LUSTRE: A declarative language
for programming synchronous systems”

P. Caspi D. Pilaud
Laboratoire “Circuits et Systémes”

N. Halbwacﬁs J. A. Plaice
Laboratoire de Génie Informatique

BP68, 38402 St Martin d’'Héres, FRANCE

Abatract

LUSTRE is a synchronous data-Sow language for
programming systems which interact with their en-
vironments in resl-time. After an informal presen-
tation of the language, we describe its sernantics by
means of structural inferemce rules. Moreover, we
show how to use this semantics in order to gener-
ate efficient sequential code, namely, a finite state
automaton which represents the controf of the pro-
gram. Formal rules for program transformation are
also presented.

Introduction

This paper presents the language LUSTRE, whose main
application field is the programming of automatic control
and signal processing systems. In this Held, design is tra-
ditionally driven by means of two types of tools. First,
specifications are often systems of equations (differential or
finite difference equations, boolean equations, ...). Second,
implementations are often nets of operators connected with
wires (switches, gates, analog diagrams). Such tools present
several advantages as a hasis for a programming language.

» Systems of equations are mathematically itractable
objects. In such systems, variables are interpreted
in the mathematical sense, without any notion of as-
signment, side effect, etc., often carried by variables
in usual programming languages. An equation is then
an invariant assertion, true af each insiant.

*This work was partially supported by a grant from PRC.C? {CNRS).

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that capying
is by permission of the Association for Compuiing Machinery. To
copy otherwise, or. to republish, requires a fee and/or specfic
permission.

@© 1987 0-89791-215-2/87/0100-0£78 75¢

Received 10/15/86

« Both in systems of equations and in operator méts,
there is neither the notion of control nor that of se-
quentiality. The only constraints on the evaluation
order arise from the dependencies between variables.
As a consequence, any implementation, be it sequen-
tial or highly parallel, can be easily derived.

s As pointed out above, the considered equations are
generally time invariant: variables may be considered
to be functions of time, and X=E means that at each
instant ¢, =, = &. Hence, such models are likely to
provide a simple and natural way of handling time,
a problem which is never adequately solved in usual
languages, in spite of the work increasingly devoted
to it. '

LUSTRE is a programming language founded on these
remarks. A program is a system of equations defining vari-
ables, which are functions from time to their domain of
values. Since we are concerned with discrete systems, time
is projected onto the set of naturals, making variables infi-
nite sequences of values. Purthermore, a program may be
viewed as an operator net, as is standard for data-flow lan-
guages, with a further assumption called synchrony, which
states that operators respond instantaneously to their in-
put. S _'

Our equational point of view may be summarized by
the two following principles:

Substitution principle An eguation X=E specifies a full
synonymy between the variable X and the expression
E. Thus, in every context, the identifier X may be
replaced by the expression E, and conversely. This
property is very useful in program transformation.

Definition principle Let X=E be the equation defining the
variable X. Then the behavior of X must be com-
pletely specified by this equation and the behavior of
variables appearing in the expression E.

A program defines a function from its input (sequences)
to its output (sequences). From the assumption of syn-
chrony, all functions expressible in the language musi sat-
isfy the foilowing properties: - '

TR B it — S

Causality The output at any instant ¢ may only depend where (60' €1s-+4s€ns---) is the sequence of values of the
uporn input received before or ak ¢. Notice that in this expression E. .)
sense, LUCID [1], a close pareat of LUSTRE, allows] Expraslons_ a.re.bullt up from variables, constants (con- i
the definition of uncansal programs. sidered to be infinite constant sequences) and operators. 4
The usual arithmetic, boolean and conditional operators on i
Bounded memory There must exist a finite bound such values are extended to pointwisely operate over sequences,
that, at each instant, the number of past input values and are hereafter referred to as data operators. For in- :
that are necessary to produce the present and future stance, the expression

output values remains smaller than that bound.
if X>Y then X-Y else Y-X

Moreover, in order {o be usable for real-time program-

ming, the language must present the following features: denotes the sequence whose n-th term is the absolute dif-

ference of the n-th values of X and Y.
Efficient code generation possibility This feature en- :
tails that most consistency checks must be peossible at 1. 2 Sequence Operators i
compile time. Moreover, we shall see that very effi- :
cient code can be produced from LUSTRE programs,
through the construction of finite automata, as done

e T TR SNy Y

In addmon to data operators, LUSTRE contains only four
non-standard operators, called sequence operators, which

. actuzlly menipulate sequences. g
for the language ESTEREL [7]. To keep track of the valus of an expression from ome !
Execution time predictability It is necessary to be able cycle to the next, there is a memory or delay operator called '
to verify the realism of the synchrony assumpiion, pre (“previous”). I .
which holds only when the response time of the pro- }
gram is negligible with respect to the reaction time X == (B0, T4y e e Ty - o), 4
of its environment. This constraint forbids the use of = 4.0 : 1
unbounded loops and recursive functions. pre(X) = (il 70, Z1, . e oy Zacss- - s 4
. i
Finally, in the considered application field, program re- where nil is an undefined value, akin to the value of an ;*il
liability is especially important. This goal has been ap- vninitialized variable in imperative languages. The com- ﬁii
proached in LUSTRE by two means: . - . piler ensures that no data operator is ever applied to nil. i
. To initialize variables, the -> (*followed by} operator '

