
Many-Core Scheduling of Data Parallel
Applications using SMT Solvers
Pranav Tendulkar, Peter Poplavko, Ioannis Galanommatis, Oded Maler

Verimag, Université Grenoble Alpes,
Centre Équation - 2, avenue de Vignate, 38610 Gières, France

Email: {pranav.tendulkar, petro.poplavko, Ioannis.Galanommatis, Oded.Maler}@imag.fr

Abstract—To program recently developed many-core systems-
on-chip two traditionally separate performance optimization
problems have to be solved together. Firstly, it is the parallel
scheduling on a shared-memory multi-core system. Secondly, it
is the co-scheduling of network communication and processor
computation. This is because many-core systems are networks of
multi-core clusters. In this paper, we demonstrate the applicabil-
ity of modern constraint solvers to efficiently schedule parallel
applications on many-cores and validate the results by running
benchmarks on a real many-core platform.

Index Terms—task graph, scheduling, multiprocessor, DMA

I. INTRODUCTION

Optimal scheduling of application task graphs on multi-
processor platforms is a challenging task. Inherent complexity
of optimal parallel scheduling problem is well-known [1].
However, many-core platforms are not only parallel, but also
networked systems, where computation and communication
workload should be properly distributed, balanced, and sched-
uled jointly. In this work we aim to address efficient deploy-
ment of parallel applications in this context. We focus on
the signal processing applications like (I)DCT transformations,
image and video decoding etc., many of which can be repre-
sented as split-join graphs [2]. Split-join graphs are compact
representation of task graphs with data parallelism.

In many-core platforms, a considerable number of cores
is grouped together as clusters with local shared memory,
plugged into an on-chip network with DMA (Direct Memory
Access) transfers for networked communication between the
clusters. The application deployment should satisfy different
cost constraints like latency, maximum memory usage, max-
imum processor usage etc. It can be therefore considered a
multi-criteria optimization problem. We search the solutions
to such problems in the form of a Pareto set, representing the
trade-offs between the cost constraints. To evaluate different
cost trade-offs, we encode the cost feasibility problem as a set
of combined logical/algebraic constraints that can be presented
to SMT (SAT modulo theory) solvers.

Our approach to many-core scheduling is as follows. First,
we use techniques similar to [3] to distribute the application
tasks between the many-core clusters with balanced workload.
Then, we perform optimal parallel scheduling on all clusters
together, where the parallel intra-cluster computation tasks are
scheduled jointly with inter-cluster communication tasks – the
DMA transfers. The main topic of the paper is a detailed

A B C A Bi

B0

Bα−1

C
α 1/α

Fig. 1: A simple split-join graph and a task graph derived from
it. Actor B has α instances.

model of bounded-resource DMA communication and the cor-
responding method to let the SMT solver to jointly orchestrate
parallel computations and multi-channel DMA transfers. The
computed schedules for tasks and DMA transfers, are deployed
using a run-time to execute real applications on a many-core
platform with over 250 cores and 16 clusters.

The paper is organized as follows. In Sec. II we introduce
the basic notions of the split-join and task graph. In Sec. III
we introduce the many-core platform and the proposed inter-
task communication scheme for split-join-graphs. Next, in
Sec. IV we describe the design flow. In Sec. V we present
the methodology to model the communication with bounded
communication memory and network flow control. In the
following section we present a model that represents joint
scheduling of computation and communication (DMA) tasks.
Then we show how that model is presented to an SMT solver
in the form of constraints. Sec. VII presents the experiments
with a set of application benchmarks. Sec. VIII concludes the
paper and discusses the related and future work.

II. SPLIT-JOIN GRAPHS

Definition 1 (Split-Join and Task Graphs): A split-join
graph S is a tuple S = (V,E, d, α, ω) where (V,E) is a
directed acyclic graph (DAG), that is, a set V of actors, a
set E ⊆ V × V of edges with no cyclic paths. The function
d : V → R+ defines the node delay, α : E → Q+ assigns a
parallelization factor to every edge. An edge e can be either
a split, join or neutral, depending on whether α(e) = a, 1/a
or = 1 for some integer a > 1, which counts the tasks at data
split and join. ω(e) denotes the size of data tokens sent to
each spawned task in the case of split, or received from each
joined task in the case of join, or just sent and received if the
edge is neutral. A split-join graph with α(e) = 1 for every
e is called a task graph and is denoted by T = (U, E , δ, ω),
where the four elements in the tuple correspond to V , E, d,
and ω.

The split-join graph is a generalization of the task graph
by data parallelism, explicitly represented by parallelization
factors α. This is illustrated by the example in Fig. 1. A label
α on the edge from A to B means that every executed instance
of task A spawns α instances of task B. Likewise, a 1/α label
on the edge from B to C means that all those instances of B
should terminate and their outputs be joined before executing
C (see Fig. 1). A task graph can thus be viewed as derived
from the split-join graph by making data parallelism explicit.

We call the nodes of the split-join graphs actors and those
of the task graph tasks. The edges of a split-join graph e ∈ E
are called channels, and those in a task graph ε ∈ E are called
dependency arcs or just dependencies.

We use the graph-theoretic models not only to model the
tasks and dependencies of the application, but also those of the
implementation. For this purpose, it is convenient to generalize
the split-join graph model into a semantically richer model.

