Introductory Course on Logic and Automata Theory

Introduction to the lambda calculus

Polyvios.Pratikakis@imag.fr

Based on slides by Jeff Foster, UMD

Introduction to lambda calculus - p. 1/3

History

- Formal mathematical system
- Simplest programming language
- Intended for studying functions, recursion
- Invented in 1936 by Alonzo Church (1903-1995)
 - Church's Thesis:
 - "Every effectively calculable function (effectively decidable predicate) is general recursive"
 - i.e. can be computed by lambda calculus
 - Church's Theorem:
 - First order logic is undecidable

Syntax

Simple syntax:

- $e ::= x \quad \text{Variables} \\ | \lambda x.e \quad \text{Functions} \\ | e e \quad \text{Function applications} \end{aligned}$
- Pure lambda calculus: only functions
 - Arguments are functions
 - Returned value is function
 - A function on functions is higher-order

Semantics

- Evaluating function application: $(\lambda x.e_1) e_2$
 - Replace every x in e_1 with e_2
 - Evaluate the resulting term
 - Return the result of the evaluation
- Formally: "β-reduction"
 - $(\lambda x.e_1) e_2 \rightarrow_{\beta} e_1[e_2/x]$
 - A term that can be β -reduced is a *redex*
 - We omit β when obvious

Convenient assumptions

Syntactic sugar for declarations

• let $x = e_1$ in e_2

Scope of λ extends as far to the right as possible

• $\lambda x . \lambda y . x y$ is $\lambda x . (\lambda y . (x y))$

Function application is left-associative

• x y z means (x y) z

Scoping and parameter passing

- **\square** β -reduction is not yet well-defined:
 - $(\lambda x.e_1) e_2 \rightarrow e_1[e_2/x]$
 - There might be many x defined in e_1
- Example
 - Consider the program

et
$$x = a$$
 in

let
$$y = \lambda z . x$$
 in

let
$$x = b$$
 in

y x

• Which x is bound to a, and which to b?

Lexical scoping

- Variable refers to closest definition
- We can rename variables to avoid confusion: let x = a in let $y = \lambda z . x$ in let w = b in y w

Free/bound variables

The set of free variables of a term is

$$FV(x) = x$$

$$FV(\lambda x.e) = FV(e) \setminus \{x\}$$

$$FV(e_1 e_2) = FV(e_1) \cup FV(e_2)$$

• A term *e* is *closed* if
$$FV(e) = \emptyset$$

A variable that is not free is bound

α -conversion

- Terms are equivalent up to renaming of bound variables
 - $\lambda x.e = \lambda y.e[y/x]$ if $y \notin FV(e)$
 - Renaming of bound variables is called α -conversion
 - Used to avoid having duplicate variables, capturing during substitution

Substitution

Formal definition

$$x[e/x] = e$$

$$y[e/x] = y$$
 when $x \neq y$

$$(e_1 e_2)[e/x] = (e_1[e/x] e_2[e/x])$$

$$(\lambda y. e_1)[e/x] = \lambda y. (e_1[e/x])$$
 when $y \neq x$ and $y \notin FV(e)$

Example

•
$$(\lambda x.y x) x =_{\alpha} (\lambda w.y w) x \rightarrow_{\beta} y x$$

• We omit writing α -conversion

Functions with many arguments

- We can't yet write functions with many arguments
 - For example, two arguments: $\lambda(x, y).e$
- Solution: take the arguments, one at a time
 - *λx*.λy.e
 - A function that takes x and returns another function that takes y and returns e
 - $(\lambda x.\lambda y.e) \ a \ b \to (\lambda y.e[a/x]) \ b \to e[a/x][b/y]$
 - This is called Currying
 - Can represent any number of arguments

Representing booleans

- true = $\lambda x . \lambda y . x$
- false = $\lambda x . \lambda y . y$
- if a then b else c = a b c
- **•** For example:
 - if true then *b* else $c \to (\lambda x.\lambda y.x) \ b \ c \to (\lambda y.b) \ c \to b$
 - if false then b else $c \to (\lambda x.\lambda y.y) \ b \ c \to (\lambda y.y) \ c \to c$

Combinators

- Any closed term is also called a combinator
 - true and false are combinators
- Other popular combinators:

•
$$I = \lambda x.x$$

•
$$K = \lambda x . \lambda y . x$$

•
$$S = \lambda x . \lambda y . \lambda z . x z (y z)$$

- We can define calculi in terms of combinators
 - The SKI-calculus
 - SKI-calculus is also Turing-complete