Strong consistency checks zllowed by a coercive syntax is introduced. If

and strict rules of static semantics. T ‘ |

: . . x=($0,-151,;..,zn,,__)
Simple formal semantics It minimizes the risk of pro-

|
gram misunderstanding. In particular, it must be and : - l

perfectly clear when a variable changes. Y= (Y0, Y1y 2 Uny-s) .
The language is informally presented in Section I, and are two varizbles (or expressions} of the same type, then .

its use is illustrated in Section 2 through the programming : . T
= : X->y =(Iﬂ:yisy2:-"|yru---}: b
of a stopwatch. Section 3 presents the most important as-
pects of the formal semaniics of LUSTRE. 1t is showed i.e., X=>Y is equal to Y except at the first instant.
in Section 4 how this semantics may be used to produce
sequential code from LUSTRE programs. Section § is de- ‘
voted to formal iransformations of programs, which benefit X=0->pre(X) + 1; ;![
from the mathematical nature of the language. In con- : |

defines X to be 0 initi i i i i

clusion, LUSTRE is compared with related langnages and eiines X to be U initially, and ! ts previous value mcrementeci i

) - X by 1 subsequently. Hence, X is the sequence of naturals. -
formalisms and future work is outlined.

1k

1

The last two operators require some introduction. Up j|
i

|

s

i

As an example of use of these operators, the equation i

to now, one can comsider a program to have a cyclic be-

1 Informal presentation havior, namely computing at ifs n-th cycle the n-th value
of every varizble. However, if we are to consider variables ;

1.1 Variables, Equations, Data Operators whose values only make sense under some condition, it be-
comes necessary to be able o define variables which are not
computed at every cycle. We thus introduce the sampling i
operator when. -
Let E be an expression and B be a boolean expressmn :

E when B is then an expression whose sequence of values is }
extracted from the sequence of E by taking only those values i
which occur when B is true. The point is that E when B %

As indicated above, any variable or expression in LUSTRE
denotes an infinite sequence of values. Variables are de-
fined by means of equations: if X is a variable and E is an
expression, the equation X=E defines X to be the sequence

(IG €9y Ly = €1, “sxnzenr--')r

E={ e €1 e e & &5 ..
B=(F t i)i F .
X=E when B ={ zg=e T, =¢; Z3=¢;3 eer)
Table 1: The when operator
B={ # Jid #t i F F)
E ..'=(€n € €1 ey £y £3 .)
X = E when B=(¢ 22 e .
Y = current(X) = e & £z €3 e e ..

Table 2: The current operator

does not “have the same notion of time” as E and B, as
shown by Table 1. Now, several remarks must be made
about this operation.

In the above example, X is said to be computed on clock
B. This means that the only notion of time that X “knows”
is the sequence of cycles where B is true. As a consequence,
the question “what is the value of X when B is not true?”
makes no more sense than the question “what is the value
of a variable between two integer instants?”.

Our model of variables consisting of sequences is no
longer sufficient: two variables may describe the same se-
quence of values without being equal. Henceforth, a vari-
able will be characterized not only by its sequence of values,
but also by its clock. Let us cail 2 stregm the couple formed
by a sequence and z clock. Streams and clocks are recur-
sively defined as follows:

<elock> = true | <boolean stream>
< stream of type T > == <sequence of type T>< clock >

Intuitively, if the stream associated with an expression is of
clock true, then the expression is renewed with the basic
cycle of the program. Constants are always assumed to be
on the basic clock. A non basic clock is defined by 2 boolean
expression, which ir turn has 2 clock. Thus clacks may be
nested: for instance, the millisecond can be modeled as 2
clock (a boolean variabie which is true at each tick of 2
quartz) and the second can be another clock defined on the
millisecond clock. Moreover, this exampie shows that the
when operation allows the basic cycle to be quite unrelated
to physical time, which can be handled as an input o the
Program.

Now, suppose that we wish to apply an operator on
expressions with different clocks (e.g., o sum X and E in
the example of Table 1}. Since an operator operates on
terms of the same rank, and since these terms can exist
at different instants, either the causality or the bounded
memory condition could be violated. In order to operate on
expressions with different clocks, we must first put them on
the same clock, either by sampling {when} or by projecting,
using our last operator, current.

If E is an expression of clock B, then current(E) is an
expression whose clock is the same as that of B and whose
value at each cycle of this clock is the value taken by E at

o]

the last cycle when B was true. Table 2 illustrates the com-
bination of the when and current operators. The current
operator allows operations over variables of different clocks,
since if X and X' are variables of respective clocks B and ¥,
and if B and B’ have the same clock,

current{X) op current(("

is a legal expression for every binary operator op.