Definition 2 (Marked graph): The marked (split-join)
graph S can be defined as a split-join graph extended by
allowing cyclic paths and introducing an extra edge parameter
– the marking: m : E → N≥0. We assume that any split-join
graph is a marked graph with zero marking.

A. The Semantics of Split-join and Marked Graphs

In split-join graphs, the tasks (i.e., instances of an actor)
can execute in parallel unless there are dependencies between
them. In Fig. 1 actor A spawns α instances of actor B which
can execute in parallel. Still, for convenience, we explain the
functional behavior from sequential-execution point of view.

In sequential execution, a channel e = (v, v′) can be seen
as a FIFO (first-in-first-out) buffer. The task instances of each
actor v execute in a fixed order, which determines their index:
v0, v1, v2 etc.. The instances vq of the writer actor of channel
(v, v′) produce α↑(v, v′) tokens each in the FIFO channel; in
the derived task graph α↑ also corresponds to the number of
outgoing dependency arcs of vq . Similarly, α↓(v, v′) denotes
the number of tokens consumed and the number of incoming
arcs of the channel reader actor instances v′r. We have:

α↑(e) =

{
α(e) α(e) ≥ 1

1 α(e) < 1
; α↓(e) =

{
1 α(e) ≥ 1

α(e)−1 α(e) < 1

The tokens have size ω bytes, and the amount of data produced
by an instance of v and consumed by an instance of v′ is:

w↑(e) = α↑(e) · ω(e); w↓(e) = α↓(e) · ω(e)

Thus defined, the split-join graph can be viewed as a special
case of SDF (synchronous dataflow) graphs [4], which consist
of actors that write and read a fixed amount of data to
FIFO channels. An important property of an SDF graph is its
consistency [4], which requires that there must exist a positive
integer function c : V → N+ such that after executing c(v)
instances of all actors we have that at each channel the number
of tokens produced is equal to the number of tokens consumed.
The equations that express the consistency requirement are

known as balance equations:∧
(v,v′)∈E

α↑(v, v′) · c(v) = α↓(v, v′) · c(v′) (1)

Note that if Eq. (1) has a solution c(v) then k·c(v),∀k ∈ N+

is a solution as well. However, we consider only the minimal
positive integer solution and use the notation c(v) for it.
Executing each actor c(v) number of times is defined as SDF
graph iteration.

B. Derived Task Graph

The task graph derived from a split-join graph models one
graph iteration.1 For each actor v the task graph contains c(v)
tasks {v0, v1, . . . vc(v)−1}, i.e., the instances of actor v.

Let us define the edges of the derived task graph. For a
split-join channel (v, v′) with α(v, v′) = a/b let us consider
the sequence of a · c(v) tokens produced in the FIFO buffer
in one iteration. Let us number these tokens by index i in the
order they are produced by the instances of actor v : v0, v1,
. . . . Obviously, token i is produced by task vq where q =
bi/ac. In sequential execution the actor instances consume
tokens in the same order as they are produced (the FIFO order).
Therefore, the first b tokens will be consumed by task v′0, then
the next b tokens by v′1, etc. In general, token i is consumed
by task v′r where r = bi/bc. To model this producer-consumer
dependency, the task graph should contain edge (vq, v

′
r).

A non-zero marking m′ = m(v, v′) has the semantics of
initial availability of m′ tokens in the channel. Therefore, for
the case of a marked graph in the above example we have to
calculate r as r = b(i+m′)/bc.

Definition 3 (Derived Task Graph): From a consistent
marked split-join graph S = (V,E, d, α, ω,m) we derive the
task graph T = (U, E , δ, ω) as follows:

U = {vh | v ∈ V, 0 ≤ h < c(v)}

E = {(vh, v′h′) | (v, v′) ∈ E ∧ ε(v, v′, h, h′)}
where ε is a predicate defined by:

ε(v, v′, h, h′) : ∃ i ∈ N : h = bi/α↑(v, v′)c,
h′ = b(i+m(v, v′))/α↓(v, v′)c, vh, v′h ∈ U

We also define that:
∀(vh, v′h′) ∈ E ω(vh, v

′
h′) = ω(v, v′),

∀vh ∈ U δ(vh) = d(v)

We use derived task graphs to define the scheduling con-
straints in Sec. VI.

III. THE MANY-CORE PLATFORM

A. Many-core Hardware Architecture

Many-core processors can be seen as a hybrid of two
simpler on-chip multiprocessor types. Those are multi-cores
(shared-memory on-chip multiprocessors) and multiprocessor
networks-on-chip. In many-cores, multiple multi-core clusters
are networked on a chip. One of important usage scenarios is

1In SDF terminology, deriving a task graph is equivalent to deriving a
homogeneous SDF graph.

where a host CPU runs the usual software stack and general-
purpose tasks, whereas computationally expensive highly par-
allel kernels are forwarded to a many-core chip. MPPA [5] of
Kalray, P2012 [6] of ST Micro, and SCC of Intel [7] are a
few examples of many-core platforms.

In our experiments, we use Kalray MPPA. This platform
contains 256 symmetrical cores. The cores are grouped in 16
compute clusters of 16 cores each. The clusters are connected
by a network-on-chip (NoC) with a toroidal 2D topology.

