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Abstract. We present a systematic translation from timed models of genetic reg-
ulatory networks into products of timed automata to which one can apply-verifi
cation tools in order learn about the possible qualitative behaviors of there
under a whole range of uncertain delay parameters. We have dedeiojpel
chain starting from a high-level description of the network down to ansthee
analysis of its behavior. We have demonstrated the potential applicabilitysof th
framework on several examples.

1 Introduction

The evolving domain o8ystems Biology attempts to advance the quality of biological
models to become closer to models of simpler hard scienkesPlysics. Given the
complexity of such models and the difficulty in obtaining ekmental results for de-
termining exact model parameters, it is no big surprisetti@mengineering disciplines
in general, and various “semantics and verification” subroomities, are among those
who try to sell their modeling and analysis methodologiebitiogists. The current
paper is no exception as it attempts to demonstrate thecapity of timed systems
for modeling and analysis of genetic regulatory networks.

We are concerned with models that cover a subset of whatrnig@ui inside a single
cell where the major actors agenes at certain levels of activation (“expression”) and
theproducts, typically proteins that they produce in a cell. The intéi@actbetween these
entities is often modeled by biologists using various foohiteraction diagrams that
indicate the mutual influences among these entities. Atelied of abstraction one may
associate continuous variables to genes (to indicate ¥ieedégene expression) and to
products (to indicate their concentration in the cell). &hen the corresponding inter-
action diagrams, one can, in principle, derive dynamicadet®that track the evolution
of these quantities over time. At this level of descriptithre dynamical model will be
essentially a system of nonlinear differential equattatesived from the corresponding
chemical processes.

A major problem with such models is that the parameters oéth&tions are very
difficult to obtain experimentally and can be known only witkery large uncertainty

* This work was partially supported by the French-Israeli profearnputational Modeling of
Incomplete Biological Regulatory Networks.

1 Or a hybrid automaton with nonlinear dynamics in each mode, to acconmentatadiscrete
modeling of changes in gene expression.



margins. Such systems can, in principle, be analyzed usiagl iybrid systems veri-
fication techniques, but although such techniques haveatigaaatured for linear sys-
tems [ADF06], their adaptation to nonlinear systems is only in itsirdy. An alter-
native well-known modeling approach is baseddiscrete models where genes can
be eitheron or off and the values of the product concentrations are disctkeiite a
finite number of levels. In the extreme case when productsheaonly “absent” and
“present” one can obtain an abstract Boolean model with gefaiitomaton dynam-
ics of the form we all love and appreciate. Historicallgyachronous Boolean model
was first proposed by Kauffman [K69] followed by an altermatsynchronous model,
proposed by Thomas in a series of papers and an influenti& [i&90]. The ratio-
nale for Thomas’ asynchronous model is that if two processesactive in parallel,
one producing produgt; and another producings, it is very unlikely that both of
them will terminate simultaneously in the “next” time st@grmination here means
that their product concentrations will cross their respedhresholds betweegpresent
andabsent. The asynchronous model allows the processes to complateyiorder.

While these asynchronous networks are more faithful totsedltiey ignore infor-
mation which may be known about the relatismeeds of the processes, information
that can be exploited to restrict the set of possible qusditdoehaviors of the automa-
ton. And indeed, recently Siebert and Bockmayr [SB06] psagioto enrich Thomas’
model withtiming information and replace automata with timed automata. They have
used the tooUPPAAL to analyze such a model of a small network. In a completely
different context, Maler and Pnueli [MP95] gave a formahtreent of asynchronous
networks of Boolean gates witimcertain (bi-bounded) delays and a systematic method
for translating such networks into timed automata. Thisniavork has been since
then the basis of numerous efforts for verification and tgnamalysis of such cir-
cuits [BMT99,BIJMY02,BBMO03]. In this paper we adapt thisrfrawork for the timed
modeling of genetic regulatory networks and provide a tdalic for translating such
networks into products of timed automata and analyzingéfsaliors. The main im-
provement over [SBO6] is in thgystematic translation from timed gene networks to
timed automata. At this point we do not claim having discedeany new biological
result but rather demonstrate that timed models of noratphienomena can indeed be
analyzed by our existing timed automata tools.

