Introductory Course
on Logic and Automata Theory

Introduction to the lambda calculus

Pol yvi os. Prati kaki s@ mag. fr

Based on slides by Jeff Foster, UMD

Introduction to lambda calculus — p.

History

Formal mathematical system
Simplest programming language
Intended for studying functions, recursion

Invented in 1936 by Alonzo Church (1903-1995)
o Church’s Thesis:

e o o o

s “Every effectively calculable function (effectively
decidable predicate) is general recursive”
s l.e. can be computed by lambda calculus

» Church’s Theorem:
s First order logic is undecidable

Introduction to lambda calculus — p.

Syntax

® Simple syntax:

e = X Variables
| Ax.e Functions
| ee Function applications

#® Pure lambda calculus: only functions
s Arguments are functions
» Returned value is function
» A function on functions is higher-order

Introduction to lambda calculus — p.

Semantics

Evaluating function application: (AX.e;)
» Replace every Xin e with &
o Evaluate the resulting term
o Return the result of the evaluation

Formally: “B-reduction”
s (AX.e) & —peie/X
» A term that can be 3-reduced is a redex
» We omit 3 when obvious

Introduction to lambda calculus — p.

Convenient assumptions

® Syntactic sugar for declarations
o letX=e1ine

® Scope of A extends as far to the right as possible
® AXAY.XYis AX.(AY.(XY))

® Function application is left-associative
s XYzZmeans (XY) z

Introduction to lambda calculus — p.

Scoping and parameter passing

[3-reduction is not yet well-defined:

s (AX.e) & — er[e/X
o There might be many X defined in €;

® Example
Consider the program
let X=ain
lety = AzXin
let X=Din
y X

Which Xis bound to a, and which to b?

Introduction to lambda calculus — p.

Lexical scoping

® Variable refers to closest definition

® \We can rename variables to avoid confusion:

let X=ain
let y = AzXin
letw=Din

YW

Introduction to lambda calculus — p.

Free/bound variables

® The set of free variables of a term is
FV(X) = X
FV (Ax.e) FV(e)\ {x}
FV(ete) = FV(e)UFV(e)

® Atermeisclosed if FV(e) =0

® A variable that is not free is bound

Introduction to lambda calculus — p.

Ol-conversion

® Terms are equivalent up to renaming of bound variables
s Ax.e=Ayely/xify¢ FV(e)
» Renaming of bound variables is called a-conversion

» Used to avoid having duplicate variables, capturing
during substitution

Introduction to lambda calculus — p.

Substitution

® Formal definition

X|e/X e
yle/x] =y whenx #y
(E1&)le/x] = (ele/x] e[e/x])
(Ay.e1)[e/X Ay.(eile/x]) wheny # x andy ¢ FV (e)
& Example

s (AXYX) X=q (AWYW) X —=p Y X
o We omit writing a-conversion

Introduction to lambda calculus — p. 1

Functions with many arguments

® We can’t yet write functions with many arguments
s For example, two arguments: A(X,Y).e

® Solution: take the arguments, one at a time
» AX.Ay.e

o A function that takes X and returns another function that
takes y and returns €

s (AX.Ay.e)ab— (Ay.ea/x|) b— ea/x||b/y|
o This is called Currying
o Can represent any number of arguments

Introduction to lambda calculus — p. 1

Representing booleans

true = AX.AY.X
false = AX.AY.Y
if athenbelsec=abc

© o o @

For example:
s if true then belse ¢ — (AX.Ay.X) bc — (Ay.b)c— Db
s if false then belse c — (AX.Ay.y) bc— (Ay.y)c—cC

Introduction to lambda calculus — p. 1

Combinators

® Any closed term is also called a combinator
» true and false are combinators

® Other popular combinators:
s | =AXX
s K= AXAyX
® S=AXAYAzZXZ(YyZ)
o We can define calculi in terms of combinators

s The SKl-calculus
s SKil-calculus is also Turing-complete

Introduction to lambda calculus — p. 1

Encoding pairs

(a,b) = AX.if Xthen aelse b
fst = Ap.ptrue

snd = Ap.pfalse

Then

s fst(a,b)—...—a

s snd(a,b)—...—Db

© o o 0

Introduction to lambda calculus — p. 1

Natural numbers (Church)