Each cluster has 2MB of shared scratchpad memory. The
cores have caches to access this memory, however, in our cur-
rent work we disable them. A cluster also has a DMA control
unit with 8 DMA channels. They are used for explicit data
transfers to other clusters through the NoC. For efficiency, we
use asynchronous transfers, i.e., those that return the control
back to the compute core before the transfer is completed. We
characterize the delay T (s) of a data transfer as per [8] as
follows:

T (s) = I + g · s (2)
where I is the fixed initialization delay, s is the size of transfer
in bytes, and g is the delay per byte, which depends on the
throughput of the network communication links. It is important
to note that during the time I both the compute core and the
DMA channel are busy for setting up the transfer, whereas
during the remaining time G = g · s only the DMA channel is
still busy, pushing the data into the NoC, while the core can
proceed to other tasks in parallel. DMA transfer completion
status can be polled from any core inside the cluster. This
operation is blocking until time T (s) has elapsed plus some
additional timing delay χ to return the control back to the
thread waiting for transfer completion.

Definition 4 (Architecture Model): An architecture model
A is a tuple (X , H , M , D, I , g, χ), where X is a set of
clusters, H ⊆ X×X is a set of communication paths between
pairs of clusters, whereas |(x, x′)|H gives the topological
distance between any two clusters. M and D are the number of
cores and DMA channels per cluster respectively. I, g, χ ∈ R+

are communication delay components introduced earlier.

B. Support of Communication Buffers
In the split-join graph application model, the actors com-

municate via channels. Given the limits of memory size of
the platform, the channels should use a bounded memory.
Moreover, to exploit the data parallelism of the split-join
channels, it should be possible to execute different concurrent
instances of channel writer and reader on different cores.

We created a software buffer implementation that satisfies
these requirements. To support concurrent writers and readers
we exploit the fact that in a split-join graph each writer/reader
instance writes/reads statically known amounts of data at
statically known offsets. Therefore, each data token place in
the buffer is equipped by an individual status record, which
can be updated independently and which indicates whether
the given token is ready to be written or read. For a buffer
of limited size we use standard circular-buffer wrap-around
mechanism, with a wrap-around counter in each status record.

The communication protocol is more complex when the
writer and reader actors are located in different clusters. In
this case we split the FIFO buffer into writer and reader
sub-buffers, the latter being located in the remote cluster. The
data is copied from the writer sub-buffer to the reader by a
DMA transfer. Along with this data transfer, also the ‘writing
finished’ status record update is sent for the reader sub-buffer.
For its part, the reader sends the ‘reading finished’ status
update for the same sub-buffer back to the writer. This allows
the writer, prior to transferring another data token through
DMA, to safely estimate whether a remote buffer place is
ready for this token. This backward signalling of buffer space
availability is usually referred to as flow control. More details
about DMA communication become apparent in later sections.

IV. DESIGN FLOW

Given a many-core architecture, the problem is to
map and schedule an application model, represented by
a split-join graph called application graph and denoted
SM=(VM ,EM ,d,α,ω).

The design flow is based on multi-criteria optimization,
whereby we repeatedly query the SMT solver for solving
the problem at different points in the multi-dimensional cost
space, to approximate the Pareto front in a manner of a ‘multi-
dimensional binary search’, as proposed in [3].

In general, combined scheduling, mapping and buffer allo-
cation inside a shared-memory cluster is hard if one tries to
solve it exactly using the SMT solvers, but one can still ap-
proximate the optimal solutions and bound the approximation
distance, see e.g., [2], [3]. To tackle the problem complexity,
we solve it in three steps: (i) partitioning, (ii) placement,
and (iii) scheduling. Thus the solutions found are optimal
only locally, in the context of each step. Nevertheless, in the
third step we combine several communication and computation
decisions together to have a jointly optimal result.

In this section we briefly sketch the design flow as a whole,
whereas in the rest of the paper we focus on the methodology
of the scheduling step, the core contribution of this paper.

The partitioning step defines the groups of actors to be
assigned to the same many-core cluster. We adapt the par-
titioning scheme of [3] to the split-join graph model.
Partitioning Problem Instance:
Application graph SM=(VM ,EM ,d,α,ω) and the costs:

- Cτ : Maximum computation workload per partition
- Cη : Estimated total communication cost
- Cz : Number of partitions

The computation and communication workload are calculated
as the sum of task execution delays or data token sizes in the
derived task graph respectively. A channel contributes to the
communication cost only if the channel writer and reader are
assigned to different partitions.

Partitioning Problem Solution z : VM → N≥0

where z(v) identifies the partition of actor v.
The approximate Pareto points in three-dimensional cost

space obtained at the this step are propagated to placement and

A B
ê : [α(ê), ω(ê)]

Fig. 2: Communicating Tasks

A Iwr Gwr B
ewt(ê) : [1, w

↑(ê)] ewn(ê) : [1] ert(ê) : [α(ê), ω(ê)]

Fig. 3: Partition Aware Communicating Tasks

scheduling steps. The latter two are considered independent,
as we currently ignore the network routing and contentions.

The placement step allocates a unique physical cluster to
every partition. The purpose is to map the pairs of communi-
cating partitions to clusters x, x′ located as close as possible,
to minimize the total communication cost according to metric
s · |x, x′|H , where s is the communication data size. The SMT
solver constraints at this step are again similar to those in [3].

In the scheduling step we perform a joint scheduling of
the computation tasks (i.e., the tasks of the application graph)
and the communication tasks (i.e., the DMA transfers). In this
paper we first describe a model that captures the interactions
between computation and communication tasks. Then we
explain how this model is encoded in terms of SMT solver
constraints. The model is derived from a series of graph
transformations, which gradually change the application graph
into a final schedule graph.