Encoding pairs

- $(a,b) = \lambda x$.if x then a else b
- fst $= \lambda p.p$ true
- snd $= \lambda p.p$ false
- Then
 - fst $(a,b) \rightarrow ... \rightarrow a$
 - snd $(a,b) \rightarrow \ldots \rightarrow b$

Natural numbers (Church)

- $0 = \lambda x . \lambda y . y$
- $1 = \lambda x.\lambda y.xy$
- $2 = \lambda x . \lambda y . x (x y)$
- i.e. $n = \lambda x \cdot \lambda y \cdot \langle \text{apply } x \ n \text{ times to } y \rangle$
- **succ** = $\lambda z . \lambda x . \lambda y . x (z x y)$

• iszero
$$= \lambda z.z (\lambda y.false)$$
 true

Natural numbers (Scott)

- $0 = \lambda x . \lambda y . x$
- $1 = \lambda x . \lambda y . y 0$
- $2 = \lambda x. \lambda y. y 1$
- i.e. $n = \lambda x \cdot \lambda y \cdot y (n-1)$
- **•** succ = $\lambda z . \lambda x . \lambda y . yz$
- pred = $\lambda z.z 0 (\lambda x.x)$

• iszero
$$= \lambda z.z$$
 true $(\lambda x.false)$

Nondeterministic semantics

$$\frac{e \rightarrow e'}{(\lambda x.e_1) e_2 \rightarrow e_1[e_2/x]} \qquad \frac{e \rightarrow e'}{(\lambda x.e) \rightarrow (\lambda x.e')}$$

$$\frac{e_1 \rightarrow e'_1}{e_1 e_2 \rightarrow e'_1 e_2} \qquad \frac{e_2 \rightarrow e'_2}{e_1 e_2 \rightarrow e_1 e'_2}$$

Question: why is this semantics non-deterministic?

Example

- We can apply reduction anywhere in the term
 - $(\lambda x.(\lambda y.y) x ((\lambda z.w) x) \rightarrow \lambda x.(x ((\lambda z.w) x) \rightarrow \lambda x.x w))$
 - $(\lambda x.(\lambda y.y) x ((\lambda z.w) x) \rightarrow \lambda x.(\lambda y.y) x w \rightarrow \lambda x.x w$
- Does the order of evaluation matter?

The Church-Rosser Theorem

- Lemma (The Diamond Property):
 - If $a \to b$ and $a \to c$, then there exists d such that $b \to^* d$ and $c \to^* d$
- Church-Rosser theorem:
 - If $a \to^* b$ and $a \to^* c$, then there exists d such that $b \to^* d$ and $c \to^* d$
 - Proof by diamond property
- Church-Rosser also called confluence

Normal form

- A term is in normal form if it cannot be reduced
 - Examples: $\lambda x.x$, $\lambda x.\lambda y.z$
- By the Church-Rosser theorem, every term reduces to at most one normal form
 - Only for pure lambda calculus with non-deterministic evaluation
- Notice that for function application, the argument need not be in normal form

β -equivalence

- Let $=_{\beta}$ be the reflexive, symmetric, transitive closure of \rightarrow
 - E.g., $(\lambda x.x) y \rightarrow y \leftarrow (\lambda z.\lambda w.z) y y$ so all three are β -equivalent
- If $a =_{\beta} b$, then there exists *c* such that $a \to^{*} c$ and $b \to^{*} c$
 - Follows from Church-Rosser theorem
- In particular, if $a =_{\beta} b$ and both are normal forms, then they are equal

Not every term has a normal form

Consider

•
$$\Delta = \lambda x . x x$$

- In general, self application leads to loops
- ... which is good if we want recursion

Fixpoint combinator

Also called a paradoxical combinator

•
$$Y = \lambda f.(\lambda x.f(x x))(\lambda x.f(x x))$$

There are many versions of the Y combinator

• Then,
$$Y F =_{\beta} F (Y F)$$

•
$$Y F = (\lambda f.(\lambda x.f(x x))(\lambda x.f(x x))) F$$

• $\rightarrow (\lambda x.F(x x))(\lambda x.F(x x))$

•
$$\rightarrow F((\lambda x.F(x x))(\lambda x.F(x x)))$$

•
$$\leftarrow F(YF)$$

Example

•
$$fact(n) = if(n = 0)$$
 then 1 else $n * fact(n - 1)$

• Let
$$G = \lambda f \cdot \lambda n$$
.if $(n = 0)$ then 1 else $n * f(n - 1)$

$$=_{\beta} (\lambda f.\lambda n. if (n = 0) then 1 else n * f(n - 1)) (Y G) 1$$

•
$$=_{\beta}$$
 if $(1 = 0)$ then 1 else $1 * ((Y G) 0)$

■ =_β if (1 = 0) then 1 else
$$1 * (G(Y G) 0)$$

$$=_{\beta} \text{ if } (1=0) \text{ then } 1 \text{ else } 1 * (\lambda f \cdot \lambda n \cdot \text{if } (n=0) \text{ then } 1 \text{ else } n * f(n-1) (Y G) 0)$$

