Reachability Analysis of Pushdown Automata:
Application to Model-Checking

Ahmed Bouajjani' Javier Esparza®* Oded Maler!

! VERIMAG, Centre Equation, 2 av. de Vignate, 38610 Gieres, France.
email: Ahmed.Bouajjani@imag.fr, Oded.Maler@imag.fr
% TInst. fiir Informatik, Tech. Univ. Miinchen, Arcisstr. 21, 81539 Miinchen, Germany.
email: esparza@informatik.tu-muenchen.de

Abstract. We apply the symbolic analysis principle to pushdown systems.
We represent (possibly infinite) sets of configurations of such systems by
means of finite-state automata. In order to reason in a uniform way about
analysis problems involving both existential and universal path quantifica-
tion (such as model-checking for branching-time logics), we consider the
more general class of alternating pushdown systems and use alternating
finite-state automata as a representation structure for sets of their con-
figurations. We give a simple and natural procedure to compute sets of
predecessors using this representation structure. We incorporate this proce-
dure into the automata-theoretic approach to model-checking to define new
model-checking algorithms for pushdown systems against both linear and
branching-time properties. From these results we derive upper bounds for
several model-checking problems as well as matching lower bounds.

1 Introduction

Systems are commonly modeled by various types of transition systems, including
finite automata, pushdown automata, Petri nets, timed or hybrid automata, etc. In
this framework, most of the system analysis problems (model-checking, synthesis)
reduce to various kinds of “reachability problems” on these models. It is therefore
fundamental for system analysis to develop algorithms that compute the set of all
predecessors of a given set of states S, i.e., the set of states from which it is possible
to reach S.

Let pre(S) denote the set of immediate predecessors (via a single transition) of
the set S, and let pre*(S) denote the set of all its predecessors. Clearly, pre*(S) is
the limit of the infinite increasing sequence {X;};>0 given by Xo = S and X;11 =
X; Upre(X;) for every i > 0.

In the case of finite-state systems, the sets X; are all finite, and the sequence
{Xi}i>0 is guaranteed to reach a fixpoint, which immediately provides an algorithm
to compute pre*(S). Unfortunately, these properties no longer hold for any non-
trivial class of infinite-state systems. For such systems, the first task is then to
find a class of finite structures that can represent the infinite sets of states we are

* Supported by the University Joseph Fourier (Grenoble I) and by Teilprojekt A3 of the
Sonderforschungsbereich 342.

interested in. Since boolean combinations of sets of states are usually interesting,
the class should be closed under boolean operations. Moreover, since we wish to
check if a given state (for instance the initial state) belongs to an infinite set, the
membership problem of the class should be decidable. Once such a class has been
found, it remains to show that it is (effectively) closed under the pre* function.

Several instances of systems and their corresponding representation structures
have been considered in the literature. For example, in the case of timed automata,
special kinds of polyhedra (regions) are used to represent infinite sets of states
(vectors of reals corresponding to clock valuations) [3]. Polyhedra are also used for
linear hybrid systems. However, in this case, there is no algorithm for computing
a finite representation of the ezact set of predecessors (the reachability problem is
undecidable), but upper approximations of this set can be calculated [2]. In [5],
representation structures called QDD’s are introduced for FIFO-channel systems.
These structures are finite-state automata representing sets of queue contents. As
in the case of linear hybrid systems, the procedure for calculating the set of pre-
decessors for these structures is not guaranteed to terminate. Finally, notice that
symbolic representations (e.g. BDD’s [10]) are also used in the finite-state case in
order to overcome the state-explosion problem [17].

In this paper we consider pushdown systems,as well as the more general class of
alternating pushdown systems, i.e., pushdown systems with both existential and uni-
versal nondeterminism (see [20] for a survey on alternating automata). This general
setting allows to reason in a uniform way about analysis problems where existen-
tial and universal path quantification must be considered, like model-checking for
branching-time temporal logics (see Section 5) and also about synthesis problems,
such as finding winning strategies for 2-player games (see [4]).

A state (we use rather the word “configuration”) of a pushdown system is a pair
(p,w) where p is control location and w is a sequence of stack symbols (the stack
contents). As a representation structure for sets of configurations, we propose the
alternating multi-automaton (AMA), an alternating finite-state automaton with one
initial state for each control location. The automaton recognizes the configuration
(p,w) if it accepts the word w from the initial state corresponding to p. It is impor-
tant to remember that an AMA is just a tool to represent a set of configurations,
and not to confuse its “behaviour” with that of the pushdown system.

It is easy to show that AMA’s are closed under boolean operations, and that its
membership problem is decidable. Our main result is a simple and natural algorithm
for computing the pre* function. As an application, we construct elegant model-
checking algorithms for pushdown systems w.r.t. both linear and branching-time
temporal logics. More precisely, we show how to construct AMA’s accepting the set
of all configurations satisfying w-regular properties of linear-time temporal logics
(including all properties expressible in LTL [18] or the linear-time p-calculus [19]),
or properties expressed as formulas of the alternation-free modal u-calculus. A first
version of these results appeared in [8] (where the logic CTL [13] is considered
instead of the more expressive alternation-free modal p-calculus).