V. MODELING COMMUNICATION

A. Partition Aware Graph

For defining the graph transformations, in particular for
adding new actors, it is convenient to introduce notation
v : [d(v), z(v)], which represents an actor v with delay d(v)
and partition number z(v). Similarly, e : [α(e), ω(e),m(e)]
represents an edge e with parallelization factor α(e), token
size ω(e) and marking m(e). The latter two parameters are
sometimes omitted, the default values being zero. Note that if
ω is zero, the given edge models an execution order constraint
and does not involve a memory buffer for communication.

We assume to have a ready partitioning solution z(v),
calculated earlier in the design flow. In order to model the
communication delay, we need to introduce additional actors
in the split-join graph, representing the DMA transfers. Recall
from Equality (2) that a DMA transfer consists of two phases:
the initialization, modeled here by actor Iwr, and the network
communication, modeled by actor Gwr. Fig. 2 shows an
application graph channel ê = (A,B) and Fig. 3 shows its
partition aware graph for the case where actors A and B are
assigned to different partitions. Recall that in this case the
channel (A,B) is split into writer and reader sub-buffers. Edge
ewt(ê) models the writer sub-buffer; α = 1 indicating that
one writer instance is followed by exactly one data transfer,
whereas ω(ewt) = w↑ indicates that all α↑ tokens produced
by an instance of the writer actor are encapsulated into a
compound token. Edge ewn(ê) reflects the sequential order
between the two DMA phases. Edge ert(ê) corresponds to the
reader sub-buffer. It has the same parameters as the original
edge ê.

A B
e : [α(e), ω(e)]

ebe(e) : [α
−1(e), 0, b(e)]

Fig. 4: Buffer aware graph model for a channel without DMA

A Iwr Gwr

Fst

B

IrdGrd

ewt : [1, w
↑] ewn : [1] ert : [α, ω]

ew
s
: [
1]

e
w
b : [1, 0, b(e

w
t)]

e r
s
:
[1
]

ern : [1]

e
rb : [α −1

, 0, b(e
rt)]

Fig. 5: Buffer aware graph model for a channel with DMA

Let EM∆Z denote the channels crossing the partition bound-
aries and EM

∆Z
its complement. Formally,

EM∆Z = {(v, v′) ∈ EM | z(v) 6= z(v′)}
EM

∆Z
= EM \ EM∆Z

Definition 5 (Partition Aware Graph): A partition aware
graph SP = (V P , EP , d, α, ω) is a split-join graph obtained
by replacement of application graph edges EM∆Z by a subgraph
with new actors and edges as defined below.

The delay of the new actors is determined by the DMA
initialization time I and the network sending time g · w↑(ê).

V P = VM ∪ {Iwr(ê) : [I, z(v)],

Gwr(ê) : [g · w↑(ê), z(v)] | ê = (v, v′) ∈ EM∆Z}
The edges of partition aware graph are given by:
EP = EM

∆Z
∪ {ewt(ê), ewn(ê), ert(ê) | ê = (v, v′) ∈ EM∆Z}

Edge & Parameters Connections
ewt(ê) : [1, w↑(ê)] ewt(ê) = (v, Iwr(ê))
ewn(ê) : [1] ewn(ê) = (Iwr(ê), Gwr(ê))
ert(ê) : [α(ê), ω(ê)] ert(ê) = (Gwr(ê), v

′)

B. Buffer Aware Graph

After we obtain a partition aware graph, the next graph
transformation is performed in order to model the bounded
buffer memory allocated to the channels.

Definition 6 (Buffer Allocation): b : EP → N+ defines the
bounded capacity assigned the channels of the partition-aware
graph. It is part of the solution of the combined multiprocessor
scheduling and buffer allocation problem.

Definition 7 (Buffer Aware Graph): is a cyclic marked
graph SB = (V B , EB , d, α, ω,m) obtained from the partition-
aware graph by adding marked channels that model the
allocated buffer capacity and new actors that model the DMA
polling and flow control.

In this graph, for each intra-cluster channel ê we add a new
backward channel – in the opposite direction, marked with
the buffer allocation b(ê), modeling the ‘communication’ of
the available space in the channel. The backward channel is
the inversion of ê, with inversely proportional parallelization
factor, see Fig. 4.

Recall that the marking models the number of tokens present
in the channel at the start of the execution. In the backward

channel the marking b(ê) indicates the free space that is
available initially. At every execution, the writer takes α↑

tokens of ‘space’ and produces α↑ tokens of data, and the
reader takes α↓ tokens of data and produces α↓ tokens of
‘space’.2

If the channel is an inter-cluster channel, involving DMA,
then we model the bounded space of the writer sub-buffer, ewt,
and the reader sub-buffer, ert, by separate backward channels.
We also add additional actors, see Fig. 5.

Consider the writer sub-buffer, ewt, serving as an input
to the DMA transfer. The space in this sub-buffer becomes
available when the transfer is completed. Recall that detecting
the transfer completion costs processor time, this is modelled
by new actor Fst. This actor produces the ‘space’ tokens on
the backward channel of ewt. Recall that for flow control the
free space availability status of the reader sub-buffer, ert, has
to be communicated back to the writer. The respective DMA
transfer is modeled by Ird and Grd, and the latter feeds the
‘space’ tokens to the backward channel of ert.

