
Specification-Based Monitoring
of Cyber-Physical Systems: A Survey
on Theory, Tools and Applications

Ezio Bartocci1(B), Jyotirmoy Deshmukh2, Alexandre Donzé3,
Georgios Fainekos4, Oded Maler5, Dejan Ničković6,

and Sriram Sankaranarayanan7

1 Technische Universität Wien, Vienna, Austria
ezio.bartocci@tuwien.ac.at

2 University of Southern California, Los Angeles, USA
3 University of California at Berkeley, Berkeley, USA

4 Arizona State University, Tempe, USA
5 VERIMAG, CNRS and University of Grenoble-Alpes (UGA),

Saint Martin d’Hères, France
6 AIT Austrian Institute of Technology GmbH, Vienna, Austria

7 University of Colorado, Boulder, USA

Abstract. The term Cyber-Physical Systems (CPS) typically refers to
engineered, physical and biological systems monitored and/or controlled
by an embedded computational core. The behaviour of a CPS over time
is generally characterised by the evolution of physical quantities, and
discrete software and hardware states. In general, these can be math-
ematically modelled by the evolution of continuous state variables for
the physical components interleaved with discrete events. Despite large
effort and progress in the exhaustive verification of such hybrid systems,
the complexity of CPS models limits formal verification of safety of their
behaviour only to small instances. An alternative approach, closer to
the practice of simulation and testing, is to monitor and to predict CPS
behaviours at simulation-time or at runtime. In this chapter, we sum-
marise the state-of-the-art techniques for qualitative and quantitative
monitoring of CPS behaviours. We present an overview of some of the
important applications and, finally, we describe the tools supporting CPS
monitoring and compare their main features.

1 Introduction

Dynamic Behaviours and Their Evaluation. The world around us is in
a constant flux with “things” changing dynamically. Planets move, tempera-
tures rise and fall, rivers flow, rocks break down. In addition to these physical
dynamics, a large part of the changing world is due to the activities of liv-
ing systems and in particular humans, their social constructs and the artefacts
they build. Houses are illuminated and air-conditioned, power is generated, dis-
tributed and consumed, cars drive on roads and highways, plants manufacture
c© Springer International Publishing AG, part of Springer Nature 2018

E. Bartocci and Y. Falcone (Eds.): Lectures on Runtime Verification, LNCS 10457, pp. 135–175, 2018.

https://doi.org/10.1007/978-3-319-75632-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75631-8_5&domain=pdf

136 E. Bartocci et al.

materials and objects, commercial transactions are made and recorded in infor-
mation systems. Airplanes fly, continuously changing location and velocity while
their controllers deal, via sensors and actuators, with various state variables in
the engine and wings. Conceptually those processes can be viewed as temporal
behaviours, waveforms or signals or time series or sequences, where continuous
and discrete variables change their values over time and various types of events
occur along the time axis.

The systems that generate these behaviours are evaluated to some extent as
good or bad, efficient or worthless, excellent or catastrophic. Such an evaluation
can apply to the system in question as a whole, to some of its components or to a
particular period of operation. We use monitoring to denote the act of observing
and evaluating such temporal behaviours. Behaviours can be very long, spanning
over a large stretches of time, densely populated with observations. They can
also be very wide, recording many variables and event types. As such they carry
too much information by themselves to be easily and directly evaluated. What
should be distilled out of these behaviours should somehow be expressed and
specified. The mathematical objects that do this job are functions that map
complex and information-rich behaviours into low dimensional vectors of bits
and/or numbers that indicate satisfaction of logical requirements and the values
of various performance indices, see Fig. 1.

Fig. 1. Monitoring as reducing complex temporal behaviours into low-dimensional vec-
tors of bits and numbers. The first of three behaviours is continuous and the two others
are at the timed level of abstraction, state-based (signal) and event-based.

The evaluation can be based on a gross abstraction of the behaviour, for
example the event of an airplane crash corresponds to a zero location on the z
dimension and a large downward velocity at some point in time. Likewise the
death of a patient can be specified by the stabilisation of his or her heart beat
signal to a constant value. More often than not, those global catastrophic events
may be related to (and preceded by) more detailed temporal behaviours that
involve intermediate steps and variables, for example, some rise in the engine
temperature which is not followed by certain actions such as turning on a cooling
system. In less safety-critical contexts, systems are evaluated for performance,
for example the time a client spends in a queue between requesting and being
granted, or the energy consumption of a computer or a chemical plant along
some segment of time.

Specification-Based Monitoring of Cyber-Physical Systems 137

Monitoring Real Systems and Monitoring Simulated Models. Before
going further, let us distinguish between two major contexts in which the mon-
itoring of dynamic behaviours can take place (see a more elaborate discussion
in [95]). The first is the monitoring of real systems during their execution via
online measurements. Here the role of monitoring is to alert in real time in order
to trigger corrective actions, either by a human operator or by a supervisory layer
of control. A primitive form of this type of monitoring exists in many domains:
indicators on the control panel of a car, airplane or electronic device, monitors
for physiological conditions of patients in a hospital and SCADA (Supervisory
Control and Data Acquisition) systems for controlling complex large-scale sys-
tems such as airports, railways or industrial plants. In fact, any information
system can be viewed as performing some kind of a monitoring activity.

The other context is during model-based system design and development
where all or some of the system components do not exist yet in flesh and blood
and their models, as well as the model of the environment they are supposed to
interact with, exist as virtual objects of mathematical and computational nature.
The design process of such systems is typically accompanied by an extensive sim-
ulation and verification campaign where the response of the system to numerous
scenarios is simulated and evaluated. Most of the work described in this chapter
originates from the design-time monitoring context, where simulation traces con-
stitute the input of the monitoring process. Many techniques and considerations
are shared, nevertheless, with the monitoring of real systems.

The activity of simulating a system and checking its behaviour is part of the
verification and validation process whose goal is to ensure, as much as possible,
that the system behaves as expected and to avoid unpleasant surprises after its
deployment. In some restricted contexts of simple programs or digital circuits,
this process can be made exhaustive and “formal” in the sense that all possi-
ble classes of scenarios are covered. When dealing with cyber-physical systems,
whose existence and interaction scope are not confined to the world inside a
computer for which practically exact models exist, complete formal verification
is impossible, if not meaningless. In this domain, simulation-based lightweight
verification is the common practice, accompanied by the hope of providing a
good finite coverage of the infinite space of behaviours.

Rigorous Specification Formalisms. Part of the runtime verification move-
ment is coming from formal verification circles, attempting to export to the
simulation-based verification domain another ingredient of formal verification,
namely, the rigorous specification of the system requirements. In the context of
discrete systems, software or digital hardware, formalisms such as temporal logic
or regular expressions are commonly used. They can specify in a declarative man-
ner which system behaviours, that is, sequences of states and events, conform
with the intention of the designer in terms of system functionality, and which
of these behaviours do not. Such specifications can be effectively translated into
monitoring programs that observe behaviours and check whether the require-
ments are satisfied. As such they can replace or complement tedious manual
inspection of simulation traces or ad hoc programming of property testers.

138 E. Bartocci et al.

Let us give some intuitive illustrations of the nature of these formalisms.
Linear-time temporal logic (LTL) provides a compact language for speaking of
sequences and the relations between their values at different points in time. The
semantics of an LTL formula ϕ is time dependent with (w, t) |= ϕ indicating
that formula ϕ holds for sequence w at position t. The simplest formulas are
state formulas which are satisfied at t according to the value of the sequence
at t. That is, writing p for the truth value of a logical variable, or x > 0 for a
numerical variable, is interpreted at each t as p[t] and x[t] > 0, respectively.

More complex formulas are built using Boolean and temporal operators. The
latter are divided into two types, future and past operators. The satisfaction of
a future operator at position t depends on the values of the sequence at some
or all the positions from t onward, that is, the suffix of w from t to |w|. For
example � p (always p) is true at any t such that p holds at every t′ ≥ t. The
analogous past formula �- p (historically p) holds at t if p holds at any position
t′ ≤ t, in other words, along the prefix of w from 0 to t. The satisfaction of a
future formula by the whole sequence w is defined as its satisfaction at position
0 while that of a past formula, by its satisfaction at |w|. Past formulas have some
advantages such as causality, while future LTL is more commonly used and is
considered by some to be more intuitive.

The formula � p quantifies universally over all time instances. The dual
formula� p (eventually p) quantifies existentially. It holds at t if p holds at some
t′ in the future. The weakness of such a property from a practical standpoint is
that there is no bound on the distance between t and t′, a fact that may upset
some impatient clients waiting for a response during their lifetime. We should
note that in verification, formulas are often interpreted over infinite sequences
generated by automata, while in monitoring we deal with finite sequences and if
p never becomes true until the end of w, formula � p is falsified.

A more quantitative alternative to� can be expressed in discrete time using
the next operator. Formula © p (next p) holds at t if p holds at t + 1. Thus, the
requirement that each p is followed by q within 2 to 3 time steps is captured by
the formula

� (p → (© (© q)) ∨ (© (© (© q)))).

This formulation may become cumbersome for large delay constants and by
extending the syntax we can write this formula as

� (p → � [2,3]q)

with � [a,b]p being satisfied at t if p is satisfied at some t′ ∈ [t + a, t + b]. In
discrete time, this can be viewed as a syntactic sugar, but in dense time where
next is anyway meaningless, this construct allows events to occur anywhere in
an interval, not necessarily at sampling points or clock ticks.

Sequential composition is realised in future LTL using the until operator.
The formula pU q (p until q) is satisfied at t if q occurs at some later point
in time while p holds continuously until then. Using this operator, for which

Specification-Based Monitoring of Cyber-Physical Systems 139

� and � are degenerate cases, one can require that some process should not
start as long as another process has not terminated. The semantics of until is
defined below.1

(w, t) |= ϕ1 Uϕ2 iff ∃t′ ≥ t ((w, t′) |= ϕ2 ∧ ∀t′′ ∈ [t, t′] (w, t′′) |= ϕ1) (1)

The past counter-part of until is the since operator with q Sp (q since p) meaning
that p occurred in the past and q has been holding continuously since then. The
semantics of since is given below.

(w, t) |= ϕ2 Sϕ1 iff ∃t′ ≤ t ((w, t′) |= ϕ1 ∧ ∀t′′ ∈ [t′, t] (w, t′′) |= ϕ2) (2)

It is interesting to compare these operators with the concatenation operation
used in regular expressions.

Regular expressions constitute a fundamental and popular formalism in com-
puter science, conceived initially to express the dynamic behaviour of neural
networks, and later applied to lexical and grammatical analysis. Traditionally,
such expressions are defined over a monolithic alphabet of symbols but in order
to present them in the same style as LTL, we will use product alphabets such as
{0, 1}n, defined and accessed via variables. Thus an expression p in our approach
would be interpreted in the traditional approach as the set of all Boolean vectors
in a global alphabet in which the entry corresponding to p is 1.

In discrete time, p is satisfied by any sequence of length one in which p holds.
Sequential composition is realised by the concatenation operation where ϕ1 · ϕ2

is satisfied by any sequence w that admits a factorisation w = w1 · w2 such
that w1 satisfies ϕ1 and w2 satisfies ϕ2. This is best illustrated by defining the
semantics using the satisfaction relation (w, t, t′) |= ϕ which holds whenever the
subsequence of w starting at t and ending in t′ satisfies expression ϕ:

(w, t, t′) |= ϕ1 · ϕ2 iff ∃t′′ ∈ [t, t′] (w, t, t′′) |= ϕ1 ∧ (w, t′′, t′) |= ϕ2 (3)

The Kleene star allows to repeat concatenation for an indefinite but finite number
times, with ϕ∗ being satisfied by any sequence that admits a finite factorisation
in which all factors satisfy ϕ. As an example, expression (¬p)∗ · q · p specifies
sequences in which a finite (possibly empty) time segment where p does not hold
is followed by the occurrence of q followed by p.

Note that unlike LTL, regular expressions are more symmetric with respect
to the arrow of time, as can be seen by the difference between their respective
semantics definitions. The definitions of |= in (1) and (2) go recursively from t
to the future or the past, respectively. When they come up from the recursion
they do it in the opposite direction: for future LTL, satisfaction is computed
backwards and that of past LTL is computed forward. For concatenation, in
contrast, the semantics of |= in (3) is defined by a double recursion which takes
the whole sequence and splits it into two parts which are the arguments for the
two recursive calls. The semantics is collected from both ends while coming up
from the recursion.
1 Variants of until may differ on whether ϕ2 is required to occur or whether ϕ1 can

cease to hold at the moment ϕ2 starts or only after that.

140 E. Bartocci et al.

Going Cyber-Physical. The exportation of these formalisms and their moni-
toring algorithms to the cyber-physical world has to cope with the hybrid nature
of such systems. The dynamics of digital systems is captured by discrete event
systems such as automata, generating discrete sequences of logical states and
events. Physical systems are modelled using formalisms such as differential equa-
tions, producing behaviours viewed as continuous signals and trajectories. Spec-
ification formalisms and monitoring algorithms should then be extended so as
to express and check temporal properties of such behaviours. This topic is the
focus of the present chapter, centred around Signal Temporal Logic (STL), first
presented in [96], along with a monitoring algorithm, further elaborated in the
thesis [107] and explained from first principles in [98].

