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Abstract� We apply the symbolic analysis principle to pushdown systems�
We represent 
possibly in�nite� sets of con�gurations of such systems by
means of �nite�state automata� In order to reason in a uniform way about
analysis problems involving both existential and universal path quanti�ca�
tion 
such as model�checking for branching�time logics�� we consider the
more general class of alternating pushdown systems and use alternating

�nite�state automata as a representation structure for sets of their con�
�gurations� We give a simple and natural procedure to compute sets of
predecessors using this representation structure� We incorporate this proce�
dure into the automata�theoretic approach to model�checking to de�ne new
model�checking algorithms for pushdown systems against both linear and
branching�time properties� From these results we derive upper bounds for
several model�checking problems as well as matching lower bounds�

� Introduction

Systems are commonly modeled by various types of transition systems� including
�nite automata� pushdown automata� Petri nets� timed or hybrid automata� etc� In
this framework� most of the system analysis problems �model�checking� synthesis�
reduce to various kinds of �reachability problems	 on these models� It is therefore
fundamental for system analysis to develop algorithms that compute the set of all
predecessors of a given set of states S� i�e�� the set of states from which it is possible
to reach S�

Let pre�S� denote the set of immediate predecessors �via a single transition� of
the set S� and let pre��S� denote the set of all its predecessors� Clearly� pre��S� is
the limit of the in�nite increasing sequence fXigi�� given by X� 
 S and Xi�� 

Xi � pre�Xi� for every i � ��

In the case of �nite�state systems� the sets Xi are all �nite� and the sequence
fXigi�� is guaranteed to reach a �xpoint� which immediately provides an algorithm
to compute pre��S�� Unfortunately� these properties no longer hold for any non�
trivial class of in�nite�state systems� For such systems� the �rst task is then to
�nd a class of �nite structures that can represent the in�nite sets of states we are
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interested in� Since boolean combinations of sets of states are usually interesting�
the class should be closed under boolean operations� Moreover� since we wish to
check if a given state �for instance the initial state� belongs to an in�nite set� the
membership problem of the class should be decidable� Once such a class has been
found� it remains to show that it is �e�ectively� closed under the pre� function�

Several instances of systems and their corresponding representation structures
have been considered in the literature� For example� in the case of timed automata�
special kinds of polyhedra �regions� are used to represent in�nite sets of states
�vectors of reals corresponding to clock valuations� 
��� Polyhedra are also used for
linear hybrid systems� However� in this case� there is no algorithm for computing
a �nite representation of the exact set of predecessors �the reachability problem is
undecidable�� but upper approximations of this set can be calculated 
��� In 
���
representation structures called QDD�s are introduced for FIFO�channel systems�
These structures are �nite�state automata representing sets of queue contents� As
in the case of linear hybrid systems� the procedure for calculating the set of pre�
decessors for these structures is not guaranteed to terminate� Finally� notice that
symbolic representations �e�g� BDD�s 
���� are also used in the �nite�state case in
order to overcome the state�explosion problem 
����

In this paper we consider pushdown systems�as well as the more general class of
alternating pushdown systems� i�e�� pushdown systems with both existential and uni�
versal nondeterminism �see 
��� for a survey on alternating automata�� This general
setting allows to reason in a uniform way about analysis problems where existen�
tial and universal path quanti�cation must be considered� like model�checking for
branching�time temporal logics �see Section �� and also about synthesis problems�
such as �nding winning strategies for ��player games �see 
����

A state �we use rather the word �con�guration	� of a pushdown system is a pair
hp� wi where p is control location and w is a sequence of stack symbols �the stack
contents�� As a representation structure for sets of con�gurations� we propose the
alternating multi�automaton �AMA�� an alternating �nite�state automaton with one
initial state for each control location� The automaton recognizes the con�guration
hp� wi if it accepts the word w from the initial state corresponding to p� It is impor�
tant to remember that an AMA is just a tool to represent a set of con�gurations�
and not to confuse its �behaviour	 with that of the pushdown system�

It is easy to show that AMA�s are closed under boolean operations� and that its
membership problem is decidable� Our main result is a simple and natural algorithm
for computing the pre� function� As an application� we construct elegant model�
checking algorithms for pushdown systems w�r�t� both linear and branching�time
temporal logics� More precisely� we show how to construct AMA�s accepting the set
of all con�gurations satisfying ��regular properties of linear�time temporal logics
�including all properties expressible in LTL 
��� or the linear�time ��calculus 
�����
or properties expressed as formulas of the alternation�free modal ��calculus� A �rst
version of these results appeared in 
�� �where the logic CTL 
��� is considered
instead of the more expressive alternation�free modal ��calculus��

Moreover� our approach allows us to obtain a number of complexity results� we
show that the model�checking problems mentioned above are in DEXPTIME� and
that the model�checking problem for pushdown systems and a subset of CTL can



be solved in PSPACE� Using a technique due to Walukiewicz 
���� we complement
these results with matching lower bounds� i�e�� we show that all these problems are
complete for their corresponding complexity classes�

The paper is structured as follows� In Section �� we give an algorithm which
computes the pre� function for pushdown systems� In this case� the representation
structure is a simple nondeterministic multi�automaton �i�e�� without alternation��
We apply this algorithm in Section � to the model�checking problem for linear�time
logics� In Section �� we generalize the algorithm given in Section � to alternating
pushdown systems� In Section �� we apply the new algorithm to the model�checking
problem for branching�time logics� Proofs of the theorems can be found in the full
paper 
���

� Reachability in pushdown systems

��� Pushdown Systems

A pushdown system �PDS for short� is a triplet P 
 �P� ���� where P is a �nite
set of control locations� � is a �nite stack alphabet� and � � �P � � �� �P � � �� is
a �nite set of transition rules� If ��q� ��� �q�� w�� � � then we write �q� �� �� �q�� w�
�we reserve � to denote the transition relations of �nite automata��

Notice that PDS�s have no input alphabet� We do not use them as language
acceptors but are rather interested in the behaviours they generate�

A con�guration of P is a pair hp� wi where p � P is a control location and w � � �

is a stack content�
If �q� �� �� �q�� w�� then for every w� � � � the con�guration hq� �w�i is an im�

mediate predecessor of hq�� ww�i� and hq�� ww�i is an immediate successor of hq� �w�i�
The reachability relation � is the re�exive and transitive closure of the immediate
successor relation� A run of P is a maximal sequence of con�gurations such that for
each two consecutive con�gurations ci and ci��� ci�� is an immediate successor of
ci� The set of all runs of P is denoted by RunsP �

The predecessor function preP � �P��
�

� �P��
�

is de�ned as follows� c belongs
to preP�C� if some immediate successor of c belongs to C� The re�exive and tran�
sitive closure of preP is denoted by pre�P � Clearly� pre

�
P�C� 
 fc � P � � � j 	c� �

C	 c� c�g� We denote by pre�P the function preP 
pre
�
P � We will omit the subscript

P and write simply pre� pre�� and pre� when it is clear from the context which
system is under consideration�

��� Multi�automata

Let P 
 �P� ���� be a pushdown system where P 
 fp�� 	 	 	 pmg� A P�multi�
automaton �P�MA for short� or just MA when P is clear from the context� is a
tuple A 
 ���Q� 
� I� F � where Q is a �nite set of states� 
 � Q� � �Q is a set of
transitions� I 
 fs�� 	 	 	 smg � Q is a set of initial states and F � Q is a set of �nal
states�

We de�ne the transition relation ��� Q � � � � Q as the smallest relation
satisfying�

� if �q� �� q�� � 
 then q
�
�� q��



� q
�
�� q for every q � Q� and

� if q
w
�� q�� and q��

�
�� q� then q

w�
�� q��

A accepts or recognizes a con�guration hpi� wi if si
w
�� q for some q � F � The set

of con�gurations recognized by A is denoted by Conf�A�� A set of con�gurations
is regular if it is recognized by some MA�

A w�run of A� where w 
 �� 	 	 	 �n � � �� is a sequence si
��
�� q� 	 	 	

�n
�� qn�

��� Calculating pre
�

Fix a pushdown system P 
 �P� ���� where P 
 fp�� 	 	 	 � pmg� We show in this
section that given a regular set of con�gurations C of P recognized by a MA A� we
can construct another MA Apre� recognizing pre��C��

By de�nition� pre��C� 

S
i��Xi with X� 
 C and Xi�� 
 Xi � pre�Xi� for

every i � �� Therefore� one may try to calculate pre��C� by iteratively constructing
the increasing sequence X�� X�� 	 	 	� If Xi�� 
 Xi holds for some i � �� then it is
clear that Xi 
 pre��C��

However� the existence of such a �xed point is not guaranteed in general� and we
may never reach the limit of the Xi sequence� Consider for instance the PDS with
one state p� one stack symbol �� and one transition rule �p� �� �� �p� ��� and take
C 
 fhp� �ig� Clearly� we have Xi 
 fhp� �i� hp� �i� 	 	 	 � hp� �iig and so Xi�� �
 Xi for
every i � ��

To overcome this problem� we calculate pre��C� di�erently� as the limit of an�
other increasing sequence of sets of con�gurations Y�� Y�� 	 	 	 for which we can prove
the following properties�

P�� 	i � �	 Yi�� 
 Yi�
P�� 
i � �	 Xi � Yi�
P�� 
i � �	 Yi �

S
j��Xj 
 pre��C��

Property �P�� ensures termination of the procedure that computes the sequence
of Yi�s� Property �P�� ensures that� by calculating the limit of the Yi�s� we capture
�at least� the whole set pre��C�� and property �P�� ensures that only elements of
pre��C� are captured�

The Yi�s are formally de�ned as the sets of con�gurations recognized by a se�
quence A��A� 	 	 	 of MA�s satisfying for every i � � the following property� Ai��

has the same states as Ai� and possibly a superset of its transitions� Since a MA
with n states and m input symbols can have at most n� � m transitions� the Yi�s
must converge to a �xpoint��

We start with a MAA recognizing the regular set of con�gurationsC� We assume
without loss of generality that A has no transition leading to an initial state �every
MA can be converted to one having this property�� We take A� 
 A� We denote
by �i the transition relation of Ai� For every i � �� Ai�� is obtained from Ai

by conserving the same states and transitions� and adding for every transition rule

� The idea is inspired by the construction given in ���� pages ������ of a �nite�state automa�
ton recognizing the closure of a regular language under the rewriting relation induced
by a monadic string�rewriting system�



�pj � �� �� �pk� w� and every state q such that sk
w
��i q a new transition sj

�
��i�� q�

Then� for every i � � we de�ne Yi 
 Conf �Ai�� Note that the new transitions added
to Ai in order to construct Ai�� start at initial states�

To understand the idea behind this construction� observe that hpk� �w�i is an
immediate predecessor of hpj � ww�i by the rule �pj � �� �� �pk� w�� So� if the word

ww� is accepted starting from sk by Ai �s
k w
��i q

w�

��i q
� � F �� then the new

transition in Ai�� allows to accept �w� starting from sj �sj
�
��i�� q

w�

��i q
� � F ��

Let us illustrate the construction by means of an example�
Let P be the PDS such that P 
 fp�� p�g� � 
 f��� 	 	 	 � ��g� and � contains the

rules
�p�� ��� �� �p�� ����� �p�� ��� �� �p�� ����� �p�� ��� �� �p�� ��

Consider the set of con�gurations C 
 fhp�� ������ig� It can be represented by a
MA A such that Q 
 fs�� s�� q�� q�� q�g� I 
 fs�� s�g� F 
 fq�g� and 
 contains the

transitions s�
��
�� q�� q�

��
�� q�� and q�

��
�� q��

The picture below shows the automaton Apre� obtained at the end of the con�
struction�

s
�

s
�

�� �� ��

��

��

��

q�q�q�

In the �rst step �from A� to A�� we have s�
����
��� q� and s�

�
��� s�� and so we

add the transitions s�
��
��� q� and s�

��
��� s� corresponding respectively to the

�rst and to the third transition rules of P � No other transitions are added� The
new automaton now accepts all immediate predecessors of hp�� ������i� namely the
con�guration hp�� ����i �note that the set of words accepted from s� is empty at
this step��

In the second step� we add the transition s�
��
��� q�� corresponding to the second

transition rule of P � At this point the construction stops since no further transition
must be added� So� we have Apre� 
 A�� and

pre��C� 
 �fp�g � ������ � �fp�g � f������� ����g�

Observe that in this example we have X� 
 Y� but X� � Y�� Indeed� in the

second step of the construction� after adding s�
��
��� q�� A� accepts all the con�gu�

rations of the form hp�� �k���i for every k � �� whereas only hp�� ��i belongs to X��
However� despite the fact that these con�gurations are not immediate predecessors



of X� con�gurations� they are all in pre��C� because hp�� �k� ��i � Xk�� for every
k � ��

The proofs of the properties �P��� �P��� and �P�� are given in the full paper�
We deduce from these properties the following theorem�

Theorem ��� Given a PDS P and a regular set of con�gurations recognized by a
P�MA A� we can construct a P�MA Apre� recognizing pre��Conf�A���

We conclude the section with a remark on complexity� In order to construct
Ai�� from Ai� we compute for each transition rule �p� �� �� �p�� w� of the PDS P

the set of states q such that s�
w
��i q� and then add the transition s

�
��i�� q to

Ai��� The computation time of the set is quadratic in the number of states of Ai

�which is equal to the number of states of A� and linear in the length of w �
���
Theorem ����� Thus� the construction of Ai�� from Ai takes time O�jAj� � jPj���

Now� the sequenceA��A�� 	 	 	must reach the �xpointApre� after at most O�jAj��
jPj� steps� because this is an upper bound on the number of transitions of any P�
MA having the same states as A� So the computation of Apre� takes O�jAj� � jPj��
time�

� Model�Checking Linear�Time Temporal Logics

Let Prop be a �nite set of atomic propositions� and let � 
 �Prop� It is well known
that the semantics of properties expressed in linear time temporal logics like LTL or
the linear�time ��calculus are ��regular sets over the alphabet �� Moreover� there
exist algorithms which construct B�uchi automata to recognize these sets 
��� ����
This is all we need to know about these logics in this paper in order to give model
checking algorithms for PDS�s�

Let P 
 �P� ���� be a PDS� and let 
�P � � be a labelling function� which
associates a set of true propositions with every control location p� Given a formula
� of such an ��regular logic we wish to solve the following problem�

Compute the set of all con�gurations c of P such that every run starting
from c satis�es � �via the labelling function 
��

Then� the model checking problem consists in checking whether a given initial con�
�guration belongs to this set of con�gurations�

We start by constructing a B�uchi automaton B corresponding to the negation
of �� The product of the PDS P and this B�uchi automaton yields a B�uchi PDS BP
with a set of repeating control locations G � P � Then� the original problem reduces
straightforwardly to the following accepting run problem�

Compute the set C of con�gurations c of BP such that BP has an accepting
run starting from c �i�e�� a run which visits in�nitely often con�gurations
with control locations in G��

�Notice that the emptiness problem of B�uchi PDS�s � whether the initial con�gura�
tion has an accepting run � reduces to the accepting run problem via the membership
problem of MA��

The following proposition shows that the accepting run problem of B�uchi PDS�s
can be reduced to a reachability problem�



Proposition ��� Let c be a con�guration of a B�uchi PDS BP � BP has an accepting
run starting from c if and only if there exist con�gurations hp� �i� hg� ui� and hp� �vi�
not all three equal� such that g � G and�

�	
 c� hp� �wi for some w � � �� and
��
 hp� �i � hg� ui � hp� �vi�

We can reformulate conditions ��� and ��� of Proposition ��� as follows�

���� c � pre��fpg � �� ��� and
���� hp� �i � pre���G� � �� � pre��fpg � �� ����

Since G�� � and fpg��� � are regular sets� we can use Theorem ��� to construct
MA�s recognizing the sets pre��fpg��� �� and pre���G�� ���pre��fpg��� ��� �for
pre� we need to de�ne for a MA A another MA recognizing pre�Conf�A��� which
is a simple exercise�� Therefore� by Proposition ���� we can construct a MA which
recognizes the set of all con�gurations having an accepting run� First� we determine
all the con�gurations hp� �i �there are �nitely many of them� for which ���� holds�
and then we construct a MA recognizing the union of the sets pre��fpg � �� �� for
all such pairs�

The sizes of the MA�s for the sets G� � � and fpg� �� � are polynomial in the
size of the B�uchi PDS� Hence� since the computation of pre�P �C onf�A�� for a MA
A takes polynomial time in the size of P and the number of states of A� we deduce
the following result�

Theorem ��� The accepting run problem of B�uchi PDS�s can be solved in polyno�
mial time�

Since the membership problem of MA�s can be solved in linear time� a conse�
quence of Theorem ��� is that the emptiness problem of B�uchi PDS�s can also be
solved in polynomial time�

Theorem ��� The model checking problems for LTL and the linear�time ��calculus
and PDS�s are DEXPTIME�complete� The model checking problem for a �xed for�
mula is polynomial in the size of the PDS�

Proof� Let us �rst prove membership in DEXPTIME� Let P be a PDS of size nP
and � a formula of length n�� It is well known that it is possible to construct a
B�uchi automaton B for the negation of � having exponential size in n�� and this
construction can be done in exponential time 
��� ���� Hence� the product of P and
B has polynomial size in nP and exponential size on n�� Applying Theorem ���
we obtain an exponential time bound� If the formula � is �xed� then we have an
algorithm polynomial in nP �

To prove hardness� we use a reduction from the problem of deciding whether
a given linearly bounded alternating Turing machine accepts a given input or not�
The details of the reduction are given in the full paper� �

The model�checking problem for LTL or the linear�time ��calculus and �nite�
state systems is known to be PSPACE�complete� but polynomial in the size of the



system� Since the properties of systems one wishes to check can be usually encoded
into short formulas� model�checkers based on linear�time logics� like SPIN 
���� have
proved to be useful in practice� Theorem ��� shows that the complexity of model�
checking for PDS�s is worse than the complexity for �nite�state systems� but not
much worse� it remains polynomial in the size of the system�

� Reachability in Alternating Pushdown Systems

��� Alternating Pushdown Systems

We consider now the problem of computing the set of predecessors of a regular
set of con�gurations of an alternating pushdown system� We show that this set is
also regular� and we give a procedure for constructing its representation by means
of alternating �nite�state multi�automata� To this end� we generalize the technique
described in the Section �� The construction we give is used in the model checking
algorithms for branching�time logics given in the next section�

An alternating pushdown system �APDS for short� is a triplet P 
 �P� �����
where P and � are as for PDSs� and � is a function that assigns to each element
of P � � a negation�free boolean formula over elements of P � � �� We assume
that boolean formulae are always in disjunctive normal form� which allows us to
equivalently de�ne � as a subset of the set �P �� �� �P��

�

of transition rules� for
example� instead of writing

��p� �� 
 ��p�� w�� � �p�� w��� � �p�� w��

we write

f ��p� ��� f�p�� w��� �p�� w��g� � ��p� ��� f�p�� w��� �p�� w��g� g � �

or just
�p� �� �� f�p�� w��� �p�� w��g � �p� �� �� f�p�� w��� �p�� w��g

If �p� �� �� f�p�� w��� 	 	 	 � �pn� wn�g� then for every w � � � the con�guration
hp� �wi is an immediate predecessor of the set fhp�� w�wi� 	 	 	 � hpn� wnwig� and this
set is an immediate successor of hp� �wi� Intuitively� at the con�guration hp� �wi the
APDS selects nondeterministically a transition rule of the form

�p� �� �� f�p�� w��� 	 	 	 � �pn� wn�g

and forks into n copies in the con�gurations hp�� w�wi� 	 	 	 � hpn� wnwi�
A run of P for an initial con�guration c is a tree of con�gurations with root c�

such that the children of a node c� are the con�gurations that belong to one of its
immediate successors �nodes of the form hp� �i have no successors��

We de�ne the reachability relation�� �P�� ����P��
�

between con�gurations
and sets of con�gurations� Informally� c� C if and only if C is a �nite frontier ��nite
maximal set of incomparable nodes� of a run of P starting from c� Formally� � is
the smallest subset of �P � � ��� �P��

�

such that�

�� c� fcg for every c � P � � ��
�� if c is an immediate predecessor of C� then c� C�



�� if c� fc�� 	 	 	 � cng and ci � Ci for each � � i � n� then c� �C� � 	 	 	 � Cn��

The function preP � �
P���

� �P��
�

is now de�ned as follows� c belongs to
preP �C� if some immediate successor of c is contained in C �observe that the im�
mediate successor of c is now a set�� We denote by pre�P the transitive closure of
�C	 �C � preP�C��� i�e�� given a set of con�gurations C� pre�P�C� 


S
i��Xi� where

X� 
 C and Xi�� 
 Xi � preP�Xi�� for every i � �� As in the case of PDS�s�
pre�P �C� 
 fc � P � � � j 	C � � C	 c� C �g�

��� Alternating multi�automata

Fix an APDS P 
 �P� ����� An alternating P�multi�automaton �P�AMA for short�
or just AMA when P is clear from the context� is a tuple A 
 ���Q� 
� I� F � which
di�ers from an MA only in the nature of 
� 
 is now a function that assigns to every
pair of Q�� a positive boolean formula with Q as set of variables� As in the case of
APDSs� we can equivalently represent 
 as a set of transitions� which are elements
of �Q� � �� �Q�

The transition relation �� Q� � � � �Q is the smallest relation satisfying

� if �q� ��Q�� � 
 then q
�
�� Q��

� q
�
�� fqg for every q � Q�

� if q
w
�� fq�� 	 	 	 � qng and qi

�
�� Qi for each � � i � n� then q

w�
�� �Q��	 	 	�Qn��

A con�guration hpi� wi is recognized by A if si
w
�� Q� for some Q� � F � Given

a �nite sequence w � � � and a state q � Q� a run of A over w starting from q is
a �nite tree whose nodes are labelled by states in Q and whose edges are labelled
by symbols in � � such that the root is labelled by q� and the labelling of the other
nodes is consistent with 
� Notice that in such a tree each sequence of edges going
from the root to the leaves is labelled by w� and hence� all the edges starting at the
same level of the tree have the same label� and all the leaves of the tree are at the
same height�

It is immediate to show that AMA�s are closed under boolean operations� We
mention also that the membership problem for AMA�s can be solved in polynomial
time�

��� Calculating pre
�

Let P 
 �P� ���� be an alternating pushdown system� We show in this section that
given a regular set of con�gurations C of P � recognized by an alternating�multi�
automaton A� we can construct another AMA Apre� such that C onf�Apre�� 

pre��C��

The construction is very similar to that of the non�alternating case� We assume
without loss of generality that no transition of A leads to a set of states containing
an initial state� We de�ne a sequence of AMA�s A��A�� 	 	 	 such that A� 
 A� For
every i � �� Ai�� is obtained from Ai by conserving the same states and transitions�
and adding for every transition rule

hpj � �i �� fhpk� � w�i� 	 	 	 � hp
km � wmig



and every set
sk�

w���i P� � 	 	 	 � s
km wm��i Pm

a new transition
sj

�
��i�� �P� � 	 	 	 � Pm�

Then� de�ne Yi 
 C onf�Ai� for every i � ��
The intuitive justi�cation of the construction is that we add the con�guration

hpj � �wi to the set of predecessors of C whenever all the con�gurations hpk� � w�wi�
	 	 	� hpkm � wmwi are already in this set� So� if for every � � f�� 	 	 	 �mg� the word

wiw is accepted by Ai starting from sk� � which means that sk�
w���i P� and 
p �

P�	 p
w
��i Qi � F � then� due to the new transition� the word �w is accepted by Ai��

starting from sj � Notice that the new transition imposes that only words w that
are accepted starting from all the states in the P��s can be considered �w is in the
intersection of the languages of all these states�� The use of alternating automata
allows to represent this intersection without modi�cation of the number of states
of the original automaton A� This is crucial for the termination argument of the
construction�

The following theorem� which shows the correcteness of the construction of
Apre� � is proved in the full paper�

Theorem ��� Given an APDS P and a regular set of con�gurations recognized by
a P�AMA A� we can construct a P�AMA Apre� recognizing pre��C onf �A���

It follows easily from the facts below that the algorithm is polynomial on the
size of P and �singly� exponential in the size of A�

� Apre� has the same states as A�
� a P�AMA with k states has O�nP � k � �

k� transitions� where nP is the size of
P � and

� during the construction of the sequence A��A�� 	 	 	� polynomial time su�ces to
decide if a new transition can be added to the current automaton�

� Model�Checking Branching�Time Temporal Logics

��� The alternation�free 	propositional
 ��calculus

Let Prop be a set of atomic propositions and X a �nite set of variables� The set of
formulas of the �propositional� ��calculus is de�ned by the following grammar�

� ��
 � � Prop j X � X j �� j � � � j 	�� j �X	�

where in formulas of the form �X	�� the variable X must occur in � under an even
number of negations� In addition� we consider the usual abbreviations� the boolean
connectives � and �� 
�� 
 �	���� and �X	 ��X� 
 ��X	����X�� We write
�X	��X� for either �X	��X� or �X	 ��X��

The notion of free occurrence of a variable in a formula is de�ned as usual by
considering � and � as quanti�ers� We suppose without loss of generality that in
every formula each variable is bound at most once� We write ��X� to indicate that



X occurs free in �� A formula � is closed if no variable occurs free in it� otherwise
it is open�

We interpret formulas on the set of con�gurations of a PDS P 
 �P� ����� We
use a labelling function 
 � P � �Prop� and a valuation V which assigns to each
variable a set of con�gurations� The set of con�gurations of P satisfying a formula
� is denoted by 

���P�V� and is de�ned by the following rules�



���P�V� 
 
������ � �



X ��P�V� 
 V�X�



����P�V� 
 �P � � �� n 

���P�V�



�� � ����P�V� 
 

����P�V� � 

����P�V�



	����P�V� 
 pre�

���P�V��



�X	���P�V� 

�
fC � P � � � j C � 

���P�V 
C�X ��g

where V 
C�X � is the valuation which coincides with V for all variables but X � where
it takes the value C�

The set of formulas in positive normal form is de�ned by the following syntax�

� ��
 � j �� j X j � � � j � � � j 	�� j 
�� j �X	� j �X	 �

It is easy to show that every formula is equivalent to a formula in positive normal
form �push negations inside��

A ��subformula of a formula �X	 ��X� is proper if it does not contain any
occurrence of X � The alternation�free ��calculus is the set of formulas � in positive
normal form such that for every ��subformula � of � the following holds�

� if � is a ��formula� then all its ��subformulas are proper� and
� if � is a ��formula� then all its ��subformulas are proper�

Given a formula �� we de�ne its closure cl��� as the smallest set of formulas
containing � and such that

� if �� � �� � cl��� or �� � �� � cl��� then �� � cl��� and �� � cl����
� if 	�� � cl��� or 
�� � cl��� then � � cl����
� if �X	 ��X� � cl��� then ���X	 ��X�� � cl����

It is easy to see that the closure of a formula is always a �nite set� and that its
cardinality is bounded by the length of the formula�

The Model�Checker Consider a PDS P 
 �P� ���� and a labelling function

 � P � �Prop� Let � be a formula of the alternation�free ��calculus� and let V be
a valuation of the free variables in ��

We show how to construct an AMA A� recognizing 

���P�V�� From now on we
drop the indices and write just 

����

We start by considering the case where all the ��subformulas of � are ��formulas�
We construct an APDS AP which is� roughly speaking� the product of P and
the alternating automaton corresponding to � 
���� we then reduce the problem



of computing 

��� to computing the value of pre�AP for a certain regular set of
con�gurations� Intuitively� a con�guration h
p� ��� wi belongs to this set if � is a
basic formula of the form �� ��� or X � for X free in �� and the con�guration
hp� wi of P satis�es �� Observe that whether hp� wi satis�es � or not can be decided
by direct inspection of the labelling function 
 and the valuation V � The AND�
branching in the transition rules of AP is due to conjunctions and universal path
quanti�cations �in 
� operators� occurring in the formula ��

Formally� we de�ne the APDS AP 
 �P�
P � ���

�
P� where

� P�
P 
 P � cl����

� ��
P is the smallest set of transition rules satisfying the following conditions for

every control location 
p� �� and every stack symbol ��
� if � 
 �� � ��� then �
p� ��� �� �� �
p� ���� �� and �
p� ��� �� �� �
p� ���� ���
� if � 
 �� � ��� then �
p� ��� �� �� f �
p� ���� ��� �
p� ���� �� g�
� if � 
 �X	 ��X�� then �
p� ��� �� �� �
p� ������ ���
� if � 
 	�� and �p� �� �� �q� w� is a transition rule of P � then �
p� ��� �� ��
�
q� ��� w��

� if � 
 
�� then �
p� ��� �� �� f�
q� ��� w� j �p� �� �� �q� w�g�

Let Ct �where the index t stands for true� be the subset of con�gurations of AP
containing all con�gurations of the form

� h
p� ��� wi� where � � 
�p��
� h
p����� wi� where � �� 
�p��
� h
p�X �� wi� where X is free in � and hp� wi � V�X��

Clearly� if V�X� is a regular set of con�gurations for every variable X free in ��
then Ct is also a regular set of con�gurations�

The following result can be easily proved using standard techniques based on
the notion of signature 
���

Proposition ��� Let AP be the APDS obtained from P and � using the construc�
tion above� A con�guration hp� wi of P belongs to 

��� iff the con�guration h
p� ��� wi
of AP belongs to pre�AP �Ct��

Applying Theorem ��� we obtain a procedure to compute an AMA A� which
accepts exactly the con�gurations of P that satisfy ��

The case in which all the ��subformulas of � are ��subformulas is now easy to
solve� the negation of � is equivalent to a formula �� in positive normal form whose
��subformulas are all ��subformulas� Applying Theorem ��� we construct an AMA
which accepts the con�gurations of P that satisfy ��� We then just use the fact that
AMA�s are closed under complementation�

Let us now consider the general case of in which � is an arbitrary formula of
the alternation�free ��calculus� We can assume without loss of generality that � is
a ��formula �otherwise a �dummy	 �xpoint can be added�� The following property
�which does not hold for the full ��calculus� follows easily from the de�nitions� and
allows us to construct the AMA A�� We use the following notation� given a family
� 
 f�ig

n
i	� of subformulae of �� which are pairwise incomparable with respect

to the subformula relation� and a family U 
 fUig
n
i	� of fresh variables� �
U���

denotes the result of simultaneously substituting Ui for �i in ��



Proposition ��� Let � be a ��formula ���formula
 of the alternation�free ��calculus�
and let � 
 f�ig

n
i	� be the family of maximal ��subformulas ���subformulas
 of �

with respect to the subformula relation� Then



��� 
 

�
U������V ��

where U 
 fUig
n
i	� is a suitable family of fresh variables� and V � is the valuation

which extends V by assigning to each Ui the set 

�i���

Observe that if � is a ��formula ���formula�� then all the ��subformulas of
�
U��� are also ��formulas ���formulas�� Together with Proposition ���� this leads
immediately to a recursive algorithm for computing A�� for every � � �� compute
recursively AMA�s A� recognizing 

���� and then use them and Proposition ��� to
compute A�� Consequently we have�

Theorem ��� Let P be a PDS� let � a formula of the alternation�free ��calculus�
and let V be a valuation of the free variables of �� We can construct an AMA A�

such that Conf�A�� 
 

���P�V��

Complexity Walukiewicz has shown in 
��� that there exists a formula of the
alternation�free ��calculus such that the model checking problem for PDS�s and this
formula is DEXPTIME�complete� This implies that all model�checking algorithms
must have exponential complexity in the size of the system� We show that the
algorithm we have obtained �which is very di�erent from the one presented in 
����
has this complexity�

Let nP be the size of P and let n� be the length of �� We de�ne a tree of
��subformulas of �� the root of the tree is �� the children of a ��subformula ���
subformula� � are the maximal ��subformulas ���subformulas� of �� Clearly� the
number of nodes of the tree does not exceed n��

Let � be a leaf of the tree� The AMA A� recognizing 

��� is obtained by applying
the pre� construction to the AMA recognizing the set Ct� Since the latter has O�nP �
n�� states� A� has also O�nP � n�� states�

Now� let � be an internal node of the tree with children ��� 	 	 	 � �k� If the AMA
recognizing 

�i�� has ni states� then the AMA recognizing 

��� hasO��n

i	�ni�nP �n���
Since the number of nodes of the tree does not exceed n�� the AMA A� recognizing


��� has O�nP � n

�
�� states� Since each AMA can be constructed in exponential time

in the number of states� the algorithm is singly exponential in nP and n��

��� The logic EF

The alternation�free ��calculus is a rather powerful logic� Proper sublogics� like
CTL� are considered to be su�ciently expressive for many applications� This raises
the question whether the model�checking problem for PDS�s and some interesting
fragment of the alternation�free ��calculus may lie in some complexity class below
DEXPTIME� In this section we show that this is the case� we prove that the model�
checking problem for the logic EF �propositional logic plus the temporal operator
EF � is in PSPACE�� However� the problem turns out to be PSPACE�complete�

� We assume PSPACE �� DEXPTIME



even PSPACE�complete in the size of the system� Therefore� the complexity gap
between the alternation�free ��calculus and its sublogics is rather small�

Given a set Prop of atomic propositions� the set of formulas of EF is de�ned by
the following grammar�

� ��
 � � Prop j �� j � � � j 	�� j EF�

The semantics of formulas of the form �� ��� ������ and 	�� is de�ned as for
the alternation�free ��calculus� A con�guration c satis�es a formula EF� if there
exists a con�guration c� reachable from c that satis�es ��

We consider the proof of membership in PSPACE �rst� since this is the part that
makes use of our reachability analysis� The hardness part is a standard reduction
from the acceptance problem for linearly bounded Turing machines�

Fix a PDS P�P� ���� and a con�guration c of P � Denote by R�c� the set of
words pw � P� � such that hp� wi is reachable from c� We have the following result
�the proof is in the full paper��

Theorem ��� The set R�c� is regular� Moreover� R�c� is recognized by a �nite
multi automaton having polynomially many states in the sum of the sizes of c and
P�

Given a formula � of the alternation�free ��calculus� denote by R�c� �� the set
of words pw � P� � such that hp� wi is reachable from c and satis�es �� By Theorem
��� and Theorem ���� we have�

Corollary ��� Let � be a formula of the alternation�free ��calculus� The set R�c� ��
is regular� and is recognized by an alternating �nite automaton having polynomially
many states in the sum of the sizes of c� P and ��

We can now obtain our �rst result concerning the logic EF�

Theorem ��� The model checking problem for the logic EF and pushdown au�
tomata is in PSPACE�

Proof� Let P be a PDS and let � be a formula of EF� We show by induction on the
structure of � that the problem of deciding if a given con�guration c of P satis�es
� can be solved in nondeterministic polynomial space in the size of c� P and ��

The cases � 
 �� �� ������� are trivial� So let � 
 EF��� and assume that we
can decide whether a con�guration c satis�es �� using nondeterministic polynomial
space in the size of c� P and ���

By the de�nition of the semantics of EF� P satis�es � iff there exists a con�gu�
ration c� reachable from c which satis�es ���

If an AMA with n states recognizes a nonempty set� then it recognizes some
word of length at most n� Therefore� by Corollary ���� we can assume that c� has
polynomial size in P and ��� The following nondeterministic algorithm decides in
polynomial space if P satis�es ��

� Guess a con�guration c� of polynomial size in P and ��
� Check in polynomial time in the size of c� and P that c� is reachable from c�



� Check in polynomial space in the size of c�� P and �� that c� satis�es ���

The membership of the model checking in PSPACE follows now from NPSPACE 

PSPACE� �

In the full paper� we give the proof of the following hardness result�

Theorem ��� The model checking problem for the logic EF and pushdown systems
is PSPACE�hard�

Finally� from the proof of Theorem ���� we can deduce that the following stronger
result also holds�

Corollary ��� There is a formula � of EF such that the problem of deciding if a
PDS satis�es � is PSPACE�complete�

� Conclusion

We have applied the �symbolic	 analysis principle to a class of in�nite state sys�
tems� namely pushdown systems� We have represented �possibly in�nite� sets of
con�gurations using �nite�state automata� and have proposed a simple procedure
to compute sets of predecessors� Using this procedure and the automata�theoretic
approach to model�checking� we have obtained model�checking algorithms for both
linear and branching�time properties� From these results we have derived upper
bounds for several model�checking problems� We have also provided matching lower
bounds by means of some reductions based on Walukiewicz�s ideas 
����

The model�checking problem for pushdown systems and the modal ��calculus
�or its alternation�free fragment� has been studied in several papers 
��� ��� ����
The main advantage of our approach �apart from an homogeneous treatment of
both branching�time and linear�time logics� is the simplicity of our algorithms�
only well known concepts from automata theory are needed to understand them�
They constitute smooth generalizations of global model�checking algorithms for
branching�time logics and �nite�state systems�

An approach similar to ours� based on automata representation of the stack
contents� has been adopted in 
���� However� the techniques used there are di�erent
from ours� and the branching�time properties are expressed there in a logic �CTL��
which is incomparable with the alternation�free modal ��calculus�

We do not know whether our approach can be extended to the full modal ��
calculus� The exact complexity of the model�checking problem for pushdown systems
and CTL is also open� it lies somewhere between PSPACE and DEXPTIME� These
questions� and the extension of the symbolic analysis principle to other classes of
systems with in�nite state spaces� are left for future investigations�
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