Consider an example. Suppose that we use a double-
buffering approach, such that b(ewt(A,B)) = b(ert(A,B)) =
2 tokens. Let us simulate the execution of the model in Fig. 5
unfolded for three actor instances: A0, A1, A2 – see Fig. 6.
• A0 executes and consumes one space token.
• Upon completion, A0 triggers a DMA transfer initializa-

tion, modeled by Iwr0

• Data is sent to the network, which is represented by Gwr0.
In parallel, A1 picks the second space token and triggers
another DMA transfer: Iwr1 and Gwr1.

• When Gwr0 finishes, B0 receives the input data tokens. At
the end it releases the space occupied by these tokens and
triggers a DMA transfer to update the writer accordingly.
This transfer is modeled by Ird0 and Grd0.

• A2 waits execution for task Fst0 to finish, which releases
the necessary space token in the backward channel.

• After A2, we can start transferring its output by Iwr2

when we receive the (flow-control) space token via Grd0

Below we formalize the new actors and channels:
V B = V P ∪ {Fst(ê) : [χ, z(v)], Ird(ê) : [I, z(v

′)],

Grd(ê) : [α
↓(ê) · ω0 · g, z(v′)] | ê = (v, v′) ∈ EM∆Z}

The delay of network sending node α↓ · ω0 · g corresponds to
the delay of sending ω0 bytes of status record for all α↓ tokens
read in the channel, where ω0 depends on the implementation.

EB = EP ∪ {ews(ê), ewb(ê), ers(ê),
ern(ê), erb(ê) | ê = (v, v′) ∈ EM∆Z} ∪

{ebe(ê) : [α−1(ê), 0, b(ê)] | ê = (v, v′) ∈ EM
∆Z
}

Edge & Parameters Connections
ews(ê) : [1] ews(ê) = (Iwr(ê), Fst(ê))
ewb(ê) : [1, 0, b(ewt(ê))] ewb(ê) = (Fst(ê), v)
ers(ê) : [1] ers(ê) = (v′, Ird(ê))
ern(ê) : [1] ern(ê) = (Ird(ê), Grd(ê))
erb(ê) : [α

-1(ê), 0, b(ert(ê))] erb(ê) = (Grd(ê), Iwr(ê))

2Note that if we derive a task graph from a buffer aware graph then its
structure will depend on the buffer sizes such that a smaller buffer size can
only increase the critical path delay (a buffer-latency trade-off).

precedence dependency

backward dependency (space)

blocked

A0 Fst0A1 A2

Iwr0 Iwr1 Iwr2Gwr0 Gwr1

Ird0 Grd0

B0

Time

Proc1

Dma1

Proc2

Dma2

Fig. 6: Double buffering schedule example

C. Communication Aware Graph

In our implementation the compute core remains busy until
the completion of the DMA initialization tasks (Iwr or Ird)
that follow after the corresponding computation actor (writer
or reader, resp.). Moreover, if the computation actor instance
starts multiple DMA transfers (as a writer/reader of multiple
channels), then the next DMA transfer cannot start until
the initialization of the previous transfer has finished. This
restriction can be modeled by adding extra edges between the
actors modeling the DMA initialization phase, to enforce a
sequential execution order in the schedule.

Definition 8 (Communication Aware Graph):
Communication Aware Graph SK = (V K , EK , d, α, ω,m) is
obtained from the buffer aware graph SB by adding the edges
to model the ordering of the DMA transfers with regard of
their transfer initialization phase.

The set of actors of the communication aware graph is the
same as in the buffer aware graph V K = V B . To define the
new edges, we first introduce function I(v), representing an
ordered set of the transfer initialization actors connected to the
output of given actor v, i.e.,

I(v) = {v′ | (v, v′) ∈ EB∧
∃ ê ∈ EM : v′ = Iwr(ê) ∨ v′ = Ird(ê)}

We select the order (I1, I2, . . . | Ik ∈ I(v)) arbitrarily,
ensuring that the implementation and the model follow the
same order. We have:

EK = EB ∪ {(Ii, Ii+1) : [1] | Ii, Ii+1 ∈ I(v), v ∈ V B}
The final transformation to model the communication is the

derivation of the task graph TK = (UK , EK , δ, ω) from the
split-join graph SK . This is done according to Def. 3, but in
addition we require that the tasks inherit the partitioning from
their actors: ∀vh ∈ UK z(vh) = z(v).

Having shown our model for buffered DMA communica-
tion, we proceed to the scheduling model in the next section.

VI. SCHEDULING

A. Schedule Graph

The schedule graph TS = (US , ES , δ, ω) is obtained from
computation aware task graph TK by adding the mutual
exclusion edges, according to the given schedule s and intra-
cluster mapping µ, where:

- µ : US → N≥0 maps every task to a core (for
computation tasks) or a DMA channel (for transfer tasks);

s : US → R≥0 associates each task with a start time.
The buffer allocation, b, the schedule and the mapping

should be calculated by the solver in the scheduling step of
the design flow, as explained later.

Let us recall and introduce some notations.
-• US = UST ∪ USC is the task partitioning into:

– transfer tasks UST , derived from DMA transfer actors:
Iwr, Gwr Ird, and Grd.

– computation tasks USC
• I(u) are the transfer tasks connected to the output of task
u, by analogy to I(v) of the computation-aware graph.

• USC+ is the set of computation tasks connected to DMA
transfers: USC+ = {u ∈ USC | I(u) 6= ∅}

• USC∅ is the set of the remaining computation tasks,
i.e., those with no DMA transfer tasks at the output.