0= AXAYY

1 = AX.AY.Xy

2 = AXAY.X (XY)

i.e. N = AX.AY.(apply X ntimes to y)
succ = AZAX.AY.X (ZXY)

© o o o o @

iszero = Az.z (Ay.false) true

Introduction to lambda calculus — p. 1

Natural numbers (Scott)

0 = AX.AY.X
1=AXAyyO0
2=AXAYyYyl

i.e. N=AXAyy(n—1)
succ = AZAX.AY.yz
pred =Azz0 (AX.X)

iszero = AZ.ztrue (AX.false)

© o o o o 0 0o

Introduction to lambda calculus — p. 1

Nondeterministic semantics

e— €
()\x.el) e — el[ez/x] ()\x.e) — ()\x.e/)

el—>e(1 ez—>%
ee—€ee ee—e 6

Question: why is this semantics non-deterministic?

Introduction to lambda calculus — p. 1

Example

® We can apply reduction anywhere in the term
s (AX.(AY.Y) X (Azw) X) — AX.(X ((AZW) X) — AX.XW
o (AX.(AY.Y) X ((AZW) X) — AX.(AY.Y) XW — AX.X W

® Does the order of evaluation matter?

Introduction to lambda calculus — p. 1

The Church-Rosser Theorem

® |Lemma (The Diamond Property):
s Ifa— band a— c, then there exists d such that b —* d
and c —*d
® Church-Rosser theorem:

s Ifa—*banda—*c, then there exists d such that
b—-*dandc—*d

o Proof by diamond property

® Church-Rosser also called confluence

Introduction to lambda calculus — p. 1

Normal form

® Atermis in normal form if it cannot be reduced
s Examples: AX.X, AX.AY.zZ
® By the Church-Rosser theorem, every term reduces to at
most one normal form
o Only for pure lambda calculus with non-deterministic
evaluation

#® Notice that for function application, the argument need not be
In normal form

Introduction to lambda calculus — p. 2

[3-equivalence

® Let =g be the reflexive, symmetric, transitive closure of —

s E.g., (AXX)y— Yy« (AZAW.Z) YV so all three are
B-equivalent

8 Ifa=g b, then there exists c such thata —*cand b —* C
o Follows from Church-Rosser theorem

#® In particular, if a =g b and both are normal forms, then they
are equal

Introduction to lambda calculus — p. 2

Not every term has a normal form

® Consider
o A= AXXX
o ThenAA—-AAN— --.

#® |n general, self application leads to loops

® .. .which is good if we want recursion

Introduction to lambda calculus — p. 2

Fixpoint combinator

® Also called a paradoxical combinator

s Y =Af.(AXT (XX)) (AX.T (XX))

o There are many versions of the Y combinator
® Then,YF =sF (YF)

s YF=Af.(AXT (XX)) (AX.f (xX))) F

s — (AXF (xX)) (AX.F (xx))

o —F ((AF (xX)) (AXF (xx)))
s —F(YF)

Introduction to lambda calculus — p. 2

Example

o fact(n) =if (n=0) then lelse nx fact(n—1)
® LetG=Af.An.if (Nn=0) then lelsenx f(n—1)
® YG1=G(YG)1

=g (Af.An.if (n=0) then lelsenx f(n—1)) (YG) 1

=g if (1=10) then lelse 1x((Y G) 0)

=g if (1=0) then lelse 1x (G (Y G) 0)

=g if (1=0) then lelse 1x (Af.An.if (n=0) then lelse nx f(n—1) (Y G) 0)
=g if (1= 10) then lelse 1x (if (0= 0) then 1lelse 0x ((Y G) 0))

© o o o 0 0

—plx1=1

Introduction to lambda calculus — p. 2

In other words

® The Y combinator “unrolls” or “unfolds” its argument an
Infinite number of times
s YG=G(YG) =G(G(YG)=G(G(G(YG)))=...
» G needs to have a “base case” to ensure termination
#® But, only works because we follow call-by-name

o Different combinator(s) for call-by-value

o Z=A.(AXF (AY.XXY)) (AX. T (AY.XXY))
» Why is this a fixed-point combinator? How does its
difference from Y work for call-by-value?

