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Abstract. Reactive systems are made of programs that permanently
interact with their environment. Debuggers generally provide support
for data and state inspection, given a sequence of inputs. But, because
the reactive programs and their environments are interdependent, a very
useful feature is to be able go the other way around; namely, given a
state, obtain a sequence of inputs that leads to that state. This problem
is equivalent to general safety properties verification, which is notoriously
undecidable in presence of numeric variables. However, a lot of progress
has been done in recent years through the development of model checking
and abstract interpretation based techniques.
In this article, we take advantage of those recent advances to implement
a fully automatic state reaching capability inside a debugger of reactive
programs. To achieve that, we have connected a debugger, a verification
tool, and a testing tool. One of the key contributions of our proposal is
the proper handling of numeric variables.

keywords: automated debugging of reactive programs, state reaching, input
sequence generation, test, counter-example generation, abstract-interpretation.

1 Introduction

Debugging reactive programs. A reactive system can be viewed as an in-
finite loop, in which the program first reads inputs from its environment, then
computes and emits some outputs towards the environment, while updating its
internal memory. This intrinsic closed-loop behaviour of reactive systems makes
the process of debugging particularly difficult, because:

– for each step of the execution, the user must provide values for all inputs,
mimicking the behaviour of the environment. This is both tedious and error-
prone;
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– a reactive system is generally intended to control its environment; therefore
the environment may depend on values produced by the program, and the
program may depend on values produced by the environment. Hence, pro-
ducing realistic input sequences is difficult and such sequences can not be
generated off-line in general.

From sequences of inputs to states, and vice-versa. A usual feature of
debuggers is, given a program input sequence, to show the program internal state
(current instantiation of input, output, and local variables as well as memories)
at specific program execution points, possibly expressed as complex conditions
on the internal state.

However, a much more challenging task is the other way around: given an
internal state, how does one find a sequence of inputs that drives the program
to that state? Such a state reaching capability is particularly useful for reac-
tive programs, precisely because providing input sequence is tedious and difficult.

Issues related to automatic state reaching. The state reachability problem
is equivalent to the one of safety properties verification. Actually, verification
tools reduce safety properties into a state reachability problem. And the veri-
fication of numeric safety properties is notoriously undecidable. However, a lot
of progress has been done recently through the development of model check-
ing [CES86,QS82] and abstract interpretation techniques [CC77,CH78,JHR99].

In this article, we take advantage of those recent advances to implement a
fully automatic state reaching capability into a reactive programs debugger.

Our proposition. The basic idea is the following: we first use an abstract-
interpretation based verification tool and try to prove that the state to reach (or
set of states) is unreachable. Since this problem is undecidable, some abstractions
are performed. Those abstractions are safe in the sense that, whenever the proof
succeeds, then the state is unreachable for sure. But if the proof fails, we can
not be sure that the state is indeed reachable and the abstract path leading to
the state(s) may have no counter-part in the concrete world. The second idea is
then to use a random based sequence generator that will try to find a concrete
path in the abstract one.

In this article, we present how we have added automatic state reaching capa-
bility to Ludic, a debugger of reactive programs written in the Lustre data-flow
synchronous language [HCRP91]. As far as we know, there is no automatic sup-
port for such a functionality in state-of-the-art debuggers. We have implemented
it by connecting three tools together3.

1. Ludic [MG00], a Lustre debugger that lets one, among other tasks, execute
Lustre programs step by step and inspect program states.

3 Ludic and Lurette are part of the Lustre academic programming and validation
environment, developed at Verimag. Nbac has been initially developed by B. Jeannet
at Verimag and is now maintained by him at Irisa.
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2. Nbac [JHR99], an abstract-interpretation-based verification tool that may
prove safety properties concerning Boolean and numeric variables of reactive
programs (e.g., Lustre programs);

3. Lurette [RWNH98,RJR03], an automatic testing tool for reactive programs
that computes sequences of values that are relevant according to a formal
description of the program environment.

