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Abstract

Synchronous languages constitute effective tools for programming real-time sys-
tems as far as they can be efficiently implemented. Implementing them by hardware
is of course a good way for increasing their performances. Moreover, configurable
hardware is now available which makes practical such an implementation. This pa-
per describes an implementation of the synchronous declarative language LUSTRE
on a “programmable active memory™.
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1 Introduction

Synchronous programming [BCG87| has been proposed as a paradigm for designing re-
active systems. It is an abstract point of view about real-time, which consists of as-
suming that a program instantly reacts to external events (synchrony hypothesis). It
allows providing programs with precise, deterministic and machine-independent seman-
tics. Several programming languages have been designed according to this point of
view, e.g., STATECHARTS [Har84|, ESTEREL [BG85], SML [BC85|, SieNAL [BL90] and
LusTrE [CPHP87].

In practice, an implementation on a given machine satisfies the synchrony hypothesis
if the reaction time is always shorter than the minimum delay separating two successive
external events. So, the only real-time problem with a synchronous program is to minimize
and measure its reaction time. A specific compiling technique has been proposed [BG85]



for synchronous languages, which synthesizes the control structure of the program as a
finite automaton. This technique has been applied to ESTEREL and LUSTRE and has been
shown to produce very efficient sequential code.

In this paper, we consider an other, more radical way for minimizing the reaction time of
a synchronous program, which consists of translating it directly into a circuit. Synchronous
languages are especially good candidates for such a translation, because usual circuits
behave synchronously, from some reasonable level of abstraction (SML was designed as a
hardware description language). And among synchronous languages, LUSTRE is perhaps
the one for which this translation is the most natural: LUSTRE is a data-flow language, and
one goal we had when designing it, was to be able to describe hardware. As a matter of
fact, one solution considered for translating ESTEREL into circuits [Ber91] was to translate
ESTEREL into LUSTRE.

One can wonder whether the hardware implementation of reactive systems is of general
and practical interest, considering the cost of circuit manufacturing. A first answer is that
many reactive systems — for instance low level communication protocols — are actually
implemented by special purpose circuits. An other answer is provided by configurable
hardware. The prototype compiler described in this paper configures a Programmable
Active Memory (PaM [BRV89]), designed in the Paris Research Laboratory of Digital
Equipment. By loading a bitstream — an operation performed in about 20 milliseconds
~ the PAM can be configured into any digital circuit.

The paper is organized as follows: In section 2 we explain the notion of time in syn-
chronous languages, in order to show the importance of minimizing program reaction
times. Section 3 recalls the main aspects of LUSTRE and the PAM is briefly presented in
Section 4. In Section 5, we show how a boolean LLUSTRE program can be translated into a
circuit description which is accepted as input by standard CAD tools. Then, we describe
some extensions to LUSTRE which are needed for using it as a programming language for
the PAM (Section 6). These extensions concern arrays and only affect the surface level of
the language.

Throughout the paper, we shall consider a very simple example of real-time program
implementing a watchdog.

2 Time in synchronous languages

Let us first recall how synchronous languages pretend to express real-time constraints
without making reference to a global physical notion of time. In the synchronous world,
the notion of physical metric time is replaced by a simple notion of order and simultaneity
between events. The physical time (measured in seconds, e.g.) will be considered as an
input event, among others, and will not play any privileged role. We say that time is
multiform. For instance, consider the two following constraints:

*“The train must stop within 10 seconds”
“The train must stop within 100 meters”

There is no conceptual difference between them, and there is no reason to express them
by means of different primitives, as it would be the case in languages where the metric



time has a special status. In a synchronous language, they will be expressed by analogous
precedence constraints:

“The event STOP must precede the 10th (100th) next occurrence of the event
SECORD (METER)”

A synchronous program is supposed to receive external events, which can be either simul-
taneous or ordered. In response to these events, and simultaneously with them, it emits
output events. When no input event occur, nothing happens in the program. We shall
only consider logical instants, which are instants when one or several input events occur.
Here is an example of behavior of a speed counter; it receives two kinds of events, SECOND
and METER, and emit the value of the SPEED synchronously with any occurrence of METER:

Logical instant 1 2 3 4 b 6
Input events METER | METER | METER SECOND METER | METER, SECOND
QOutput events SPEED{3) SPEED(2)

This simple and abstract point of view appeared to be very fruitful for programming
real-time systems and for providing languages with clean, machine-independent semantics.
Of course, it raises two practical problems:

e How does the interface of a synchronous program proceed, for deciding whether
events are simultaneous or ordered?

o How can an actual machine instantly react to unpredictable input events?