1.3 Nodes and Nets

A node is a LUSTRE subprogram. It receives input vari-
ables, computes output variables, and possibly local vari-
ables, by means of a system of equations. For instances, we
can define a general countar as follows:

node COUNT (init, imcr: int; reset: hool)
returns (n: int):

let
n

init ->
if rese% then init else pre{n) + incr;
tel;

Node instantiation takes 2 functional form: if ¥ is the
name of 2 node declared with heading

node ¥ (4y:7y; €27 ..oj 6517

returns (jy: 8y 2 ity g R

and if E,...,[E, are expressions of type Ty, ..., 7py then
the instantiation ¥(Ey,...,%,) is an expression of type
tuple(f),...,#,) whose n-th value is the tuple (4;_,.-.,%.)
computed by the node from input parameters F,..., E,.
Conditional and sequence operators are polymorphic, and
can be applied to tuples. Coming back to the general
counter, one may write

even
modb

COUNT(O, 2, false):
COUHT(O, 1. pre{modS=4));

thus defining even to be the sequence of even numbers and
mod5 to be the cyclic sequence of integers modulo 5.

Concerning clocks, and in agreement with the data-How
philosophy, the basic execuiion cycle of 2 node is deter-
mined by the clock of its input parameters. As an example,
the instantiation

B=(#
COUNT((0,1,false) when B) ==(O
CDUNT(O 1, false) when 8={ 0

[y

L I~
:
—

Table 3: Sampling input vs. samphng output

COUNT((O, 1. false) when B)

counts whenever B is true. Now the when operator does not
distribute over sequence operators, so synchronyzing the
execution of 2 node by sampling its Input genera_lly differs
from sampling 1ts output as shown by Table 3.

A node may receive input pa.rameters W1th different
clocks, but when ‘the clock of a parameter is not the ba-
sic clock, this clock must be passed as 2 parameter. For
instance, one can declare a node with heading

node ¥ (millisecond: beol;
{second: bool} when millisecond)
returns ...

This header means that the first parameter (whose clock is
always the basic clock of the node) is the clock of the second
parameter. A node may also refurn parameters with dif-
ferent clocks, pruv1ded these cIocks be v1s1b[e from outs;de
the node. = 7 7 : ~T :
This mechanism for declaring and instantiating nodes
allows the deﬁmtmn of whole nets of parallel, synchronous
operators. In fact, any operator may be cons1dered to be a
node. for mstanc‘, the eq_ua.twn

X= ~> pre(X) + i;
describes the net m F1g1.u'e 1

Figw:ue 1: An operator net

1.4 Practical issues

Of course, the language is much too simple to be practically
usable. In the design of LUSTRE, we focused on tempo-
ral aspects, thus forsaking standard topics, such as type
mechanisms, input foutput facilities, etc. Moreover, we do
not consider the data-flow approach as dogma. There are
indeed many programs which are easier to write in an im-
perative siyle. For all these reasons, there is the possibility
in a LUSTRE program to call external functions written
in a host language (currently C, which is also the target
language of our compiler). These functions are treated as
dzta-operators which operate in null-time. They are also
used for interfacing programs: a LUSTRE program calls
its environment as a function (e.g. “teletype’ or “sensor”)
which takes as inputs the outputs of the program, and/er
returns its inputs. One can also use external types, whose
members are handled by means of functions.

2 An Example :

Let us illustrate the use of our language through the pro-

gramming of a stopwatch (other examples may be found in

[5,6]). We begin with a simplified version.
The' :s.topwatch receives three signals: a start- stop

buiton, a reset button, and the 1/100 sec. hs emiited

from a quartz. It computes the time as follows: the time
is initially 0, and is reset to O whenever the reset bation
is pushed. It is incremented at each 1/100 sec. when the
stopwatch is in the running state. Initiaily the stopwatch is
in the not running state, and the state changes whenever
the start-stop button is pushed.

All the events (buttons, 1/100 sec.) will be implemented
as boqlea.n variables: the variable is true when and only
when the event occurs. The integer dutput time will be
computed by the node COUNT defined above, with parame-
ters 0, 1, reset, sampled according to a suitable clock CK.
So, time will be the projection onto the basic clock of the
expression

COUNT((0, 1, reset) when CKX);

Now, the node COUNT must perform a cycle at the initial
instant, and whenever either the hs event occurs in the
running state, or the reset event occurs. So, the clock
CK is as follows '

CK = true -> (HS and running) or reset;

The r_ui:.uing state variable remains to be defined. It is
initially false and cha.ngef: whenever the start-stop event

R p—

iy o e

= s s

s -

g

= R g B e S L R

S e £

occurs. We use a node TWO_STATES, of general usage, which
takes as parameters an initial value and two events, set
and reset, and returns a boolean value.

node TWO_STATES (ini%, set, resef: bool)
returns (state: booll};
let
gtate = init ->
if set and not pre(state)
then true
else if reset and pre(state)
then false
else pre(state);
tel;

running =
TWO_STATES (false, start_stop. start_stop):

The complete program of this first version of the stopwatch
is as follows:

nede SIMPLE_STOPWATCH
(start_stop, reset, hs: bool)
returns (time: int);
var CK, running: bool:
let
time =
current (COUNT((0, 1, reset) when CK)):
CK = true -> (HS and running) or reset;
running =
TWO_STATES(false, start_stop, start_stop):
tel;

Now, let us consider a more realistic stopwatch: it has a
1lap button for handling intermediate time by freezing the
display. The stopwatch computes two times.