The rest of the paper is organized as follows. In Section 2 @geiibe our mod-
eling framework based on genes, products, Boolean furctioid delay operators. In
Section 3 we show how such models are transformed into timemhaata and discuss
some anomalies inherent in discrete and timed modeling mfiraoous processes. To
make such models more faithful to reality, we extend the &aork of [MP95] in Sec-
tion 4 to any finite number of concentration levels. Some grpental results on several
examples are reported in Section 5, followed by some digmus$ ongoing and future
work. We assume familiarity with timed automata and prefieern in a quite informal
manner to facilitate their comprehension by potential siser



2 Boolean Delay Networks

Let G = {g1,...,9n} be a set of “genes” viewed as Boolean variables which can
be eitheron or off. Let P = {p1,...,p,} be a set of “products” or “proteins” that
we assume to be represented by Boolean variables as wellewhe- 0 means that
the corresponding product is found in low concentration gne- 1 indicates that its
concentration is high (absent/present in discrete paglaive assume here that each
geneg; is responsible for the production of one product typelntuitively wheng;
is 1 it will tend to producep; so that the latter, if absent, will sooner or later become
present. On the other handif is off, so will becomep; eventually due to degradation.
In control terms the value gf; can be seen asraference signal for the desired value
of p;, a value that it will reach if the process is not disturbed.

The feedback in the system is based on changing the state geties according
to the concentration levels of the products. Among the comtgpes of interaction
between genes and the proteins they produce we mention:

— Sdf-inhibition: the presence af; turnsg; off;
— A cascade of activations: whenp; becomes present it turns on sopje

More generally, we assume the value of eado be aBoolean function f; of p, ..., p,.
We assume such a change in gene activation tmdientaneous upon the change in
(discretized) concentration, if the latter changes theevaf the corresponding Boolean
function. On the other hand, the production and degradatigmoducts is modeled as
taking some time between initiation and termination.

This difference in modeling is justified by the nature andetistales of the un-
derlying chemical processes. Producing one molecule opitbeuct is already a very
complex process involving numerous reactions. Changiagstate ofp; from absent
to present may involve producing thousands of such molec@lighough some of this
can be done in parallel (or more accurately, withelining) it still may take a lot of
time. On the other hand, activating or inhibiting a gene islatively-simpler and faster
process where some molecule binds to some site and enalddshits the production
process.

Our modeling approach is based on the premise that at eveeyintistant, the state
of a geney; is determined by the values of thie-variablesat time ¢ via a Boolean
function f;. On the other hand, the influence of eaglon g; is not immediate and is
best expressed via delay operator, a function whose output follows the input after
some delay. Figure 1 illustrates graphically the relatigmbetween and P using a
block-diagram formalism. Thef;-boxes react immediately to a change in their inputs
and alterg;, and the latter influences; after some delay specified by tlig;-boxes.
Looking closer, each delay operatBf can be characterized by a table of the following

2 The dependence of such a binding event upon the presence leveinefzsis more of a
stochastic nature as the more molecules we have, more this is likely to hdpgdant, the
“real” story is more complex as the activation of a gene is not a Boolesiméss either, and
there are different levels of gene expression, each leading to diffpreduction rates and
delays. These rates depend on the concentration of the products Viastics, but all this is
beyond the scope of the present paper.



Fig. 1. A graphical representation of a gene network. FHe are arbitrary Boolean functions of
P and theD;’s are the delay operators.

form:
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In this table,p! indicates the value of the product the systems “aims at” dnudilgl
eventually reach. Whep,; andg; agree (0 or 11) the system is in atable state and
pl = p;. In state01 the product starts being produced and will becanifeindisturbed.
The time delay for moving from absence to presence is expdessing the interval
IT = [I",u] to be explained in the sequel. Likewise, at steiehe product degrades
and will becomed within I+ = [I!, u!] time. To better explain the delay operator let us
start with a deterministic delay model. Lét = [T = ! andd' = I} = u!. A typical
behavior of this operator is illustrated in Figure 2-(a) whgengy; is turned on at time

t and therp; follows and becomes present at time d'. Later, att’, geneg; is turned
off andp; completes its degradation to low leveltat- d*.