Moreover, our approach allows us to obtain a number of complexity results: we
show that the model-checking problems mentioned above are in DEXPTIME, and
that the model-checking problem for pushdown systems and a subset of CTL can

be solved in PSPACE. Using a technique due to Walukiewicz [22], we complement
these results with matching lower bounds, i.e., we show that all these problems are
complete for their corresponding complexity classes.

The paper is structured as follows. In Section 2, we give an algorithm which
computes the pre* function for pushdown systems. In this case, the representation
structure is a simple nondeterministic multi-automaton (i.e., without alternation).
We apply this algorithm in Section 3 to the model-checking problem for linear-time
logics. In Section 4, we generalize the algorithm given in Section 2 to alternating
pushdown systems. In Section 5, we apply the new algorithm to the model-checking
problem for branching-time logics. Proofs of the theorems can be found in the full

paper [7].
2 Reachability in pushdown systems

2.1 Pushdown Systems

A pushdown system (PDS for short) is a triplet P = (P, I, A) where P is a finite
set of control locations, I' is a finite stack alphabet, and A C (P x I') x (P x I'*) is
a finite set of transition rules. If ((¢,7), (¢’,w)) € A then we write (¢,7) — (¢',w)
(we reserve — to denote the transition relations of finite automata).

Notice that PDS’s have no input alphabet. We do not use them as language
acceptors but are rather interested in the behaviours they generate.

A configuration of P is a pair {p, w) where p € P is a control location and w € I'*
is a stack content.

If (¢,7) < (¢',w), then for every w' € I'* the configuration (¢, yw') is an im-
mediate predecessor of (¢',ww'), and (¢', ww') is an immediate successor of (g, yw').
The reachability relation = is the reflexive and transitive closure of the immediate
successor relation. A run of P is a maximal sequence of configurations such that for
each two consecutive configurations ¢; and c¢;4+1, ¢;41 is an immediate successor of
¢;- The set of all runs of P is denoted by Runsp.

The predecessor function prep : 20X — 2PXI™ g defined as follows: ¢ belongs
to prep(C) if some immediate successor of ¢ belongs to C. The reflexive and tran-
sitive closure of prep is denoted by pre},. Clearly, pre;(C) = {c€ P x I'* | 3c' €
C. ¢ = ¢'}. We denote by pre;g the function prep opre},. We will omit the subscript
P and write simply pre, pre*, and pre™ when it is clear from the context which
system is under consideration.

2.2 Multi-automata

Let P = (P,I',A) be a pushdown system where P = {p',...p™}. A P-multi-
automaton (P-MA for short, or just MA when P is clear from the context) is a
tuple A = (I',Q,9,I, F) where @ is a finite set of states, d C Q) x I' x) is a set of
transitions, I = {s',...s™} C Q is a set of initial states and F C Q is a set of final
states.

We define the transition relation —C @ x I'* x () as the smallest relation
satisfying:

— if (¢,7,¢') € 6 then ¢ — ¢,

— g —» g for every g € Q, and
—if g% ¢" and ¢" - ¢' then ¢ —5 ¢'.

A accepts or recognizes a configuration (p?, w) if s* == ¢ for some ¢ € F. The set
of configurations recognized by A is denoted by Conf(A). A set of configurations
is regular if it is recognized by some MA.

A w-run of A, where w = vy ...y, € I'*, is a sequence s' - q1 ... -2 ¢y,.

2.3 Calculating pre*

Fix a pushdown system P = (P,I',A) where P = {p',...,p™}. We show in this
section that given a regular set of configurations C' of P recognized by a MA A, we
can construct another MA Ap,.« recognizing pre*(C).

By definition, pre*(C) = (U, Xi with Xo = C and X;1 = X; Upre(X;) for
every i > 0. Therefore, one may try to calculate pre*(C) by iteratively constructing
the increasing sequence Xo, X1,.... If X;11 = X; holds for some ¢ > 0, then it is
clear that X; = pre*(C).

However, the existence of such a fixed point is not guaranteed in general, and we
may never reach the limit of the X; sequence. Consider for instance the PDS with
one state p, one stack symbol v, and one transition rule (p,v) < (p,¢e), and take
C= {<p7 6>} ClearlY; we have Xz = {<p7 6>7 <p> 7>7 R <p> ,yz>} and so Xi+1 ;é Xz for
every ¢ > 0.

To overcome this problem, we calculate pre*(C) differently, as the limit of an-
other increasing sequence of sets of configurations Yy, Y1, ... for which we can prove
the following properties:

P1. 3i > 0. Yy = Y
P2. Vi > 0. X; C V;,
P3.Vi>0.Y; CUj50X; =prev(0).

Property (P1) ensures termination of the procedure that computes the sequence
of Y;’s. Property (P2) ensures that, by calculating the limit of the Y;’s, we capture
(at least) the whole set pre*(C), and property (P3) ensures that only elements of
pre*(C) are captured.

The Y;’s are formally defined as the sets of configurations recognized by a se-
quence Agp, A; ... of MA’s satisfying for every i > 0 the following property: A;+1
has the same states as A;, and possibly a superset of its transitions. Since a MA
with n states and m input symbols can have at most n? - m transitions, the Y;’s
must converge to a fixpoint.?