STL is a straightforward extension of (propositional) LTL along two orthogo-
nal dimensions, namely, moving from discrete to dense time and using predicates
on numerical values in addition to basic (atomic) propositions. The first feature
is present in real-time variants of temporal logic such as MTL/MITL while the
second has been explored in various first-order extensions of discrete-time LTL.
We believe that some of the popularity of STL comes from the smooth and sim-
ple integration of these two features. This popularity, as attested by numerous
publications that apply it to application domains ranging from analog circuits,
via robotics, control systems and engineering education, down to biomedical
and biochemical domains, justifies the role STL plays in this chapter, although
in principle other variants of logic could do the job as well.

In order to be relevant to real applications, we should keep in mind that
continuous dynamical systems are the object of study of various branches of
mathematics and engineering, in particular, control and signal processing. These
domains have developed over the years a variety of ways to measure and evaluate
such systems and their behaviours, which are appropriate to their physical and
mathematical nature. There is a variety of mathematical norms that reduce such
behaviours into single numbers. There are transformations like Fourier’s that
extract the spectral properties of signals for the purpose of classification or noise
removal. There are many statistical ways to assess signals and time series and
detect occurring patterns. The challenge in monitoring cyber-physical systems
is to integrate these traditional performance measures with those provided by
the newly developed verification-inspired formalisms which are more suitable for
capturing sequential aspects of behaviours.

2 Specification Languages

In this section, we present Signal Temporal Logic (STL) [96] as the specification
language that we use in this document for expressing properties of CPS. We
introduce the syntax of the formalism, together with its qualitative and quanti-
tative semantics.

Specification-Based Monitoring of Cyber-Physical Systems 141

2.1 Signal Temporal Logic

STL [96] extends the continuous-time Metric Temporal Logic (MTL) [87] with
numerical predicates over real-valued variables. In particular, STL enables rea-
soning about real-time properties at the interface between components that
exhibit both discrete and continuous dynamics.

We denote by X and P finite sets of real and propositional variables. We let
w : T → R

m ×B
n be a multi-dimensional signal, where T = [0, d) ⊆ R, m = |X|

and n = |P |. Given a variable v ∈ X ∪ P we denote by πv(w) the projection of
w on its component v.

We now define the variant of STL that contains both past and future temporal
operators. The syntax of an STL formula ϕ over X∪P is defined by the grammar

ϕ := p | x ∼ c | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U Iϕ2 | ϕ1 S Iϕ2

where p ∈ P , x ∈ X, ∼ ∈ {<,≤}, c ∈ Q, and I ⊆ R
+ is an interval. We define

the semantics of STL as the satisfiability relation (w, t) |= ϕ, indicating that
the signal w satisfies ϕ at the time point t, according to the following definition.
Given that we interpret the logic only over the finite traces, we let the satisfaction
relation to be defined only for t ∈ T.

(w, t) |= p ↔ πp(w)[t] = true
(w, t) |= x ∼ c ↔ πx(w)[t] ∼ c
(w, t) |= ¬ϕ ↔ (w, t) �|= ϕ
(w, t) |= ϕ1 ∨ ϕ2 ↔ (w, t) |= ϕ1 or (w, t) |= ϕ2

(w, t) |= ϕ1 U Iϕ2 ↔ ∃t′ ∈ (t + I) ∩ T : (w, t′) |= ϕ2 and ∀t′′ ∈ (t, t′)(w, t′′), |= ϕ1

(w, t) |= ϕ1 S Iϕ2 ↔ ∃t′ ∈ (t − I) ∩ T : (w, t′) |= ϕ2 and ∀t′′ ∈ (t′, t), (w, t′′) |= ϕ1

We say that a signal w satisfies a STL formula ϕ, denoted by w |= ϕ, iff (w, 0) |=
ϕ. In the remainder of this section, we discuss several specific aspects of the STL
syntax and semantics.

Finitary interpretation. Specification formalisms with future temporal opera-
tors are typically defined over infinite behaviours. In particular, we can have a
specification that is satisfied at time t iff a future obligation is fulfilled at some
future time instant t′ > t. Consequently, observing a finite prefix of a behaviour
may not be sufficient to determine the satisfaction or the violation of a tempo-
ral specification according to its standard semantics. The finitary interpretation
of future temporal logics is a well-studied problem in the monitoring research
field. In order to tackle this issue, we adapt the semantics of U and restrict the
existential quantification of time to the (possibly bounded) signal domain. This
altered semantics provides a natural interpretation of STL over finite signals. In
particular, the eventually operator has a so-called strong interpretation – �ϕ
is satisfied iff ϕ holds at any time before the signals ends. Similarly, the always
operator has a weak interpretation under this semantics – �ϕ is satisfied iff ϕ
is not violated during the signal duration.

The problem of interpreting temporal logic over finite or truncated
behaviours was extensively studied in [57], where weak, strong and neutral views

142 E. Bartocci et al.

of the finitary semantics for LTL are proposed. In [56], the authors provide a
topological characterisation of weak and strong temporal operators. An extensive
discussion about different interpretations of temporal logics over finite traces is
presented in [98]. Finally, we also mention the real-time monitoring framework
from [29], where 3-valued {true, false, inconclusive} semantics are used to provide
a finitary interpretation of a real-time temporal logic.

Strict interpretation of temporal operators. We adopt the strict semantics of
until and since as originally proposed in [8]. The strict interpretation of ϕUψ
evaluated at time t requires that both ψ is satisfied at some t′ strictly greater
than t and that ϕ continuously holds in the interval (t, t′) that excludes t. In
other words, the satisfaction of ϕUψ at t depends only on the evaluation of
ϕ and ψ at some times in the future of t. This is in contrast to the classical
non-strict semantics of until and since in the discrete-time LTL [110], where
ϕUψ is satisfied if ψ holds at t. Let us first denote by Ū the non-strict until
operator, and by U its strict counterpart2. We also recall that LTL contains
the next operator © in addition to Ū . We can show that in discrete time, a
temporal logic with Ū and © such as LTL is equivalent to the logic that has
U only, by using the following rules.

ϕ1 Uϕ2 ≡ © (ϕ1 Ūϕ2)
© ϕ ≡ false Uϕ
ϕ1 Ūϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ (ϕ1 Uϕ2))

In contrast to LTL, continuous-time temporal logics such as STL do not have
the next operator. It turns out that the strict interpretation of the temporal
operators strictly increases the expressiveness of the underlying logic in dense
time, as it enables “forcing” the time to advance. The main practical consequence
of strict interpretation of U and S is that it allows specification of instantaneous
events in continuous time.

Derived operators. The syntactic definition of STL is minimal and includes only
basic operators. We can derive other standard operators as follows:

True constant: true ≡ p ∨ ¬p
False constant: false ≡ ¬true
Conjunction: ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2)
Implication: ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2

Eventually: � Iϕ ≡ true U I ϕ
Once: �- Iϕ ≡ true S I ϕ
Always: � Iϕ ≡ ¬� I¬ϕ
Historically: �- Iϕ ≡ ¬�- I¬ϕ

2 We restrict our argument to the future operators for the sake of simplicity – the
same reasoning can be applied to the past operators.

Specification-Based Monitoring of Cyber-Physical Systems 143

In addition to these derived operators, we can also define instantaneous events
that have zero duration. Such events enable specification of rising and falling
edges in boolean signals.

Rising edge: ↑ ϕ ≡ (ϕ ∧ (¬ϕ S true)) ∨ (¬ϕ ∧ (ϕ U true))
Falling edge: ↓ ϕ ≡ (¬ϕ ∧ (ϕ S true)) ∨ (ϕ ∧ (¬ϕ U true))

2.2 Signal Temporal Logic with Quantitative Semantics

In Sect. 2.1, we introduced STL with qualitative semantics. This classical def-
inition of STL enables to determine the correctness of a signal with respect
to a specification. Specifically, it gives a binary pass/fail answer to the moni-
toring problem. When reasoning about hybrid systems that involve both dis-
crete and continuous dynamics, the qualitative verdict may not be informative
enough. After all, systems with continuous dynamics are usually expected to
admit some degree of tolerance with respect to initial conditions, system param-
eters and environmental perturbations. Consequently, a quantitative degree of
satisfaction/violation would be preferable to a simple yes/no output given by
the qualitative interpretation of STL.

Fages and Rizk [113] and Fainekos and Pappas [61] proposed to tackle this
issue by equipping the temporal logic with quantitative semantics. This extension
replaces the binary satisfaction relation with the quantitative robustness degree
function, while preserving the original syntax of the specification language. In
essence, the robustness degree function gives a real value that indicates how far
is a signal from satisfying or violating a specification. We illustrate the concept of
the robustness degree function with a simple example on numerical predicates.
Let x < c be a numerical predicate. This predicate partitions the R domain
into the set of all real values that are strictly smaller than c and those that are
greater or equal to c. Picking a concrete value for x, the robustness degree gives
the relative position of x to c, instead of only indicating whether x is above or
below the threshold. This idea is naturally extended to the logical and temporal
operators that we now formalise.

Let ϕ be an STL formula, w a signal and t a time instant in T. We then
define the robustness degree function ρ(ϕ,w, t) as follows.

ρ(p,w, t) =

{
∞ if πp(w)[t] = true

−∞ otherwise
ρ(x ∼ c, w, t) = c − πx(w)[t]
ρ(¬ϕ,w, t) = −ρ(ϕ,w, t)
ρ(ϕ1 ∨ ϕ2, w, t) = max{ρ(ϕ1, w, t), ρ(ϕ2, w, t)}
ρ(ϕ1 U Iϕ2, w, t) = supt′∈(t+I)∩T

min{ρ(ϕ2, w, t′), inft′′∈(t,t′) ρ(ϕ1, w, t′′)}
ρ(ϕ1 S Iϕ2, w, t) = supt′∈(t−I)∩T

min{ρ(ϕ2, w, t′), inft′′∈(t′,t) ρ(ϕ1, w, t′′)}

We note that for a fixed formula ϕ and a given signal w, the quantity ρ(ϕ,w, t)
is a function of time, and can thus be treated as a signal. We refer to it as the
robust satisfaction signal or robustness signal.

144 E. Bartocci et al.

There is a couple of fundamental properties that relate the STL quantitative
semantics to its qualitative counterpart. Consider an arbitrary STL formula ϕ,
a signal w and time t ∈ T. The first property says that for any ρ(ϕ,w, t) �=
0, its sign determines whether (w, t) |= ϕ. The second property states that if
(w, t) |= ϕ, then for any signal w′ whose pointwise distance from w is smaller
than ρ(ϕ,w, t) we also have (w′, t) |= ϕ.

We illustrate the difference between the qualitative and the quantitative
semantics in Fig. 2. We can also observe the relation between the two semantics
as stated in the previous paragraph.

Fig. 2. Example for STL formula evaluation: (a) qualitative and (b) quantitative
semantics.

Alternative quantitative semantics. In this section, we presented a quantitative
semantics that allows measuring spatial robustness of STL specifications. This
definition takes into account the spatial variations of signals when compared to
STL specifications. Developing alternative notions of robustness degree for STL
has been an active area of research in the recent years. In [51], the authors extend
the quantitative semantics of STL by combining spatial with time robustness,
thus also allowing to quantify temporal perturbations in signals. The idea of the
combined space-time robustness for STL is further enhanced in [7] with averaged
temporal operators. In [114], the authors identify that the bounded eventually� [a,b] operator behaves like the convolution operator commonly used in filter-
ing and digital signal processing. Following this surprising observation, one can
develop various quantitative semantics for temporal logic, by defining the appro-
priate kernel window used for evaluating the formula. These additional opera-
tors enable reasoning not only about the worst-case but also the average-case
behaviours. The Skorokhod metric provides an alternative way to measure mis-
matches between continuous signals in both space and time. An effective proce-
dure for computing the Skorokhod distance between two behaviours is developed
and presented in [42,93]. This method is extended to estimate the Skorokhod
distance between reachpipes in [94]. Nevertheless, there are no available methods
yet to compute the Skorokhod distance between a signal and an STL formula.

Specification-Based Monitoring of Cyber-Physical Systems 145

3 Monitoring Algorithms

In this section, we present algorithms answering the following monitoring ques-
tion: what is the qualitative and/or quantitative satisfaction of a formula ϕ by a
signal w? This problem is much easier than model-checking, i.e., proving that a
system satisfies a formula, which is undecidable for STL even for simple classes
of systems. Yet, it is desirable that efficient algorithms exist for monitoring, as
this task can typically be repeated on large numbers of instances, or on signals
of long durations. We consider two different settings: offline and online. In the
offline setting, we assume that w is known before computing the satisfaction of
ϕ. In the online setting, we assume only a partial knowledge of w, and compute
successive estimates of ϕ satisfaction as new samples of w become available.

3.1 Offline Monitoring

For simplicity we restrict the presentation to the case of STL with future
operators, and piecewise constant signals, i.e., we assume that w is completely
defined by a sequence of time instants t0 < t1 < . . . < ti < . . . and values
w0, w1, . . . , wi, . . . such that

∀t ∈ [ti, ti+1), w[t] = wi[t].

Here, we assume that the sequence of (time, value) pairs is finite, i.e., i ≤ N .
Moreover, we assume that the signal w holds its final value indefinitely, i.e., for
all t > tN , w[t] = w[tN]. We present briefly an algorithm computing quantitative
satisfaction of ϕ by w, adapted in a simpler form from [49]. For a purely Boolean
monitoring algorithm, see [108]. Computing the quantitative satisfaction is not
more complex than computing the Boolean, as both can be achieved in linear
complexity in the size of signals.