Note that not all tasks introduced for communication are
transfer tasks. In fact, Fst (see Fig. 5) are computation tasks,
as they are executed on the compute cores.

Due to a limited number of the compute cores and DMA
channels multiple tasks are mapped to the same core or
channel, and should therefore be executed sequentially. This
requirement is modeled by adding mutual exclusion edges.
The edges of the schedule graph are therefore defined by:

ES = EK ∪ EµT ∪ E
µ
C∅ ∪ E

µ
C+

EµT are the mutual exclusion edges for the transfer tasks
mapped at the same DMA channel.

EµT = {(u, u′) : [1] | u, u′ ∈ UST ,
z(u) = z(u′), µ(u) = µ(u′), s(u′) ≥ s(u)}

Similarly, we insert an edge for the computation tasks mapped
on the same core, first for the case of no DMA transfers:

EµC∅ = {(u, u
′) : [1] | u ∈ USC∅, u

′ ∈ USC
z(u) = z(u′), µ(u) = µ(u′), s(u′) ≥ s(u)}

Finally, given task u that starts some DMA transfers, let
Imax(u) represent the last transfer in the ordered set (I1(u),
I2(u), . . .). The compute core becomes available to a later
task u′ only when the last transfer initialization is completed:

EµC+ = {(Imax(u), u
′) : [1] | u ∈ USC+, u

′ ∈ USC ,
z(u) = z(u′), µ(u) = µ(u′), s(u′) ≥ s(u)}

B. Scheduling Problem on SMT solver

In the previous sections we described a sequence of rules
to derive a schedule graph, which models the timing effect
of a scheduling/buffering solution calculated by the SMT
solver. The solver constraints for this problem are therefore
obtained directly from the schedule graph. Below we present
the corresponding definition of the optimization problem dealt
with at the scheduling step of the design flow.

Problem Instance:
• partition-aware graph SP

• hardware architecture model A,
• costs for multi-criteria optimization:

– CB : maximal buffer memory size per cluster
– CL : schedule latency constraint

Solution: (TS , b, µ, s), where TS = (US , ES , δ, ω) is the
schedule graph obtained from SP by adding extra edges based
on buffering b, mapping µ and scheduling s.

Schedule constraints
The schedule should respect all the dependencies, including
the application dependencies, bounded buffer space, DMA
transfer ordering, and mutual exclusion, all represented by
dependency arcs in the schedule graph:∧

(u,u′)∈ ES(b,s,µ)

s(u′) ≥ s(u) + δ(u)

As we explicitly indicate here, the set of schedule dependen-
cies is function of the problem solution. However, the SMT
solvers require a static set of constraints. Therefore, observing
that the set US is static we rewrite the constraints as:∧

u,u′∈US

εS(u, u′, µ, s, b) =⇒ s(u′) ≥ s(u) + δ(u)

where εS is a predicate asserting the presence of dependency
arc (u, u′). For mutual exclusion arcs this predicate can be
trivially obtained from the definition of sets Eµ. For backward
edges it can be obtained from ε(v, v′, h, h′) in Def. 3, by
substituting the buffer allocation to marking m. However, we
did not yet implement in the SMT constraints for the backward
edges, therefore we replaced them by equivalent constraints
proposed in [2], slightly adapted to the channels with DMA.
Resource constraints
Bounded number of DMA channels and cores per cluster.∧

u∈US
T

µ(u) < |D| ∧
∧
u∈US

C

µ(u) < |M |

Bounded buffer memory per cluster:∧
z′∈Z

∑
e=(v,v′)∈EP :z(v′)=z′

b(e) · ω(e) ≤ CB

Latency constraint∧
u∈US

s(u) + δ(u) ≤ CL

Extra constraints
In our implementation we require the writer and reader sub-
buffers to have equal buffer memory:∧

ê∈EM
∆Z

b(ewt(ê)) · ω(ewt(ê)) = b(ert(ê)) · ω(ert(ê))

The network phase of a DMA transfer should run immedi-
ately after the initialization phase on the same channel:∧

ê=(v,v′)∈EM
∆Z

∧
0≤h<c(v)

s(Iwr h(ê)) + I = s(Gwr h(ê))
∧

µ(Iwr h(ê)) + I = µ(Gwr h(ê))

and: ∧
ê=(v,v′)∈EM

∆Z

∧
0≤h′<c(v′)

s(Ird h′(ê)) + I = s(Grd h′(ê))
∧

µ(Ird h′(ê)) + I = µ(Grd h′(ê))

where h and h′ are indices of the task instances of channel
writer and reader.

Last but not the least, we add task and processor symmetry
breaking constraints, which improve the performance of the
constraint solvers [2].