We start with a MA A recognizing the regular set of configurations C. We assume
without loss of generality that .4 has no transition leading to an initial state (every
MA can be converted to one having this property). We take Ay = A. We denote
by —; the transition relation of A4;. For every i > 0, A;;1 is obtained from A;
by conserving the same states and transitions, and adding for every transition rule

% The idea is inspired by the construction given in [6], pages 91-93, of a finite-state automa-
ton recognizing the closure of a regular language under the rewriting relation induced
by a monadic string-rewriting system.

(p7,7) = (p*,w) and every state ¢ such that s* —2+; ¢ a new transition s/ it .
Then, for every i > 0 we define Y; = Conf(A;). Note that the new transitions added
to A; in order to construct ;41 start at initial states.

To understand the idea behind this construction, observe that (p*,yw') is an
immediate predecessor of (p/,ww') by the rule (p/,v) — (p*,w). So, if the word

ww' is accepted starting from s* by A; (s* —; ¢ == ¢' € F), then the new

transition in A;41 allows to accept yw' starting from s/ (s7 —;41 ¢ —; ¢' € F).
Let us illustrate the construction by means of an example.
Let P be the PDS such that P = {p',p?}, I' = {y1,...,7}, and A contains the
rules
®*%7) = (0%, m2) (0 9) = 0%, 7a%) (01 %) = (0F5e)

Consider the set of configurations C' = {(p®,717273)}. It can be represented by a
MA A such that Q = {s',5%,q1,q2,q3}, I = {s',5}, F = {g3}, and § contains the
transitions s2 — q1, Q1 LN g2, and ¢ LN qs-

The picture below shows the automaton A4,,.- obtained at the end of the con-
struction.

Y4

In the first step (from Ao to A1) we have s? 25, ¢o and s' — s!, and so we
add the transitions s2 =%, ¢» and s' —%; s' corresponding respectively to the
first and to the third transition rules of P. No other transitions are added. The
new automaton now accepts all immediate predecessors of (p?,v17273), namely the
configuration (p?,7473) (note that the set of words accepted from s' is empty at
this step).

In the second step, we add the transition s —25, g3, corresponding to the second
transition rule of P. At this point the construction stops since no further transition
must be added. So, we have A« = A, and

pre’(C) = ({p'} x %575) U ({p"} x {m127s,7275})

Observe that in this example we have X; = Y; but X5 C Y5. Indeed, in the
second step of the construction, after adding s! 2, qs, Az accepts all the configu-
rations of the form (p!,v¥~s) for every k > 0, whereas only (p',7s) belongs to Xs.
However, despite the fact that these configurations are not immediate predecessors

of X configurations, they are all in pre*(C) because (p',757vs5) € Xiia for every
kE>0.

The proofs of the properties (P1), (P2), and (P3) are given in the full paper.
We deduce from these properties the following theorem.

Theorem 2.1 Given a PDS P and a regular set of configurations recognized by a
P-MA A, we can construct a P-MA Appex recognizing pre* (Conf(A)).

We conclude the section with a remark on complexity. In order to construct
Air1 from A;, we compute for each transition rule (p,v) < (p',w) of the PDS P
the set of states ¢ such that s' —; ¢, and then add the transition s i)prl q to
Ait1. The computation time of the set is quadratic in the number of states of A;
(which is equal to the number of states of A) and linear in the length of w ([1],
Theorem 9.5). Thus, the construction of A;41 from A; takes time O(|A]* - |P|?).

Now, the sequence Ag, Ay, ... must reach the fixpoint A~ after at most O(|.A|*-
|P|) steps, because this is an upper bound on the number of transitions of any P-
MA having the same states as A. So the computation of A,,..« takes O(|A|* - |P|?)
time.

3 Model-Checking Linear-Time Temporal Logics

Let Prop be a finite set of atomic propositions, and let X = 2°7°P_ It is well known
that the semantics of properties expressed in linear time temporal logics like LTL or
the linear-time p-calculus are w-regular sets over the alphabet Y. Moreover, there
exist algorithms which construct Biichi automata to recognize these sets [21, 20].
This is all we need to know about these logics in this paper in order to give model
checking algorithms for PDS’s.

Let P = (P,I',A) be a PDS, and let A: P — X be a labelling function, which
associates a set of true propositions with every control location p. Given a formula
o of such an w-regular logic we wish to solve the following problem:

Compute the set of all configurations ¢ of P such that every run starting
from c satisfies ¢ (via the labelling function A).

Then, the model checking problem consists in checking whether a given initial con-
figuration belongs to this set of configurations.

We start by constructing a Biichi automaton B corresponding to the negation
of . The product of the PDS P and this Biichi automaton yields a Biichi PDS BP
with a set of repeating control locations G C P. Then, the original problem reduces
straightforwardly to the following accepting run problem:

Compute the set C of configurations ¢ of BP such that BP has an accepting
run starting from ¢ (i.e., a run which visits infinitely often configurations
with control locations in G).

(Notice that the emptiness problem of Biichi PDS’s - whether the initial configura-
tion has an accepting run - reduces to the accepting run problem via the membership
problem of MA).

The following proposition shows that the accepting run problem of Biichi PDS’s
can be reduced to a reachability problem:

Proposition 3.1 Let ¢ be a configuration of a Biichi PDS BP. BP has an accepting
run starting from c if and only if there exist configurations (p,v), (g, u), and (p,yv),
not all three equal, such that g € G and:

(1) ¢ = (p,yw) for some w € I'*, and
(2) (p,7) = (g,u) = (p,70).

