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Abstract—We develop a stochastic local search algorithm for
finding Pareto points for multi-criteria optimization problems.
The algorithm alternates between different single-criterium op-
timization problems characterized by weight vectors. The policy
for switching between different weights is an adaptation of the
universal restart strategy defined by [LSZ93] in the context
of Las Vegas algorithms. We demonstrate the effectiveness of
our algorithm on multi-criteria quadratic assignment problem
benchmarks and prove some of its theoretical properties.

I. INTRODUCTION

The design of complex systems involves numerous op-
timization problems, where design choices are encoded as
valuations of decision variables and the relative merits of
each choice are expressed via a utility/cost function over these
variables. In many real-life situations one has to deal with cost
functions which are multi-dimensional. For example, a cellular
phone that we want to purchase or develop can be evaluated
according to its cost, screen size, power consumption and
performance. A configuration s which dominates s’ according
to one criterium, can be worse according to another. In the
absence of a linear ordering of the alternatives, there is no
unique optimal solution but rather a set of efficient solutions,
also known as Pareto solutions [Par12]. Such solutions are
characterized by the property that their cost cannot be im-
proved in one dimension without being worsened in another.
The set of all Pareto solutions, the Pareto front, represents
the problem trade-offs, and being able to sample this set in a
representative manner is a very useful aid in decision making.

In this paper we study the adaptation of stochastic lo-
cal search (SLS) algorithms, used extensively in (single-
objective) optimization and constraint satisfaction problems, to
the multi-objective setting. SLS algorithms perform a guided
probabilistic exploration of the decision space where at each
time instance, a successor is selected among the neighbors
of a given point, with higher probability for locally-optimal
points. SLS algorithms can be occasionally restarted, where
restart means abandoning the current point and starting from
scratch. It has been observed (and proved) [LSZ93] that in
the absence of a priori knowledge about the cost landscape,
scheduling such restarts according to a specific pattern boosts
the performance of such algorithm in terms of expected time
to find a solution. This has led to successful algorithms for
several problems, including SAT [PDO07].

One popular approach for handling multi-objective prob-
lems is based on optimizing a one-dimensional cost function
defined as a weighted sum of the individual costs according to
a weight vector \. Repeating the process with different values
of X leads to a good approximation of the Pareto front. Our
major contribution is an algorithmic scheme for distributing
the optimization effort among different values of A. To this end
we adapt the ideas of [LSZ93] to the multi-objective setting
and obtain an algorithm which is very efficient in practice.

The rest of this paper is organized as follows. In Section II
we introduce an abstract view of randomized optimizers
and recall the problematics of multi-criteria optimization.
Section III discusses the role of restarts in randomized op-
timization. Section IV presents our algorithm and proves
its properties. Section V provides experimental results and
Section VI concludes.

II. BACKGROUND
A. SLS Optimization

Randomization has long been a useful tool in optimization.
In this paper, we are concerned with optimization over finite
domain functions by means of stochastic local search (SLS)
[HSO04], in the style of such tools as WalkSAT [SKC96], UBC-
SAT [THO4] or LKH [Hel09]. Here we provide a simplified
overview in which we consider only a minimal characteriza-
tion of SLS necessary for the paper as a whole.

We assume a finite set X called the decision space whose
elements are called points. We assume some metric p on X
which in a combinatorial setting corresponds to a kind of
Hamming distance where p(s, s") characterizes the number of
modifications needed to transform s to s’. The neighborhood
of s is the set N'(s) = {s’ : p(s,s’) = 1}. A cost (objective)
function f : X — R is defined over X and is the subject of
the optimization effort. We call the range of f the cost space
and say that a cost o is feasible if there is s € X such that
f(s) = o. A random walk is a process which explores X
starting from an initial randomly-chosen point s by repeatedly
stepping from s to a neighboring point s’, computing f(s’) and
storing the best point visited so far. In each step, the next point
s’ is selected according to some probability distribution D
over X which we assume to be specific to point s. Typically,
D, gives non-zero probability to a small portion of X included

in MV (s).