TABLE I: Application Benchmarks

Benchmark #Actors #Channels #Tasks Total Exec.
Time (cycles)

Total Comm.
Data (bytes)

JpegDecoder 3 2 25 934288 12384
BeamFormer 8 7 53 342816 944
Insertion Sort 6 5 6 40033 320
Merge Sort 12 11 31 102347 704
Radix Sort 13 12 13 85464 768
Dct1 4 3 4 127496 768
Dct2 7 6 21 215525 1536
Dct3 5 4 12 129105 1024
Dct4 7 6 21 183890 1536
Dct5 7 6 21 216079 1536
Dct6 8 7 36 258304 1792
Dct7 8 7 29 218577 1792
Dct8 10 9 38 272514 2304
DctCoarse 3 2 3 74401 512
DctFine 6 5 20 163708 1280
Comparison Count 5 5 20 141397 1280
Matrix multiplication 11 11 79 1087840 10656
Fft 13 12 96 640109 6144

vld
iq/
idct

color
e : [12, 268] e : [1, 76]

Fig. 7: JPEG Decoder Application Graph

We also found that the solutions produced by the SMT
solver can profit from a post-processing. According to our
constraints, the solver is allowed to schedule the tasks later
than the earliest time when they are enabled, often resulting
in ‘lazy’ schedules. Attempts to add extra constraints to ensure
non-lazy schedules have resulted in unacceptable increase in
the solver calculation times. Therefore, instead, after each
successful round of solving we modify the latency cost CL by
setting it to the critical path delay in the schedule graph. In the
context of our cost space exploration method this sometimes
yields Pareto points with improved CL.

VII. EXPERIMENTS

In this section we give an empiric evaluation of the validity
and limitations of our many-core scheduling approach using a
set of application benchmarks.

Our application benchmarks consist of the JPEG Image
Decoder [2] and a subset of StreamIt benchmarks [9]. The
characteristics of the benchmarks are summarized in Tab. I.

The exploration experiments use version 4.1 of the Z3
Solver [10] running on a Linux machine with Intel Core i7
processor at 1.73 GHz with 4 GB of memory. We use a global
time-out which stops a cost space exploration in 20 minutes,
while every SMT query is given a local timeout of 3 minutes,
after which the exploration proceeds to the next query [2].

We use the JPEG decoder as an example to illustrate the
experiment done for each benchmark. The application graph
is shown in Fig. 7, it has three actors: VLD (variable length
decoding), IQ-IDCT (inverse quantization and inverse discrete
cosine transform) and color conversion. The parallelization
factor 12 is set for a particular image size.

For partitioning step, the exploration is done in a 3-
dimensional cost space: (Cτ , Cη, Cz) i.e., the workload per
partition, communication cost and the partition count. There is
a trade-off between these costs, and our grid-based exploration
strategy [2] finds four Pareto points, see Table II.

At the placement step, the partitions are mapped to neighbor
clusters. In the scheduling step, the exploration is done for

TABLE II: Partitioning Pareto Points of JPEG decoder
Allocated group Exploration CostSolution vld iq color Cτ Cη Cz

Ps0 0 1 2 424012 12384 3
Ps1 0 0 1 758116 2736 2
Ps2 0 0 0 934288 0 1
Ps3 0 1 1 510276 9648 2

0.4 0.5 0.6 0.7 0.8 0.9 1

·106

1

1.1

1.2

·104

Latency (cycles)

B
uf

fe
r

Si
ze

(b
yt

es
)

Ps0 Ps1 Ps2 Ps3

(a) 25 scheduling solutions for
4 partitioning solutions

0.4 0.5 0.6 0.7 0.8 0.9 1

·106

1

1.1

1.2

·104

Latency (cycles)

B
uf

fe
r

Si
ze

(b
yt

es
)

pred. measured-min. measured-max.

(b) sched. solutions for Ps2
measured on Kalray platform

Fig. 8: JPEG Decoder : solutions and their measurements

each partitioning solution in a 2-dimensional space (CL, CB),
i.e., latency and maximal buffer size per partition. We plot all
four Pareto fronts in Fig. 8a. We observe that some Pareto
fronts cross. This is because they differ in the number of
available partitions, which leads to the following effect. On
the top-left side of the cost diagram a large buffer memory
per partition is allowed. Therefore, even a single-partition
solution has enough buffer memory to minimize the latency,
and it dominates the solutions with more partitions because
it does not use any DMA transfers. On the bottom-right side,
the parallelism available to the solutions with less partition
count is restricted by small amount of buffer memory, whereas
adding more partitions results in a larger total buffer memory,
allowing to run more tasks in parallel and get a better latency.
The combination of these individual Pareto fronts can be
pruned, retaining only the overall Pareto solutions. These
solutions will be a mix of multi-cluster and single-cluster ones,
showing interesting deployment trade-offs.

A scheduling solution is represented by (b, µ, s), giving the
buffer allocation, the core mapping and the scheduling. The
solution is interpreted by our runtime environment, together
with the cluster placement of actors. The environment allocates
the buffer memory and orchestrates the clusters, cores, and
DMA channels according to the given solution, executing the
tasks and transfers in a self-timed manner, while preserving
the same order per core and per channel as in the schedule s.
This is in line with a common practice for DSP multi-cores.
While executing the application, we measure its real latency on
the platform, collecting statistics over 100 repeated iterations
and compare it with the model-predicted latency.

Fig. 8b shows the results for one of the partitioning solu-
tions. We plot the minimum and maximum observed latency
on the platform as well as the predicted one. The maximum
error that was observed in this configuration, as well as for
the entire JPEG experiment, was 8%.

Fig. 9 shows a summary of results for all benchmarks.

Jpeg
Dec.