$$=_{\beta} \text{ if } (1 = 0) \text{ then } 1 \text{ else } 1 * (\text{if } (0 = 0) \text{ then } 1 \text{ else } 0 * ((Y G) 0))$$

$$=_{\beta} 1 * 1 = 1$$

In other words

The Y combinator "unrolls" or "unfolds" its argument an infinite number of times

• Y G = G (Y G) = G (G (Y G)) = G (G (G (Y G))) = ...

- G needs to have a "base case" to ensure termination
- But, only works because we follow call-by-name
 - Different combinator(s) for call-by-value
 - $Z = \lambda f.(\lambda x.f(\lambda y.x x y))(\lambda x.f(\lambda y.x x y))$
 - Why is this a fixed-point combinator? How does its difference from Y work for call-by-value?

Why encodings

- It's fun!
- Shows that the language is expressive
- In practice, we add constructs as languages primitives
 - More efficient
 - Much easier to analyze the program, avoid mistakes
 - Our encodings of 0 and true are the same, we may want to avoid mixing them, for clarity

Lazy and eager evaluation

- Our non-deterministic reduction rule is fine for theory, but awkward to implement
- Two deterministic strategies:
 - Lazy: Given $(\lambda x.e_1) e_2$, do not evaluate e_2 if e_1 does not need x anywhere
 - Also called left-most, call-by-name, call-by-need, applicative, normal-order evaluation (with slightly different meanings)
 - *Eager*: Given $(\lambda x.e_1) e_2$, always evaluate e_2 to a normal form, before applying the function
 - Also called call-by-value

Lazy operational semantics

$$\overline{(\lambda x.e_1)} \rightarrow^l (\lambda x.e_1)$$

$$e_1 \rightarrow^l \lambda x.e \quad e[e_2/x] \rightarrow^l e'$$

$$e_1 e_2 \rightarrow^l e'$$

- The rules are deterministic, *big-step*
 - The right-hand side is reduced "all the way"
- **•** The rules do not reduce under λ
- The rules are normalizing:
 - If *a* is closed and there is a normal form *b* such that $a \rightarrow^* b$, then $a \rightarrow^l d$ for some *d*

Eager (big-step) semantics

$$(\lambda x.e_1) \to^e (\lambda x.e_1)$$

$$e_1 \to^e \lambda x.e \quad e_2 \to^e e' \quad e[e'/x] \to^e e''$$

$$e_1 e_2 \to^e e''$$

- If this big-step semantics is also deterministic and does not reduce under λ
- But is not normalizing!

• Example: let
$$x = \Delta \Delta$$
 in $(\lambda y.y)$

Lazy vs eager in practice

- Lazy evaluation (call by name, call by need)
 - Has some nice theoretical properties
 - Terminates more often
 - Lets you play some tricks with "infinite" objects
 - Main example: Haskell
- Eager evaluation (call by value)
 - Is generally easier to implement efficiently
 - Blends more easily with side-effects
 - Main examples: Most languages (C, Java, ML, ...)

Functional programming

- - Higher-order functions (lots!)
 - No side-effects
- In practice, many functional programming languages are not "pure": they permit side-effects
 - But you're supposed to avoid them...

Functional programming today

- Two main camps
 - Haskell Pure, lazy functional language; no side-effects
 - ML (SML, OCaml) Call-by-value, with side-effects
- Old, still around: Lisp, Scheme
 - Disadvantage/feature: no static typing

Influence of functional programming

- Functional ideas move to other langauges
 - Garbage collection was designed for Lisp; now most new languages use GC
 - Generics in C++/Java come from ML polymorphism, or Haskell type classes
 - Higher-order functions and closures (used in Ruby, exist in C#, proposed to be in Java soon) are everywhere in functional languages
 - Many object-oriented abstraction principles come from ML's module system

_ ...