The algorithm work by induction on the structure of the formula following
the generic scheme presented in Algorithm 1.

Algorithm 1. Monitor(ϕ,w)
switch (ϕ)
case p:

return ComputeSatisfaction(p, w)
case x ∼ c:

return ComputeSatisfaction(x ∼ c, w)
case ∗ ϕ, where ∗ ∈ {¬,� I ,� I}:

w′ := Monitor(ϕ, w)
return ComputeSatisfaction(∗ , w′)

case ϕ ∗ ψ, where ∗ ∈ {∨, U I}:
w′ := Monitor(ϕ, w)
w′′ := Monitor(ψ, w)
return ComputeSatisfaction(∗ , w′, w′′)

end switch

146 E. Bartocci et al.

Table 1. ComputeSatisfaction for atomic predicate and Boolean operators. y is the
signal returned, either Boolean or Real valued.

Boolean Quantitative

(p, w) y[t] = p if p == true, y[t] = +∞, else y[t] = −∞
(x ∼ c, w) y[t] = (πx(w)[t] ∼ c) y[t] = πx(w)[t] − c

(¬ , w′) y[t] = ¬w[t] y[t] = −w[t]

(∨ , w′, w′′) y[t] = w′[t] ∨ w′′[t] y[t] = max(w′[t], w′′[t])

To implement Algorithm 1, we need to provide an implementation of the func-
tion ComputeSatisfaction for each instance of the switch statement. Instances
which do not involve any temporal operator are straightforward and presented in
Table 1. As can be expected, the only non-trivial case is with temporal operators.

In theory, we only need to handle the until operator (U I), as other temporal
operators such as globally (� I) and eventually (� I) are derived from U I and
Boolean operations. However, in practice, it is more efficient to deal with these
operators separately. Also as we will see, U I is handled by combining specific
algorithms for � I and � I and U I with I = [0,∞) (unbounded until). It turns
out that for offline monitoring, unbounded operators are easier to handle than
bounded time ones. Hence, we will present implementations for the unbounded
cases before the bounded cases. In the following, we explain how to implement
the ComputeSatisfaction function for unbounded eventually, timed eventually.
The bounded globally case can be deduced from eventually using the equivalence
� Iϕ ⇔ ¬� I¬ϕ. Then we describe the algorithm for unbounded until and
finally timed until operators.

ComputeSatisfaction(� [0,∞), w) (Unbounded Eventually). From the quantita-
tive semantics, recall that

ρ(�I(ϕ,w, t) = sup
I

ρ(ϕ,w, t).

If I = [0,∞), that means that

y[t] = sup
t′≥t

{w[t]} = max
ti≥t

w[ti]

It is easy to see that y is defined by a finite sequence satisfying the (backward)
recurrence relation: {

yN = wN

yk = max(wk, yk+1)

Note that in the case of I = [a,∞), the result is obtained by shifting time by −a.

ComputeSatisfaction(� [a,b), w) (Bounded Eventually). From the quantitative
semantics, we have that:

ρ(�[a,b)(ϕ,w, t) = sup
[a,b)

ρ(ϕ,w, t)

Specification-Based Monitoring of Cyber-Physical Systems 147

so that
y[t] = max

ti∈[t+a,t+b)
{w[ti]}.

In other words, the signal t → y[t] stores the sequence of maximums of signal w
over a sliding finite window of size b − a. In [49], the authors observed that such
a sliding window could be computed using an algorithm due to Daniel Lemire
with linear complexity in the size of signal w [90]. We refer the reader to [49,90]
for details about this algorithm.

ComputeSatisfaction(� [0,∞), w) (Untimed Until). To compute the satisfaction
of untimed until, we are given two signals: w′ and w′′ and need to compute y.
Since w′ and w′′ are of finite length N , y is also of finite length N . The computa-
tion goes backward starting from (yN , tN). The time sequence t0, t1, . . . , tN−1 is
obtained by merging and sorting the sequences t′i and t′′i so that to simplify the
notations, we assume that the sequences w′

i and w′′
i are defined on the same time

sequence, i.e., w′
i = w′[ti] and w′′

i = w′′[ti] for all i. Using standard min−max
manipulations, we can show that the following recurrence is true:{

yN−1 = min(w′
N−1, w

′′
N−1)

yk = max(min(w′
k, w′′

k),min(w′
k, yk+1)), k ∈ {0, . . . , N − 2}

Implementing this recurrence yields an algorithm with complexity in O(2N).

ComputeSatisfaction((U [a,b), w
′, w′′)) (Bounded Until). To compute satisfac-

tion signals for formulas involving timed operators, we make use of the following
result:

Lemma 1. For two STL formulas ϕ,ψ,

ϕU [a,b)ψ ⇔ �[a,b)ψ ∧ ϕU [a,+∞)ψ (4)
ϕU [a,+∞)ψ ⇔ �[0,a)(ϕUψ) (5)

Using this lemma, ComputeSatisfaction(U [a,b), w
′, w′′) can be obtained by a

sequence of intermediate computations using the algorithms above, as detailed
in Algorithm 2. Note that all ComputeSatisfaction algorithm presented before
run in linear time w.r.t. the number of samples in their input signals, so that for
any STL formula, the computation of the robust satisfaction signal is also linear
w.r.t. the size of the signals involved.

Algorithm 2. ComputeSatisfaction(U [a,b), w
′, w′′) with a < b < +∞

w1 := ComputeSatisfaction(U [0,+∞) , w′, w′′)
w2 := ComputeSatisfaction(� [0,a) , w1) // w2 is the right hand side of (5)

w3 := ComputeSatisfaction(� [a,b) , w′′)
return ComputeSatisfaction(∧ , w2, w3)

148 E. Bartocci et al.

3.2 Online Monitoring

Offline algorithms assume that the entire trace is available to the monitoring pro-
cedure, and then run on the trace to produce either a Boolean satisfaction value
or a quantitative (robust) satisfaction value. There are a number of situations
where offline monitoring is unsuitable. Consider the case where the monitor is
to be deployed in an actual system to detect erroneous behaviour. As embedded
software is typically resource constrained, offline monitoring – which requires
storing the entire observed trace – is impractical. Also, when a monitor is used
in a simulation-based validation tool, a single simulation may run for several
minutes or even hours. If we wish to monitor a safety property over the simu-
lation, a better use of resources is to abort the simulation whenever a violation
(or satisfaction) is conclusive from the observed trace prefix. Such situations
demand an online monitoring algorithm, which has markedly different require-
ments. In particular, a good online monitoring algorithm must: (1) be able to
generate intermediate estimates of property satisfaction based on partial signals,
(2) use minimal amount of data storage, and (3) be able to run fast enough in
a real-time setting.

A basic online algorithm returns a true or false satisfaction value when the
satisfaction or violation of the property being monitored can be concluded by
observing the finite trace prefix. In many cases, the information in the trace prefix
is insufficient to produce a conclusive answer. Thus, several kinds of semantics
have been proposed to interpret MTL or STL formulae over truncated traces.
These semantics typically extend the satisfaction in a Boolean sense as used by
offline monitoring algorithms to a richer satisfaction domain, typically having
three or four values.

A typical three-valued semantics, for instance, assigns the satisfaction value of
true if given the truncated signal, it can be decided that the signal will definitely
satisfy the property. For example, if the value of the signal w at time 2 is 5,
then any trace prefix inclusive of this time-point definitely satisfies the formula� [0,10](w > 0). Dually, it assigns the satisfaction value of false when the trace
prefix is enough to establish that the signal definitely violates a given formula.
If neither determination can be made, then the semantics assigns a satisfaction
value of unknown [29]. Four-valued semantics that introduce presumably true
and presumably false in addition to true and false for signal traces that are likely
to respectively satisfy or violate the property have been proposed in [30].

In what follows, we first discuss qualitative monitoring algorithms; these
algorithms, given an MTL or STL property, decide from a given prefix of a signal,
if the entire signal would satisfy or violate the given property. An orthogonal, but
relevant issue for online monitoring is the semantics of the MTL/STL property
to be monitored on partial signal traces. We recall that following the tradition
of the semantics for LTL on truncated traces [57], there are different notions of
satisfaction that can be used to reason over prefixes of signals. We say that a
signal-prefix strongly satisfies a given property if for any suffix the resulting signal
would satisfy the property. In other words, the signal-prefix is sufficient to decide
the satisfaction of the given property. We say that a signal-prefix weakly satisfies a

Specification-Based Monitoring of Cyber-Physical Systems 149

given property if there is some suffix such that the resulting signal would satisfy
the property. A third notion of satisfaction is neutral satisfaction, which is if
the given signal-prefix satisfies the property where the temporal operators are
restricted to quantify only over the length of the signal-prefix. Some algorithms
for qualitative monitoring make use of such richer notions of satisfaction.

Qualitative Online Monitoring. There are two main flavours of qualitative
online monitoring. The first, based on work in [97], uses a modification of an
algorithm similar to Algorithm 1. This procedure called incremental marking,
essentially treats the signal as being available in chunks. The algorithm com-
putes the robustness signal in a bottom-up fashion, starting from the leaves (i.e.,
atomic formulas) appearing in the STL formula and then for each super-formula,
combining the robust satisfaction signals for its subformulae. The algorithm
maintains the robust satisfaction signal partitioned as the concatenation of two
signals: the first segment containing values that have already been propagated
to the super-formula (by virtue of having sufficient information to allow deciding
the satisfaction of the super-formula), and the second segment containing values
that have not yet been propagated, as they may influence the satisfaction of the
super-formula because of a part of the signal not yet available.

The second flavour of qualitative online monitoring makes use of automata-
based monitors [71] and the richer notions of strong and weak satisfaction of
MTL properties by signal-prefixes. In this approach, the given MTL formula
(with future and past modalities) is first rewritten so that all temporal opera-
tors bound by finite time intervals appear in the scope of zero or more tempo-
ral operators that are unbounded. Essentially, each bounded temporal formula
defines a finite time-window into the signal, where signal values would have to
be available to evaluate the subformula. The algorithm maintains a time-window
for each such bounded temporal subformula as a tableau and updates it using
dynamic programming methods. This effectively allows treating bounded tem-
poral subformulae as atomic propositions. The outer unbounded operators are
monitored using two-way alternating Büchi automata that accept informative
prefixes of the signal. An informative prefix is a signal-prefix that allows decid-
ing the satisfaction or violation of the given unbounded temporal formula. The
procedure has space-bounds that are linear in the variability of the given signal,
and length of the formula, and requires constructing automata that are doubly
exponential in the size of the given MTL formula.

Quantitative Online Monitoring. Qualitative monitoring algorithms by
their nature are unable to quantify the degree to which the signal correspond-
ing to the given signal-prefix may satisfy or violate the property of interest.
Online algorithms for computing robust satisfaction semantics seek to address
this gap. We discuss three algorithms below. The operating assumption of each
algorithm is the same: given a trace prefix, return a quantitative value that cap-
tures a notion of robust satisfaction over the incomplete trace. However, none
of the algorithms are probabilistic in nature. The first and the third algorithms

150 E. Bartocci et al.

provide a quantitative value based only on the trace prefix observed (and possi-
bly a forecast suffix). The second algorithm, given a formula ϕ, processes a trace
prefix and returns a robust satisfaction interval that always contains the robust
satisfaction value w.r.t. ϕ of any trace with this prefix.

Fig. 3. The online temporal logic monitoring framework for bounded future and
unbounded past formulas proposed in [44]. In case the monitored system contains
a model which can be used for forecasting future behaviours up to a horizon Hrz, then
these behaviours can be used to compute the robustness estimate of the specification
ϕ. If a forecasting mechanism is not available, then it is preferable to monitor past
formulas.

Quantitative monitoring of STL with past operators and predictors.
The first algorithm we discuss is for online monitoring of STL formulas with
bounded future and unbounded past formulas [44]. For a given STL formula ϕ,
the algorithm computes the horizon, or the number of look-ahead steps that
would be required to evaluate the bounded future component of a formula, and
the history or the number of samples in the past that would be needed to evalu-
ate a given bounded past formula. The algorithm then maintains a tableau that
is updated every time a new signal value becomes available using a dynamic pro-
gramming based approach. For unbounded past operators, the algorithm exploits
the fact that an unbounded past formula can be rewritten such that the com-
putation over an unbounded history can be stored as a summary in a variable
that is updated each time a new signal value becomes available. For the unob-
served parts of the signal, which would be required to compute the satisfaction
of a bounded future temporal subformula, the algorithm requires the use of a
predictor in order to compute a robustness estimate (see Fig. 3).