While the particular probability distributions vary a great
deal such processes, including [SKC96], [THO4], [Hel09], also
share many properties. Some such properties are crucial to the
performance of SLS optimization algorithms. For example,
all processes we are aware of favor local optima in the
probability distributions from which next states are selected.
The efficiency of such processes depends on structural features
of the the decision space such as the size of a typical
neighborhood and the maximal distance between any pair of
points, as well as on the cost landscape. In particular, cost
landscapes admitting vast quantities of local optima and very
few global optima and where the distances between local and
global optima are high, tend to be difficult for random walk
algorithms [HS04, Ch. 5].

Of particular interest to this paper, a simple and com-
mon practice exploited by SLS based optimization tools is
restarting. In our simplified model of random walk processes,
a restart simply chooses a next state as a sample from a
constant initial probability distribution rather than the next-
state probability distribution. Typically the process may start
over from a randomly generated solution or from a constant
one which has been computed off-line. Restarting can be an
effective means for combating problematics associated with
the cost landscape. It is particularly efficient in avoiding
stagnation of the algorithm and escaping a region with local
optima. Most search methods feature a mechanism to thwart
this behavior, but this might be insufficient sometimes. For
instance a tabu search process may be trapped inside a long
cycle that it fails to detect. Another aspect in which restarts
may help is to limit the influence of the random number
generator. Random choices partly determine the quality of the
output and starting from scratch is a fast way to cancel bad
random decisions that were made earlier. As we will argue,
restarting can also be effectively exploited for multi-criteria
problems.

B. Multi-criteria Optimization

Multi-criteria optimization problems seek to optimize a
multi-valued objective f : X — R? which we can think
of as a vector of costs (f!,...,f¢). When d > 1 the cost
space is not linearly-ordered and there is typically no single
optimal point, but rather a set of efficient points known as
the Pareto front, consisting of non-dominated feasible costs.
We recall some basic vocabulary related to multi-objective
optimization. The reader is referred to [Ehr05], [Deb01] for a
general introduction to the topic.

Definition 1 (Domination): Let o and o' be points in the
cost space. We say that o dominates o', written o C o, if for
every i € [1..d], 0; < 0} and 0 # 0.

Definition 2 (Pareto Front): The Pareto front associated
with a multi-objective optimization problem is the set O*
consisting of all feasible costs which are not dominated by
other feasible costs.

A popular approach to tackle multi-objective optimization
problems is to reduce them to several single-objective ones.

Definition 3 (\-Aggregation): Let f = (f1,...,f?) be a
d-dimensional function and let A = (A!,..., \?) be a vector
such that

1) Vj€[l.d,N >0

2) Y0 M =1;and

d
The A-aggregation of f is the function f) = Z N i,
j=1

Intuitively, the components of A represent the relative impor-
tance (weight) one associates with each objective. A point
which is optimal with respect to f is also a Pareto point for
the original cost function. Conversely, when the Pareto front is
convex in the cost space, every Pareto solution corresponds to
an optimal point for some f*. At this point it is also important
to explain why we choose to optimize weighted sums of
the objectives while being aware of one major drawback of
this technique: the theoretical impossibility to reach Pareto
points on concave parts of the front. Actually negative results
[Ehr05] only state that some solutions are not optimal under
any combination of the objectives, but we may nevertheless
encounter them while making steps in the decision space. This
fact was also confirmed experimentally (see Section V-A),
as we found the whole non-convex Pareto front for small
instances where it is known.

C. Related Work

Stochastic local search methods are used extensively for
solving hard combinatorial optimization problems for which
exact methods do not scale [HS04]. Among the well known
techniques we find simulated annealing [KGV83], tabu search
[GMO6], ant colony optimization [CDM92] and evolutionary
algorithms [Mit98], [Deb01] each of which has been applied to
hard combinatorial optimization problems such as the traveling
salesman, scheduling or assignment problems.