+ an internal time, computed as before;

» a displayed time, which is equal to the internal time
when the stopwatch is not in lap mode, and which is
frozen when the lap mode is entered.

The stopwatch is initially in not_lap mode. The lap mode
is entered whenever the lap button is pushed in running
state and left the next time the lap button is pushed.

Moreover, the reset event for the internal time corre-
sponds now t¢ a pushing of the lap button in not running
state and in not lap moce.

The displayed time is always equal to the value of the
internal time the last time the stopwatch was not in lap
mode:

disp_time = current (int_time when not_in_lap):
The mode is again described using the TWO_STATES node:

not_in_lap =
TWe_STATES (brue, lap. lap and running):

It remains to define int_time:

ipt_time =

SIMPLE_STOPWATCH(start_stop, reset, hs):
reset = lap and pre(not_in_lap)
and pre(not running):

and the variable running, as before, since it is not exported
by the _node SIMPLE _STOPWATCH.

3 Operational Semantics

Although the first semantics written for LUSTRE [4] was
denotational & la Kahn {16], we shail present the operationzl
one which has been used as a basis for the construction of
our compiler. We use structural inference rules la Plotkin
[20]. While this senantics is quite simple, it cannot be thor
oughly presented in a single paper (2 complete description
may be found in [9]}. We only present its most ilustra-
tive features: the clock consistency and the kernel of the
dynamic semantics.

3.1 Clock Rules

As mentioned above, a clock may be statically associzied
with each expression of a program. The clock consistency
rules essentially state that operands of any operator must
be on the same clock. The rules are checked at compile
time. .

First, we must make precise what we mean by “on the
same clock”. Ideally, it would refer to equality of boolean
streams. However, static checking of th: equality between
two boolean variables being undecidable, we are led to con-
sider finer equivalences on clocks. Let = be some equiv-
alence relation betwesn boolean expressions such that two
equivalent expressions denote the same stream. In this sub-
section, we consider clocks to be the equivalence classes of
the relation =. In the current version, the relation = is the
syntactic identity of identifiers. Notice that this definition
seems to violate the substitution principle, since replacing
the second operand of a when operator by iis definition may
result in changing its clock. We do admit that we allow
substitution to change the result of consistency checks, but
once these checks have been passed, the dynamic semantics
will not be affected by substitution.

We define a clock environment w to be a function from
identifers to clocks. The clock environment associates with
each variable the clock of the right-hand side of its defini-
tion. Let Cx(exp,w) be the clock of the expression exp in
the environment w. From an equation X = exp, we shall
deduce

w(X) = CK{exp, w).
Hence, the definition of w is recursive, and w will be de-
fined as a solution of 2 fix-point equation. However, not
every solution of this equation is suitable, as is shown by
the following exaraple. Let ¥ and ¥ be tweo nodes returning
output parameters on the same clock as their input param-
eters, and consider the program

X=MY): Y = N(X):

s

), R

TR W7

vt eid afouy

i

i

e i e

{i e
e

v
Ry
al

D I;"‘uf{‘-‘ .

TR

i
d

sk bRl

R T LA

i g

& ety

The only information that we can acquire about the clocks
of Xand Y is
JERTPN ”(X =w(Y)

which is cIea.riy msuﬁicxent to give & determined meaning
to the program. Now consider the program

=M{Y): Y = HNQO: Z = X+1;

Since the constant 1 is on the basic clock and the operator
+ must be applied to operands on the same clocks, the only
solution which makes sense of the program is

w(}{) = w(Y) = w(z) = txue(the basic clock)

However: acceptmg such 2 solution would vxolate the def-
inition principle (“the behavior of a variable is completely
specified by its definition”), since it would deduce the clock
of X from its use, rather than from its definition. Thus our
rules must reject such a program.

We shall define an ordering relation among clocks, so
that the environment be the least solution of the fix-point
equation. The set of clocks is structured as a flat lattice as
follows

ck<eld & (ek=LVek = Tvck=ck)

where 1 and T must be respectively interpreted as the
nndefined clock and the erroneous clock. Let us denote the
least upper bound operator in this lattice by {.

Now the clock environment associated with 2 system of
LUSTRE equations is the least solution of the associated
system of clock eguations. The program Is correct with

* respect to its clocks if the range of this environment does
not intersect the set {1, T}

We must now define the functlon C¥, which gives the
clock of an expression in a given environment. The rules
are as follows.

Constants
For any constant k, CK{k,w) = true.

Variables

For any identifier X, CK(X,w) = w(X}.