It is, however, unrealistic to assunegact delays given the inherent noise in bi-
ological systems and general experimental limitationserEm the absence of those,
deterministic delays should be excluded due to the factdisatete staté represents
arange of concrete concentrations and it is clear that from eacheftit will take a
different amount of time to cross the threshold to reach thaaln of1. This feature
is covered by our non-deterministic delay operator whidtwed the response gf; to
occur anywhere in the interviil + [, t 4+ ], see Figure 2-(b).



We use Boolean signdlso formalize theD, operators. ABoolean signal = is a
function from the time domaii® . to B = {0, 1} which admits a partition oR . into
a countable set of (left-closed right-open) intervijsis, ... where eachl; is of the
form [t;, t;11) such that ift and¢’ belong to the same intervat{t) = x(¢'). We will
assume here, just for ease of notation, that all input ssgstakt with0, hencer is 0 in
all intervalsI; with evenj, andl whenj is odd. The sef (z) = t1,ts, ... is called the
jump set of z, that is, the set of time points where the value of the sighahges.

Definition 1 (Delay Operator). Let « and y be two Boolean signals with J(z) =
{t1,t2,...} and J(y) = {s1, s2,...}, and let D, be a delay operator characterized by
the delay parametersl}, uz, lil and uf We say that y € D, (x) if for every j

s; €[t +1],t; +ul] ifjisodd
s; € [tj+ 11, t; +uy] ifjiseven

(@) (b)

Fig. 2. (a) Deterministic delay; = D;(g;); (b) Non-deterministic delay; € D;(g;).

We can now define the semantics of the network (1), that ihaltémporal behav-
iors it may generate over the values of theand P variables. These are all the signals
satisfying the following system of signal inclusidrfer i = 1, ..., n:

gi = [i(p1s---Dn)
pi € Di(9:) @

3 Modeling with Timed Automata

Our translation from delay equations to timed automata ispgmsitional as we build a
timed automaton for each equation and inclusion in (2) sbttieacomposition of these

3 To avoid confusion with other meanings of “signals” in Biology, we streastte wordsignal
is used here in the sense used in of signal processing, that is, a fufictiotime to some
domain, a waveform, a temporal pattern.

* If the delay was deterministic, the second line would be replaceg by D;(g:) and there
would be a unique solution from any given initial state.



automata generates exactly the set of signals satisfymgdhations. For each instan-
taneous relatiog; = f;(p1,...,ps) We construct a one-state automaton dver- 1)-
dimensional signals whose self-loop transitions are &bély tuples(g;, p1, ..., pn)
that satisfy the equation. The heart of our modeling apgrasithe automaton for the
delay operator which can be seen as the continuous-timeguadlthe one-bit shift
register.

The timed automaton of Figure 3-(a) realizes the delay apefac D(g). We
annotate states by the valuesgfndp wherep stands forp = 0 andp stands for
p = 1. At statepg the product is absent, the gene is off and the automaton ragy st
in this stable state forever as long@aswhich is viewed as amput for this automaton,
remains off. Whery is turned on, the clock is reset to zero and the automaton moves
to the excited statgp in which it can stay as long as< u! but can leave to stable state
gp, where the gene is on and the product is present, as saoh 5.

The uncertainty in process duration is expressed in th@aaton by the possibility
to stay at an unstable state unti= « but leave it as soon as > [. An alternative
modeling style is to move the non determinism to the trigggetransition and making
the stabilizing transition deterministic as in Figure 3-(Here instead of being reset to
zero, the clock is set non deterministically to a valu@in: — ] and the transition guard
is replaced withe = u. In both cases the result is the same, there are uncountzdoty-
behaviors (and outputs) that the automaton may exhibitpthsence of one input. We
will use the second approach in this paper as it extends nadteally from Boolean to
multi-valued domains.

gp e>1 gp gp c—=ul gp
c<ul c<ul
g=0/
g 1/ g:O/ 1/ C:[07u _l]
—0 g=
c:=0 ¢ c:=[0,u’ =11
gp c>1t gp 9p =l 9p
c<ut e <t

@ (b)

Fig. 3. Timed automaton models for the delay operator: (a) non determinism irtah#izng
transition; (b) non determinism in the exciting transition.