Many state-of-the-art local search algorithms have their
multi-objective version [PS06]. For instance, there exists
multi-objective extensions of simulated annealing [CJ98],
[BSMDO0S8] and tabu search [GMF97]. A typical way of
treating several objectives in that context is to optimize a
predefined or dynamically updated series of linear combi-
nations of the cost functions. A possible option is to pick
a representative set of weight vectors a priori and run the
algorithm for each scalarization successively. This has been
done in [UTFT99] using simulated annealing as a backbone.
More sophisticated methods have also emerged where the runs
are made in parallel and the weight vector is adjusted during
the search [CJ98], [Han97] in order to improve the diversity
of the population. Weight vectors are thus modified such that
the different runs are guided towards distinct unexplored parts
of the cost space.

One of the main issues in using the weighted sum method is
therefore to share the time between different promising search
directions (weight vectors) appropriately. Generally determin-
istic strategies are used: weight vectors are predetermined, and
they may be modified dynamically according to a deterministic
heuristic. However, unless some knowledge on the cost space



has been previously acquired, one may only speculate on the
directions which are worth exploring. This is why we study
in this work a completely stochastic approach, starting from
the assumption that all search directions are equally likely
to improve the final result. The goal we seek is therefore to
come up with a scheme ensuring a fair time sharing between
different weight vectors.

Also related to this work are population-based genetic
algorithms which naturally handle several objectives as they
work on several individual solutions that are mutated and re-
combined. They are vastly used due to their wide applicability
and good performance and at the same time they also benefit
from combination with specialized local search algorithms.
Indeed some of the top performing algorithms for solving
combinatorial problems are hybrid, in the sense that they mix
evolutionary principles with local search. This led to the class
of so called memetic algorithms [KCOS]. It is common that
scalarizations of the objectives are used inside such algorithms
for guiding the search, and choosing a good scheme to adapt
weight vectors dynamically is also an interesting issue.

The work presented in this paper began while trying to
combine two ingredients used for solving combinatorial prob-
lems: the above mentioned scalarization of the objectives and
restarts. Restarts have been used extensively in stochastic local
search since they usually bring a significant improvement in
the results. For instance greedy randomized adaptive search
procedures (GRASP) [FR95] or iterated local search [LMS03]
are well-known methods which run successive local search
processes starting from different initial solutions. In [HS04,
Ch. 4] restarts in the context of single-criteria SLS are studied.
Their technique is based on an empirical evaluation of run-
time distributions for some classes of problems. In this work,
we devise multi-criteria restarting strategies which perform
reasonably well no matter what the problem or structure of the
cost space happens to be. The main novelty is a formalization
of the notion of a universal multi-criteria restart strategy: every
restart is coupled with a change in the direction and restarts are
scheduled to balance the effort across directions and run times.
This is achieved by adapting the ideas of [LSZ93], presented
in the next section, to the multi-objective setting.

III. RESTARTING SINGLE CRITERIA SLS OPTIMIZERS

This practice of restarting in SLS optimization has been
in use at least since [SKC96]. At the same time, there is
a theory of restarts formulated in [LSZ93] which applies to
Las Vegas algorithms which are defined for decision problems
rather than optimization. Such algorithms are characterized by
the fact that their run time until giving a correct answer to the
decision problem is a random variable. In the following we
recall the results of [LSZ93] and analyze their applicability to
optimization using SLS. We begin by defining properly what
a strategy for restarting is.

Definition 4 (Restart Strategy): A restart strategy S is an
infinite sequence of positive integers ¢1,%s,%s,.... The t time
prefix of a restart strategy S, denoted S[t] is the maximal
sequence t1, . ..,t, such that ©F_ ¢, <t.

Running a Las Vegas algorithm according to strategy S means
running it for ¢; units of time, restarting it and running it for
to units of time and so on.