In more detail, the algorithm monitors invariants expressed as STL formulas
ϕ. That is, the assumption is that ϕ should be satisfied at all times of the system
execution or model simulation. As an example, consider the specification

ϕ ≡ ¬(x ≥ 0.5) → �- [0,1]�- [0,1](x ≥ 0.5) (6)

which states that if the value of the signal x decreases below 0.5, then within
1 s in the past it should have been higher than 0.5 for at least 1 s. In Fig. 4, we
present a simple example of a signal x and the corresponding robustness value
ρ(ϕ, x, t) computed online for Eq. (6). Notice that the signal x decreases below
the threshold 0.5 (i.e., the antecedent ¬(x ≥ 0.5) is now satisfied) at two points

Specification-Based Monitoring of Cyber-Physical Systems 151

in time, at 5.5 s and at 12.25 s. In the first case, no violation of the require-
ment occurs (barely), while in the second case a violation occurs (the robustness
drops below zero). In either case, the robustness of Eq. (6) starts decreasing at
time 6 and at time 13, respectively, when the subformula �- [0,1]�- [0,1](x ≥ 0.5)
starts changing robustness value. On the other hand, the robustness increases
afterwards because the value of the signal x approaches the threshold 0.5 and,
therefore, the antecedent comes closer again to being falsified. The fact that the
specification robustness starts decreasing can be used as a warning that the sys-
tem may be soon violating its requirement; and, thus, remedial action may be
required.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 4. A signal x (solid blue line) and the corresponding robustness value ρ(ϕ, x, t)
(dashed red line) computed for the formula in Eq. (6). (Color figure online)

Quantitative monitoring of robust satisfaction interval for bounded
future STL formulas. The second algorithm computes robust interval seman-
tics for STL formulas with bounded future formulas [40]. A robust satisfaction
interval (�, u) for a given signal-prefix is defined such that � (respectively, u) is
the infimum (respectively, supremum) over the robust satisfaction values of the
given property for all signals that have the given partial signal as the prefix. For
example, consider a constant signal-prefix with magnitude 1, defined over time
t ∈ [0, 5). The robust satisfaction interval for the formula � [0,10](x > 0) over
this signal-prefix is (−∞, 1], while the robust satisfaction interval for the formula� [0,10](x > 0) is [1,∞). The interval semantics generalises the notion of strong
and weak semantics. A signal-prefix strongly satisfies (resp. violates) a property if
the lower-bound of the robust satisfaction interval is positive (resp. upper-bound
of the robust satisfaction interval is negative). A signal-prefix weakly satisfies a
property if the upper bound of the robust satisfaction interval is positive.

In lieu of a detailed exposition of the algorithm, we demonstrate it with an
example in Fig. 6 for the formula in Eq. (7).

ϕ ≡ �[0,a]

(¬(y > 0) ∨�[b,c](x > 0)
)

(7)

We assume that the algorithm starts in a state where it has processed the
partial signal till time t2, and show the effect of receiving data at time-points t3,
t4 and t5. The algorithm maintains lists of robust satisfaction intervals at each
node in the syntax tree of ϕ, and updates these lists when new time-points in
the trace become available. Each row in the table adjacent to a node shows the

152 E. Bartocci et al.

x

t

−2

−1

0

1

2

t0

t3 − b

t1

t4 − c

a

t2

b

t3

c

t4

a+ c

t5

y

t

−2

−1

0

1

2

t0

t3 − b

t1

t4 − c

a

t2

b

t3

c

t4

a+ c

t5

Fig. 5. These plots show the signals x(t) and y(t). Each signal begins at time t0 = 0,
and we consider three partial signals: till time t3 (black + blue), and till time t4 (black
+ blue + green), and till time t5 (black + blue + green + red) (Color figure online)

Fig. 6. We show a snapshot of the list at each node in the syntax tree of formula given
in Eq. (7) maintained by the algorithm for four different (incremental) partial traces of
the signals x(t) and y(t) shown in Fig. 5. Each row indicates the state of each list at the
time indicated in the first column. An entry marked -- indicates that the corresponding
element did not exist in the list at that time. Each colored entry indicates that the
entry was affected by availability of a signal fragment of the corresponding color. (Color
figure online)

state of the list after the algorithm processes the value at the time indicated in
the first column.

The first row of the table shows the snapshot of the lists at time t2. Observe
that in the lists for the subformula y > 0, ¬y > 0, because a < b, the data
required to compute the interval at t0, t1 and the time a, is available, and hence
each of the intervals is singular. On the other hand, for the subformula x > 0,
the time horizon is [b, a + c], and no signal value is available at any time in this
interval. Thus, at time t2, all elements of the list at the node corresponding to
x > 0 are (x�,xu) corresponding to the user-provided greatest lower bound and
lowest upper bound on the signal x = (x, y).

Specification-Based Monitoring of Cyber-Physical Systems 153

To compute the values of � [b,c](x > 0) at any time t, we take the supremum
over values from times t + b to t + c. As the time horizon for the node corre-
sponding to � [b,c](x > 0) is [0, a], t ranges over [0, a]. In other words, we wish
to perform the sliding maximum over the interval [0 + b, a + c], with a window
of length c − b. We can use the algorithm for computing the sliding window
maximum as discussed in the earlier section on offline monitoring. One caveat is
that we need to store separate monotonic edges for the upper and lower bounds
of the robust satisfaction intervals. The algorithm then proceeds upward on the
syntax tree, only updating the list of a node only when there is an update to
the lists of its children.

The second row in each table is the effect of obtaining a new time point
(at time t3) for both signals. Note that this does not affect the lists at the
node y > 0 or the node ¬y > 0, as the robust satisfaction intervals are already
singular, but does update the intervals for the node x > 0. The algorithm then
invokes the sliding window computation on the list for x > 0 to update the
list for � [b,c](x > 0). Finally, we remark that the run of this algorithm shows
that at time t4, the interval for the formula ϕ is [−2,−2], which yields a negative
upper bound, showing that the formula is not satisfied irrespective of the suffixes
of x and y. In other words, the satisfaction of ϕ is known before we have all the
data required to fully determine the robust satisfaction value for the formula.

Quantitative monitoring for unbounded horizon STL formulas. Robust
satisfaction intervals are meaningless for STL formulas with unbounded future
operators. Hence, for such formulas, nominal quantitative semantics have been
proposed in [41]. These semantics essentially compute the robust satisfaction
value of the formula restricted to the trace prefix that is available. However, a
key challenge is to avoid storing the entire signal or performing repeated compu-
tation whenever a new time-point becomes available. This can be circumvented
by storing the summary of computation of the robust satisfaction value and
then incrementally updating the summary variables. The number of summary
variables required is finite and independent of the trace length, although expo-
nential in the length of the formula. Nominal quantitative satisfaction values
for arbitrary unbounded horizon STL formula can be monitored in this fashion.
The rules for rewriting the nominal robustness computation of an unbounded
horizon STL formula in terms of summary variables is involved, and we omit the
details for brevity. Interested readers can find them in [41].

4 Extensions

It is out of doubt that STL has gained in the last decade an increased popular-
ity among engineers for its conciseness and expressive power enabling to specify
complex behavioural properties related to the order and the temporal distance
among discrete events such as the satisfaction of predicates (e.g., threshold cross-
ing) over the real variables.

However, the pure time-domain nature of this specification language
sometimes has revealed to be a technical impediment to overcome for an

154 E. Bartocci et al.

immediate applicability to cyber-physical systems. In particular, abnormal sig-
nal behaviours such as undesirable oscillations and complex topological require-
ments (i.e., the spatial distribution of the entities generating signals) are very
challenging to capture using only the time-domain.

For this reason, in the last decade STL has inspired a number of extensions
that have been successfully applied in many applications ranging from identifying
oscillatory behaviours in analog circuits [104], biological systems [32] and music
melodies [52] to specifying spatiotemporal requirements in reaction-diffusion sys-
tems [12,13,16,102], smart grids [69] and mobile ad-hoc sensor networks [15]. In
the following we aim to provide an overview of some of the STL extensions
recently proposed.

4.1 Monitoring Complex Oscillatory Properties

The dynamical behaviour of a physical system often exhibits complex oscilla-
tory patterns representing an infinite periodically behaviour. Real-life analog
signals are characterised by omnipresent noise, i.e., random perturbations of the
desired signal. Damped oscillations or oscillations with increasing amplitude are
peculiar aspects in many biological systems [21,22,32]. Abnormal oscillations
due to the presence of spikes or hunting oscillations [104] are considered unde-
sired behaviours in analog circuit design. Signal-processing tasks such as peak
detection [5,19,34] is common in many medical cyber-physical systems whose
correctness impacts the performance and the sensitivity of the computational
devices involved. Providing a concise formal specification language expressive

Fig. 7. The freezing operator of STL-∗ enables in (a) the specification of the notions
of local maxima (∗[� [0,10]x

∗ ≥ x]) and local minima (∗[� [0,10]x
∗ ≤ x]) by comparing

the value x with all the frozen values (represented by the expression x∗) within a
time interval [0, 10]. This feature is suitable to capture oscillatory behaviours without
knowing a-priori specific signal thresholds. In (b) freezing operators are nested within
the classical eventually STL operators to detect the possible occurrence of a local
maxima and a local minima within [0, 15] time units.

Specification-Based Monitoring of Cyber-Physical Systems 155

enough to characterise such patterns and to efficiently monitor them is a very
challenging task.

For example, the classic STL is not expressive enough to distinguish classes
of oscillatory patterns such as damped oscillations or oscillations with increasing
amplitude, because it is not able to globally reference and compare local prop-
erties (i.e., local minima/maxima) of a signal. Motivated by this necessity the
authors in [32] have proposed an extension of STL (named STL-∗), augmenting
STL with a freezing operator that allows to record the signal values during the
evaluation of a sub-property, and to reuse it for comparison in the other parts
of the formula. This operator increases the expressive power of STL and for
instance it enables to express and to capture various dynamic aspects of oscil-
lations (see Fig. 7). A quantitative semantics for STL-∗ is also proposed in [33].
However, the price to pay for this enhanced expressiveness is an higher compu-
tational complexity for the monitoring procedure. In [32] the authors show that
the monitoring algorithm for STL with nesting freeze quantifiers is polynomial
in the number of intervals on which the signals is defined and the size of the
syntactic tree of the formula, but it is exponential in the number of the nested
freeze operators in the formula.

Although STL-∗ is more expressive than STL, its analysis is still limited to
the time-domain representation of a signal. However, oscillatory patterns (i.e.,
chirp signals, hunting behaviours, noise filtering) are in general very challenging
and tedious to investigate using only time and a time-frequency analysis is essen-
tial sometime to efficiently detect them. Time-frequency analysis is an important
branch of signal processing and it is based on the study of the spectrogram (see
Fig. 8), a representation of the frequencies’ magnitude in a signal as they vary
with time. Spectrograms can be calculated from digitally sampled data in the
time-domain representation of the signal using extensions of the classic Fourier
transforms such as the Short Time Fourier Transform (STFT) or Wavelet Trans-
forms (WTs). Although a preliminary work on combining time and frequency
domain specifications for periodic signals is reported in [37], the first attempt
to provide a unified formalism to express time-frequency properties of a signal
is the time-frequency logic (TFL) introduced in [52]. TFL extends STL with
predicates evaluating the magnitude of a particular frequency range in a point
in time. The semantics of TFL operates over a spectrogram generated using
STFT. In [52] TFL was applied to detect musical patterns, but it can be easily
used in other application domains. More recently, TFL was extended in [104] to
operate over spectrograms generated using WTs. These spectrograms generally
provide a better trade-off between the resolution in the time domain and the
resolution in the frequency domain w.r.t. STFT.

4.2 Monitoring Spatio-Temporal Behaviours

The components in CPS are generally distributed across space and connected
via a communication infrastructure. The complex behaviour of each individual
component due to a fully-integrated hybridisation of computational (logical) and
physical action and the interactions between these components via the network

156 E. Bartocci et al.

Fig. 8. In (a) we show three different examples of spectrogram obtained using different
time to frequency domain signal transformations: Fourier Transform (FT), Short Time
Fourier Transform (STFT) and Wavelet Transform (WT). FT provides the average
magnitude of a signal for a certain interval of frequencies along the entire duration of
the signal. FT are indeed not suitable to localise the time when a change of frequencies
occurs. STFT consists instead in dividing a longer time signal into shorter segments of
the same length and in computing the FT for each of these segments. This provides a
better time resolution than FT. However, STFT has a fixed resolution that depends on
the time length chosen for the shorter segments. A wide window gives better frequency
resolution but poor time resolution and vice-versa. WT generally provides the best
combination of good time resolution for high-frequency events and good frequency
resolution for low-frequency events. In (b) we show an example of a signal with in (c)
its STFT spectrogram for the frequencies in the range 0–50 Hz. On the right of the
spectrogram we provide the projection of the magnitude associated with each frequency,
while on the bottom we show a slice of the spectrogram for the frequency 10 Hz. TFL
provides a special predicate that enables to compute such slicing and to compare the
magnitude w.r.t. a user-defined threshold.

enable them to produce very rich and complicated emergent spatiotemporal
behaviours, often impossible to predict at design time. Examples include smart
grids, robotics teams or collections of genetically engineered living cells. In such
examples, temporal logics may be not sufficient to capture also topological spatial
requirements. For example, the notion of being surrounded or spatial superposi-
tioning (averaging resources in a space) are not available in the standard STL
and encoding them with specific functions may result cumbersome.

Recently, three different spatiotemporal extensions of STL, Spatial-Temporal
Logic (SpaTeL) [69], the Signal Spatio-Temporal Logic (SSTL) [16,102] and the
Spatio-Temporal Reach and Escape Logic (STREL) [15] have been proposed to

Specification-Based Monitoring of Cyber-Physical Systems 157

accommodate the growing need of expressing not just temporal but also spa-
tiotemporal requirements in CPS.