Synchronous operators

For any op & {when, current},

n

CK(op(expi. expz, €Xpnl),w) = U C¥(exp;, w)

i=1
Sampling

The operands of the when operator must be on the same

clock:
cX{exp,w) UCK{ck,w) # T

CK(exp when ck,w) = ck

Projection

One may only project an expression which is not on the
basic clock:

183

CK{exp,w) = ck, ck 3% true

CK{current (exp),w), CK(ck,w)

The rules for nodes are more complicated. We only
outline the algorithm for finding the clock (generally = tuple
of clocks} of 2 node instantiation:

The analysis of 2 node declaration provides a local en-
vironment which subsumes:

» the relations between the clocks of input parameters;

+ the clocks of local variables and output parameters,
computed under the assumption that the first input
parameter is on the clock true (since its clock defines
the basic clock of the node)

The restriction of this local environment zccording to (in-
put and output) parameters must rauge over parameters
{since the clock of an output parameter mmst be visible
from outside the node).

When the node is called, this restricted environment is
considered in order to

* check that the actual input parameters are on suitable
clocks;

s compute the clocks of output parameters, by renam-
ing formal by actual parameters, and renaming the
clock true by the clock of the first actual input pa-
rameter.

3.2 Dyna.mlc Semantics

For simplicity, and without loss of generality, we define the

dynamic semantics on a very simplified basic syntaz, de-
fined as follows:

prog = eqs
eqs = eq| eq;eqs
== id=(ck)exp

exp == sexp | sexp->zexp|k fby sexp|curr(sexp.k)
sexp n= k| id | dop(sexp,...,sexp)
ck = exp | true
where k stands for a constant and dop stands for any data
operator.

It can be shown that any LUSTRE program which is
correct according to the static semantics can be translated
into that syntax. This translation consists of

¢ computing the clocks;

+ expanding nodes, by replacing each node instantia-
tion by its body, after suitable instantiation of pa-
rameters and clocks, and renaming of local variables.
Thus we only consider flat programs (systems of equa-
tions);

¢ translating pre(exp} and current(exp) into
nil £by exp and curr{exp, nil) respectively {fby
is the LUCID “followed by” aperator; it is equivalent
to ~> pre}; ’

» introducing auxiliary variables and performing suit-
able substitutions so that the right-hand side of each
equation contains at most one sequence operator;

+ indicating the clocks in the equations (true stands for
the basic clock of the program}. The when operators
are then redundant, and may be dropped.

3.2.1 Semantic Domains

Let us define a2 memory & to be a funciion from identifiers
to values, and a history & to be 2 sequence of memories.
A memory associates | with an identifier when the corre-
sponding variable does not have to be computed (its clock
is false or does not have to be computed). A memory will
give the values of variables at a given cycle. A system of
equations eqs is compatible with a memory o if the first cy-
cle of evaluation of eqs associates the value (X} with each
identiffier X defined in eqs. The semantics of a program is
the transformation

(input history) == (output history)

it computes.

We shall not give the semantics of simple expressions
{sexp) as they are obvious. Let us define the following
predicates.

ot sexp :k In the memory o, the simple expression exp
evaluates as k.

ol exp 4 exp’ In the memory o the expression exp eval-
vates as k, and exp will be later on evaluated as exp’.

eq < eq’ The equation eq is compatible with the memory
o and will later on be considered as eq’.

eqs = eqs’ The system of equations eqs is compatible with
the memory o, and will later on be considered zs eqs’.

k- eqgs : k' From its input history k, the program defined
by the system of equations eqs produces the cutput
history A'.

3.2.2 Rules

Programs

eqs - eqs’, R eqs':
olinputi.h F eqs : gfoutput].p’

where ofinput} and e[output| respectively denote the
restriction of ¢ to the input and output variables of the
program.

Systems of equations

b ¢ o t
eq — eg, eqgs - egs
'

. e r.
eq;eq3a — eq ; eqs

Equations

If the clock is true, the right-hand expression is evaluzated
and its value is associated with the variable on the left-hand
side.

ofck) =it, ob exp E exp', o{id) =k
id={cklexp = id=(ck)ewp’
If the clock is not true, the left-hand veriable is not evalu-
ated.

ofck) # i, o(id) =L
id=(ck)ewp 5 id=(ck)exp

These rules define ¢ to be the solution of 2 fixpoint equa-
tion. Moreover, this solution must be unique {otherwise the
program contains a deadlock; this problem will be detailed
in section 4.1).

Expressions

Simple expressions are always evaluated in the same man-
ner.
ok sexp:k
o b sexp k sexp
The result of a -> operator is the value of its first operand.
The expression will henceforth be evaluated as the second

operand.
ol sexpy tk

k
g b= 3eXp)~>seXp; — SexPa

The result of a £by operator is the value of its first operand.
The result of the second operand is stored in the expression
to be evaluated later om.

o sexp:k;

otk by sexp =k, fby sexp

K an expression is evaluated, its current value is the result
of the expression, which must be stored for further evalu-
ations. If the expression is not evaluated, its curzrent value
is the stored value.

o sexp:ilky, ki # L

o b curr(sexp.k) ky curr(sexp.k,;)

ohsexp: L

o b curr (sexp,k) k curr{sexp,k)

4 Compilation of LUSTRE

This section deals with the most specific features of the
compilation of TUSTRE.