A. The Luby Strategy

A strategy is called constantly repeating if it takes the
form c,c,c,c,... for some positive integer c. As shown in
[LSZ93] every Las Vegas algorithm admits an optimal restart
strategy which is constantly repeating (the case of infinite ¢
is interpreted as no restarting). However, this fact is not of
much use because typically one has no clue for finding the
right c. For these reasons, [LSZ93] introduced the idea of
universal strategies that “efficiently simulate” every constantly
repeating strategy. To get the intuition for this notion of
simulation and its efficiency consider first the periodic strategy
S = ¢d,c,c,c,c,... with ¢ < (. Since restarts are
considered independent, following this strategy for m(c + ¢’)
steps amounts to spending mc time according to the constant
strategy ¢ and mc’ time according to strategy ¢’.' Putting it
the other way round, we can say that in order to achieve
(expected) performance as good as running strategy ¢’ for ¢
time, it is sufficient to run S for time ¢+ ¢(t/c’). The function
f(t) = t4c(t/c) is the delay associated with the simulation of
¢’ by S.2 It is natural to assume that a strategy which simulates
numerous other strategies (i.e has sub-sequences that fit each
of the simulated strategies) admits some positive delay.

Definition 5 (Delay Function): A monotonic non decreas-
ing function 0 : N — N, satisfying §(z) > « is called a delay
function. We say that .S simulates S’ with delay bounded by
4 if running S’ for ¢ time is not better than running .S for §(¢)
time.

It turns out that a fairly simple strategy, which has become
known as the Luby strategy, is universally efficient.

Definition 6 (The Luby Strategy): The Luby Strategy is the
sequence

C1,C2,C3,. ..
where
_f 2kt ifi=2F—1
€= { tignany 261 << b1
which gives
1,1,2,1,1,2,4,1,1,2,1,1,2,4,8, ... (1)

We denote this strategy by L.

A key property of this strategy is that it naturally multiplexes
different constant strategies. For instance the prefix 1 contains
eight 1’s, four 2’s, two 4’s and one 8, and the total times
dedicated to strategies 1, 2, 4 and 8 are equal. More formally,
let A(c) denote the fact that a Las Vegas algorithm A is run
with constant restart c. Then, the sum of the execution times

'In fact, since running an SLS process for ¢’ is at least as good as running
it for ¢ time, running S for m(c + ¢’) is at least as good as running ¢ for
m(c+ c¢) time.

2For simplicity here we consider the definition of the delay only at time
instants t = kc’, k € N. In the case where ¢t = k¢’ +x, where z is an integer
such that 0 < z < ¢/, the delay function would be 6(t) = |t/c’|c+t.



spent on A(2?) is equal for all 1 < i < 27! over a 2¥ — 1
length prefix of the series. As a result, every constant restart
strategy where the constant is a power of 2 is given an equal
time budget. This can also be phrased in terms of delay.

Proposition 1 (Delay of L ): Strategy L simulates any
strategy ¢ = 2% with delay §(¢) < ¢(|logt| +1).

Sketch of proof: Consider a constant strategy ¢ = 2¢
and a time ¢t = ke, k € N. At the moment where the kt"
value of ¢ appears in £, the previous ones in the sequence are
all of the form 2’ for some i € {0..[log¢|}. This is because
the series is built such that time is doubled before any new
power of two is introduced. Furthermore after the execution
of the kt" ¢, every 2% constant with ¢ < a has been run for
exactly ¢ time, and every 2° constant with i > a (if it exists
in the prefix) has been executed less than ¢ time. This leads
to 6(t) < t(|logt] +1). |

This property implies that restarting according to £ incurs
a logarithmic delay over using the unknown optimal constant
restart strategy of a particular problem instance. Additionally
the strategy is optimal in the sense that it is not possible
to have better than logarithmic delay if we seek to design
a strategy simulating all constant restart strategies [LSZ93].
The next section investigates how these fundamental results
can be useful in the context of optimization using stochastic
local search.

B. SLS optimizers

An SLS optimizer is an algorithm whose run-time distribu-
tion for finding a particular cost o is a random-variable.

Definition 7 (Expected Time): Given an SLS process and a
cost o, the random variable ©, indicates the time until the
algorithm outputs a value at least as good as o.

There are some informal reasons suggesting that using
strategy £ in the context of optimization would boost the
performance. First, a straightforward extension of results of
Section III-A to SLS optimizers can be made.