We can reformulate conditions (1) and (2) of Proposition 3.1 as follows:

(1) c € pre*({p} x vI'*), and
(2) (p,7) € pre™((G x I'*) Npre*({p} x vI™)).

Since G x I'* and {p} xyI'* are regular sets, we can use Theorem 2.1 to construct
MA'’s recognizing the sets pre*({p} xvyI'*) and pre™ ((G x I'™*)Npre*({p} xyI'*)) (for
pret we need to define for a MA A another MA recognizing pre(Conf(A)), which
is a simple exercise). Therefore, by Proposition 3.1, we can construct a MA which
recognizes the set of all configurations having an accepting run: First, we determine
all the configurations (p,v) (there are finitely many of them) for which (2') holds,
and then we construct a MA recognizing the union of the sets pre*({p} x vI™*) for
all such pairs.

The sizes of the MA’s for the sets G x I'* and {p} x yvI'* are polynomial in the
size of the Biichi PDS. Hence, since the computation of prej, (Conf(A)) for a MA
A takes polynomial time in the size of P and the number of states of A, we deduce
the following result:

Theorem 3.1 The accepting run problem of Biichi PDS’s can be solved in polyno-
mial time.

Since the membership problem of MA’s can be solved in linear time, a conse-
quence of Theorem 3.1 is that the emptiness problem of Biichi PDS’s can also be
solved in polynomial time.

Theorem 3.2 The model checking problems for LTL and the linear-time p-calculus
and PDS’s are DEXPTIME-complete. The model checking problem for a fized for-
mula is polynomial in the size of the PDS.

Proof. Let us first prove membership in DEXPTIME. Let P be a PDS of size np
and ¢ a formula of length n,. It is well known that it is possible to construct a
Biichi automaton B for the negation of ¢ having exponential size in n,, and this
construction can be done in exponential time [21, 19]. Hence, the product of P and
B has polynomial size in np and exponential size on n,. Applying Theorem 3.1
we obtain an exponential time bound. If the formula ¢ is fixed, then we have an
algorithm polynomial in np.

To prove hardness, we use a reduction from the problem of deciding whether
a given linearly bounded alternating Turing machine accepts a given input or not.
The details of the reduction are given in the full paper. O

The model-checking problem for LTL or the linear-time p-calculus and finite-
state systems is known to be PSPACE-complete, but polynomial in the size of the

system. Since the properties of systems one wishes to check can be usually encoded
into short formulas, model-checkers based on linear-time logics, like SPIN [16], have
proved to be useful in practice. Theorem 3.2 shows that the complexity of model-
checking for PDS’s is worse than the complexity for finite-state systems, but not
much worse: it remains polynomial in the size of the system.

4 Reachability in Alternating Pushdown Systems

4.1 Alternating Pushdown Systems

We consider now the problem of computing the set of predecessors of a regular
set of configurations of an alternating pushdown system. We show that this set is
also regular, and we give a procedure for constructing its representation by means
of alternating finite-state multi-automata. To this end, we generalize the technique
described in the Section 2. The construction we give is used in the model checking
algorithms for branching-time logics given in the next section.

An alternating pushdown system (APDS for short) is a triplet P = (P, I, A),
where P and I are as for PDSs, and A is a function that assigns to each element
of P x I' a negation-free boolean formula over elements of P x I'*. We assume
that boolean formulae are always in disjunctive normal form, which allows us to
equivalently define A as a subset of the set (P x I') x 28*I"" of transition rules: for
example, instead of writing

A(p, 7) = ((plawl) v (p27w2)) A (p37w3)

we write

{ ((pv 7)7{(p17w1)7 (p37w3)})) ((pafy)v{(p27w2)7 (p3,’ll)3)}) } - A

or just
(p,7) = {(pr,w1), (3, w3)} , (p,7) = {(p2, w2), (p3, w3)}

If (p,v) = {(p1,w1),...,(Pn,wy)}, then for every w € I'* the configuration
(p,yw) is an immediate predecessor of the set {(p1, wiw),..., (pn, w,w)}, and this
set is an immmediate successor of (p, yw). Intuitively, at the configuration (p, yw) the
APDS selects nondeterministically a transition rule of the form

(p,7) = {(p1,w1), ..., (Pn,wn)}

and forks into n copies in the configurations (p;, wiw), ..., (Pn, Wpw).

A run of P for an initial configuration c is a tree of configurations with root c,
such that the children of a node ¢’ are the configurations that belong to one of its
immediate successors (nodes of the form (p,e) have no successors).

We define the reachability relation =C (P x I'*) x 2% between configurations
and sets of configurations. Informally, ¢ = C if and only if C is a finite frontier (finite
maximal set of incomparable nodes) of a run of P starting from ¢. Formally, = is
the smallest subset of (P x I'*) x 2P*T"" such that:

1. ¢ = {c} for every c € P x I'*,
2. if ¢ is an immediate predecessor of C', then ¢ = C,

3. ifec=>{c1,...,¢,} and ¢; = C; for each 1 <i < n, then c= (C1 U...UCy).