The connection between a proof tool and a test sequence generation tool
is not a completely new idea: it has been done already, in order to obtain
counter-examples when the Boolean model-checker fails [PHR01,CGMZ95].
But as far as we known, it is the first time it is done for numeric variables
properly; [PHR01] did handle numeric variables, but by abstracting them away
into Boolean variables.

Contributions. The main contribution of the article is therefore the connection
between three state-of-the-art tools to provide a completely automatic way of
reaching a given program state in the presence of numeric variables. The main
advantages of our proposal are the following:

– the tool is fully automatic. The user does not need to know anything about
the testing and the verification tool at all (well, at this stage of debugging
at least);

– the connection scheme allows the user to start the “reach a state” capability
from any state, and not necessarily the initial one. This kind of function-
ality has been advocated as a means to reduce the complexity of model-
checking [HWKF02];

– we propose heuristics that try to minimise the length of the generated se-
quences when exploring the abstract paths;

– the connection scheme would work with different tools, provided they have
the same kind of interfaces.

Structure of the article. We first present in Section 2 a debugging session
illustrating the usefulness of automatic state reaching for debugging reactive
programs. Then, we briefly describe the main features of the underlying tools in
Section 3 and describe how they are connected to each other in Section 4. We
present related work in Section 5. Finally, we present some possible future work
and conclude.

2 An illustrating example

Consider the very simple Lustre program of Figure 1. It receives two inputs, an
integer variable n and a Boolean variable val, and computes a single Boolean
output m. The output m is true if the input val has been maintained true during
the last n consecutive steps. The length of such periods is computed with a
local counter cpt. pre(cpt) denotes the value of cpt at the previous step; this
previous value is initialised to 0 thanks to the “0 -> pre(cpt)” expression.
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node maintain (n : int; val : bool) returns (m : bool) ;

var cpt : int ;

let

cpt = if val then (0 -> pre(cpt)) + 1 else 0 ;

m = (cpt >= n) ;

assert(n>=5);

tel

Fig. 1. A Lustre program example

This program makes an assumption about the domain of correct values for
input n, via the assertion “(n>=5)”. Lustre assertions usually express constraints
about the program’s physical environment, that are taken into account by verifi-
cation tools. Assertions may also be useful for the compiler to produce optimised
code, and for the debugger to detect spurious node4 calls dynamically.
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Fig. 2. A possible execution of the program of Figure 1

Figure 2 shows the variable values diagram during a possible execution of
the program of Figure 1 that has been generated by our tool. From instant 0 to
instant 4, inputs are given manually, and the output m keeps the value false. At
this point, the user invokes the state-reaching functionality, specifying he would
like to make m true. Then, from instant 5 to instant 11, inputs are generated
automatically, in order to make m true at step 11.

One should note that the generated input sequence is not the shortest one,
because the input val at step 6 is false, which causes the counter cpt to be reset.

4 Lustre nodes are the equivalent of procedures or functions of most languages.
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Moreover, from instant 5 to instant 10, the only constraint that is applied to the
input n is the assertion, because there is no value for n that satisfies both the
assertion and the goal to reach. However, choosing n = 5 at instant 11 allows to
make m true, i.e. cpt ≥ n . Section 4 will give the details of the whole process
on this particular example.

3 Synchronous Development Environments and Tools

3.1 Generalities

In the synchronous approach to the programming of reactive systems, all exe-
cutable programs have a very simple form. It is an infinite loop: first read inputs
from the external world (read values from sensor devices for instance); then
compute the corresponding outputs, depending on the current input and on (a
bounded abstraction of) the input history; emit the outputs (write values to
actuator devices); and do so forever. This very simple code may be run on a
processor with no operating system.

The code that computes the outputs is hard to write in a sequential language,
because it often has a natural parallel structure. The main motivation for the def-
inition of synchronous languages [Hal93], is to allow users to think in parallel. The
synchronous languages Esterel [BG92], Signal [LGLL91] and Lustre [HCRP91]
all have a compiler into sequential code. Their semantics is deterministic, and
they provide syntactic restrictions that rule out infinitely growing memory.

