
Introductory Course
on Logic and Automata Theory

Introduction to the lambda calculus

Polyvios.Pratikakis@imag.fr

Based on slides by Jeff Foster, UMD

Introduction to lambda calculus – p. 1/33

History

Formal mathematical system

Simplest programming language

Intended for studying functions, recursion

Invented in 1936 by Alonzo Church (1903-1995)

Church’s Thesis:

“Every effectively calculable function (effectively
decidable predicate) is general recursive”
i.e. can be computed by lambda calculus

Church’s Theorem:

First order logic is undecidable

Introduction to lambda calculus – p. 2/33

Syntax

Simple syntax:

e ::= x Variables
| λx.e Functions
| e e Function applications

Pure lambda calculus: only functions

Arguments are functions

Returned value is function

A function on functions is higher-order

Introduction to lambda calculus – p. 3/33

Semantics

Evaluating function application: (λx.e1) e2

Replace every x in e1 with e2

Evaluate the resulting term

Return the result of the evaluation

Formally: “β-reduction”

(λx.e1) e2→β e1[e2/x]

A term that can be β-reduced is a redex

We omit β when obvious

Introduction to lambda calculus – p. 4/33

Convenient assumptions

Syntactic sugar for declarations

let x = e1 in e2

Scope of λ extends as far to the right as possible

λx.λy.x y is λx.(λy.(x y))

Function application is left-associative

x y z means (x y) z

Introduction to lambda calculus – p. 5/33

Scoping and parameter passing

β-reduction is not yet well-defined:

(λx.e1) e2→ e1[e2/x]
There might be many x defined in e1

Example

Consider the program
let x = a in

let y = λz.x in

let x = b in

y x
Which x is bound to a, and which to b?

Introduction to lambda calculus – p. 6/33

Lexical scoping

Variable refers to closest definition

We can rename variables to avoid confusion:
let x = a in

let y = λz.x in

let w = b in

y w

Introduction to lambda calculus – p. 7/33

Free/bound variables
The set of free variables of a term is

FV (x) = x
FV (λx.e) = FV (e)\{x}
FV (e1 e2) = FV (e1)∪FV (e2)

A term e is closed if FV (e) = /0
A variable that is not free is bound

Introduction to lambda calculus – p. 8/33

α-conversion
Terms are equivalent up to renaming of bound variables

λx.e = λy.e[y/x] if y /∈ FV (e)
Renaming of bound variables is called α-conversion

Used to avoid having duplicate variables, capturing
during substitution

Introduction to lambda calculus – p. 9/33

Substitution
Formal definition

x[e/x] = e
y[e/x] = y whenx 6= y

(e1 e2)[e/x] = (e1[e/x] e2[e/x])
(λy.e1)[e/x] = λy.(e1[e/x]) wheny 6= x andy /∈ FV (e)

Example

(λx.y x) x =α (λw.y w) x→β y x
We omit writing α-conversion

Introduction to lambda calculus – p. 10/33

Functions with many arguments

We can’t yet write functions with many arguments

For example, two arguments: λ(x,y).e

Solution: take the arguments, one at a time

λx.λy.e
A function that takes x and returns another function that
takes y and returns e
(λx.λy.e) a b→ (λy.e[a/x]) b→ e[a/x][b/y]
This is called Currying

Can represent any number of arguments

Introduction to lambda calculus – p. 11/33

Representing booleans

true = λx.λy.x

false = λx.λy.y

if a then b else c = a b c

For example:

if true then b else c→ (λx.λy.x) b c→ (λy.b) c→ b

if false then b else c→ (λx.λy.y) b c→ (λy.y) c→ c

Introduction to lambda calculus – p. 12/33

Combinators
Any closed term is also called a combinator

true and false are combinators

Other popular combinators:

I = λx.x
K = λx.λy.x
S = λx.λy.λz.x z (y z)
We can define calculi in terms of combinators

The SKI-calculus
SKI-calculus is also Turing-complete

Introduction to lambda calculus – p. 13/33

Encoding pairs

(a,b) = λx.if x then a else b

fst = λp.p true

snd = λp.p false

Then

fst (a,b)→ ...→ a

snd (a,b)→ ...→ b

Introduction to lambda calculus – p. 14/33

Natural numbers (Church)