SpaTeL [69] is the unification of STL and Tree-Spatial-Superposition-Logic
(TSSL) introduced in [12,13] to classify and detect spatial patterns. TSSL rea-
sons over quadtrees, spatial data structures that are constructed by recursively
partitioning the space into uniform quadrants. TSSL uses the notion of spatial
superposition (introduced in [68]) that provides a way to describe statistically
the distribution of discrete states in a particular partition of the space and that
enable to specify self-similar and fractal-like structures that generally charac-
terise the patterns emerging in nature. SpaTeL is equipped with both a qualita-
tive and a quantitative semantics that provide a measure or robustness of how
much the property is satisfied or violated. In [69] this measure of robustness
is used as a fitness function to guide the parameter synthesis process for the
neighbourhood prices in a demand-side management system model of a smart
grid using particle swarm optimisation (PSO) algorithms.

SSTL [16,102] instead extends STL with three spatial modalities somewhere,
everywhere and surround, which can be nested arbitrarily with the original STL
temporal operator. SSTL is interpreted over a discrete model of space repre-
sented as a finite undirected graph. Each edge of the graph is labeled with a
positive weight that can be used to represent the distance between two nodes.
This provides a metric structure to the space, in terms of shortest path distances.
However, the weight can be used to encode also other kind of information (i.e.,
the average travelling time between two cities). In [102], the authors provide a
qualitative and quantitative semantics of SSTL and efficient monitoring algo-
rithms for both semantics.

STREL [15] generalises SSTL by introducing two new spatial operators: reach
and escape. These operators enable to express the same spatial modalities in
SSTL and to compute the monitoring procedure locally at each location using
the information of its neighbours. While SSTL can operate only on static spatial-
temporal models (the position of the locations remains always fixed), STREL
can handle also dynamic/mobile networks. Moreover, in [15] the authors show
that for a certain class of models (called euclidean spatial models), all the spatial
properties expressed in STREL that satisfy a model will also satisfy all the model
transformations using rotation, translation and reflection.

4.3 Matching and Measuring Temporal Patterns over CPS
Behaviours

In the introduction of this document, we mentioned that declarative specifica-
tion languages are typically based on temporal logics or regular expressions. Both
formalisms have their merits and weaknesses. Temporal logic are often good for
describing global behaviours and the expected relations between the events and
the states that evolve over time. In contrast, regular expressions are convenient
for expressing local temporal patterns (consecutive sequences of events at states)
that happen in a behaviour. In the digital hardware community, it has been
observed that the necessary expressiveness and succinctness of the specification

158 E. Bartocci et al.

language is truly achieved when temporal logic is combined with regular expres-
sions. In fact, both IEEE formal specification language standards, SystemVerilog
Assertions (SVA) [126] and Property Specification Language (PSL) [55] adopt
this combined approach.

In the context of continuous-time applications, Timed Regular Expressions
(TRE) were proposed in [11] as a real-time extension of regular expressions.
For a long time, this formalism was subject to theoretical studies, but without
any real practical relevance. More recently, a novel algorithm for matching and
extracting TRE patterns from hybrid behaviours was developed in [124]. The
original offline pattern matching procedure was extended with an online version
in [125]. These results on TRE pattern matching enabled the combination of
STL with regular expressions also in the continuous-time setting, as it was shown
in [64]. Finally, automated extractions of quantitative measurements from CPS
behaviours based on TRE patterns was proposed in [65].

5 Applications to Cyber-Physical Systems (CPS)

In this section, we provide an overview of the important applications of temporal
logic-based monitoring techniques presented thus far and conclude with a pre-
sentation of the practical challenges that need to be addressed through future
research.

5.1 Practical Considerations for CPS Monitoring

CPS integrate computation and control of physical processes to enable safety
critical applications in many domains including medical devices, automotive sys-
tems, avionics and power systems [88]. The problem of monitoring CPS has been
a productive area for the runtime verification community as a whole, leading to
many important considerations such as monitoring timed properties, quantita-
tive semantics, simulation-guided falsification and online monitoring challenges.

Both offline and online monitoring setups present unique challenges for CPS
applications. As described in Sect. 3, the offline monitoring setup analyses trace
data collected from running a system, after the execution has terminated. A key
challenge includes that of monitoring large volumes of data efficiently [26]. At the
same time, richer specification languages with higher computational worst-case
complexities can be accommodated in an offline monitoring setup, exacerbating
the challenge of efficient offline monitoring.

Online monitoring, on the other hand, is constrained by the limited ability
to store the trace as the system being monitored executes and the hard real time
demands on the computation time. Furthermore, in practice, monitoring is often
restricted to perform a single pass through the trace in the forward direction.
This naturally restricts us to specification languages that can be monitored effi-
ciently in an online fashion. For instance, the presence of unbounded until oper-
ators in the specification can potentially require a large lookahead to resolve the
truth of the formula appropriately [39,66,70]. Finally, if the monitoring shares

Specification-Based Monitoring of Cyber-Physical Systems 159

the same platform as the deployed system, it should be non-intrusive as much as
possible: in other words, its consumption of resources such as CPU time, memory
and I/O must not interfere with that of the running application [127]. The lat-
ter concern is especially acute for CPS, wherein instrumentation can potentially
interfere with critical timing properties of the system being observed.

Finally, physical measurements are well known to be noisy and they require
specialised sensors. As a result, the problem of monitoring under incomplete and
noisy measurements is especially relevant for CPS applications [24,83].

Another important classification, especially for CPS applications, involves
the problem of modelling the physical environment surrounding the closed loop
being monitored [79]. Herein, different monitoring setups are distinguished by
the complexity and fidelity of the physical plant models and the software run-
time setup used [84]. Software-in-the-loop monitors properties using the control
system being designed and a mathematical model of the plant. Hardware-in-the-
Loop monitoring (also known as Processor in the Loop) executes the controller
on the runtime platform used during deployment, while using a mathemati-
cal model of the plant [120]. The monitoring challenges include the problem
of mapping the “simulation time” of the plant model to the real-time elapsed
for the real-time software. Model-based development environments such as
Matlab™, Simulink/Stateflow™, Modelica™, Scade™and DSpace™ support soft-
ware/hardware in the loop testing and runtime monitoring for complex CPS [76].

Real-time Monitoring of CPS. Monitoring of real systems in real time during
their execution requires adapting the techniques and the algorithms presented so
far in this document. In the case of real-time monitoring, the property observers
are implemented on a physical device that is connected to the system-under-test
(SUT) [105,118,119]. Several considerations must be taken into account - the
real-time sensing of the SUT signals and the environment, the frequency of the
monitor operation that must be at least as high as the frequency at which the
SUT works, the limited availability of resources that are available on the moni-
tor device, etc. When considering real-time monitors implemented in embedded
software or hardware, it is often the case that both the computations are done
at the periodic intervals over the quantised input signals. In that case, STL is
interpreted over signals that are defined in discrete time and over finite domains.
While in this setting, STL is not more expressive than LTL, keeping explicit real-
time operators and numerical inputs allows efficient implementation of monitors
and allows giving them both qualitative and quantitative semantics. A trans-
lation of STL specifications into real-time monitors implemented in FPGA is
proposed in [77]. A quantitative semantics for such STL properties based on the
weighted edit distance, together with the algorithms for computing the robustness
degree of a trace with respect to a property are developed in [78].

160 E. Bartocci et al.

5.2 Property Falsification and Parameter Synthesis

In this section, we summarise work on the application of specification robust-
ness of traces (Sect. 2.2) to two very related problems: property falsification and
parameter synthesis.

Falsification techniques attempt to find a counterexample to a given property
and to a given model of a system (or even to the actual system). Falsification is
a rather valuable approach, generalising manual testing to an automatic search
for violating counterexamples. However, the core challenge in falsification is the
question of where to search for violations. This is a very challenging problem for
CPS due to the continuous nature of the input space which consists of initial
conditions and input signals to the model.

The problem of parameter synthesis for property satisfaction can be thought
of as a dual problem to the falsification problem. In the case of parameter syn-
thesis, the search is typically not over the space of initial conditions and inputs
to the model, but over the model’s parameters. In addition, the goal is not to
find a falsifying behaviour, but rather either a set of satisfying behaviours for
a range of parameters, or a parameter which induces a model which robustly
satisfies the property.

Fig. 9. Setup for the falsification of properties using robustness metrics.

To automate the search, we may use specification robustness to provide guid-
ance on what to search for. Figure 9 illustrates the overall setup for falsification
and/or parameter synthesis. As pointed out in [103] and in [2], robustness is
a natural measure of a distance between a signal and a property. A tool that
tries to minimise robustness by searching over inputs and initial conditions is
in essence a tool for finding counterexamples. Similarly, a tool that attempts to
maximise robustness by searching over a range of parameters is a parameter syn-
thesis tool. To this end, a global optimisation engine is used to systematically

Specification-Based Monitoring of Cyber-Physical Systems 161

guide the search for inputs (parameters) that minimise (maximise) the over-
all robustness. The approach does not need to find the globally minimum (maxi-
mum) robustness. Rather, it stops whenever the specification robustness crosses
a given threshold. For falsification methods, this threshold is typically the value
zero indicating a change from positive robustness values (correct behaviour) to
negative robustness values (incorrect behaviour). Also, in the case of counterex-
ample search, even if a falsification is not obtained, then the minimum robustness
obtained can serve as useful information to provide the engineer.

The idea of minimising robustness to search for falsification or maximis-
ing robustness for parameter synthesis has been implemented in tools such as
Breach [46] and S-Taliro [10]. However, the challenges in these problems lie in the
choice of a global optimisation solver that can efficiently (quickly) converge to
local optima. In theory, any such solver will have to fundamentally grapple with
the underlying undecidability of finding falsifying inputs for programs, in general.
On the other hand, approaches such as Nelder-Meade algorithm [101], Simulated
Annealing [103], Ant-Colony Optimization [9], Gaussian Process Optimization
with Upper Confidence Bound [18], and the Cross-Entropy method [115] have
been used to report success on large examples. Path-planning based methods
like RRTs (rapidly exploring random trees) combined with online monitoring of
STL robustness have shown promise in systems with hybrid dynamics [53].

As the model fidelity and complexity increases, so does the model simula-
tion time. Long computation times are acceptable in optimal design applications,
e.g., [58], since the system must be designed once; however, they can be problem-
atic in system testing applications. Typically, the developers may be willing to
wait overnight for test results, but most probably they will not be willing to wait
for a week, for example. To improve the performance of stochastic optimisation
methods, e.g., [9,18,103,115], in [1,6] they proposed hybrid techniques where
robustness descent directions are analytically computed and interleaved with
stochastic optimization methods. Such a process guarantees fast convergence to
local optimiser points. On the other hand, it requires a white-box model, i.e.,
the mathematical model must be known to the falsification algorithm. Recently,
the aforementioned restriction was relaxed in [130] where it was shown that the
descent directions can be approximated as long as the system simulator can
provide linearizations of the model along the simulation trace of the system.
Finally, we should remark that some of the techniques which were used in [6] for
falsification were initially used in [50] for parameter synthesis using simulations
for computing reachable sets.

Automotive Systems. Automotive systems present an important application
for many aspects of runtime monitoring and property falsification, discussed thus
far. As automobiles become ever more autonomous, it is important to check the
functional correctness of their core components.

The work in [62] describes the application of S-Taliro to automotive system
models. Therein, they show the presence of unexpected behaviours in an auto-
matic transmission model that were not revealed by previous testing approaches.

162 E. Bartocci et al.

Falsification methods for stochastic systems were applied to stochastic models of
automotive systems in [3]. The presented framework for robustness guided falsi-
fication in this section is also used as an intermediate step in specification min-
ing methods [74,129]. The methods presented in [74,129] are primarily applied
to automotive applications. In [131], the authors applied Breach as part of a
compositional verification scheme for complex automotive system with many
sub-modules. The Breach requirement mining feature was used at the system
level to induce pre-conditions for sub-modules, making it easier to apply suc-
cessfully model-checking analysis at the module level. The contribution in [85]
formulated a library of control-theoretic specifications that can be expressed in
STL and showed its application to an automotive powertrain control benchmark.
Both STL and TRE have been recently used to specify, monitor and measure
hybrid properties of the DSI3 standard [65,106].

CPS Engineering Education. STL monitoring was used in the context
of a MOOC3 (Massively Open Online Class) teaching basic concepts of CPS
design [82]. A key assignment was for the student to design, simulate and exe-
cute on real hardware a control algorithm driving a robot in an environment with
obstacles. In order to evaluate hundreds of students contributions, a simulator
was designed and equipped with STL monitoring capabilities. Grading was then
done by evaluating a set of test cases and STL properties implementing fault
monitors, i.e., each STL property evaluated to true would indicate a specific type
of fault. The system would then return either some feedback if the user were a
student or a partial grade if the user were an instructor.

Systems and Synthetic Biology. The growing need of computational models
and methods [25] to investigate and to design complex biological systems with
a predictable behaviour has also benefited greatly from the use of the aforemen-
tioned monitoring techniques. STL has become popular also among bioscientists
to specify in a concise and unambiguous way the behaviour of several cellular
and molecular mechanisms. The quantitative semantics of STL and its exten-
sions has triggered the development of several parameter synthesis techniques
and invaluable tools [12,17,18,47,69] to automatically characterise the parame-
ter region of a biological model responsible for a behaviour of interest. Similarly
to falsification analysis, parameter synthesis leverages an optimisation process
using a particular heuristic. The only difference is that the objective function
is to maximise (instead of minimising) the robustness with respect to an STL
requirement. This approach has been successfully employed to study several bio-
logical case studies. Examples include the study of the onset of new blood vessel
sprouting [48], the programmed cell death (apoptosis) [123], the effect of iron
metabolism on blood cell specialisation [100] and the logical characterisation of
an oscillator of the circadian clock in the Ostreococcus Tauri [19].