Beam
Form

er

Inser
tio

n Sort

Merg
e Sort

Radix
Sort

Dct1 Dct2 Dct3 Dct4 Dct5 Dct6 Dct7 Dct8

DctC
oars

e

DctF
ine

Comp. count

Matr
ix

Mult. Fft
0

20

40

60

80

100

2
5

1
5
5

7

3
7

6 4

8

4

8 8

2
4

7 1
0

3

6 4

8 8

#Solutions %error

Fig. 9: Application benchmarks: summary of results

Firstly, we have plotted the total number of scheduling solu-
tions obtained for given benchmark, adding up those obtained
for different partitioning solutions. Note that the solution
count depends on the amount of parallelism available in the
application as well as on the structure of the application graph.

Secondly, we plot the maximum error of the predicted
latency vs the one measured on the platform for 100 itera-
tions. The overall maximum error (27%) was observed in the
‘Comparison Count’ benchmark. In the schedule that resulted
in this error we observed that there were 8 simultaneous DMA
transfers between a pair of clusters, which contributed to net-
work contention and hence a less accurate latency prediction.
We believe that another factor contributing to inaccuracy is
the contention on the shared memory bus inside the clusters.
We also believe that the error could be larger if we ran with
enabled cache, a subject for future work.

VIII. DISCUSSION AND RELATED WORK

The contribution of this paper can be summarized as
follows. We demonstrate a compile-time scheduling frame-
work for data-parallel applications on many-core platforms,
i.e., networks of multi-core systems. Our application model is
a sub-class of popular synchronous dataflow (SDF) graphs. We
present an accurate model of buffered communication channels
that support multiple parallel writers and readers and involve
network DMA transfers with flow control. The core of our
contribution is a method to employ such models in constraint
based solvers for combined scheduling of computation and
communication. We validate the method using a dozen of
real applications from a well-known StreamIt set of signal-
processing benchmarks. For the optimal schedules generated
for benchmarks, we performed latency measurements on real
many-core hardware. Despite the fact that we ignored the
network contention in scheduling, the maximal error of sched-
uler’s timing estimation was only 27%, exploiting non-cached
shared local memory system at the cluster level. We plan to
support network routing and contention analysis, as well as
caching, which would reduce the memory bus contention but
possibly introduce unpredictable cache delays.

Our scheduling approach is based on approximation of
Pareto points in buffer-latency cost space using an SMT solver.
We reused the symmetry breaking proposed in [2] to ensure as
high solver performance as we can, for a closer approximation

of the exact solutions and for managing larger problem sizes.
Still, the maximal benchmark size we could handle well had
96 tasks, where the solver’s performance started to saturate.
In future we intend to investigate methods to improve the
scalability to larger problem sizes.

The work [11] proposes implementation-aware graphs simi-
lar to our schedule graphs. However, the processor blocking for
initializing the DMA was not modeled and model validation
on real hardware was not done. Moreover, this and some other
related works employ detailed models of buffered communi-
cation only for validation or refinement of a pre-computed
multiprocessor mapping solution. The work [12] demonstrates
scheduling with memory constraints. Interestingly, their DMA
model turns out to be coherent to ours. They also used an
SMT solver for calculating the schedules. However, that work
is restricted to a single-processor system.

Many previous works use constraint solvers to solve related
problems. The work [13] presents a task graph scheduling
methodology for SMT solvers. They propose an interesting
procedure of providing a problem-specific feedback to the
SAT solving engine for better efficiency. However, their work
does not consider buffer allocation and DMA communication.
Several other works apply constraint solving to schedule SDF
graphs on multiprocessors. The advantage of [14] is that they
consider the network routing and pipelined scheduling. How-
ever, they do not combine their the network communication
model with parallel scheduling in shared-memory clusters.
Pipelined scheduling and handling the network interference
are future work subjects for us.

REFERENCES

[1] Y.-K. Kwok and I. Ahmad, “Benchmarking the task graph scheduling
algorithms,” in Parallel Processing Symposium, 1998. IPPS/SPDP 1998.

[2] P. Tendulkar, P. Poplavko, and O. Maler, “Symmetry breaking for multi-
criteria mapping and scheduling on multicores,” in FORMATS, 2013.

[3] S. Cotton et al., “Multi-criteria optimization for mapping programs to
multi-processors,” in SIES, 2011.

[4] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75.

[5] B. de Dinechin et al., “A clustered manycore processor architecture for
embedded and accelerated applications,” in HPEC, 2013.

[6] D. Melpignano et al., “Platform 2012, a many-core computing accel-
erator for embedded SoCs: performance evaluation of visual analytics
applications,” in DAC, 2012.

[7] J. Howard et al., “A 48-core ia-32 message-passing processor with dvfs
in 45nm cmos,” in ISSCC, 2010.

[8] S. Saidi et al., “Optimizing explicit data transfers for data parallel
applications on the cell architecture,” ACM TACO, 2012.

[9] W. Thies, “Language and compiler support for stream programs,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2009.

[10] L. Moura and N. Bjorner, “Z3: An efficient SMT solver,” in TACAS,
2008.

[11] P. Poplavko et al., “Task-level timing models for guaranteed performance
in multiprocessor networks-on-chip,” in CASES, 2003.

[12] S. Wasly and R. Pellizzoni, “A dynamic scratchpad memory unit for
predictable real-time embedded systems,” in ECRTS, 2013.

[13] W. Liu et al., “Satisfiability modulo graph theory for task mapping and
scheduling on multiprocessor systems,” IEEE Transactions on Parallel
and Distributed Systems, 2011.

[14] J. Zhu, I. Sander, and A. Jantsch, “Constrained global scheduling of
streaming applications on mpsocs,” in ASPDAC, 2010.