0 = λx.λy.y

1 = λx.λy.xy

2 = λx.λy.x (x y)

i.e. n = λx.λy.〈apply x n times to y〉

succ = λz.λx.λy.x (z x y)

iszero = λz.z (λy.false) true

Introduction to lambda calculus – p. 15/33

Natural numbers (Scott)

0 = λx.λy.x

1 = λx.λy.y 0

2 = λx.λy.y 1

i.e. n = λx.λy.y (n−1)

succ = λz.λx.λy.yz

pred = λz.z 0 (λx.x)

iszero = λz.z true (λx.false)

Introduction to lambda calculus – p. 16/33

Nondeterministic semantics

(λx.e1) e2→ e1[e2/x]
e→ e′

(λx.e)→ (λx.e′)

e1→ e′1
e1 e2→ e′1 e2

e2→ e′2
e1 e2→ e1 e′2

Question: why is this semantics non-deterministic?

Introduction to lambda calculus – p. 17/33

Example

We can apply reduction anywhere in the term

(λx.(λy.y) x ((λz.w) x)→ λx.(x ((λz.w) x)→ λx.x w

(λx.(λy.y) x ((λz.w) x)→ λx.(λy.y) x w→ λx.x w

Does the order of evaluation matter?

Introduction to lambda calculus – p. 18/33

The Church-Rosser Theorem
Lemma (The Diamond Property):

If a→ b and a→ c, then there exists d such that b→∗ d
and c→∗ d

Church-Rosser theorem:

If a→∗ b and a→∗ c, then there exists d such that
b→∗ d and c→∗ d
Proof by diamond property

Church-Rosser also called confluence

Introduction to lambda calculus – p. 19/33

Normal form
A term is in normal form if it cannot be reduced

Examples: λx.x, λx.λy.z

By the Church-Rosser theorem, every term reduces to at
most one normal form

Only for pure lambda calculus with non-deterministic
evaluation

Notice that for function application, the argument need not be
in normal form

Introduction to lambda calculus – p. 20/33

β-equivalence

Let =β be the reflexive, symmetric, transitive closure of→

E.g., (λx.x) y→ y← (λz.λw.z) y y so all three are
β-equivalent

If a =β b, then there exists c such that a→∗ c and b→∗ c

Follows from Church-Rosser theorem

In particular, if a =β b and both are normal forms, then they
are equal

Introduction to lambda calculus – p. 21/33

Not every term has a normal form

Consider

∆ = λx.x x
Then ∆ ∆→ ∆ ∆→ ·· ·

In general, self application leads to loops

. . . which is good if we want recursion

Introduction to lambda calculus – p. 22/33

Fixpoint combinator

Also called a paradoxical combinator

Y = λ f .(λx. f (x x)) (λx. f (x x))
There are many versions of the Y combinator

Then, Y F =β F (Y F)

Y F = (λ f .(λx. f (x x)) (λx. f (x x))) F

→ (λx.F (x x)) (λx.F (x x))

→ F ((λx.F (x x)) (λx.F (x x)))

← F (Y F)

Introduction to lambda calculus – p. 23/33

Example

f act(n) = if (n = 0) then 1 else n∗ f act(n−1)

Let G = λ f .λn.if (n = 0) then 1 else n∗ f (n−1)

Y G 1 =β G (Y G) 1
=β (λ f .λn.if (n = 0) then 1 else n∗ f (n−1)) (Y G) 1

=β if (1 = 0) then 1 else 1∗ ((Y G) 0)

=β if (1 = 0) then 1 else 1∗ (G (Y G) 0)

=β if (1 = 0) then 1 else 1∗ (λ f .λn.if (n = 0) then 1 else n∗ f (n−1) (Y G) 0)

=β if (1 = 0) then 1 else 1∗ (if (0 = 0) then 1 else 0∗ ((Y G) 0))

=β 1∗1 = 1

Introduction to lambda calculus – p. 24/33

In other words
The Y combinator “unrolls” or “unfolds” its argument an
infinite number of times

Y G = G (Y G) = G (G (Y G)) = G (G (G (Y G))) = . . .

