval and, likewise, it will move frompi to pi−1 wheng = 0. The extended delay
operator is specified as follows:

g p p′ ∆ g p p′ ∆

0 0 0 − 1 0 1 [l↑0, u
↑
0]

0 1 0 [l↓1, u
↓
1] 1 1 2 [l↑1, u

↑
1]

0 2 1 [l↓2, u
↓
2] 1 2 3 [l↑2, u

↑
2]

. . . . . . . . . . . . . . . . . . . . . . . .

0 m − 1 m − 2 [l↓m−1, u
↓
m−1] 1 m − 1 m − 1 −

(3)

The corresponding automaton is shown in Figure 7. Its upper part corresponds to
states whereg = 1 andp is increasing, and the lower part to states whereg = 0 and



p is decreasing. The main attractive feature of this model is that it makes a distinction
between entering a state via avertical transition (which reverses the direction of evolu-
tion) and entering it via a horizontal transition (which is due to a monotone growth or
decay process). In the latter case wedo not need to use a zero lower bound because it is
clear that the threshold was crossedfrom below (resp. above) and it will take some time
betweenli andui to cross the next threshold in the same direction. Hence the transition
from (g, i−1) to (g, i) sets the clock to the interval[0, u↑

i − l↑i ] while the transition from
(g, i) to (g, i) sets the clock to the interval[0, u↑

i ] allowing an immediate transition from
there to(g, i + 1). As a result, zero time cycles can now involve only states that corre-
spond toneighboring levels of concentration, that is,(g, i), (g, i + 1), (g, i + 1), (g, i).
This way the deviation of the discrete timed model from the continuous one is reduced
and tends to zero asm tends to infinity.

c < u↑
0

(g, 0)

(g, 0)

g = 0/

c < u↓
1

(g, 1)

(g, 1)

c := [0, u↓
1]

g = 0/

c < u↓
2

(g, 2)

(g, 2)

c := [0, u↓
2]

g = 0/

c < u↑
1 c < u↑

2

c = u↑
0/ c = u↑

1/ c = u↑
2/

c = u↓
3/c = u↓

2/c = u↓
1

· · ·

· · ·

g = 1/
c := [0, u↑

2]
g = 1/
c := [0, u↑

1]
g = 1/
c := [0, u↑

0]

c := [0, u↓
2 − l↓2 ]c := [0, u↓

1 − l↓1 ]

c := [0, u3 ↑ −l↑3 ]c := [0, u2 ↑ −l2 ↑]c := [0, u↑
1 − l↑1 ]

Fig. 7. A timed automaton model for the multi-valued delay operator. Zeno behaviors can now
take place only among states that correspond to neighboring levels of concentration.

To complete the adaptation of the model to the multi-valued setting we replace
each activation function of the formf : {0, 1}n → {0, 1} by a function of the form
f ′ : {0, . . . ,m−1}n → {0, 1} and have all the ingredients for translating the network in
a timed automaton and analyzing its behaviors. Some experimental results are reported
in the next section.

5 Experimental Results

We demonstrate the potential of our modeling framework and tools on several examples.

5.1 A Cross-inhibition Network

We first consider a simple model of the lysis/lysogeny decision in theλ bacteriophage,
a virus that infects bacteria. Following the infection, viruses can reproduce in bacteria



in two different ways:lysis and lysogeny. In the first case, the virus multiplies in the
bacterial cell and eventually kills the cell. In the second case, the genetic material of
the virus integrates into the bacterial chromosome and replicates with it. A genetic
regulatory network involving at least 5 viral genes is responsible for the choice between
lysis and lysogeny. We study here a simple model of the core ofthe network that has
been proposed as responsible for the lysis/lysogeny decision [TT95]. The model that we
use is similar to the model used in [SB06] in their proposal toextend Thomas’ model
with timing information.

The network is represented by the diagram of Figure 8. It consists of two genes,cI
andcro, that code for two repressor proteins, CI and Cro. More specifically, protein CI
represses the expression of genecro, whereas protein Cro represses the expression of
genecI, and at a higher concentration, the expression of its own gene. We denote the
genescI andcro by x andy and the proteins CI and Cro byX andY .

x y

X

Y

Fig. 8. A cross-inhibition network.