3 https://www.edx.org/course/cyber-physical-systems-uc-berkeleyx-eecs149-1x.

https://www.edx.org/course/cyber-physical-systems-uc-berkeleyx-eecs149-1x

Specification-Based Monitoring of Cyber-Physical Systems 163

Medical Devices. The growing area of closed-loop medical devices has led
to devices such as implantable pacemakers and artificial pancreas that provide
life sustaining treatments in real-time. As a result, the problem of monitoring
and verifying their operation takes on great significance. The broader area of
closed loop medical devices has received a lot of recent interest from the formal
verification community. This started with work on pacemakers and implantable
cardiac defibrillators (ICDs) that includes hybrid automata models for excitable
cells in the heart [20,67], leading to approaches that employ these models to test
closed loop systems [80,81,109].

Other examples of safety critical medical devices include the ones used in
intensive care. In [34], the authors propose a method to automatically detect
ineffective breathing efforts in patients in intensive care subject to assisted ven-
tilation. Their approach is based on learning and monitoring STL specification
discriminating between normal and ineffective breaths.

More recently, also the artificial pancreas concept has emerged as an impor-
tant approach to treat type-1 diabetes, approaching a de facto cure [86].

Artificial Pancreas Control Systems. The artificial pancreas concept refers to
a series of increasingly sophisticated devices (see Fig. 10) that automate the
delivery of insulin to patients with type-1 diabetes in a closed loop, automatically
responding to changes in the patient’s blood glucose levels and activities such
as meals and exercise [38,72,86]. However, such systems can pose risks to the
patient arising from defects and malfunctions. Short-term risks include extremely
low blood glucose levels called hypoglycemia, that can lead to seizures, loss of
consciousness, coma or even death in extreme cases.

Fig. 10. Overview of the key components of an artificial pancreas control system.
b(t): external user commanded insulin, u(t): insulin infused to patient, G(t): blood
glucose level of the patient, n(t): sensor measurement error (noise), Gs(t): glucose level
estimated/reported by sensor, uc(t): insulin infusion commanded by the algorithm.

Cameron et al. use robustness-guided falsification techniques for checking
properties of closed loop control systems for the artificial pancreas [36]. Their

164 E. Bartocci et al.

work investigates a PID controller proposed in [121,122,128] based on published
descriptions of the control system available. The simulation environment incor-
porates this controller in a closed loop with models of the patient [99], the sensors
and actuators. Their work formulated nearly six different temporal properties of
the closed loop and obtained falsification for three of them. However, they could
not falsify the remaining three properties that governed the absence of prolonged
hypoglycemia and hyperglycemia in the patient.

Another recent study [116] was performed to test a predictive pump shutoff
controller designed in [35] that has undergone outpatient clinical trials [92]. This
study involved the entire controller software as is, without any modifications.
At the same time, the closed loop simulation permits us to pose a rich set
of questions that compare the closed loop performance with a corresponding
open loop under the same meal inputs and physiological model conditions. The
falsification discovered adverse noise patterns in the CGM sensor that could
trick the Kalman filter into predicting inaccurate forecasts for the future glucose
value, and thus prevent appropriate pump shutoff/resumption. At the same time,
critical properties such as not commanding excess insulin when the patient is in
hypoglycemia could not be violated. The study concluded the need to investigate
these violations under more realistic patterns of CGM noise.

6 Tools

Due to relatively low computational complexity of the online and offline mon-
itoring algorithms, many software tools have been developed over the last two
decades. Among the first tools that were developed for monitoring (a subset
or superset) of Boolean-valued temporal logic specifications were the Temporal
Rover [54], MaC [89], Java PathExplorer [70] and LOLA [39]. Since then, there
has been a wealth of research on on- and off-line monitoring of requirements
expressed in some form of temporal logic (see for example the competition at
the Runtime Verification conference series [14,23,63,112]) and several publicly
available tools have resulted from this effort, for example:

1. RV-Monitor [91]: is available at
https://runtimeverification.com/monitor/

2. MonPoly [27]: is available at
http://www.infsec.ethz.ch/research/projects/mon enf.html

3. LTLFO2Mon [28] is available at
https://github.com/jckuester/ltlfo2mon

The review in this section focuses only on tools that can reason about real-
time properties of traces (output signals) since this is a necessity for testing
and monitoring for Embedded and Cyber-Physical Systems. In addition, the
focus is on publicly available software tools for off- and on-line monitoring that
can be readily downloaded and utilized in testing and monitoring applications.
Some of these tools are open source with licenses that allow extensions and
redistribution. In the following, we group the software tools survey into two
main broader categories: Boolean semantics and multi-valued semantics.

https://runtimeverification.com/monitor/
http://www.infsec.ethz.ch/research/projects/mon_enf.html
https://github.com/jckuester/ltlfo2mon

Specification-Based Monitoring of Cyber-Physical Systems 165

6.1 Software Tools for Boolean Semantics

In the first category, i.e., Boolean semantics, the tool AMT [108] available at:

http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/AMT/content.html

analyzes STL properties over analog system output signals. In particular, the
properties analyzed by AMT are an extension of the industrial specification
language PSL with STL requirements. The software tool AMT is a stand alone
executable with a graphical interface where the user provides the STL/PSL prop-
erties, the signals and whether the analysis is going to be offline or incremental.
In return, the tool plots the Boolean satisfaction of each property over time.

6.2 Software Tools for Quantitative Semantics

When considering software tools for evaluating quantitative semantics of STL
over signals, there are several options. The following tools are publicly available
and they can monitor both real valued and Boolean signals:

1. Breach [46]: available at
https://github.com/decyphir/breach

2. S-Taliro [10]: available at
https://sites.google.com/a/asu.edu/s-taliro/

3. U-Check [31]: available at
https://github.com/dmilios/U-check

Breach and S-Taliro are add-on toolboxes for the Matlab environment while
U-Check is a stand-alone program written in Java. Breach and S-Taliro provide
analysis tools for black box testing of models and hardware-in-the-loop systems
while U-Check deals with stochastic models (Continuous-Time Markov Chains).

The efficient evaluation of STL requirements over real-valued and Boolean
signals gave raise to a number of semi-formal verification methods from test-
ing based verification [59] to parameter mining [129,132] to falsification [2] to

Table 2. Tools for reasoning with multi-valued temporal logics and their functionality.

Analysis Functionality Breach S-Taliro U-Check

Signal Offline testing [46,49] [60–62]

Online monitoring [40] [43]

System (best effort) Falsification [46] [2] [31]

Coverage testing [45]

Requirement mining [129] [74,132]

Parameter synthesis [46] [117]

Conformance [4]

Specification Visual specifications [73,75]

Debugging [44]

http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/AMT/content.html
https://github.com/decyphir/breach
https://sites.google.com/a/asu.edu/s-taliro/
https://github.com/dmilios/U-check

166 E. Bartocci et al.

synthesis [111]. As reviewed in Sect. 5, the aforementioned methods have been
applied to a wide range of practical applications. Table 2 provides an overview
with references of the various analysis methods that each tool supports.

7 Conclusion

Cyber-Physical Systems (CPS) combine heterogeneous and networked compu-
tational entities with physical components interacting with them through sen-
sors and actuators. Continuous and hybrid behaviours naturally arise from such
dynamical systems. Here, we have provided an in-depth overview of the state-
of-the-art techniques for CPS monitoring.

The common denominator of all these methods is the possibility to express in
a very powerful, concise and unambiguous way the properties of interest using a
formal specification language. In this work, we have mainly focused our attention
on Signal Temporal Logic (STL), a formalism enabling the designer to reason
about real-time properties over real-valued signals. In the recent years, there has
been a great effort to provide efficient algorithms to support online and offline
monitoring of STL formulas over (system output) signals.

The introduction of novel quantitative semantics has considerably widened
the spectrum of applications from just monitoring qualitatively real-time signals
to providing novel falsification analysis and parameter synthesis techniques in
model-based testing as well as hardware-in-the-loop testing. As a consequence,
the application domains have also grown dramatically, ranging now from auto-
motive systems to synthetic biology and medical devices.

We believe that these techniques will play more and more a key role in
industry in the design and engineering safe and resilient CPS and/or to equip
them with real-time hardware-based monitors enabling CPS self-awareness and
adaptation.

Acknowledgment. E. Bartocci and D. Ničković acknowledge the partial support of
the EU ICT COST Action IC1402 on Runtime Verification beyond Monitoring (ARVI)
and of the HARMONIA (845631) project, funded by a national Austrian grant from
Austrian FFG under the program IKT der Zukunft. E. Bartocci acknowledges the
partial support of the Austrian National Research Network S 11405-N23 (RiSE/SHiNE)
of the Austrian Science Fund (FWF). G. Fainekos acknowledges the support of the NSF
CAREER award 1350420.

References

1. Abbas, H., Fainekos, G.: Computing descent direction of MTL robustness for
non-linear systems. In: Proceedings of ACC 2013: The 2013 American Control
Conference, pp. 4405–4410 (2013)

2. Abbas, H., Fainekos, G.E., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Proba-
bilistic temporal logic falsification of cyber-physical systems. ACM Trans. Embed.
Comput. Syst. 12(s2), 95:1–95:30 (2013)

Specification-Based Monitoring of Cyber-Physical Systems 167

3. Abbas, H., Hoxha, B., Fainekos, G., Ueda, K.: Robustness-guided temporal logic
testing and verification for stochastic cyber-physical systems. In: Proceedings of
the 4th Annual IEEE International Conference on Cyber Technology in Automa-
tion, Control and Intelligent, pp. 1–6. IEEE (2014)

4. Abbas, H., Mittelmann, H., Fainekos, G.E.: Formal property verification in a
conformance testing framework. In: Proceedings of MEMOCODE 2014: The 12th
ACM-IEEE International Conference on Formal Methods and Models for System
Design, pp. 155–164. IEEE (2014)

5. Abbas, H., Rodionova, A., Bartocci, E., Smolka, S.A., Grosu, R.: Quantitative
regular expressions for Arrhythmia detection algorithms. In: Feret, J., Koeppl, H.
(eds.) CMSB 2017. LNCS, vol. 10545, pp. 23–39. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-67471-1 2

6. Abbas, H., Winn, A., Fainekos, G.E., Julius, A.A.: Functional gradient descent
method for metric temporal logic specifications. In: Proceedings of ACC 2014:
The American Control Conference, pp. 2312–2317. IEEE (2014)

7. Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system
falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207,
pp. 356–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-
3 21

8. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996)

9. Annapureddy, Y.S.R., Fainekos, G.E.: Ant colonies for temporal logic falsification
of hybrid systems. In: Proceedings of IECON 2010: The 36th Annual Conference
on IEEE Industrial Electronics Society, pp. 91–96 (2010)

10. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino,
K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19835-9 21

11. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–
206 (2002)

12. Aydin-Gol, E., Bartocci, E., Belta, C.: A formal methods approach to pattern
synthesis in reaction diffusion systems. In: Proceedings of CDC 2014: The 53rd
IEEE Conference on Decision and Control, pp. 108–113. IEEE (2014)

13. Bartocci, E., Aydin-Gol, E., Haghighi, I., Belta, C.: A formal methods approach
to pattern recognition and synthesis in reaction diffusion networks. IEEE Trans.
Control Netw. Syst. PP(99), 1–12 (2016)

14. Bartocci, E., Bonakdarpour, B., Falcone, Y.: First international competition on
software for runtime verification. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 1–9. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11164-3 1

15. Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L.: Monitoring mobile and spatially
distributed cyber-physical systems. In: Proceedings of MEMOCODE 2017: The
15th ACM-IEEE International Conference on Formal Methods and Models for
System Design, pp. 146–155. ACM (2017)

16. Bartocci, E., Bortolussi, L., Milios, D., Nenzi, L., Sanguinetti, G.: Studying emer-
gent behaviours in morphogenesis using signal spatio-temporal logic. In: Abate,
A., Šafránek, D. (eds.) HSB 2015. LNCS, vol. 9271, pp. 156–172. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-26916-0 9

https://doi.org/10.1007/978-3-319-67471-1_2
https://doi.org/10.1007/978-3-319-67471-1_2
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-319-11164-3_1
https://doi.org/10.1007/978-3-319-11164-3_1
https://doi.org/10.1007/978-3-319-26916-0_9

168 E. Bartocci et al.

17. Bartocci, E., Bortolussi, L., Nenzi, L.: A temporal logic approach to modular
design of synthetic biological circuits. In: Gupta, A., Henzinger, T.A. (eds.) CMSB
2013. LNCS, vol. 8130, pp. 164–177. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40708-6 13

18. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic
models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25
(2015)

19. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of
temporal logic properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS,
vol. 8711, pp. 23–37. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10512-3 3

20. Bartocci, E., Corradini, F., Berardini, M.R.D., Entcheva, E., Smolka, S.A., Grosu,
R.: Modeling and simulation of cardiac tissue using hybrid I/O automata. Theor.
Comput. Sci. 410(33–34), 3149–3165 (2009)

21. Bartocci, E., Corradini, F., Merelli, E., Tesei, L.: Model checking biological oscil-
lators. Electr. Notes Theor. Comput. Sci. 229(1), 41–58 (2009)