Corollary 1: Restarting an SLS process according to strat-
egy L gives minimum expected run-time to reach any cost o
for which ©, is unknown.

The corollary follows directly because the program that runs
the SLS process and stops when the cost is at least as good as
o is a Las Vegas algorithm whose run-time distribution is ©,,.
In particular, using strategy £ in that context gives a minimal
expected time to reach the optimum o*. Still, finding the
optimum is too ambitious for many problems and in general
we would like to run the process for a fixed time ¢ and obtain
the best approximation possible within that time. A priori there
is no reason for which minimizing the expected time to reach
the optimum would also maximize the approximation quality
at a particular time t.

On the contrary, for each value of o we have more or
less chances to find a cost at least as good as o within time
t depending on the probability P(6, < t).> Knowing the

3Note that these probabilities are nondecreasing with o since the best cost
value encountered can only improve over time.

distributions one could decide which o is more likely to be
found before ¢ and invest more time for the associated optimal
constant restart strategies. But without that knowledge every
constant restart strategy might be useful for converging to
a good approximation of o*. Therefore whereas Las Vegas
algorithms run different constant restart strategies because it is
impossible to know the optimal c¢*, an SLS process runs them
because it does not know which approximation o is reachable
within a fixed time ¢, and every such o might be associated
with a different optimal constant restart strategy. This remark
further motivates the use of strategy £ for restarting an SLS
optimizer.

IV. MULTI-CRITERIA STRATEGIES

In this section we extend strategy £ to become a multi-
criteria strategy, that is, a restart strategy which specifies
what combinations of criteria to optimize and for how long.
We assume throughout a d-dimensional cost function f =
(f',..., f4) convertible into a one-dimensional function fy
associated with a weight vector A ranging over a bounded set
A of a total volume V.

Definition 8 (Multi-criteria Strategy): A multi-criteria sea-
rch strategy is an infinite sequence of pairs

S = (#(1), A1), (1(2), A(2)), - --

where for every i, t(i) is a positive integer and A(i) € A is a
weight vector.

The intended meaning of such a strategy is to run an SLS
process to optimize fy(1) for ¢(1) steps, then fy(9) for (2)
and so on. Following such a strategy and maintaining the set
of non-dominated solutions encountered along the way yields
an approximation of the Pareto front of f.

Had A been a finite set, one could easily adapt the notion
of simulation from the previous section and devise a strategy
which simulates with a reasonable delay any constant strategy
(\,¢) for any A € A. However since A is infinite we
need a notion of approximation. Looking at two optimization
processes, one for f) and one for f), where A and )\’ are close
to each other, we observe that the functions may not be very
different and the effort spent in optimizing f) is almost in the
same direction as optimizing fy/. This motivates the following
definition.

Definition 9 (e-Approximation): A strategy S e-approxi-
mates a strategy S’ if for every 4, ¢(i) = t'() and |A\(i) —
N(@)| <e.

From now on we are interested in finding a strategy which
simulates with good delay an e-approximation of any con-
stant strategy (A,c). To build such an e-universal strategy
we construct an e-net D, for A, that is, a minimal subset
of A such that for every A € A there is some p € D,
satisfying |\ — u| < €. In other words, D, consists of e-
representatives of all possible optimization directions. The
cardinality of D, depends on the metric used and we take it to
be* m. = V(1/€)?. Given D, we can create a strategy which

4Using other metrics the cardinality may be related to lower powers of 1/¢
but the dependence on € is at least linear.



is a cross product of £ with D, essentially interleaving m.
instances of L. Clearly, every A € A will have at least 1/m,
of the elements in the sequence populated with e-close values.

Definition 10 (Strategy Lp_): Let D be a finite subset of
A admitting m elements. Strategy Lp = (¢(1), A(1)),... is
defined for every ¢ as

1) )‘(Z) = )‘(2 mod m)

2) t(@) = L([51)

Proposition 2 (Lp, delay): Let D, be an e-net for A. Then
Lp, simulates an e-approximation of any constant strategy
(A, ¢) with delay 6(t) < tm(|logt] +1).