The function prep:2F*T" — 2P*I" i now defined as follows: ¢ belongs to
prep(C) if some immediate successor of ¢ is contained in C' (observe that the im-
mediate successor of ¢ is now a set). We denote by pre} the transitive closure of
AC. (CUprep(C)), i.e., given a set of configurations C, prey (C) = J;~o Xi, where
Xo = C and X;11 = X; Uprep(X;), for every ¢ > 0. As in the case of PDS’s,
prep(C) ={ce PxI*|3C'CC.c=C'}.

4.2 Alternating multi-automata

Fix an APDS P = (P, I, A). An alternating P-multi-automaton (P-AMA for short,
or just AMA when P is clear from the context) is a tuple A = (I, Q,d, I, F') which
differs from an MA only in the nature of 4. § is now a function that assigns to every
pair of @) x I' a positive boolean formula with @) as set of variables. As in the case of
APDSs, we can equivalently represent ¢ as a set of transitions, which are elements
of (Q x I') x 29,

The transition relation —C @ x I'* x 29 is the smallest relation satisfying

— if (¢,7,Q") € § then ¢ — @',
— q — {q} for every q € Q,
—ifq -5 {q1,...,qn} and ¢; 5 Q;foreach 1 < i < n, then ¢ —» (Q1U...UQy).

A configuration (p*,w) is recognized by A if s* = Q' for some Q' C F. Given
a finite sequence w € I'* and a state ¢ € @), a run of A over w starting from ¢ is
a finite tree whose nodes are labelled by states in) and whose edges are labelled
by symbols in I'; such that the root is labelled by ¢, and the labelling of the other
nodes is consistent with 4. Notice that in such a tree each sequence of edges going
from the root to the leaves is labelled by w, and hence, all the edges starting at the
same level of the tree have the same label, and all the leaves of the tree are at the
same height.

It is immediate to show that AMA’s are closed under boolean operations. We
mention also that the membership problem for AMA’s can be solved in polynomial
time.

4.3 Calculating pre*

Let P = (P, I, A) be an alternating pushdown system. We show in this section that
given a regular set of configurations C' of P, recognized by an alternating-multi-
automaton A, we can construct another AMA Ap,..- such that Conf(Apre-) =
pre*(C).

The construction is very similar to that of the non-alternating case. We assume
without loss of generality that no transition of A leads to a set of states containing
an initial state. We define a sequence of AMA’s Ag, Ay, ... such that Ay = A. For
every i > 0, A;1+1 is obtained from 4; by conserving the same states and transitions,
and adding for every transition rule

<pj7’y> — {<pk17w1>7 R <pkm7wm>}

and every set

a new transition
st l>i+1 (P1 u...u Pm)

Then, define Y; = Conf(A;) for every i > 0.

The intuitive justification of the construction is that we add the configuration
(p?,yw) to the set of predecessors of C' whenever all the configurations (p*t,w;w),

-y (PP wpw) are already in this set. So, if for every £ € {1,...,m}, the word

w;w is accepted by A; starting from s*¢, which means that sk 2. Ppand Vp €
Py.p % Q; C F, then, due to the new transition, the word yw is accepted by A;; 1
starting from s’. Notice that the new transition imposes that only words w that
are accepted starting from all the states in the Pp’s can be considered (w is in the
intersection of the languages of all these states). The use of alternating automata
allows to represent this intersection without modification of the number of states
of the original automaton A. This is crucial for the termination argument of the
construction.

The following theorem, which shows the correcteness of the construction of
Aprex, is proved in the full paper:

Theorem 4.1 Given an APDS P and a regular set of configurations recognized by
a P-AMA A, we can construct a P-AMA Appex recognizing pre*(Conf(A)).

It follows easily from the facts below that the algorithm is polynomial on the
size of P and (singly) exponential in the size of A:

— Apre+ has the same states as A,

— a P-AMA with k states has O(np - k - 2¥) transitions, where np is the size of
P, and

— during the construction of the sequence Ag, Aj, ..., polynomial time suffices to
decide if a new transition can be added to the current automaton.

5 Model-Checking Branching-Time Temporal Logics

5.1 The alternation-free (propositional) p-calculus

Let Prop be a set of atomic propositions and X" a finite set of variables. The set of
formulas of the (propositional) p-calculus is defined by the following grammar:

pu=meProp| X e X [-p |V |IOp|pX.¢

where in formulas of the form pX. ¢, the variable X must occur in ¢ under an even
number of negations. In addition, we consider the usual abbreviations: the boolean
connectives A and =, YQp = =30 ~¢p, and vX. (X)) = -uX. ~p(—X). We write
oX.p(X) for either pX.p(X) or vX.p(X).

The notion of free occurrence of a variable in a formula is defined as usual by
considering p and v as quantifiers. We suppose without loss of generality that in
every formula each variable is bound at most once. We write ¢(X) to indicate that

X occurs free in p. A formula ¢ is closed if no variable occurs free in it, otherwise
it is open.