The main application domain being safety-critical embedded systems, a lot
of effort has been put on the definition of testing and formal verification tools, in
order to guarantee safety properties over program executions. In the following,
we recall the central notion of an observer, and we briefly describe three of those
tools, involved in our automatic state reachability process: the debugger Ludic,
the verification tool Nbac and the testing tool Lurette.

3.2 Observers

The Lustre development environment relies on: a compiler into C, a debugger, a
testing tool, several verification tools (model-checkers, and theorem-provers). In
all these tools, the user may have to specify safety properties (see [Lam77] for a
distinction between safety and liveness properties).

Safety properties are described by synchronous observers [HLR93]. An ob-
server is a regular synchronous subprogram, which observes the inputs and out-
puts of the program to be verified, and which outputs a single Boolean o with
the following meaning: o is true as long as the sequence of inputs and outputs
satisfies the safety property. As soon as the property is not satisfied, o is false
forever. Compiling the program to be verified together with its observer provides
a single output program, on which one may prove that the output is never false.

Of course, observing a program should not change its behaviour. This is the
case with the observer technique, because the communication mechanism used
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in synchronous languages is the so-called synchronous broadcast: adding one or
several listeners of a signal does not modify the behaviour of the emitter.

In the testing and verification tools, the observer technique is used both for
the specification of the property to be tested or proved, and for the description
of the environment (see more details below). In the debugger, observers may be
used to specify conditional breakpoints.

3.3 The Ludic Lustre debugger

The Ludic debugger takes advantage of the formal semantics of Lustre: it works
by interpreting Lustre, not by executing some compiled machine code equipped
with traps. This enables some powerful functionalities over execution control
or state observation. Especially, the static bounded memory used at execution
time can be accessed, hence allowing to store any program state at any step
of some execution. Moreover, saving inputs is sufficient to replay executions
deterministically, which can be performed in a quite efficient way by storing
states periodically. Thus, temporal behaviours of programs can be observed step
by step, either forward or backward.

Inside one step, the declarative style of Lustre makes the data dependencies
quite hard to understand, because the executed code is the result of a static
scheduling of some activities that appear to be parallel at the Lustre level. Us-
ing slicing techniques [Wei79] may help programmers cutting parts of code that
can affect (or be affected) by some variable’s value, even if it does not give richer
information about the partial ordering between computations of variables. Ludic
implements such slicing algorithms, both static and dynamic [Gau03]. Generat-
ing program slices is based on semantic-preserving transformation techniques,
but tries to keep the structure of slices as close as possible to original ones.

3.4 The Nbac verification tool

Nbac [JHR99,Jea00] is founded on the theory of abstract interpretation [CC77],
which allows to overcome the undecidability of the reachability problem for a
large class of programs. Sets of states are represented in an approximate way by
abstract values belonging to an abstract domain, and (fix-point) computations
are performed on this abstract domain. This leads to conservative results: if a
state is shown unreachable, then it is, for sure.

The “basic” abstract domain used by Nbac is the direct product of the
Boolean lattice and the convex polyhedra lattice. More precisely, a set of states
is represented by the conjunction of a Binary Decision Diagram [Ack78,Bry86]
for Boolean variables, and a convex polyhedra [Jea02] for numerical variables.

A lot of abstract interpretation tools for imperative programs work with the
control structure given by the program text, and compute abstract values for
each state. For parallel programs, state explosion may occur when building the
explicit control structure.

In the declarative style of Lustre, there is no explicit control structure. Some
tools use the structure induced by the configurations of all the Boolean variables,
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but this may also explode. Moreover, such a control structure does not take into
account the control aspects induced by the numerical variables. Nbac is original
because it starts from a quite declarative program description, in which Boolean
and numerical variables play a symmetrical role. There is no natural control
structure in such a program, and Nbac is able to built one particular control
structure, depending on the property to prove. It starts from a very rough control
structure, and then refines it dynamically according to the needs of the analysis.
Successive refinements improve the accuracy of results and incrementally remove
states that have already been shown unreachable.