4.1 Variable dependencies and deadlock
detection

As usual in non-procedural languages, the only constraints
on the ordering of computations in LUSTRE resuit from
the dependencies between variables: a variable X instanta-
neously depends on Y at a given cycle if the value of Y at
this ¢ycle must be known in order to compute the value of

184

i
1

Lo Tk LW Bl 32 nants

Lo ki

E

E
-

- - R T I T

T T TSAT AR Joe iR T R
h sk S

Erwr " _ =

X. At any cycle, this relation must be irreflexive: as men-
tioned in the semantics of equations, the memory must be
the unigue fixpoint of a function, and this unicity is only
ensured when no varizble instantaneously depends on itself:
of course we dou’t mteud to salve Imphmt eq_ua.t:ons such

f=xﬁz+}h;, .

Such = sifnation, which is called a deadloek In the termi-
nology of LUCID, may be dificult to detect. So, in the
present compiler, we are led to consider a coarser, static
dependency relation, which Is the transitive cIosure of the
re!a.tmn ‘fthe vanable Y appears outside a.ny pre operator
in the' expressmn deﬁmng X”. This relation is easy to build
from the text of the program, and when'it Is ot irreflexive,
the program wﬂl be rejected. Clearly, this apprommahon
ensures the detectxon of any deadlock, but may result, in
some cases, in re_{ectmg correct programs, such as the foi-
lowing one:

X
Y

if C then ¥ else Z;
if C thern Z else I;

n-

4.2 Sequentlal code creneratiou

4.2, l Node expans:ou ' -4 1

First of a.Il Iet ué notice, following a remark by G. Goathier
[11], that in synchronous languages, sequentlal code cannot
be obtamed in's modular way. This means that we cannot
produce sequential code for a LUSTRE node independently
of the mstantxatzons of that node. For msta.nce consider
the foliowmg, very simple node which only” lets 1ts two

A)

inpuis tra.verse n‘.- '“" " "‘T' 3 _.r_= .

node DUMMY (X Y. :Lnt) returns (X1,¥1: int)
) 1et x1 x: -Yl’ Y; tal:

Clearly, for a.ny executlon cycle of this node f.he sequentzal
code shouId be elther T

or

Now, conSIder the call

(L.B) = DU'D-TMY (C A
SN S I >
B
t ol He —‘>

"Figure 2:

corresponding to the net of Figure 2. This call is perfectly
causal, but only the Brst version of sequential code is cor-
rect. Of course, one can exhibit a call for which only the
second version would be correct.

. S0, we are led to expanse the node calls, and to con-

.'sxder only : ﬂ.at at programs, as done for the dacnptlon of the

dyna.rmc semantics.

4.2.2 Control synthesis

Clearly, beolean variables play an important role in LUS-
TRE: as clocks or conditions, they are often used to imple-
ment what is usually represented by control in imperative
lenguages. Their computation must thus be carefully im-
plemented. Let us illustrate how the rules of the dyna.xmc
semantics can be used to evaluate boolean expressions at
comp!le time. As for the ESTEREL language, we _shall
build a ﬁm%g automaton which is the control skeleton of
the object program. Moreover, {s] describes a very efficient
algorithm for this construction.

Consider the following * program”, where b is an input
variable:

= false -> b and not pre(c):
Translation into basic syntax provid& the program Fy:

¢ = false -> b and not pc
pe = nil fby ci

~ JLan

Now from the rules of dynamic semantics, we have
Py Py
where o(c} =

as follows .

THWII T L N LT

false o(pc) = nzl a.nd ‘the prog'ra.m P1 is

= b and not pc;
pc = false by ¢; . N

Again from the rules of dynamic semantics, we get that
+ if the input b is false then
PSP
where.d(c) = false, o(pc) = false
+ if the input b is true then
P> R

where o(c) = true, o(pc} = false and the pro-
gram P, is as follows:

= b and not pc;
pc = tzue fby c¢;

Finally, we have that, whatever be the input b,

P, = Py

LY

Figure 3:

where o(¢) = false and o{pc) = true.

We have constructed the automaton of Figure 3, where
the diamond stands as a test on the input.

In such a construction, compiex boolean expressions
(suck as comparison of integers) will be considered as in-
put. Non boolean cormputations are simply reported on the
transitions.

At the time of the writing of this paper, the current ver-
sion of the compiler does not incorporate the generation of
finite state antomata. Experience with ESTEREL {7} shows
that, in synchronous languages, the size of the automaton
generally remains small. However, if it should explode, its
size can be reduced by several means. Two possibilities
would be to allow the programmer to specify certain prop-
erties of input variables (e.g., that two variables can never
both be true) or to restrict the simulation to some subset
of the boolean variables.

In addition to code generation, such automata may be
used to refine the static consistency checks:

s check of operation onto nil;
+ detailed study of clock equivalence;
« refinement of the dependence retation;

Moreover, model checkers over transitions systems, such as
CESAR {21} or EMC [10] can be applied on automata.

5 Program Transformation

The mathematical nature of LUSTRE allows a wide range
of formal transformations, usable for program optimization
and proof. In this section, we give a set of equivalence
rules, which we apply on 2 simple example. Other trans-
formations can be found in {12,14].