Introduction to lambda calculus — p. 2

Why encodings

® |t's fun!
® Shows that the language is expressive

#® |n practice, we add constructs as languages primitives
o More efficient
o Much easier to analyze the program, avoid mistakes

» Our encodings of O and true are the same, we may want
to avoid mixing them, for clarity

Introduction to lambda calculus — p. 2

Lazy and eager evaluation

® Our non-deterministic reduction rule is fine for theory, but
awkward to implement

® Two deterministic strategies:

s Lazy: Given (AX.e;) &, do not evaluate &, if €; does not
need X anywhere
s Also called left-most, call-by-name, call-by-need,
applicative, normal-order evaluation (with slightly
different meanings)

s Eager: Given (AXx.e;) e, always evaluate €, to a normal
form, before applying the function
s Also called call-by-value

Introduction to lambda calculus — p. 2

Lazy operational semantics

(Ax.e1) —! (Ax.ep)
ei —' Axe e€e/x ¢
ere—' €
® The rules are deterministic, big-step
» The right-hand side is reduced “all the way”

® The rules do not reduce under A

® The rules are normalizing:

o If ais closed and there is a normal form b such that
a—*b, then a—' d for some d

Introduction to lambda calculus — p. 2

Eager (big-step) semantics

(AX.€1) —€ (AX.€1)
et —°Axe e —fd eé/x—c¢
e e —°¢€

® This big-step semantics is also deterministic and does not
reduce under A

® Butis not normalizing!
s Example: letx=AAin (AY.y)

Introduction to lambda calculus — p. 2

Lazy vs eager In practice

® Lazy evaluation (call by name, call by need)
Has some nice theoretical properties
» Terminates more often
o Lets you play some tricks with “infinite” objects
o Main example: Haskell

® Eager evaluation (call by value)
o Is generally easier to implement efficiently
o Blends more easily with side-effects
» Main examples: Most languages (C, Java, ML, ...)

Introduction to lambda calculus — p. 3

Functional programming

® The A calculus is a prototypical functional programming
language
o Higher-order functions (lots!)
o No side-effects
#® |n practice, many functional programming languages are not
“pure”; they permit side-effects
o But you’re supposed to avoid them. ..

Introduction to lambda calculus — p. 3

Functional programming today

Two main camps
o Haskell — Pure, lazy functional language; no side-effects
» ML (SML, OCaml) — Call-by-value, with side-effects

® Old, still around: Lisp, Scheme
» Disadvantage/feature: no static typing

Introduction to lambda calculus — p. 3

Influence of functional programming

® Functional ideas move to other langauges

o Garbage collection was designed for Lisp; now most new
languages use GC

o Generics in C++/Java come from ML polymorphism, or
Haskell type classes

o Higher-order functions and closures (used in Ruby, exist
In C#, proposed to be in Java soon) are everywhere in
functional languages

» Many object-oriented abstraction principles come from
ML's module system

Introduction to lambda calculus — p. 3

	History
	Syntax
	Semantics
	Convenient assumptions
	Scoping and parameter passing
	Lexical scoping
	Free/bound variables
	$alpha $-conversion
	Substitution
	Functions with many arguments
	Representing booleans
	Combinators
	Encoding pairs
	Natural numbers (Church)
	Natural numbers (Scott)
	Nondeterministic semantics
	Example
	The Church-Rosser Theorem
	Normal form
	$�eta $-equivalence
	Not every term has a normal form
	Fixpoint combinator
	Example
	In other words
	Why encodings
	Lazy and eager evaluation
	Lazy operational semantics
	Eager (big-step)
semantics
	Lazy vs eager in practice
	Functional programming
	Functional programming today
	Influence of functional programming