Before proceeding further let us contemplate a bit on tretios between the delay
bounds and the underlying continuous process. Figurestrifites hypothetical produc-
tion and decay processes to which such a timed discreteaabistr could correspond.
To simplify the discussion assume that the concentratigngrbws at a fixed raté’



wheng is turned on, and decreases with ratewheng is off.> The mapping from the
concrete domain of concentrations, the intefval] to {0, 1} is based on partitioning
the interval intop® = [0, 6] andp* = [6, 1]. The delay intervaD' should thus indicate
the minimal and maximal times it takes for a trajectory stgriatany point in p° to
cross theéd-threshold tg'. Following this reasoning we obtain

D' =", 4" =[0,6/k"] and D' =[0,0/k"].

The zero lower bounds come from the fact that the startingtpm@in be a point ip°
which is as close as we want to . Not having a positive lower bound is sometimes
considered an undesirable feature in timed models as it meateczero-time oscilla-
tions betweer® and1, also known as Zeno behaviors. However, in our context,ngavi
a positive lower bound would exclude behaviors which arditegte in the continuous
context as we illustrate below.

,,,,,,,,,,,,,,,,,,,

Production

Decay

Fig. 4. An example of a continuous process which may underly the delay.

Consider, for example, the negative feedback loop of Figuf&) where the pres-
ence ofp turnsg off and its absence turnson. Modeling the same phenomenon as a
continuous system we will have a one-dimensional vectat fiké the one depicted in
Figure 5-(b) which points toward the equilibriufnfrom both sides. In the real noisy
process, it is possible that the concentration will fluaustound the equilibrium as in
Figure 5-(c), but viewed discretely this is a Zeno behaAqgpositive lower bound will
prevent such behaviors and will force the system to stayeubitrarily, on one side
of 6 for some time. On the other hand, the continuous “inversg@haf an oscillation
betweerd and1 includes unrealistic behaviors such as the one of Figud) g#dtere the
system exhibits large oscillations. Our modeling stratisgyp use zero lower bounds
but reduce their negative effects by moving from Boolean tdtirvalued abstractions
as will be described in Section 4. The automaton obtainedhi®megative feedback
loop is shown in Figure 6-(a).

5 Approximate bounds can be derived for less trivial continuous djesmsing methods similar
to those described in [HHW98,SKE00,F05].



(@ (b) © ()

Fig. 5.(a) a negative feedback loop; (b) the corresponding one-dimeaisiontinuous dynamical
system; (c) a possible behavior of the underlying continuous dynafuics; behavior which is
impossible in the continuous system but is valid in the abstract timed model.

9P c=aul gp gp c=ul gp
e<u | c<ul
g=1/ g=0/ g=0/ g=1/
c:=[0,u'] c:=[0,u'] c:=[0,u'] c:=[0,u']
gp c=u! gp gp c=u! gp
7777777777 c<ut c<ut

(@ (b)

Fig. 6. (a) The automaton for the negative feedback network of Figure.5F& automaton
leaves stategp andgp immediately upon entrance; (b) A timed automaton model for the delay
operator with zero lower bounds and the possibility of regret transitiams §p to gp and from

gp to gp.



The alert reader might have noticed that we have not coredddeat the case where
the gene is turned offefore the product becomes fully present. Such a situation may
occur if the activation function of the gene depends on gtheducts. In the automaton
model this situation corresponds gabeing turned on and then turned off at state
beforep becomes present (or the symmetric case whisrturned on at statgp). This
is modeled by theegret (or abort) transitions of the automaton of Figure 6-(b) that
go from the excited state back to a stable state. Again, ifaek ht the continuous
process, we cannot really know if it was aborted close to ofréan the threshold, but
since, using zero lower bounds, excitations are alwaysmapaaied by assignments of
the forme := [0, u], the timed model is conservative and covers all cases.

We construct such an automaton for each inclugipre D;(g;) and a one-state
automaton for each instantaneous relagor= f;(p1,...,p,). Composing these au-
tomata we obtain a timed automaton that captures all thevimbaof the network
[MP95]. We have implemented, within the IF tool suite [BGM@!], a translator from
Boolean delay networks into timed automata which are thettyaad to produce the
reachability graph which shows all the possible qualitatiehaviors of the network
when timing constraints are taken into account. These hefsagonstitute a subset of
what would be possible using an untimed model.