In our formalism, we use Boolean variablesgx andgy for the state of the genes, and
two integer variables,px ∈ {0, 1} andpy ∈ {0, 1, 2} for the protein concentrations. The
use of three concentration levels for proteinY is motivated by the fact that a moderate
concentration of the protein is sufficient for the inhibition of genex, whereas a high
concentration is needed to inhibit its own geney. The following activation functions
summarize this information:

px py gx gy

0 0 1 1
0 1 0 1
0 2 0 0
1 0 1 0
1 1 0 0
1 2 0 0

The timed automataAx andAy for this example are depicted in Figure 9. As in [SB06],
we have used the delay intervals[5, 10], but as explained in Section 3, we assumed that
some changes in protein concentration can happen instantaneously in order to guarantee
that the timed model is a conservative over approximation ofa continuous process.

We analyzed this system using the IF toolbox [BGO+04], the successor ofKRONOS

[DOTY96]. The initial state of the system corresponds to theinfection of a bacteria
by a bacteriophage. In this state, both proteins are absent and both genes areon. The
reachability graph generated by IF for this example is givenin Figure 10-(a). Because of
the interleaving semantics and the fact that changes in geneactivity follow changes of
protein concentration instantaneously, some states are left immediately upon entrance



c < 10

gx = 1
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gx = 1
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px = 0 px = 1

px = 1
c = 10

c = 10

¬fx/

c := [0, 10]c := [0, 10]

fx/ ¬fx/ fx/

gy = 1

py = 0

c < 10

gy = 0

py = 0

fy/

c := [0, 10]
¬fy/

gy = 0

py = 1

c < 10

py = 1

gy = 1

c < 10

fy/

c := [0, 10]

¬fy/

c := [0, 10]

c ≥ 5/c := 0

c ≥ 5/c := 0

c ≥ 5/

c ≥ 5/ gy = 1

gy = 0

py = 2

py = 2

c < 10

fy/
¬fy/

c := [0, 10]

Fig. 9.The automataAx andAy for the cross-inhibition network.

and have no biological significance. The toolbox collapses chains of states connected
by immediate transitions into single states to obtain the automaton of Figure 10-(b).

1010
0101

cy ≤ 10

/cy := 0

0102

0002

cy ≤ 10

0101

cy ≤ 10

0001

cy ≥ 5

/cy := 0/cy := 0

1101

1100

cx = cy ≤ 10

1110 00

01

(y:=1) 

10

(x:=1) 

02

(y:=2) 

01

(y:=1) (y:=2) 

(a) (b)

Fig. 10. (a) The reachability graph generated by IF for the cross-inhibition network. State are
labeled by values of state variables(gx, gy, px, py). Two clockscx and cy are used and the
initial state is double circled. Dotted circles represent states that are left immediately. (b) The
reachability graph after collapsing instantaneous transitions. State labels correspond to protein
concentrations(px, py) and the transitions are labeled by changes in their values.

A manual analysis of this reachability graph reveals that the system exhibits a mu-
tual exclusion property, in the sense that it necessarily either ends up in a state whereX
is present andY is absent (state10), or oscillates between states whereX is absent and
Y is present in either medium (state01) or high (state02) concentration. The mutual
exclusion property is a well-known property of cross-inhibition networks such as the
one we study. Additional interesting timing properties canbe inferred from the reach-



ability graph. First, state10 is the only state in which the system can remain forever
and it can be reached from initial state00 within time included in the interval[0, 10].
Secondly, it takes to the system between5 and20 time units to reach a state02 having a
high concentration ofY . Finally, the oscillations period is between0 and20 time units,
that corresponds to all the cases between damped oscillations (period arbitrary close
to 0) and sustained oscillations with maximum amplitude (period of 20 time units). It
should be noted that the reachability graph makes a distinction between two instances
of state01, the first being reached from initial state00 and hence having to wait at least
5 time units to move to02, and the second reached from02 and hence can return to
it immediately. To summarize this example, we obtain the same qualitative results as
in the untimed model (which suggest that this particular network is robust under delay
variations), plus some additional timing information on the possible behaviors of the
system.