22. Bartocci, E., Corradini, F., Merelli, E., Tesei, L.: Detecting synchronisation of
biological oscillators by model checking. Theor. Comput. Sci. 411(20), 1999–2018
(2010)

23. Bartocci, E., Falcone, Y., Bonakdarpour, B., Colombo, C., Decker, N., Havelund,
K., Joshi, Y., Klaedtke, F., Milewicz, R., Reger, G., Rosu, G., Signoles, J., Thoma,
D., Zalinescu, E., Zhang, Y.: First international competition on runtime verifica-
tion: rules, benchmarks, tools, and final results of CRV 2014. Int. J. Softw. Tools
Technol. Transf., 1–40, April 2017

24. Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S.A., Stoller, S.D., Zadok, E.,
Seyster, J.: Adaptive runtime verification. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 168–182. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35632-2 18

25. Bartocci, E., Liò, P.: Computational modeling, formal analysis, and tools for
systems biology. PLoS Comput. Biol. 12(1), 1–22 (2016)

26. Basin, D., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable
offline monitoring. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS,
vol. 8734, pp. 31–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11164-3 4

27. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: MONPOLY: monitoring usage-
control policies. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
360–364. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-
8 27

28. Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order moni-
toring. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-1 4

29. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272.
Springer, Heidelberg (2006). https://doi.org/10.1007/11944836 25

30. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Logic Comput. 20(3), 651–674 (2010)

31. Bortolussi, L., Milios, D., Sanguinetti, G.: U-check: model checking and parameter
synthesis under uncertainty. In: Campos, J., Haverkort, B.R. (eds.) QEST 2015.
LNCS, vol. 9259, pp. 89–104. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22264-6 6

https://doi.org/10.1007/978-3-642-40708-6_13
https://doi.org/10.1007/978-3-642-40708-6_13
https://doi.org/10.1007/978-3-319-10512-3_3
https://doi.org/10.1007/978-3-319-10512-3_3
https://doi.org/10.1007/978-3-642-35632-2_18
https://doi.org/10.1007/978-3-642-35632-2_18
https://doi.org/10.1007/978-3-319-11164-3_4
https://doi.org/10.1007/978-3-319-11164-3_4
https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1007/978-3-642-40787-1_4
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/978-3-319-22264-6_6
https://doi.org/10.1007/978-3-319-22264-6_6

Specification-Based Monitoring of Cyber-Physical Systems 169

32. Brim, L., Dluhos, P., Safránek, D., Vejpustek, T.: STL∗: Extending signal tem-
poral logic with signal-value freezing operator. Inf. Comput. 236, 52–67 (2014)

33. Brim, L., Vejpustek, T., Safránek, D., Fabriková, J.: Robustness analysis for value-
freezing signal temporal logic. In: Proceedings of HSB 2013: The Second Inter-
national Workshop on Hybrid Systems and Biology. EPTCS, vol. 125, pp. 20–36
(2013)

34. Bufo, S., Bartocci, E., Sanguinetti, G., Borelli, M., Lucangelo, U., Bortolussi, L.:
Temporal logic based monitoring of assisted ventilation in intensive care patients.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 391–403.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8 30

35. Cameron, F., Wilson, D.M., Buckingham, B.A., Arzumanyan, H., Clinton, P.,
Chase, H.P., Lum, J., Maahs, D.M., Calhoun, P.M., Bequette, B.W.: Inpatient
studies of a Kalman-filter-based predictive pump shutoff algorithm. J. Diabetes
Sci. Technol. 6(5), 1142–1147 (2012)

36. Cameron, F., Fainekos, G., Maahs, D.M., Sankaranarayanan, S.: Towards a ver-
ified artificial pancreas: challenges and solutions for runtime verification. In:
Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 3–17. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23820-3 1

37. Chakarov, A., Sankaranarayanan, S., Fainekos, G.: Combining time and frequency
domain specifications for periodic signals. In: Khurshid, S., Sen, K. (eds.) RV 2011.
LNCS, vol. 7186, pp. 294–309. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29860-8 22

38. Cobelli, C., Man, C.D., Sparacino, G., Magni, L., Nicolao, G.D., Kovatchev,
B.P.: Diabetes: Models, signals and control (methodological review). IEEE Rev.
Biomed. Eng. 2, 54–95 (2009)

39. D’Angelo, B., Sankaranarayanan, S., Sanchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous
systems. In: Proceedings of TIME 2005: The 12th International Symposium on
Temporal Representation and Reasoning, pp. 166–174. IEEE (2005)

40. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. In: Bartocci, E., Majumdar, R. (eds.)
RV 2015. LNCS, vol. 9333, pp. 55–70. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-23820-3 4

41. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Garvit, J., Seshia, S.A.: Robust
online monitoring of signal temporal logic. Formal Methods Syst. Des. 51(1), 5–30
(2017)

42. Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using the
Skorokhod metric. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9207, pp. 234–250. Springer, Cham (2015). https://doi.org/10.1007/978-3-
319-21668-3 14

43. Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic
robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734,
pp. 231–246. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-
3 19

44. Dokhanchi, A., Hoxha, B., Fainekos, G.E.: Metric interval temporal logic spec-
ification elicitation and debugging. In: Proceedings of MEMOCODE 2015: The
13th ACM/IEEE International Conference on Formal Methods and Models for
Codesign, pp. 70–79. IEEE (2015)

https://doi.org/10.1007/978-3-662-45231-8_30
https://doi.org/10.1007/978-3-319-23820-3_1
https://doi.org/10.1007/978-3-642-29860-8_22
https://doi.org/10.1007/978-3-642-29860-8_22
https://doi.org/10.1007/978-3-319-23820-3_4
https://doi.org/10.1007/978-3-319-23820-3_4
https://doi.org/10.1007/978-3-319-21668-3_14
https://doi.org/10.1007/978-3-319-21668-3_14
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-319-11164-3_19

170 E. Bartocci et al.

45. Dokhanchi, A., Zutshi, A., Sriniva, R.T., Sankaranarayanan, S., Fainekos, G.:
Requirements driven falsification with coverage metrics. In: Proceedings of
EMSOFT: The 12th International Conference on Embedded Software, pp. 31–
40. IEEE (2015)

46. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol.
6174, pp. 167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14295-6 17

47. Donzé, A., Clermont, G., Legay, A., Langmead, C.J.: Parameter synthesis in
nonlinear dynamical systems: application to systems biology. In: Batzoglou, S.
(ed.) RECOMB 2009. LNCS, vol. 5541, pp. 155–169. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02008-7 11

48. Donzé, A., Fanchon, E., Gattepaille, L.M., Maler, O., Tracqui, P.: Robustness
analysis and behavior discrimination in enzymatic reaction networks. PLoS ONE
6(9), e24246 (2011)

49. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 19

50. Donzé, A., Krogh, B., Rajhans, A.: Parameter synthesis for hybrid systems with
an application to simulink models. In: Majumdar, R., Tabuada, P. (eds.) HSCC
2009. LNCS, vol. 5469, pp. 165–179. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00602-9 12

51. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued sig-
nals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol.
6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15297-9 9

52. Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka, S.: On tem-
poral logic and signal processing. In: Chakraborty, S., Mukund, M. (eds.) ATVA
2012. LNCS, pp. 92–106. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33386-6 9

53. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Effi-
cient guiding strategies for testing of temporal properties of hybrid systems. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp.
127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9 10

54. Drusinsky, D.: Monitoring temporal rules combined with time series. In: Hunt,
W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 114–117. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6 11

55. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, Heidelberg
(2006). https://doi.org/10.1007/978-0-387-36123-9

56. Eisner, C., Fisman, D., Havlicek, J.: A topological characterization of weakness.
In: Proceedings of PODC 2005: The 24th Annual ACM Symposium on Principles
of Distributed Computing, pp. 1–8. ACM (2005)

57. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout,
D.: Reasoning with temporal logic on truncated paths. In: Hunt, W.A., Somenzi,
F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45069-6 3

58. Fainekos, G.E., Giannakoglou, K.C.: Inverse design of airfoils based on a novel
formulation of the ant colony optimization method. Inverse Prob. Eng. 11(1),
21–38 (2003)

https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-02008-7_11
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-00602-9_12
https://doi.org/10.1007/978-3-642-00602-9_12
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-33386-6_9
https://doi.org/10.1007/978-3-642-33386-6_9
https://doi.org/10.1007/978-3-319-17524-9_10
https://doi.org/10.1007/978-3-540-45069-6_11
https://doi.org/10.1007/978-0-387-36123-9
https://doi.org/10.1007/978-3-540-45069-6_3

Specification-Based Monitoring of Cyber-Physical Systems 171

59. Fainekos, G.E., Girard, A., Pappas, G.J.: Temporal logic verification using sim-
ulation. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp.
171–186. Springer, Heidelberg (2006). https://doi.org/10.1007/11867340 13

60. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In:
Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV 2006. LNCS,
vol. 4262, pp. 178–192. Springer, Heidelberg (2006). https://doi.org/10.1007/
11940197 12

61. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)

62. Fainekos, G.E., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification of auto-
motive control applications using S-TaLiRo. In: Proceedings of ACC 2012: The
2012 American Control Conference, pp. 3567–3572. IEEE (2012)

63. Falcone, Y., Ničković, D., Reger, G., Thoma, D.: Second international competition
on runtime verification. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS,
vol. 9333, pp. 405–422. Springer, Cham (2015). https://doi.org/10.1007/978-3-
319-23820-3 27

64. Ferrère, T.: Assertions and measurements for mixed-signal simulation. Ph.D. the-
sis. Université Grenoble-Alpes, France (2016)

65. Ferrère, T., Maler, O., Ničković, D., Ulus, D.: Measuring with timed patterns. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 322–337.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3 19

66. Finkbeiner, B., Sipma, H.B.: Checking finite traces using alternating automata.
Formal Methods Syst. Des. 24(2), 101–127 (2004)

67. Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A.,
Bartocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrish-
nan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 31

68. Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci,
E.: Learning and detecting emergent behavior in networks of cardiac myocytes.
Commun. ACM 52(3), 97–105 (2009)

69. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: SpaTeL: a
novel spatial-temporal logic and its applications to networked systems. In: Pro-
ceedings of HSCC 2015: The 18th International Conference on Hybrid Systems:
Computation and Control, pp. 189–198. IEEE (2015)

70. Havelund, K., Rosu, G.: Monitoring Java programs with Java pathexplorer. Elec-
tron. Not. Theoret. Comput. Sci. 55(2), 200–217 (2001)

71. Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3 15

72. Hovorka, R.: Continuous glucose monitoring and closed-loop systems. Diabet.
Med. 23(1), 1–12 (2005)

73. Hoxha, B., Bach, H., Abbas, H., Dokhanci, A., Kobayashi, Y., Fainekos, G.:
Towards formal specification visualization for testing and monitoring of cyber-
physical systems. In: International Workshop on Design and Implementation of
Formal Tools and Systems, DIFTS 2014 (2014)

74. Hoxha, B., Dokhanchi, A., Fainekos, G.: Mining parametric temporal logic proper-
ties in model based design for cyber-physical systems. Int. J. Softw. Tools Technol.
Transf. (2017). (in press)

https://doi.org/10.1007/11867340_13
https://doi.org/10.1007/11940197_12
https://doi.org/10.1007/11940197_12
https://doi.org/10.1007/978-3-319-23820-3_27
https://doi.org/10.1007/978-3-319-23820-3_27
https://doi.org/10.1007/978-3-319-21668-3_19
https://doi.org/10.1007/978-3-642-22110-1_31
https://doi.org/10.1007/978-3-319-11164-3_15

172 E. Bartocci et al.

75. Hoxha, B., Mavridis, N., Fainekos, G.E.: VISPEC: a graphical tool for elicitation
of MTL requirements. In: Proceedings of IROS 2015: The 2015 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pp. 3486–3492. IEEE
(2015)

76. MathWorks, Inc.: Test generated code with SIL and PIL simulations,
cf. https://www.mathworks.com/help/ecoder/examples/software-and-processor-
in-the-loop-sil-and-pil-simulation.html

77. Jaksic, S., Bartocci, E., Grosu, R., Kloibhofer, R., Nguyen, T., Ničković, D.: From
signal temporal logic to FPGA monitors. In: Proceedings of MEMOCODE 2015:
The 13th ACM/IEEE International Conference on Formal Methods and Models
for Codesign, pp. 218–227. IEEE (2015)

78. Jakšić, S., Bartocci, E., Grosu, R., Ničković, D.: Quantitative monitoring of STL
with edit distance. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012,
pp. 201–218. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-
9 13

79. Jensen, J.C., Chang, D.H., Lee, E.A.: A model-based design methodology for
cyber-physical systems. In: Proceedings of IEEE Workshop on Design, Modeling,
and Evaluation of Cyber-Physical Systems (CyPhy), pp. 1666–1671. IEEE (2011)

80. Jiang, Z., Pajic, M., Alur, R., Mangharam, R.: Closed-loop verification of medi-
cal devices with model abstraction and refinement. Int. J. Softw. Tools Technol.
Transfer 16(2), 191–213 (2014)

81. Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and veri-
fication of a dual chamber implantable pacemaker. In: Flanagan, C., König, B.
(eds.) TACAS 2012. LNCS, vol. 7214, pp. 188–203. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28756-5 14