4 Multi-Valued Models

The quality of the model can be improved significantly if wérme the discrete abstrac-
tion to admitseveral levels of concentration. To this end we replace the abstract set
{0,1} by a finite set{0,1,...,m — 1}, associated with a set of thresholtls< 6§, <

0y < ...,< 0,_1 < 1so that staté corresponds to the interval = [6;,6,.1]. For
each direction of evolution (production and degradatioa)d&fine an upper and lower

bound for moving between neighboring regions. To be moreigeeletv L5 ' de-
note the fact that the underlying continuous process mayayo to v’ in ¢ time. Then
the delay parameters are defined as

llT = min{t : 91 L 0i+1} UI = max{t : 91 L> 9i+1}

lll = mln{t : 01 L 91',1} u; = max{t : 01 L> 01‘,1}
Wheneverg = 1, the product level will move fromp? to p‘*! within the [zj,u}] time
interval and, likewise, it will move from® to p'~* wheng = 0. The extended delay
operator is specified as follows:

g |p p A g p p A

0 o 0 — 10 1 ), ul]

ot oo e i il
02 |1 |l u L2 3 |t u

0 |[m—1m—=2[[tt_,,ut 1 |m—=1lm—-1 -

The corresponding automaton is shown in Figure 7. Its uppergorresponds to
states wherg = 1 andp is increasing, and the lower part to states wheee 0 and



p is decreasing. The main attractive feature of this moddias it makes a distinction
between entering a state via@tical transition (which reverses the direction of evolu-
tion) and entering it via a horizontal transition (which igsedto a monotone growth or
decay process). In the latter casedeanot need to use a zero lower bound because it is
clear that the threshold was cros$emin below (resp. above) and it will take some time
between; andu; to cross the next threshold in the same direction. Hencedhsition
from (g,i—1) to (g, %) sets the clock to the intervédl, u| —i!] while the transition from
(7, i) to (g,7) sets the clock to the intervidl, ] allowing an immediate transition from
there to(g, 7 + 1). As a result, zero time cycles can now involve only statesdbee-
spond toneighboring levels of concentration, that i§g, i), (g, + 1), (g,7 + 1), (g, ).
This way the deviation of the discrete timed model from theticmious one is reduced
and tends to zero asa tends to infinity.

9.0) o= : @1 |e=ul/ (9,2) c%u;/
c<u €= Ou —1] | |.< Wl |e= 0,u2 T =12 1] |, < uh | [0,us T —1]]
g=1/ | |g=0/ g=1/ 1 1g=0/ g=1/ 1 1g=0/
¢ := [0, u) c:={0,u] c:=[0,u} ¢ := [0, u,) c:= [0, u3]
@0 |e=ut @) |e=uly @2 Je=uly
c<ut |€F [0,ut —13] c<ul c:=[0,u —1}]

Fig. 7. A timed automaton model for the multi-valued delay operator. Zeno befsagan now
take place only among states that correspond to neighboring levelscegrdoation.

To complete the adaptation of the model to the multi-valuettirey we replace
each activation function of the forrfi : {0,1}" — {0,1} by a function of the form
f:{0,...,m—1}" — {0, 1} and have all the ingredients for translating the network in
a timed automaton and analyzing its behaviors. Some expatahresults are reported
in the next section.

5 Experimental Results
We demonstrate the potential of our modeling framework antston several examples.

5.1 A Cross-inhibition Network

We first consider a simple model of the lysis/lysogeny deaisn the bacteriophage,
a virus that infects bacteria. Following the infection,uges can reproduce in bacteria



in two different waysilysis andlysogeny. In the first case, the virus multiplies in the
bacterial cell and eventually kills the cell. In the secoade; the genetic material of
the virus integrates into the bacterial chromosome andcegpk with it. A genetic
regulatory network involving at least 5 viral genes is resgble for the choice between
lysis and lysogeny. We study here a simple model of the cotheohetwork that has
been proposed as responsible for the lysis/lysogeny dedisir95]. The model that we
use is similar to the model used in [SB06] in their proposabttend Thomas’ model
with timing information.

The network is represented by the diagram of Figure 8. Itistssf two genesl
andcro, that code for two repressor proteins, Cl and Cro. More $igadly, protein ClI
represses the expression of gene whereas protein Cro represses the expression of
genecl, and at a higher concentration, the expression of its owe.géf@ denote the
gene<l andcro by x andy and the proteins Cl and Cro by andY'.