Proof: For any constant (), ¢) there is an e-close € D,
which repeats every m‘" time in £p_. Hence the delay of £p,
with respect to £ is at most m.¢ and combined with the delay
t(|logt| + 1) of £ wrt any constant strategy we obtain the
result. |
For a given ¢, Lp_ is optimal as the following result shows.

Proposition 3 (Lp, Optimality): Any strategy that e-
simulates every constant strategy has delay

o(t) > met/2(|logt|/2+ 1)

with respect to each of those strategies.

Proof Sketch:  Consider such a multi-criteria strategy
and ¢ steps spent in that strategy. Let S;; denote the multi-
criteria constant strategy (\;,27),(\;,27)... for all \; € D,
and j € {0,..., |logt|}. The minimum delay when simulating
all S; ; for a fixed ¢ is ¢t/2(|logt|/2 + 1) (see the technical
report [LCM11] for details). Because any two A;, A\, € D, do
not approximate each other, the delays for simulating constant
strategies associated with different directions just accumulate.
Hence 6(t) > m.t/2(|logt]/2 + 1). |

Despite these results, the algorithm has several drawbacks.
First, computing and storing elements of an e-net in high
dimension is not straightforward. Secondly, multi-dimensional
functions of different cost landscapes may require different
values of € in order to explore their Pareto fronts effectively
and such an e cannot be known in advance. In contrast, strategy
Lp needs a different D, for each € with D, growing as e
decreases. In fact, the only strategy that can be universal for
every e is a strategy where D is the set of all rational elements
of A. While such a strategy can be written, its delay is, of
course, unbounded.

For this reason, we propose a stochastic restart strategy
which, for any ¢, e-simulates all constant multi-criteria strate-
gies with a good expected delay. Our stochastic strategy L£”
is based on the fixed sequence of durations £ and on random
sequences of uniformly-drawn elements of A.

Definition 11 (Strategy L"):

o A stochastic multi-criteria strategy is a probability distri-

bution over multi-criteria strategies;

o Stochastic strategy L£" generates strategies of the form

(t(1), A(1)), (£(2), A(2)), - -

where ¢(1),t(2),...
formly from A.

is £ and each A(¢) is drawn uni-

Note that for any € and A the probability of an element in the
sequence to be e-close to A is 1/m.. Let us try to give the
intuition why for any € > 0 and constant strategy (X, c), £"
probabilistically behaves as Lp_ in the limit. Because each
A(%) is drawn uniformly, for any € > 0 the expected number
of times A(7) is e-close to A is the same for any A € A. So the
time is equally shared for e-simulating different directions.
Moreover the same time is spent on each constant ¢ as we
make use of the time sequence L. Consequently £” should e-
simulate fairly every strategy (A, ¢). We have not yet computed
the expected delay’ with which a given multi-criteria strategy
is simulated by L£". Nonetheless a weaker reciprocal result
directly follows: on a prefix of £” of length tm.(|logt] +
log me+1), the expected amount of time e-spent on any multi-
criteria constant strategy (A, ¢) is t.
Proposition 4 (L Expected Efficiency): for all € > 0, after
a time T = tm.(|logt| + logme + 1) in strategy L, the
random variable w) .(T) indicating the time spent on e-
simulating any constant strategy (A, ¢) verifies E[wy .(T)] = t.
Proof: In time T, L” executes tm. times any constant
¢ (proposition 1). On the other hand the expected fraction of
that time spent for a particular X is 1/m.. [ ]

V. EXPERIMENTS
A. Quadratic Assignment Problem

The quadratic assignment problem (QAP) is a hard un-
constrained combinatorial optimization problem with many
real-life applications related to the spatial layout of hospitals,
factories or electrical circuits. An instance of the problem
consists of n facilities whose mutual interaction is represented
by an n x n matrix F' with F}; characterizing the quantity
of material flow from facility ¢ to j. In addition there are
n locations with mutual distances represented by an n X n
matrix D. A solution is a bijection from facilities to locations
whose cost corresponds to the total amount of operational
work, which for every pair of facilities is the product of
their flow with the distance between their respective locations.
Viewing a solution as a permutation 7 on {1,...,n} the cost
is formalized as

n n

C(m) => > Fij* Duiiy n(s)-

i=1 j=1

The problem is NP-complete, and even approximating the
minimal cost within some constant factor is NP-hard [SG76].