state

pre_cpt : int;

pre_m, init : bool;

input

n : int; val : bool;

local

goal, start : bool;

cpt : int; m : bool;

definition

start = (not init) and (pre_cpt = 0);

goal = if start then false else pre_m;

cpt = if val then pre_cpt + 1 else 0;

m = cpt >= n;

transition

pre_cpt’ = cpt;

pre_m’ = m;

init’ = false;

assertion n>=5;

initial start;

final goal;

Fig. 3. An Nbac program example

The input of Nbac is a synchronous program in which state variables have
been identified (to be used by the control structure refinement process), and the
transition from one instant to the next one is made explicit. Starting from the
Lustre program example of Section 2 and a specification of the initial and goal
states, Ludic produces the Nbac program of Figure 3. See more details on the
translation in Section 4, in particular the specification of an initial and a goal
states. For the translation of the original Lustre program, two state variables are
used: pre cpt and init that helps encoding the arrow operator (that initialises
flows). The variables are updated at each instant according to equations such as
v’ = expr, where v’ denotes the value of variable v at the next instant and expr
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is evaluated in the current instant. The assertion on the environment n >= 5 is
inherited from the Lustre program. There is no explicit output because this
format is used to specify the following proof obligation: prove that there is no
execution starting in an initial state and leading to a final state.

STATE1

STATE0

STATE2

(n ≥ 5)

val ∧ (pre cpt + 1 ≥ n) ∧ (n ≥ 5)

val ∧ (n ≥ 5)∨
val ∧ (pre cpt + 1 ≥ n) ∧ (n ≥ 5)

init ∧ pre m

init
∧(pre cpt = 0)

init ∧ (pre cpt = 0)
∧pre m

Fig. 4. Nbac: the initial control structure

Starting the analysis, Nbac will first build the explicit automaton given in
Figure 4, by separating initial, final, and other states. Nodes are numbered (for
references in the text) and labelled by formulas describing sets of states. Edges
are labelled by necessary conditions on state and input variables to move from
the source node to the target node within one execution step.

Nbac may answer “yes”, which means that the property is true, and there
is no path from initial to final. It may also answer “don’t know” and provide
as a result a new program of the same form. The meaning of the result is the
following: Nbac has reduced the concrete state space of the original program,
removing the states that cannot belong to a path from an initial state to a final
state.

The result of the analysis, for the program of Figure 3, is given in Figure 5.
Notice that the number of abstract states has increased, because Nbac has refined
the control structure in order to be more precise. The result is still given by
means of formula, and it may be difficult to extract concrete counter-examples
from it. That is the reason why we connect the output of Nbac to the testing
tool Lurette (see Section 4).
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STATE2 STATE12

STATE11

STATE0

init ∧ pre m
∧(pre cpt = 0)∧(pre cpt ≥ 5)

init ∧ pre m

init ∧ pre m
∧(pre cpt ≥ 1)

∧(pre cpt = 0)

val ∧ (n ≥ 5)

val ∧ (n ≥ 5)

val ∧ (n ≥ 5)

val ∧ (pre cpt + 1 ≥ n) ∧ (n ≥ 5)

val ∧ (pre cpt + 1 ≥ n) ∧ (n ≥ 5)
(pre cpt + 1 ≥ n)

val ∧ (n ≥ 5)∧

val ∧ (n ≥ 5)∧
(pre cpt + 1 ≥ n)

init

Fig. 5. Nbac: the result of the analysis on the automaton of Figure 4

3.5 The Lurette testing tool

Lurette [RWNH98] is a tool that automatically tests reactive programs. One of
the key points is the selection of inputs. Indeed, the inputs of a reactive system
cannot be chosen randomly. The program is intended to be run inside some
environment, on which its outputs will have some influence, thus influencing
the future inputs of the program itself. For instance, the reactive system may
be used to control a physical environment made of a heater and some air; it
receives inputs from a thermometer, and sends outputs on and off to the heater.
The heater is supposed to work. Then, if the system sends on, the temperature
should start increasing; considering sequences of temperature inputs that do not
increase from now on, is simply irrelevant. This is even stronger: a model of the
physical environment also gives bounds to the variation rate of the temperature.