G needs to have a “base case” to ensure termination

But, only works because we follow call-by-name

Different combinator(s) for call-by-value

Z = λ f .(λx. f (λy.x x y)) (λx. f (λy.x x y))
Why is this a fixed-point combinator? How does its
difference from Y work for call-by-value?

Introduction to lambda calculus – p. 25/33

Why encodings

It’s fun!

Shows that the language is expressive

In practice, we add constructs as languages primitives

More efficient

Much easier to analyze the program, avoid mistakes

Our encodings of 0 and true are the same, we may want
to avoid mixing them, for clarity

Introduction to lambda calculus – p. 26/33

Lazy and eager evaluation

Our non-deterministic reduction rule is fine for theory, but
awkward to implement

Two deterministic strategies:

Lazy : Given (λx.e1) e2, do not evaluate e2 if e1 does not
need x anywhere

Also called left-most, call-by-name, call-by-need,
applicative, normal-order evaluation (with slightly
different meanings)

Eager : Given (λx.e1) e2, always evaluate e2 to a normal
form, before applying the function

Also called call-by-value

Introduction to lambda calculus – p. 27/33

Lazy operational semantics

(λx.e1)→
l (λx.e1)

e1→
l λx.e e[e2/x]→l e′

e1 e2→
l e′

The rules are deterministic, big-step

The right-hand side is reduced “all the way”

The rules do not reduce under λ
The rules are normalizing:

If a is closed and there is a normal form b such that
a→∗ b, then a→l d for some d

Introduction to lambda calculus – p. 28/33

Eager (big-step) semantics

(λx.e1)→
e (λx.e1)

e1→
e λx.e e2→

e e′ e[e′/x]→e e′′

e1 e2→
e e′′

This big-step semantics is also deterministic and does not
reduce under λ
But is not normalizing!

Example: let x = ∆ ∆ in (λy.y)

Introduction to lambda calculus – p. 29/33

Lazy vs eager in practice

Lazy evaluation (call by name, call by need)

Has some nice theoretical properties

Terminates more often

Lets you play some tricks with “infinite” objects

Main example: Haskell

Eager evaluation (call by value)

Is generally easier to implement efficiently

Blends more easily with side-effects

Main examples: Most languages (C, Java, ML, . . .)

Introduction to lambda calculus – p. 30/33

Functional programming

The λ calculus is a prototypical functional programming
language

Higher-order functions (lots!)

No side-effects

In practice, many functional programming languages are not
“pure”: they permit side-effects

But you’re supposed to avoid them. . .

Introduction to lambda calculus – p. 31/33

Functional programming today

Two main camps

Haskell – Pure, lazy functional language; no side-effects

ML (SML, OCaml) – Call-by-value, with side-effects

Old, still around: Lisp, Scheme

Disadvantage/feature: no static typing

Introduction to lambda calculus – p. 32/33

Influence of functional programming

Functional ideas move to other langauges

Garbage collection was designed for Lisp; now most new
languages use GC

Generics in C++/Java come from ML polymorphism, or
Haskell type classes

Higher-order functions and closures (used in Ruby, exist
in C#, proposed to be in Java soon) are everywhere in
functional languages

Many object-oriented abstraction principles come from
ML’s module system

. . .

Introduction to lambda calculus – p. 33/33

	History
	Syntax
	Semantics
	Convenient assumptions
	Scoping and parameter passing
	Lexical scoping
	Free/bound variables
	$alpha $-conversion
	Substitution
	Functions with many arguments
	Representing booleans
	Combinators
	Encoding pairs
	Natural numbers (Church)
	Natural numbers (Scott)
	Nondeterministic semantics
	Example
	The Church-Rosser Theorem
	Normal form
	$�eta $-equivalence
	Not every term has a normal form
	Fixpoint combinator
	Example
	In other words
	Why encodings
	Lazy and eager evaluation
	Lazy operational semantics
	Eager (big-step)
semantics
	Lazy vs eager in practice
	Functional programming
	Functional programming today
	Influence of functional programming