We interpret formulas on the set of configurations of a PDS P = (P, I, A). We
use a labelling function A : P — 2F7°P and a valuation V which assigns to each
variable a set of configurations. The set of configurations of P satisfying a formula
¢ is denoted by [¢](V) and is defined by the following rules:

[7lp(V) = A" (m) x IT'*
[[X]]P(V):V X)
[=8]»(V) = (P x ™)\ [¢]»(V)
[f1V @2]p (V) = [¢1]p (V) U [¢2] (V)
[0, (V) = pre(lelp (V)
V)

[vX.¢lp(V) =\ J{C S P x I | C C gl (VIC/XD])}

where V|[C/X] is the valuation which coincides with V for all variables but X, where
it takes the value C.
The set of formulas in positive normal form is defined by the following syntax:

pu=a || X[eVeleAp|IOp |VOp | uX. ¢ | vX. ¢

It is easy to show that every formula is equivalent to a formula in positive normal
form (push negations inside).

A o-subformula of a formula ¢X. ¢(X) is proper if it does not contain any
occurrence of X. The alternation-free p-calculus is the set of formulas ¢ in positive
normal form such that for every o-subformula ¢ of ¢ the following holds:

— if ¢ is a p-formula, then all its v-subformulas are proper, and
— if ¢ is a v-formula, then all its p-subformulas are proper.

Given a formula ¢, we define its closure cl(p) as the smallest set of formulas
containing ¢ and such that

— if @1 V o € cl(p) or ¢1 A da € cl(p) then ¢y € cl(p) and ¢o € cl(yp),

— if A0 ¢ € cl(p) or YO € cl(yp) then ¢ € cl(p),
—if 0 X. ¢(X) € cl(p) then ¢p(cX. ¢(X)) € cl(yp).

It is easy to see that the closure of a formula is always a finite set, and that its
cardinality is bounded by the length of the formula.

The Model-Checker Consider a PDS P = (P,I,A) and a labelling function
A: P — 2ProP_ Let ¢ be a formula of the alternation-free p-calculus, and let V be
a valuation of the free variables in (.

We show how to construct an AMA A, recognizing [¢]5(V). From now on we
drop the indices and write just [¢].

We start by considering the case where all the o-subformulas of ¢ are py-formulas.
We construct an APDS AP which is, roughly speaking, the product of P and
the alternating automaton corresponding to ¢ [14]; we then reduce the problem

of computing [¢] to computing the value of pre*p for a certain regular set of
configurations. Intuitively, a configuration ([p,¢], w) belongs to this set if ¢ is a
basic formula of the form =, -7, or X, for X free in ¢, and the configuration
(p, w) of P satisfies ¢. Observe that whether (p, w) satisfies ¢ or not can be decided
by direct inspection of the labelling function A and the valuation V. The AND-
branching in the transition rules of AP is due to conjunctions and universal path
quantifications (in V(O operators) occurring in the formula .
Formally, we define the APDS AP = (P}, I', A%) where

— P7 =P xcl(yp),

— A}'} is the smallest set of transition rules satisfying the following conditions for
every control location [p, ¢] and every stack symbol ~:

if Qs = Qsl \ ¢)2; then ([p> ¢]77) — ([p> 9251]77) and ([pv ¢]7'7) — ([pv ¢)2]>7)7

if Qs = Qsl A ¢)2; then ([p> ¢]77) — { ([p> 9251]77)7 ([p> 9252]77) }7

if Qs = AU'X w(X)a then ([p> ¢]77) — ([p>1/)(¢)]>'7)7

it =30 and (p,7y) — (g, w) is a transition rule of P, then ([p, ¢],v) —

(lg, Y], w),

o if ¢ =VOu then ([p, ¢],7) = {(lg,¥],w) | (p,7) = (g, w)}.

Let C; (where the index t stands for true) be the subset of configurations of AP
containing all configurations of the form

- ([pv 7T],’LU>, where 7 € A(p)a
- ([pv _'7T]7w>7 where 7 ¢ A(p),
— {[p, X],w), where X is free in ¢ and (p,w) € V(X).

Clearly, if V(X) is a regular set of configurations for every variable X free in ¢,
then C; is also a regular set of configurations.

The following result can be easily proved using standard techniques based on
the notion of signature [9]:

Proposition 5.1 Let AP be the APDS obtained from P and ¢ using the construc-
tion above. A configuration (p,w) of P belongs to [¢] iff the configuration ([p, @], w)
of AP belongs to pre’yp(Cy).

Applying Theorem 2.1 we obtain a procedure to compute an AMA A4, which
accepts exactly the configurations of P that satisfy .

The case in which all the o-subformulas of ¢ are v-subformulas is now easy to
solve: the negation of ¢ is equivalent to a formula ¢’ in positive normal form whose
o-subformulas are all p-subformulas. Applying Theorem 2.1 we construct an AMA
which accepts the configurations of P that satisfy ¢’. We then just use the fact that
AMA’s are closed under complementation.

Let us now consider the general case of in which ¢ is an arbitrary formula of
the alternation-free p-calculus. We can assume without loss of generality that ¢ is
a o-formula (otherwise a “dummy” fixpoint can be added). The following property
(which does not hold for the full p-calculus) follows easily from the definitions, and
allows us to construct the AMA A,. We use the following notation: given a family
& = {¢;}, of subformulae of ¢, which are pairwise incomparable with respect
to the subformula relation, and a family U = {U;}}, of fresh variables, ¢[U/9P]
denotes the result of simultaneously substituting U; for ¢; in ¢.