In Lurette, the testing process is automated in two ways:

– Lurette automatically generates input sequences for the program under test
according to a user-given specification of realistic (or “interesting”) scenarios
modelling the environment. This cannot be done off-line, because the specifi-
cation of the environment needs to know the outputs of the program. Hence
the code of the program, and the specification of the environment, are “ex-
ecuted” together to provide sequences of relevant inputs. Generating values
for a program with numerical variables involves general constraint solving
techniques. The environment being intrinsically nondeterministic means we
have to choose random values, among the solutions of the constraints.

– The test results perusal is also automated; users simply need to provide
yet another specification (an oracle), which describes correct behaviours or
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desired properties of the inputs and outputs sequences. The oracle is also
executed together with the program and the environment.

Recently, Lurette has been completely re-implemented, and extended. The
main difference, from the user point of view, is the language used to describe the
environment. In the first version of Lurette, only Lustre observers are offered,
which means that we describe acceptors of correct input/output sequences, as
Lustre programs. In the new version of Lurette, one may also use the language
Lutin [RR02]. Lutin is based on regular expressions, which are sometimes more
convenient than Lustre, when sequences of behaviours have to be described. This
does not change the underlying synchronous computation model, but it gives a
more “operational” style of description, in which non-determinism is explicit.

The interesting part, for using this new version Lurette in our context, is the
possibility to attach weights to the branches of choices, in regular expressions.
For instance, in the expression e1 + e2, one may put a large weight on e1, and
a smaller one on e2, meaning that the generator will select the first branch more
often.

Lutin is compiled into the intermediate format Lucky [Jah03,RJR03] which
is basically the automaton form of Lutin regular expressions, with weights on
the transitions. A major advantage of having such an intermediate format with
a straightforward semantics is that it eases the work for third-party tools to
produce code into, which is precisely what we do in Section 4.

The restrictions of Lutin/Lucky are: (1) the constraints on inputs, at a given
point of a sequence, may only depend on the past values of outputs (as in Lustre);
and (2) numeric constraints should be linear. For instance, x + y > 3 can be
handled, but not x2

1 + x2
2 > 2 nor log x1 + sin x2 > ex3 .

Off On

11 1000

1000

0 < D < 0.1−0.1 < D < 0

heat on ∧ (D = 0)

heat on ∧ (D = 0)

Fig. 6. A simple Lucky automaton with a Boolean input heat on and a float output D

We explain the operational semantics of Lucky on the automaton of Figure 6.
This automaton has one Boolean input heat on, and one float output D. Suppose
that the initial node is Off ; two transitions are possible from that node.

– If the current value of the input heat on is false, then it means that the
transition that goes to the On node can not be taken (it is labelled by a
formula that can not be satisfied). In such a case, only the transition labelled
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by the formula −0.1 < D < 0 can be taken. This formula will therefore be
solved, and a solution will be drawn inside its set of solutions (namely, a
float between −0.1 and 0) which will be the output of the automaton for the
first step.

– If the current value of the input heat on is true, then two transitions are
possible: the previous one, which has the weight 1; and a transition labelled
by the weight 1000. The latter will therefore be drawn with a probability
of 1000/1001. In such a case, since the transition is labelled by the formula
heat on ∧ D = 0, the value of the automaton output D will be 0 for the
current step. And at the next step, the current node will be On.

The behaviour is symmetric if the current node in On, except that D will
increase instead of decrease.

4 Connecting tools

From Ludic to Nbac. Consider again our Lustre program example of Figure 1,
and the Nbac program of Figure 3. Remember that we want to generate an
input sequence that makes the output variable m become true, starting from a
given step of some execution (not necessarily the first instant). For that purpose,
Ludic has to translate the Lustre program into the Nbac format, adding the
specification for the start and the goal states.

The start state we are interested in is unique and completely defined by the
valuation of the memories of the original program (init and pre cpt). Ludic
encodes this state into the Nbac format with the variable start. The set of goal
states is usually specified as a safety property through the use of a synchronous
observer. In our example, we need an observer for the variable m. We are inter-
ested in instants for which the output m is true. This is the same as looking for
states where pre(m) is true. This is encoded by goal = if start then false
else pre m, because the goal should not be true at the instant in which we start
the analysis.