1) QAP SLS Design: We implemented an SLS-based solver
for the QAP, as well as multi-criteria versions described in
the preceding section. The search space for the solver on a
problem of size n is the set of permutations of {1,..,n}. We
take the neighborhood of a solution 7 to be the set of solutions
7' that can be obtained by swapping two elements. This
kind of move is quite common when solving QAP problems
using local search. Our implementation also uses a standard
incremental algorithm [Tai91] for maintaining the costs of all

STt involves computing the expectation of the delay of £ applied to a random
variable with negative binomial distribution.



neighbors of the current point, which we briefly recall here.
Given an initial point, we compute (in cubic time) and store
the cost of all its neighbors. After swapping two elements
(i,4) of the permutation, we compute the effect of swapping
1 with j on all costs in the neighborhood. Since we have
stored the previous costs, adding the effect of a given swap
to the cost of another swap gives a new cost which is valid
under the new permutation. This incremental operation can be
performed in amortized constant time for each swap, and there
are quadratically many possible swaps, resulting in a quadratic
algorithm for finding an optimal neighbor.

Concerning the search method, we use a simple greedy
selection randomized by noise (Algorithm 1). This algorithm
is very simple but, as shown in the sequel, is quite competitive
in practice. The selection mechanism works as follows: with
probability 1 —p the algorithm makes an optimal step (ties be-
tween equivalent neighbors are broken at random), otherwise
it goes to a randomly selected neighbor. Probability p can be
set to adjust the noise during the search. Note that we have
concentrated our effort on the comparison of different adaptive
strategies for the weight vector rather than on the performance
comparison of Algorithm 1 with the other classical local search
methods (simulated annealing, tabu search).

Algorithm 1 Greedy Randomized Local Search
if rnd() > p then
optimal_move()
else

rnd_move()
end if

2) Experimental Results on the QAP library: The QAP
library [BKR97] is a standard set of benchmarks of one
dimensional quadratic assignment problems. Each problem in
the set comes with an optimal or best known value. We ran
Algorithm 1 (implemented in C) using various constant restart
strategies as well as strategy £ on each of the 134 instances of
the library.® Within a time bound of 500 seconds per instance
the algorithm finds the best known value for 93 out of 134
instances. On the remaining problems the average deviation
from the optimum was 0.8%. Also the convergence is fast
on small instances (n < 20) as most of them are brought to
optimality in less than 1 second of computation.

Figure 1 plots for each strategy the number of problems
brought to optimal or best-known values as a function of time.
For a time budget of 500 seconds, strategy £ was better than
any constant strategy we tried. This fact corroborates the idea
that strategy £ is universal, in the sense that multiplexing
several constant restart values makes it possible to solve
(slightly) more instances. This is however done with some
delay as observed in Figure 1 where strategy £ is outperformed
by big constant restarts (1024,10000,00) when the total time
budget is small.

5The machine used for the experiments has an Intel Xeon 3.2GHz processor.
Complete results of the simulations are not reported due to lack of space, but
may be found in the technical report [LCM11].
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Fig. 1. Results of different restart strategies on the 134 QAPLIB problems

with optimal or best known results available. Strategy £ solves more instances
than the constant restart strategies, supporting the idea that it is efficient in
the absence of inside knowledge.

B. Multi-objective QAP

The multi-objective QAP (mQAP), introduced in [KCO03]
admits multiple flow matrices Fi,..., Fy. Each pair (F;, D)
defines a cost function as presented in Section V-A, what
renders the problem multi-objective.