5.1 Equivalence rules

We shall focus on rules concerning operators which are spe-
cific to LUSTRE. Of course, usual axioms of boolean alge-
bra and arithmetic will also be used.

5.1.1 Axioms of sequence operators

X=X->X) (1)

(X->7)->Z = X->(Y->2) = X~>Z (@)

X->Y == if init then X elzse Y e
where init = true->false (3) 3

pre(k) =nil->k "3
for any constant k (4)

pre(X) =nil->pre(X) (5)

current (X when B) =X

where X' = if B then X else pre(X’) (6)
current (X) when B =X

if B is the clock of X (7

e A it s b

5.1.2 Distributivities

For any data operator op,

pre(X op Y) = pre(X) op pre(Y) (8)
(X->Y) op (Z->U) = (X op Z}->{Y op W) (9)
(X op Y) when B = (X when B)op(Y when B) (10}
currant(X op Y) = current(X) op current(Y)
whenever X and Y have the same clock {11}

f

AT i i AL R Gk s 1t

45

L2 T (PR LL &

5.2 Example of transformations

Let us prove that the node

nede FOOCX) returns (Y);
var aven: bool;
let
Y = if even then current(¥ when not even)
else current(X when even);
even = tyue -> not preleven);
tal;

o ciesdrstursidebol et

behaves as the operator pre.

Proof Let us apply Rule 6 twice, we get

T = if even then Yi else Y2i
¥1 = if not even then X else pre(¥Y1); A
Y2 = if even then X else pre(Y2);

Substitution of Y1 and Y2 in Y and use of the standard rule
for conditional expressions yield

Y = if aven then pre{¥1i) else pre(Y2):
Now let us subsiitute even in ¥: 3

¥ = if {true -> not pre(even))
then pre(¥Y1}
else pra(¥2);

From the distributivity of -> over operators (Rules 1 and 9},
and from the properties of the conditional, it becomes

= pra(Y1) -> if not pre{even)
.y - . .. then pre(¥i)
’ else pra(YQ)

Ry

Now, Erom the deﬁ.mtlon of Yi and dmtnbutxwty of pre

(Rule 8) T A
pre(‘{i) if not pre(even)
then pre{X)

else pre (pre (i)

and sumla.rIY for Y2 Substxtutmn of these expressions in Y
Pl‘owdes ot g o B

Pro(iny S

AAf not pre(e
then if not pre (even)

“élse’ pre (pre(¥1)) %

‘else if pre(even) .
then pre{X)

_else pre(pre(Y2));

Simplification of the conditional gives

pre(Yl) -> if not pre(even)
+.then pre(X)
__.__else pre(x)

PR

A sta.nda.rd rule a'bout the condltlona.l e@ress:on yxelds

," e TR AT e e

Y =pre ¥1)- >pre (X)
(nil->pre(¥Y1)) -*>pre (X)
e ml—)pre (I)

pre (X)

from Rule 3

't.- v:—v—\

a.nd we ate done

Conclusmn

To concIude, we shalI compa.re LUSTRE w1th related works
and then consider some &uectmns for further work.

Of course, LUSTRE can be viewed as a strict sublan-
guage of LUCID. In fact it applies the ideas of LUCID to
a domain (continuous real-time processing) for which they
are especially well-suited. However, our synchronous inter-
pretation of sequences leads to a restriciive use of LUCID
primitives, and these restrictions allow the production of
efficient code (uncausality is the main problem in LUCID
compilation, and the absence of an efficient compiler is the
main obstacie to LUCID development).

LUSTRE must be compared with asynchronous lan-
guages with real-time capabilities, such as ADA. Our opin-
ion is that, in asymchronous models, the notfion of time
cannot be given a precise and clean semantics, since these
models have been designed precisely to make the behavior
of a pa.rallel system mdependent of the speed of its compeo-
pents. : ‘

Real—

time processing has been the main mot:vahon ‘of

the deveIopment of synchronous models (2,19]. These mod-
eIs are ‘the basis of recent real—tlme Ia.nguages such as ES-

TEREL (7], SIGNAL [17], the Statecharts of [15], and LUS-
TRE. The difference between LUSTRE and ESTEREL is
the dlﬁ'erence between a declarative and an imperative lan-

" guapge; ma.ny arguments have been given in this debate, but
" our opinion is that the best style to use depends on the ad-

dressed problem.

The main originality of LUSTRE with respect to other
data-flow languages such as VAL (18], LTS (3] or #FP [22]
is the concept of clock, which allows the use of 2 multiform
notton of time. SIGNAL presents an anzalog concept, but

with more permissive rules of usage. Qur coercive clock
rules have been introduced to minimize the risk of program
mmundersta.ndmg, and only pra.ctxce w1ll be able to dec1de

*~ which optxon is better.

Future work must first concern the development of the
Ia.ngua.ge a.nd 1ts compﬂatmn. An important problem is
the use of arTays. They are very useful for such problems
as the programming of systolic algorithms [14], but there
are difficuities In finding a suitable implementation, even if
we only consider arrays of fixed dimension which are not
indexed by variables. A simple but inelegant solution con-
sists of considering each array element as a simple variable.
More clever implementations can be found if we consider
ouly systolic arrays, ie., by forbidding that an array el-
ement depend instantaneously on another element of the
same array.