The encoding the original Lustre program requires only two variables:
pre cpt for the memory of cpt, and init for the encoding of the arrow ini-
tialisation operator. Specifying the final state involved in the proof obligation
requires one more variable: pre m, the memory of m. It is added to the Nbac
program, with the obvious updating equation pre m’ = m.

For efficiency purposes, Ludic also performs some static slicing on the Lustre
program, with respect to the set of variables involved in the definition of the
goal state. Moreover, the front-end of the Lustre compiler is used to perform
some network minimisation in order to reduce the number of variables, a crucial
issue for the performance of Nbac.

From Nbac to Lurette. The verification goal of Nbac is then asked to show
that there is no execution starting from the set of start states and leading to
the set of goal states. The two possible answers of the Nbac analysis are the
following:
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– the property holds, i.e., the goal state is unreachable and has been removed
during the refinement of the control structure. For debugging purposes, this
information is as interesting as a counter-example;

– the property may not hold, i.e., there exists paths inside the control structure
leading to the goal state. Lurette will try to generate one or more input
sequences. If Lurette generates at least one finite sequence, this sequence
can be replayed by Ludic. Otherwise, we are in the problematic case where
it is impossible to know, because of the abstractions made by Nbac, whether
the state is unreachable or whether an existing path is difficult to reach
because of a very low probability.

From Lurette back to Ludic. The control structure delivered by Nbac from
our example is given in Figure 5. Here, it is intuitively clear that we should try
to avoid the node STATE12 to generate a short counter-example, which implies
to always maintain the input val to true. This corresponds precisely to the fact
that the input variable val should be maintained true long enough to make m
become true.

Attaching Lucky’s weights to this control structure can help finding short
paths. Our heuristic is the following: from a given state S, the transitions that
may lead to the goal state along the shortest paths have the greater weights.
More precisely, we compute for each node n its minimal distance (in number
of edges) δ(n) to the goal node. To increase the weight of edges that make this
distance decrease, each edge n1 → n2 is then given the weight pδ(n1)−δ(n2), where
p is a user defined parameter.

2

2

2

4

1

4

4

STATE2 STATE12

STATE11

STATE0

init ∧ pre m
∧(pre cpt = 0)∧(pre cpt ≥ 5)

init ∧ pre m

init ∧ pre m
∧(pre cpt ≥ 1)

∧(pre cpt = 0)

val ∧ (n ≥ 5)

val ∧ (n ≥ 5)

val ∧ (n ≥ 5)

val ∧ (pre cpt + 1 ≥ n) ∧ (n ≥ 5)

val ∧ (pre cpt + 1 ≥ n) ∧ (n ≥ 5)
(pre cpt + 1 ≥ n)

val ∧ (n ≥ 5)∧

val ∧ (n ≥ 5)∧
(pre cpt + 1 ≥ n)

init

Fig. 7. The Lucky automaton: adding weights to the result of Nbac shown on Figure 5

12



The result of this heuristic with p = 2 is shown on Figure 7. Note that it is
the same automaton as in Figure 5, but decorated with weights. For STATE11,
the outgoing transitions have weights 1, 2, and 4. The loop on STATE11
corresponds to the incrementation of cpt, which should be selected at least
four times before the transition to the goal state is satisfiable. In the diagram
of Figure 2, steps 5 and 6 represent a (useless) transition to STATE12 and back.
Choosing p = 1000 instead of 2 would make this behaviour very unprobable.
Indeed, when the transition to the goal state is unsatisfiable, the choice is
between transitions with weights 1 and 2 if p = 2, or 1 and 1000 if p = 1000.

Limitation of the approach. There exists cases in which increasing weights
does not help in generating shorter paths. Observe, for instance, the automaton
of Figure 8. In order to find a concrete path from A to C, the random sequence
generator has to “choose” the loop that increments cpt exactly 5 times, and then
to “choose” the transition from A to B. Whatever the weights on the transitions
sourced in state A, this is very unlikely to happen.