5.2 Transcriptional Cascade inE. coli

As a second example, we study a transcriptional cascade ofE. coli [HTW05] repre-
sented in Figure 11. It is made of four genes:tetR, lacI, cI, andeyfp that code respec-
tively for three repressor proteins, TetR, LacI, and CI, andthe fluorescent protein EYFP.
The fluorescence of the system, due to the protein EYFP, can bemeasured. The system
can be controlled by the addition or removal of a small diffusible molecule, aTc, in the
growth media. More precisely, aTc binds to TetR and relievesthe repression oflacI.
One can check that the fluorescence of the system at steady state will be low for low
aTc concentrations, and high for high aTc concentrations.

TetR LacI EYFPCI

aTc

tetR lacI cI eyfp

Fig. 11.A transcriptional cascade.

We have made a simple model of this system, assuming a maximaldelay for protein
production of45 minutes for all proteins. Although these delays are biologically realis-
tic they should not be considered as accurate and they are used only to demonstrate the
capabilities of our tool. Using the IF toolbox, we computed the reachability graph for
two different initial conditions, corresponding to high and low aTc concentrations. We
obtained, respectively, graphs having17 states and34 transitions (see Figure 12), and
19 states and38 transitions. The computations lasted less than one second on a stan-
dard PC. In both cases, these computations indicate that thesystem eventually stabilizes
and always remains in a state in which the fluorescence level is consistent with what is
experimentally observed: high fluorescence in presence of aTc, and low fluorescence
in its absence. Manual analysis of these graphs revealed that the equilibrium state is
necessarily reached in less that 6 hours. This upper bound ismuch larger than what has



been observed experimentally [HTW05], and is due to the fact that we have used coarse
Boolean abstractions of the concentration levels. Nevertheless, proving the existence of
some upper bounds, which cannot be done using untimed models, is an important step
toward using such a cascade as a module in a synthetic network.
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Fig. 12.The reachability graph for the transcriptional cascade in thepresence of aTc. State labels
correspond to(paTc , ptetR, placI , pcI , peyfp). The initial state is10000 (aTc present and EYFP
absent) and the attractor state is11101 (aTc present and EYFP present).

5.3 Nutritional Stress Response inE. coli

Our last example is based on a model of the nutritional stressresponse inE. coli which
plays a crucial role in its survival. When confronted with a nutritional stress, this crea-
ture stops growing and enters in a dormant, resistant state.We use a simplified version
of the elaborate model of this phenomenon proposed in [RJP+06]. The model consists
of six genes, six proteins, and one additional variable encoding the presence or absence
of nutrition. Since no timing information is available on this system we have arbitrarily
used[0, 45] minutes as a delay interval, just to check the feasibility ofanalysis.

The reachability graph, computed using the IF toolbox in less than one second,
has69 states and209 transitions, and admits several cycles (Figure 13). However, the
manual analysis of graphs of this size is less attractive andshould be replaced with
model checking against higher-level temporal properties that we intend to integrate into
our toolbox. Nevertheless, this example shows that the exhaustive analysis of complex
timed models of gene networks is feasible.

6 Discussion

We have laid down some conceptual foundations for timed modeling of genetic regu-
latory network and other biological processes, provided tool support for the definition
and analysis of such models and demonstrated its effectiveness on several examples. In
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Fig. 13.The reachability graph for the nutritional stress response.

particular, we have extended the framework of [MP95] from Boolean to multi-valued
domains in a clean and systematic manner which reduces the effect of Zeno behav-
iors on the quality of the model. We have tested the computational effectiveness of our
modeling approach on several non-trivial examples.

The modeling framework can be refined further to accommodateseveral levels of
gene activation, each with different production rates and delays. Such an extension will
require a careful examination of different ways to construct functions over bounded
integer domains using a combination of logical and arithmetical operations.

Finally let us not delude ourselves that after having provided modeling and tool
support, all that remains is to sit and wait for biologists tosubmit their models for
analysis. Much is still to be done in promoting this class of models among them and
in orienting their experiments to yield the information required to make these models
useful. We have reasons to believe that this information could be, to a certain extent,
easier to obtain than what is needed for meaningful continuous models, for example
from micro-array experiments with a low sampling rate. If this is the case we can hope
that timed models will find a significant niche in the discrete-to-continuous spectrum of
dynamical system models used for biological purposes.
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