We have developed an extension of Algorithm 1 where
multiple costs are agglomerated with weighted sums and the
set of all non-dominated points encountered during the search
is stored in an appropriate structure.

In order to implement strategy L£” one also needs to
generate d-dimensional random weight vectors which are
uniformly distributed. Actually, generating random weight
vectors is equivalent to sampling uniformly random points
on a unit simplex, which is in turn equivalent to sampling
from a Dirichlet distribution where every parameter is equal
to one. The procedure for generating random weight vectors
is therefore the following: 1. Generate d IID random samples
(a1,...,aq) from a unit-exponential distribution, which is
done by sampling a; from (0,1] uniformly and returning
—log(a;). 2. Normalize the vector thus obtained by dividing
each coordinate by the sum Z?:o a;.

Multi-criteria strategies £” and Lp, have been tested and
compared on the benchmarks of the mQAP library, which
includes 2-dimensional problems of size n = 10 and n = 20,
and 3-dimensional problems of size n = 30 [KCO03]. The
library contains instances generated uniformly at random as
well as instances generated according to flow and distance
parameters which reflects the probability distributions found
in real situations. Pre-computed Pareto sets are provided for
all 10-facility instances. Note that our algorithm found over
99% of all Pareto points from all eight 10-facility problems
within a fotal computation time of under 1 second.
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Fig. 2. Performance of various constant multi-criteria strategies against £
on the 1rl and luni 20-facility problems. The metric used is the normalized
epsilon indicator, the reference set being the union of all solutions found. In
these experiments constant restarts values ¢ = 10,100, 1000 are combined
with randomly generated directions.

For the remaining problems where the actual Pareto set
is unknown, we resort to comparing performance against the
non-dominated union of solutions found with any configura-
tion. As a quality metric we use the epsilon indicator [ZKTO0S]
which is the largest increase in cost of a solution in the
reference set, when compared to its best approximation in the
set to evaluate. The errors are normalized with respect to the
difference between the maximal and minimal costs in each
dimension over all samples of restart strategies leading to a
number « € [0, 1] indicating the error with respect to the set
of all found solutions.’

Figures 2, 3 and 4 depict the results of the multi-criteria
experiments. We compared £ against constant restarts com-
bined with randomly chosen directions and strategy Lp, for
different values of e. Despite its theoretical properties Lp,
does not perform so good for the e values that we chose.
This corroborates the fact that it is hard to guess a good
€ value beforehand. Constant restarting works well but the
appropriate constant has to be carefully chosen. At the end
strategy L gives decidedly better performance amongst all

7In the future we also intend to use techniques which can formally validate
a bound on the quality of a Pareto set approximation [LGCM10] in order to
assess the efficiency of this algorithm.
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Fig. 3. Performance of £p_ multi-criteria strategies against £” on the 1rl
and luni 20-facility problems for ¢ = 0.1, 0.01, 0.001.

the strategies we tried. It is worth noting that we also tried
using the weighted infinity norm max; \; f* as a measure of
cost but, despite its theoretical superiority (any Pareto point
on a concave part of the front is optimal for some \), the
method did perform worse than the weighted sum approach
in our experiments.

VI. CONCLUSION

We have demonstrated how efficient universal strategies can
accelerate SLS-based optimization, at least in the absence
of knowledge of good restart constants. In the multi-criteria
setting our universal strategy is efficient, both theoretically and
experimentally and gives a thorough and balanced coverage
of the Pareto front. Having demonstrated the strength of our
algorithm on the QAP benchmarks, we are now working
on two extensions of this work. First, we are planning to
use strategy L£” with other efficient local search techniques,
starting with tabu search [Tai91]. Secondly we intend to move
on to problems associated with mapping and scheduling of
programs on multi-processor architectures and see how useful
this algorithmics can be for those problems.
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Fig. 4. Examples of approximations of the Pareto front for two 30-facility, 3-
flow QAP problems. KC30-3fl-2uni was generated uniformly at random while
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variance, set to reflect real problems. The approximations above are a result
of 1 minute of computation using £" as multi-criteria strategy.
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