Proposition 5.2 Let ¢ be a p-formula (v-formula) of the alternation-free p-calculus,
and let & = {$;}, be the family of maximal v-subformulas (u-subformulas) of ¢
with respect to the subformula relation. Then

[l = [P[U/211(V)

where U = {U;}, is a suitable family of fresh variables, and V' is the valuation
which extends V by assigning to each U; the set [¢;].

Observe that if ¢ is a p-formula (v-formula), then all the o-subformulas of
p[U/®P] are also p-formulas (v-formulas). Together with Proposition 5.1, this leads
immediately to a recursive algorithm for computing A, for every ¢ € @, compute
recursively AMA’s Ay recognizing [¢], and then use them and Proposition 5.2 to
compute A,. Consequently we have:

Theorem 5.1 Let P be a PDS, let p a formula of the alternation-free p-calculus,
and let V be a valuation of the free variables of p. We can construct an AMA A,
such that Conf(A,) = [¢]p(V).

Complexity Walukiewicz has shown in [22] that there exists a formula of the
alternation-free p-calculus such that the model checking problem for PDS’s and this
formula is DEXPTIME-complete. This implies that all model-checking algorithms
must have exponential complexity in the size of the system. We show that the
algorithm we have obtained (which is very different from the one presented in [22])
has this complexity.

Let np be the size of P and let n, be the length of ¢. We define a tree of
o-subformulas of ¢: the root of the tree is ¢; the children of a p-subformula (v-
subformula) ¢ are the maximal v-subformulas (u-subformulas) of ¢. Clearly, the
number of nodes of the tree does not exceed n,.

Let ¢ be a leaf of the tree. The AMA Ay recognizing [¢] is obtained by applying
the pre* construction to the AMA recognizing the set C;. Since the latter has O(np -
n,) states, Ay has also O(np - ny,) states.

Now, let ¢ be an internal node of the tree with children ¢, ..., ¢y. If the AMA
recognizing [¢;] has n; states, then the AMA recognizing [¢] has O(Z, n;+np-ny,).
Since the number of nodes of the tree does not exceed n,, the AMA A, recognizing
[¢] has O(np - n2) states. Since each AMA can be constructed in exponential time
in the number of states, the algorithm is singly exponential in np and n,,.

5.2 The logic EF

The alternation-free p-calculus is a rather powerful logic. Proper sublogics, like
CTL, are considered to be sufficiently expressive for many applications. This raises
the question whether the model-checking problem for PDS’s and some interesting
fragment of the alternation-free py-calculus may lie in some complexity class below
DEXPTIME. In this section we show that this is the case: we prove that the model-
checking problem for the logic EF (propositional logic plus the temporal operator
EF) is in PSPACE.* However, the problem turns out to be PSPACE-complete,

* We assume PSPACE # DEXPTIME

even PSPACE-complete in the size of the system. Therefore, the complexity gap
between the alternation-free p-calculus and its sublogics is rather small.

Given a set Prop of atomic propositions, the set of formulas of EF is defined by
the following grammar:

pu=m€ Prop|—p|eVe|I0¢| EFp

The semantics of formulas of the form 7, ¢, 1 V 2, and Q¢ is defined as for
the alternation-free p-calculus. A configuration ¢ satisfies a formula EF¢ if there
exists a configuration ¢’ reachable from ¢ that satisfies .

We consider the proof of membership in PSPACE first, since this is the part that
makes use of our reachability analysis. The hardness part is a standard reduction
from the acceptance problem for linearly bounded Turing machines.

Fix a PDS P(P, I, A) and a configuration ¢ of P. Denote by R(c) the set of
words pw € PI'™* such that (p,w) is reachable from c¢. We have the following result
(the proof is in the full paper):

Theorem 5.2 The set R(c) is reqular. Moreover, R(c) is recognized by a finite
multi automaton having polynomially many states in the sum of the sizes of ¢ and

P.

Given a formula ¢ of the alternation-free u-calculus, denote by R(c,) the set
of words pw € PI'* such that (p,w) is reachable from ¢ and satisfies ¢. By Theorem
5.2 and Theorem 5.1, we have:

Corollary 5.1 Let ¢ be a formula of the alternation-free p-calculus. The set R(c, @)
is regular, and is recognized by an alternating finite automaton having polynomially
many states in the sum of the sizes of ¢, P and .

We can now obtain our first result concerning the logic EF:

Theorem 5.3 The model checking problem for the logic EF and pushdown au-
tomata is in PSPACE.

Proof. Let P be a PDS and let ¢ be a formula of EF. We show by induction on the
structure of ¢ that the problem of deciding if a given configuration ¢ of P satisfies
¢ can be solved in nondeterministic polynomial space in the size of ¢, P and ¢.

The cases ¢ = 7, p1 V @2, —¢1 are trivial. So let ¢ = EFp;, and assume that we
can decide whether a configuration ¢ satisfies ¢; using nondeterministic polynomial
space in the size of ¢, P and ¢;.

By the definition of the semantics of EF, P satisfies iff there exists a configu-
ration ¢; reachable from ¢ which satisfies ;.