Fig. 8. A cross-inhibition network.

In our formalism, we use Boolean variablgsandg, for the state of the genes, and
two integer variableg,, € {0,1} andp, € {0, 1,2} for the protein concentrations. The
use of three concentration levels for prot&iris motivated by the fact that a moderate
concentration of the protein is sufficient for the inhibitiof genex, whereas a high
concentration is needed to inhibit its own geneThe following activation functions
summarize this information:

Dz |Py |9z ||y
0(0]1]1
0O[1]0]1
0(2]/0]0
1{0f1(0
1{1}0(0
112}0(0

The timed automatal, and.A, for this example are depicted in Figure 9. As in [SB06],
we have used the delay intervéiis 10], but as explained in Section 3, we assumed that
some changes in protein concentration can happen instantsly in order to guarantee
that the timed model is a conservative over approximatica @jntinuous process.

We analyzed this system using the IF toolbox [BG#], the successor aRONOS
[DOTY96]. The initial state of the system corresponds to itifection of a bacteria
by a bacteriophage. In this state, both proteins are absenbath genes aren. The
reachability graph generated by IF for this example is giadfigure 10-(a). Because of
the interleaving semantics and the fact that changes in getiaty follow changes of
protein concentration instantaneously, some states finenimediately upon entrance



gz =1 =10 gz =1 gy=1|c>5/c:=0 | w=1 c>5/ 9y =

pa =0 Pa = py =0 Py = Dy =2
c< 10 c <10 c <10
fol || = fal —fol || ful 1ol Yy Jol ~fyl ‘o ~fyl
c:=[0,10] c:=[0,10] c:=[0,10] ’ c:=[0,10] c:=[0,10] Y c:=[0,10]
gz =0 gz =0 gy =0 gy =0 gy =0
Pz =0 =10 Do = py =0 py =1 Py =
°= c< 10 c>5/ c<10| €25/c=0 | .10

Fig. 9. The automatad. and.A, for the cross-inhibition network.

and have no biological significance. The toolbox collapsesis of states connected
by immediate transitions into single states to obtain thteraaton of Figure 10-(b).

./ \,,\

| 101 Lo )

L0z ) =——
ley =0 l T ley =0
— ., 0001

(@)

Fig. 10. (a) The reachability graph generated by IF for the cross-inhibition rm&tv®&tate are
labeled by values of state variablég., gy, p=, py). TWo clocksc, and ¢, are used and the
initial state is double circled. Dotted circles represent states that are leftdrately. (b) The
reachability graph after collapsing instantaneous transitions. State lalbedspmnd to protein
concentration$p., py) and the transitions are labeled by changes in their values.

A manual analysis of this reachability graph reveals thatdystem exhibits a mu-
tual exclusion property, in the sense that it necessatifyeeends up in a state wheke
is present and” is absent (stat&0), or oscillates between states wheéfas absent and
Y is present in either medium (staié) or high (state)2) concentration. The mutual
exclusion property is a well-known property of cross-intidm networks such as the
one we study. Additional interesting timing properties taninferred from the reach-



ability graph. First, staté0 is the only state in which the system can remain forever
and it can be reached from initial stai@ within time included in the intervaD, 10].
Secondly, it takes to the system betw&eand20 time units to reach a staf2 having a
high concentration of". Finally, the oscillations period is betwe@mnd20 time units,
that corresponds to all the cases between damped oscilafperiod arbitrary close
to 0) and sustained oscillations with maximum amplitudeiakeof 20 time units). It
should be noted that the reachability graph makes a digtmbetween two instances
of state01, the first being reached from initial stdi@ and hence having to wait at least
5 time units to move t@2, and the second reached frd2 and hence can return to
it immediately. To summarize this example, we obtain theesgumlitative results as
in the untimed model (which suggest that this particulawoek is robust under delay
variations), plus some additional timing information om hossible behaviors of the
system.