82. Juniwal, G., Donzé, A., Jensen, J.C., Seshia, S.A.: CPSGrader: synthesizing tem-
poral logic testers for auto-grading an embedded systems laboratory. In: Pro-
ceedings of EMSOFT 2014: The 2014 International Conference on Embedded
Software, pp. 24:1–24:10. IEEE (2014)

83. Kalajdzic, K., Bartocci, E., Smolka, S.A., Stoller, S.D., Grosu, R.: Runtime veri-
fication with particle filtering. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS,
vol. 8174, pp. 149–166. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40787-1 9

84. Kane, A.: Runtime monitoring for safety-critical embedded systems. Ph.D. thesis,
Carnegie Mellon University, College of Engineering (2015)

85. Kapinski, J., Jin, X., Deshmukh, J., Donzé, A., Yamaguchi, T., Ito, H., Kaga,
T., Kobuna, S., Seshia, S.: ST-Lib: a library for specifying and classifying model
behaviors. In: SAE Technical Paper. SAE International (2016)

86. Kowalski, A.: Pathway to artificial pancreas revisited: moving downstream. Dia-
betes Care 38, 1036–1043 (2015)

87. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

88. Lee, E.A.: Cyber physical systems: design challenges. In: Proceedings of ISORC
2011: The 11th IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing, pp. 363–369, May 2008

89. Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assurance
based on formal specifications. In: Proceedings of PDPTA 1999: The International
Conference on Parallel and Distributed Processing Techniques and Applications,
pp. 279–287. CSREA Press (1999)

90. Lemire, D.: Streaming maximum-minimum filter using no more than three com-
parisons per element. Nord. J. Comput. 13(4), 328–339 (2006)

https://www.mathworks.com/help/ecoder/examples/software-and-processor-in-the-loop-sil-and-pil-simulation.html
https://www.mathworks.com/help/ecoder/examples/software-and-processor-in-the-loop-sil-and-pil-simulation.html
https://doi.org/10.1007/978-3-319-46982-9_13
https://doi.org/10.1007/978-3-319-46982-9_13
https://doi.org/10.1007/978-3-642-28756-5_14
https://doi.org/10.1007/978-3-642-40787-1_9
https://doi.org/10.1007/978-3-642-40787-1_9

Specification-Based Monitoring of Cyber-Physical Systems 173

91. Luo, Q., Zhang, Y., Lee, C., Jin, D., Meredith, P.O.N., Şerbănuţă, T.F., Roşu,
G.: RV-Monitor: efficient parametric runtime verification with simultaneous prop-
erties. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp.
285–300. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3 24

92. Maahs, D.M., Calhoun, P., Buckingham, B.A., et al.: A randomized trial of a home
system to reduce nocturnal hypoglycemia in type 1 diabetes. Diabetes Care 37(7),
1885–1891 (2014)

93. Majumdar, R., Prabhu, V.S.: Computing the Skorokhod distance between polyg-
onal traces. In: Proceedings of HSCC 2015: The 18th International Conference on
Hybrid Systems: Computation and Control, pp. 199–208. ACM (2015)

94. Majumdar, R., Prabhu, V.S.: Computing distances between reach flowpipes. In:
Proceedings of HSCC 2016: The 19th International Conference on Hybrid Sys-
tems: Computation and Control, pp. 267–276. ACM (2016)

95. Maler, O.: Some thoughts on runtime verification. In: Falcone, Y., Sánchez, C.
(eds.) RV 2016. LNCS, vol. 10012, pp. 3–14. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46982-9 1

96. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

97. Maler, O., Ničković, D.: Monitoring properties of analog and mixed-signal circuits.
STTT 15(3), 247–268 (2013)

98. Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete,
timed and continuous behaviors. In: Avron, A., Dershowitz, N., Rabinovich,
A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 475–505. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78127-1 26

99. Man, C.D., Raimondo, D.M., Rizza, R.A., Cobelli, C.: GIM, simulation software
of meal glucose-insulin model. J. Diabetes Sci. Tech. 1(3), 323–330 (2007)

100. Mobilia, N., Donzé, A., Marc Moulis, J., Fanchon, E.: Producing a set of mod-
els for the iron homeostasis network. In: Proceedings of HSB 2013: The Second
International Workshop on Hybrid Systems and Biology. EPTCS, vol. 125, pp.
92–98 (2013)

101. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J.
7, 308–313 (1965)

102. Nenzi, L., Bortolussi, L., Ciancia,V., Loreti,M.,Massink,M.:Qualitative andquan-
titative monitoring of spatio-temporal properties. In: Bartocci, E., Majumdar, R.
(eds.) RV 2015. LNCS, vol. 9333, pp. 21–37. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-23820-3 2

103. Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivancic, F., Gupta, A., Pappas,
G.J.: Monte-carlo techniques for falsification of temporal properties of non-linear
hybrid systems. In: Proceedings of HSCC 2010: The 13th ACM International
Conference on Hybrid Systems: Computation and Control, pp. 211–220. ACM
(2010)

104. Nguyen, L., Kapinski, J., Jin, X., Deshmukh, J., Butts, K., Johnson, T.: Abnormal
data classification using time-frequency temporal logic. In: Proceedings of HSCC
2017: The 20th ACM International Conference on Hybrid Systems: Computation
and Control, pp. 237–242. ACM (2017)

105. Nguyen, T., Bartocci, E., Ničković, D., Grosu, R., Jaksic, S., Selyunin, K.: The
HARMONIA project: hardware monitoring for automotive systems-of-systems.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 371–379.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3 28

https://doi.org/10.1007/978-3-319-11164-3_24
https://doi.org/10.1007/978-3-319-46982-9_1
https://doi.org/10.1007/978-3-319-46982-9_1
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-78127-1_26
https://doi.org/10.1007/978-3-319-23820-3_2
https://doi.org/10.1007/978-3-319-23820-3_2
https://doi.org/10.1007/978-3-319-47169-3_28

174 E. Bartocci et al.

106. Nguyen, T., Ničković, D.: Assertion-based monitoring in practice – checking cor-
rectness of an automotive sensor interface. In: Lang, F., Flammini, F. (eds.)
FMICS 2014. LNCS, vol. 8718, pp. 16–32. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10702-8 2

107. Nickovic, D.: Checking timed and hybrid properties: theory and applications.
Ph.D. thesis. Université Joseph Fourier, Grenoble, France (2008)

108. Nickovic, D., Maler, O.: AMT: a property-based monitoring tool for analog sys-
tems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol.
4763, pp. 304–319. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-75454-1 22

109. Pajic, M., Mangharam, R., Sokolsky, O., Arney, D., Goldman, J., Lee, I.: Model-
driven safety analysis of closed-loop medical systems. IEEE Trans. Ind. Inform.
10(1), 3–16 (2014)

110. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pp. 46–57. IEEE (1977)

111. Raman, V., Donzé, A., Sadigh, D., M. Murray, R., Seshia, S.A.: Reactive synthesis
from signal temporal logic specifications. In: Proceedings of the HSCC 2015: The
18th International Conference on Hybrid Systems: Computation and Control, pp.
239–248. ACM (2015)

112. Reger, G., Hallé, S., Falcone, Y.: Third international competition on runtime
verification. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp.
21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9 3

113. Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of satisfac-
tion of temporal logic formulae with applications to systems biology. In: Heiner,
M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNAI), vol. 5307, pp. 251–268.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88562-7 19

114. Rodionova, A., Bartocci, E., Ničković, D., Grosu, R.: Temporal logic as filtering.
In: Proceedings of HSCC 2016: The 19th International Conference on Hybrid
Systems: Computation and Control, pp. 11–20. ACM (2016)

115. Sankaranarayanan, S., Fainekos, G.: Falsification of temporal properties of hybrid
systems using the cross-entropy method. In: Proceedings of HSCC 2012: The 15th
ACM International Conference on Hybrid Systems: Computation and Control, pp.
125–134. ACM (2012)

116. Sankaranarayanan, S., Kumar, S.A., Cameron, F., Bequette, B.W., Fainekos,
G.E., Maahs, D.M.: Model-based falsification of an artificial pancreas control
system. SIGBED Rev. 14(2), 24–33 (2017)

117. Sankaranarayanan, S., Miller, C., Raghunathan, R., Ravanbakhsh, H., Fainekos,
G.E.: A model-based approach to synthesizing insulin infusion pump usage param-
eters for diabetic patients. In: Proceedings of the 50th Annual Allerton Conference
on Communication, Control, and Computing, pp. 1610–1617. IEEE (2012)

118. Selyunin, K., Jaksic, S., Nguyen, T., Reidl, C., Hafner, U., Bartocci, E., Nickovic,
D., Grosu, R.: Runtime monitoring with recovery of the SENT communication
protocol. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
336–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 17

119. Selyunin, K., Nguyen, T., Bartocci, E., Grosu, R.: Applying runtime monitoring
for automotive electronic development. In: Falcone, Y., Sánchez, C. (eds.) RV
2016. LNCS, vol. 10012, pp. 462–469. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46982-9 30

120. Short, M., Pont, M.J.: Hardware in the loop simulation of embedded automotive
control system. In: Proceedings of 2005 IEEE Intelligent Transportation Systems,
pp. 426–431. IEEE, September 2005

https://doi.org/10.1007/978-3-319-10702-8_2
https://doi.org/10.1007/978-3-319-10702-8_2
https://doi.org/10.1007/978-3-540-75454-1_22
https://doi.org/10.1007/978-3-540-75454-1_22
https://doi.org/10.1007/978-3-319-46982-9_3
https://doi.org/10.1007/978-3-540-88562-7_19
https://doi.org/10.1007/978-3-319-63387-9_17
https://doi.org/10.1007/978-3-319-46982-9_30
https://doi.org/10.1007/978-3-319-46982-9_30

Specification-Based Monitoring of Cyber-Physical Systems 175

121. Steil, G.M.: Algorithms for a closed-loop artificial pancreas: the case for
proportional-integral-derivative control. J. Diabetes Sci. Technol. 7, 1621–1631
(2013)

122. Steil, G., Panteleon, A., Rebrin, K.: Closed-sloop insulin delivery - the path to
physiological glucose control. Adv. Drug Deliv. Rev. 56(2), 125–144 (2004)

123. Stoma, S., Donzé, A., Bertaux, F., Maler, O., Batt, G.: STL-based analysis of
TRAIL-induced apoptosis challenges the notion of type I/type II cell line classi-
fication. PLoS Comput. Biol. 9(5), e1003056 (2013)

124. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay,
A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10512-3 16

125. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Online timed pattern matching
using derivatives. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 736–751. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49674-9 47

126. Vijayaraghavan, S., Ramanathan, M.: A Practical Guide for SystemVerilog Asser-
tions. Springer, New York (2006). https://doi.org/10.1007/b137011

127. Watterson, C., Heffernan, D.: Runtime verification and monitoring of embedded
systems. IET Softw. 1(5), 172–179 (2007)

128. Weinzimer, S., Steil, G., Swan, K., Dziura, J., Kurtz, N., Tamborlane, W.: Fully
automated closed-loop insulin delivery versus semiautomated hybrid control in
pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care
31, 934–939 (2008)

129. Xiaoqing, J., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from
closed-loop control models. In: Proceedings of HSCC 2013: The ACM Interna-
tional Conference on Hybrid Systems: Computation and Control, pp. 43–52. ACM
(2013)

130. Yaghoubi, S., Fainekos, G.: Hybrid approximate gradient and stochastic descent
for falsification of nonlinear systems. In: Proceedings of ACC 2017: The 2017
American Control Conference, pp. 529–534. IEEE (2017)

131. Yamaguchi, T., Kaga, T., Donzé, A., Seshia, S.A.: Combining requirement mining,
software model checking, and simulation-based verification for industrial automo-
tive systems. In: Proceedings of FMCAD 2016: The 16th International Conference
on Formal Methods in Computer-Aided Design, pp. 201–204 (2016)

132. Yang, H., Hoxha, B., Fainekos, G.: Querying parametric temporal logic properties
on embedded systems. In: Nielsen, B., Weise, C. (eds.) ICTSS 2012. LNCS, vol.
7641, pp. 136–151. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34691-0 11

https://doi.org/10.1007/978-3-319-10512-3_16
https://doi.org/10.1007/978-3-662-49674-9_47
https://doi.org/10.1007/978-3-662-49674-9_47
https://doi.org/10.1007/b137011
https://doi.org/10.1007/978-3-642-34691-0_11
https://doi.org/10.1007/978-3-642-34691-0_11

	Specification-Based Monitoring of Cyber-Physical Systems: A Survey on Theory, Tools and Applications
	1 Introduction
	2 Specification Languages
	2.1 Signal Temporal Logic
	2.2 Signal Temporal Logic with Quantitative Semantics

	3 Monitoring Algorithms
	3.1 Offline Monitoring
	3.2 Online Monitoring

	4 Extensions
	4.1 Monitoring Complex Oscillatory Properties
	4.2 Monitoring Spatio-Temporal Behaviours
	4.3 Matching and Measuring Temporal Patterns over CPS Behaviours

	5 Applications to Cyber-Physical Systems (CPS)
	5.1 Practical Considerations for CPS Monitoring
	5.2 Property Falsification and Parameter Synthesis

	6 Tools
	6.1 Software Tools for Boolean Semantics
	6.2 Software Tools for Quantitative Semantics

	7 Conclusion
	References