CBA

cpt = pre(cpt)+1

cpt = 0 cpt = 5

Fig. 8. The Lucky automaton of a problematic case

In fact, the automaton of Figure 8 can not be produced by Nbac. Indeed,
Nbac performs a backward analysis that enforces a condition on the transition
from A to B, i.e., the guard cpt = 5. In this case, the “choice” between the two
transitions sourced in A can be guided by the satisfiability of conditions on the
transitions, not only by weights.

However, in similar cases, Nbac may have to abstract away variables, pre-
venting the backward analysis from enforcing a condition on the transition from
A to B. In those complex cases, playing with weights attached to the transitions
sourced in A is useless. These cases should be detected somewhere along the
chain of tools. This requires further work.

5 Related work

As far as the motivations of our work are concerned, the closest related work
deals with automated testing of synchronous circuits.

In [ZCR01], for instance, the authors use symbolic simulation in order to
generate functional test vectors; since they care about coverage metrics, they
have to specify a simulation target, and to try and reach it. The paper mainly
discusses various constraint solving problems involved in the symbolic simula-
tion process. Our approach is based on an approximate verification tool, which
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guarantees more reasonable costs. For the “reach a state” functionality to be
useful in a debugger, it should not take too long.

The connection between a proof tool and a test case generation tool is not
a completely new idea: it has been done already, in order to obtain counter-
examples when the Boolean model-checker fails [PHR01]. The problem of error
diagnosis in symbolic model-checking is well known [CGMZ95], but it is even
more difficult in the case of programs with (a lot of) numerical variables, be-
cause the verification tool only gives approximate results. More recently, there
has been interest in using counter-example generation to refine abstractions
[CGJ+00,CCK+02], but in these works only abstraction of (big) finite-state sys-
tems are considered, which simplifies several algorithmical aspects.

6 Conclusions and Further work

The first motivation of this work is to provide a “reach-a-state” functionality
in a debugger for reactive systems, written in formally defined languages, for
which the problem can be expressed clearly. Since implementing this functional-
ity amounts to solving a general model-checking problem, we chose a solution in
which several independent tools are connected together, instead of some ad hoc
coding of model-checking algorithms in the debugger. At first sight, it might not
be the most straightforward implementation, but it makes clear what interfaces
have to be respected between the various stages, for other tools to be used in the
same chain. The set of tools we selected for demonstrating the feasibility of the
approach have the following advantages: they all take numerical variables into
account; the proof tool favours approximate results because they can be obtained
in a reasonable time; the testing tool exploits the weights on the transitions of
the automaton in order to provide short sequences.

We tried the chain of tools on medium-size examples, and it seems feasible.
As one could expect, the bottleneck lies in the verification tool. In particular, the
number of variables has a strong influence on the complexity of the algorithms
involved. Further work will be devoted to the translation from Ludic to the
input of Nbac, in order to simplify the program as much as possible. We already
used slicing techniques, but we could also apply general constant propagation
techniques, or other optimisations based on static analyses.

Further work includes studying carefully the influence of weights on the gen-
eration of “short” sequences. For the moment, the weights are chosen automati-
cally according to the structure of the graph, and the length of the paths leading
to the goal. We could think of alternative criteria for choosing the sequences: in
a debugger, the sequence provided by our chain of tools is meant to show clearly
how the program can go from the present state to another one. It might be the
case that a sequence in which a minimal number of variables change their value
is simpler to understand than a shortest sequence in which all variables change
their value at each step.

As a new feature in the debugger Ludic, the ability to reach a state auto-
matically has several applications. In order to automate the exploration of both

14



time and data dependencies of complex programs, Ludic implements an orig-
inal adaptation of the well-known algorithmic debugging principle [Sha83]. In
practice, this technique can be used for a large class of (even big) programs.
However, it may be the case that, at a given point of some execution, the value
of a variable directly depends on some values computed many steps ago, forcing
the tool to explore many previous steps (potentially the whole execution). For
such programs, generating a short input sequence that leads to the same state
where the bug symptom originally occurred would help locating the bug.
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Fig. 9. A Ludic snapshot of the automatic state reaching capability in action
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