Other r&earch will concern code generatlon for paral-
lel a.rcb.ttectures In particular, it would be interesting to
compare a parallel implementation based on the data-fow
net with a control-Aow 1mplemez1tat1on usmg the ﬁmte au-

-tomaton. .-.,--;.- -— -

Fma.].ly, progra.m venﬁca.tmn must be fu:ther studled
particularly in relation with temporal logic. LUSTRE can
be viewed as a subset of some temporal logic [13], and an in-
teresting topic is the expressmn of clock operators in tempo-
ral logic. Furthermore, we must study weaker equivalence
relations over programs than the one considered in Sec-
tion 5. As a matter of fact, especially in real-time systems,
brogram correctness is often defined modulo some tempo-
ral approximation. It seems that clocks can be useful in
defining such approximate equivalences.
Acknowledgements: J.-I. Bergerand and Eric Pilaud
partieipated in the design of LUSTRE. We are also indebted
to Gérard Berry and his group for their help in writing the
semantics of LUSTRE and in designing the compiler.

References

(1} E. A. Ashcroft and W. W. Wadge. LUCID, the Data-
Flow Programming Lenguage. Academic Press, 1985.

[2] D. Austry and G. Boudol. Algdbre de processus et syn-
chronisation. Theor. Comnp. Sci., 30(1):91-131, 1984.

[3] S. A. Babiker, R. A. Fleming, and R. E. Milne. A
Tutorial for LTS. Technical Report 225.84.1, Standard
Telecommunication Laboratories, 1984.

[4] J-L. Bergerand. LUSTRE: Un langage déclaratif pour
le temps réel. PhD thesis, University of Grenoble,
1086. o '

.
—

J-L. Bergerand, P. Caspi, N. Halbwachs, D. Pilaud,
and E. Pilaud. Outline of a real-time data-flow lan-
guage. In Real-time Systems Symposium, pages 33—42,
San Diego, 1985.

[5

{6] J-L. Bergerand, P. Caspi, N. Halbwachs, and J. A.
Plaice. Automatic control systems programming using
a real-time declarative language. In {th IFAC/IFIP
Symposium on Software for Computer Control (SO-
'‘COCO}, Graz, Austria, 1986.

[7] G. Berry and L. Cosserat. The ESTEREL syn-
chronous programming language and its mathemati-
cal semarntics. In S. D. Brookes, A. W. Roscoe, and G.
Winskel, editors, Seminar in Concurrency, Springer-
Verlag, 1985.

[8] G. Berry and R. Sethi. From regular expressions to
deterministic automata. To appear, 1986.

{9] C. Buors. Sémantique opérationnelle du langage LUS-
TRE. Master’s thesis, University of Grenoble, 1986,

[10[E. Clarke, E. A. Emerson, and A. P. Sistla. Auto-
matic verification of finite state concurrent systems us-
ing temporal logic specifications: a practical approach.
Techmcal Report Ga.rneg!e—\{ellon, 1983

11 G. Gonthler Private commumcatlon 1985.

(12} N. Halbwachs A. Longcha.mpt a.nd D Plla.ud De-
scribing and designing circuits by means of a syn-
chronous declarative language. In IFIP Working Con-
ference from HDI Descriptions to Guaranteed Correct
Circust Designs, Grenoble, 1986.

[13] N. Halbwachs and D. Pilaud. From a real-time data-
flow language to a multiple time-scale temporal logic.
In preparationm, 1986, <. ' - :

[14] N. Halbwachs and D. Pilzud. Use of a real-time declar-
ative language for systolic array design and simulation.
In International Workshop on Systolie Arrays, Oxford,
1986.

{15] D. Harel. Statecharts: a visual approach to complex
systems. In Advanced NATO Institute on Logics and
Models for Verification and Spec:ﬁcatlon of Concur-
rent Systems, Lz Colle-sur-Loup, France, 1984.

[16] G. Kahn. The semantics of a simple language for par-
allel programming. In IFIP C'ongrcss 1974.

[1%] P.le Guernic, A. Benvemste, P. Bournai, and T. Gau-
tier. SIGNAL: a date-flow orfented language for signal
processing. Technical Report 378, INRIA, 1985.

(18] J. R. McGraw. The Val language: description and
analysis. ACM Trans. on Prog. Lang. and Syst.,
4(1):44-82, 1982.

(19] R. Milner. Calculi for synchrony and asynchraony.
Theor. Comp. Setf., 25(3):267-310, 1983. .. -

[20] G.D. Plotkin. A structura! approach to operational se-
mantics. Technical Report DAHVII F‘\I—IQ Arhus Uni-
versity, 1981.

DS TR Bt -

[21] J. P. Queille and 3. Slfa.kls Spec1ﬁcatlon a.nd venﬁca—
tion of concurrent systems in cesar. In International
Symposium of Programming, Springer-Verlag, 1983.

[22] M. Sheeran. muFP, a language for VLSI design. In
ACM Symposium on Lisp gnd Functional Program-
ming, .Austin, Texas, 1984,