If an AMA with n states recognizes a nonempty set, then it recognizes some
word of length at most n. Therefore, by Corollary 5.1, we can assume that ¢; has
polynomial size in P and ;. The following nondeterministic algorithm decides in
polynomial space if P satisfies :

— Guess a configuration ¢; of polynomial size in P and ¢;
— Check in polynomial time in the size of ¢; and P that ¢; is reachable from c;

— Check in polynomial space in the size of ¢;, P and ¢; that ¢; satisfies ¢ .

The membership of the model checking in PSPACE follows now from NPSPACE =
PSPACE. m|

In the full paper, we give the proof of the following hardness result:

Theorem 5.4 The model checking problem for the logic EF and pushdown systems
is PSPACE-hard.

Finally, from the proof of Theorem 5.4, we can deduce that the following stronger
result also holds:

Corollary 5.2 There is a formula ¢ of EF such that the problem of deciding if a
PDS satisfies ¢ is PSPACE-complete.

6 Conclusion

We have applied the “symbolic” analysis principle to a class of infinite state sys-
tems, namely pushdown systems. We have represented (possibly infinite) sets of
configurations using finite-state automata, and have proposed a simple procedure
to compute sets of predecessors. Using this procedure and the automata-theoretic
approach to model-checking, we have obtained model-checking algorithms for both
linear and branching-time properties. From these results we have derived upper
bounds for several model-checking problems. We have also provided matching lower
bounds by means of some reductions based on Walukiewicz’s ideas [22].

The model-checking problem for pushdown systems and the modal p-calculus
(or its alternation-free fragment) has been studied in several papers [11, 12, 22].
The main advantage of our approach (apart from an homogeneous treatment of
both branching-time and linear-time logics) is the simplicity of our algorithms:
only well known concepts from automata theory are needed to understand them.
They constitute smooth generalizations of global model-checking algorithms for
branching-time logics and finite-state systems.

An approach similar to ours, based on automata representation of the stack
contents, has been adopted in [15]. However, the techniques used there are different
from ours, and the branching-time properties are expressed there in a logic (CTL*)
which is incomparable with the alternation-free modal p-calculus.

We do not know whether our approach can be extended to the full modal p-
calculus. The exact complexity of the model-checking problem for pushdown systems
and CTL is also open: it lies somewhere between PSPACE and DEXPTIME. These
questions, and the extension of the symbolic analysis principle to other classes of
systems with infinite state spaces, are left for future investigations.

References

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1976.

11.

12.

13.

14.

15.

16.
17.

18.
19.
20.
21.

22.

. R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The Algorithmic Analysis of Hybrid Systems. TCS, 138,
1995.

R. Alur and D. Dill. A Theory of Timed Automata. TCS, 126, 1994.

E. Asarin, O. Maler, and A. Pnueli. Symbolic Controller Synthesis for Discrete and
Timed Systems. In Hybrid Systems II. LNCS 999, 1995.

B. Boigelot and P. Godefroid. Symbolic Verification of Communication Protocols with
Infinite State Spaces using QDDs. In CAV’96. LNCS 1102, 1996.

R.V. Book and F. Otto. String-Rewriting Systems. Springer-Verlag, 1993.

A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown Au-
tomata: Application to Model Checking. Tech. Rep. VERIMAG, 1997.
ftp://ftp.imag.fr/imag/SPECTRE/ODED/pda.ps.gz,
http://papa.informatik.tu-muenchen.de/forschung/sfb342_a3/refs.html.

A. Bouajjani and O. Maler. Reachability Analysis of Pushdown Automata. In Infin-
1ty’96. tech. rep. MIP-9614, Univ. Passau, 1996.

J.C. Bradfield. Verifying Temporal Properties of Systems. Birkhauser, 1992.

R. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams.
ACM Computing Surveys, 24, 1992.

O. Burkart and B. Steffen. Model Checking for Context-Free Processes. In CON-
CUR’92, 1992. LNCS 630.

O. Burkart and B. Steffen. Composition, Decomposition and Model-Checking of Push-
down Processes. Nordic Journal of Computing, 2, 1995.

E.M. Clarke, E.A. Emerson, and E. Sistla. Automatic Verification of Finite State
Concurrent Systems using Temporal Logic Specifications: A Practical Approach. In
POPL’83. ACM, 1983.

E.A. Emerson. Automated Temporal Reasoning about Reactive Systems. In Logics
for Concurrency. LNCS 1043, 1996.

A. Finkel, B. Willems, and P. Wolper. A Direct Symbolic Approach to Model Check-
ing Pushdown Systems. In Personal communication, 1997.

G. Holzmann. Basic SPIN manual. Technical report, Bell Laboratories, 1994.

K.L. McMillan. Symbolic Model-Checking: an Approach to the State-Ezplosion Prob-
lem. Kluwer, 1993.

A. Pnueli. The Temporal Logic of Programs. In FOCS’77. IEEE, 1977.

M.Y. Vardi. A Temporal Fixpoint Calculus. In POPL’88. ACM, 1988.

M.Y. Vardi. Alternating Automata and Program Verification. In Computer Science
Today. LNCS 1000, 1995.

M.Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program
Verification. In LICS’86. IEEE, 1986.

I. Walukiewicz. Pushdown Processes: Games and Model Checking. In CAV’96. LNCS
1102, 1996.

This article was processed using the IXTEX macro package with LLNCS style