5.2 Transcriptional Cascade inE. coli

As a second example, we study a transcriptional cascadée afli [HTWO5] repre-
sented in Figure 11. It is made of four gengsR, lacl, cl, andeyfp that code respec-
tively for three repressor proteins, TetR, Lacl, and Cl, tredfluorescent protein EYFP.
The fluorescence of the system, due to the protein EYFP, carebsured. The system
can be controlled by the addition or removal of a small difitesmolecule, aTc, in the
growth media. More precisely, aTc binds to TetR and relighesrepression offacl.
One can check that the fluorescence of the system at steddynsiiabe low for low
aTc concentrations, and high for high aTc concentrations.

aTc
1
’—o TetR ’—<> Lacl ’—<> (¢]] ’—<> EYFF
| — | | — | I — | — |
tetR lacl cl eyfp

Fig. 11. A transcriptional cascade.

We have made a simple model of this system, assuming a maa@tas for protein
production of45 minutes for all proteins. Although these delays are biaally realis-
tic they should not be considered as accurate and they adeonseto demonstrate the
capabilities of our tool. Using the IF toolbox, we computhkd teachability graph for
two different initial conditions, corresponding to highdalow aTc concentrations. We
obtained, respectively, graphs havihgstates and4 transitions (see Figure 12), and
19 states and8 transitions. The computations lasted less than one seaordstan-
dard PC. In both cases, these computations indicate thaydtem eventually stabilizes
and always remains in a state in which the fluorescence Isalrisistent with what is
experimentally observed: high fluorescence in presencd of and low fluorescence
in its absence. Manual analysis of these graphs reveal¢dhinaquilibrium state is
necessarily reached in less that 6 hours. This upper boundék larger than what has



been observed experimentally [HTWO05], and is due to the Fedtwe have used coarse
Boolean abstractions of the concentration levels. Neetris, proving the existence of
some upper bounds, which cannot be done using untimed maglals important step
toward using such a cascade as a module in a synthetic network

Fig. 12.The reachability graph for the transcriptional cascade irptegence of aTc. State labels
correspond tdpare, Pretr; Plact, Pel s Peyfp)- The initial state ist0000 (aTc present and EYFP
absent) and the attractor statd iS01 (aTc present and EYFP present).

5.3 Nutritional Stress Response irk. coli

Our last example is based on a model of the nutritional stesgmnse irk. coli which
plays a crucial role in its survival. When confronted with dritional stress, this crea-
ture stops growing and enters in a dormant, resistant Stgeise a simplified version
of the elaborate model of this phenomenon proposed inTR8P The model consists
of six genes, six proteins, and one additional variable @imgpthe presence or absence
of nutrition. Since no timing information is available ondlsystem we have arbitrarily
used[0, 45] minutes as a delay interval, just to check the feasibilitamdlysis.

The reachability graph, computed using the IF toolbox irs l#sn one second,
has69 states an@09 transitions, and admits several cycles (Figure 13). Howehe
manual analysis of graphs of this size is less attractiveshmaild be replaced with
model checking against higher-level temporal propertiaswe intend to integrate into
our toolbox. Nevertheless, this example shows that thewstive analysis of complex
timed models of gene networks is feasible.

6 Discussion

We have laid down some conceptual foundations for timed firaglef genetic regu-
latory network and other biological processes, provided sapport for the definition
and analysis of such models and demonstrated its effeethgeon several examples. In



Fig. 13. The reachability graph for the nutritional stress response.

particular, we have extended the framework of [MP95] fromolBan to multi-valued
domains in a clean and systematic manner which reduces fénet eof Zeno behav-
iors on the quality of the model. We have tested the commutatieffectiveness of our
modeling approach on several non-trivial examples.

The modeling framework can be refined further to accommosiateral levels of
gene activation, each with different production rates agldyss. Such an extension will
require a careful examination of different ways to constfuactions over bounded
integer domains using a combination of logical and aritlicaébperations.

Finally let us not delude ourselves that after having pregiignodeling and tool
support, all that remains is to sit and wait for biologistsstdmit their models for
analysis. Much is still to be done in promoting this class afdels among them and
in orienting their experiments to yield the information uggd to make these models
useful. We have reasons to believe that this informatioridcbe, to a certain extent,
easier to obtain than what is needed for meaningful contisunodels, for example
from micro-array experiments with a low sampling rate. Iftis the case we can hope
that timed models will find a significant niche in the discregecontinuous spectrum of
dynamical system models used for biological purposes.
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