Study of the former problem is ongoing; we consider it to be a bit apart from the main
research about synchronous languages. In this paper, we shall focus on the later problem.
The basic idea is that if the implementation on a given machine behaves “as if” the reac-
tions be instantaneous, the synchrony hypothesis is a valuable and acceptable abstraction.
It will be the case, in particular, if the system reacts to any input event before the next
event occurs. Notice that, in that sense, the correctness of an implementation is “mono-
tonic”: if a program behaves well on a given machine, it will also behave well on a faster
machine. Any other assumption than “zero time” about the reaction time of the machine
would violate this property.

So, our problem is to minimize and measure the program reaction time, on a given
machine. The first attempt to achieve this goal was to generate efficient, linear (i.e.,
without loop nor recursion) sequential code for program reactions. It has been achieved
in the compilers of the langnages ESTEREL [BG85| and LusTRE [CPHP87,HRRO1|, by
static synthesis of the control structure of the code as a finite automaton. A reaction
of the program corresponds to a transition of the automaton. More recently [Ber91], a
more radical solution has been investigated, which consists of implementing programs by
hardware. This is the solution presented here for LUSTRE.



3 Overview of LUSTRE

We don’t give here a detailed presentation of the language LUSTRE, which can be found
elsewhere [CPHP87]. We only recall the elements which are necessary for understanding
the paper.

A LUSTRE program specifies a relation between input and outputs variables. A variable
is intended to be a function of time. Time is assimilated to the set of natural numbers.
Variables are defined by means of equations: An equation X=E , where E is a LUSTRE
expression, specifies that the variable X is always equal to E.

Expressions are made of variable identifiers, constants (considered as constant func-
tions), usual arithmetic, boolean and conditional operators (considered as pointwisely
applying to functions) and only two specific operators: the “previous” operator and the
“followed-by” operator:

e If E is an expression denoting the function An.e(n), then pre(E) is an expression
denoting the function
{ nil ifn=0
An.

e(n—1) ifn>0

where nil is an undefined value.

o If E and F are two expressions of the same type, respectively denoting the functions
An.e(n) and An.f(n), then E -> F is an expression denoting the function

N e{n) ifn=0
"1 f(n) ifn>0

A LUSTRE program is structured into nodes: a node is a subprogram specifying a
relation between its input and ocutput parameters. This relation is expressed by an un-
ordered set of equations, possibly involving local variables. Once declared, a node may be
functionally instantiated in any expression, as a basic operator.

As an illustration, Figure 1 shows a node describing a “watchdog”: it receives

- two boolean inputs, on and off, which control its state: the watchdog is initially
inactive, it becomes active whenever the inpuf on is true, and becomes inactive
whenever the input off is true.

- a boolean input millisecond, and an integer delay.

It returns a boolean output alarm which must be true whenever the watchdog remained
active during delay milliseconds, i.e., during a delay in which millisecond has been
delay times true. Notice that, while it is active, the watchdog can be set again with a
new delay.

Figure 2 illustrates the behavior of the program: it shows the sequence of values of
the expressions of the program, in response to particular sequences for input parameters,
Vertical reading of this table gives the value of each expression at each execution cycle of
the program.



node WATCHDOG (on, off, millisecond: bool; delay: int)
returns (alarm: hool);
var active: bool; remaining: int;
let
alarm = active and (remaining = 0);
active = if on then true
else if off then false
else (false -> pre(active));
remaining = if on then delay
else if active and millisecond
then pre(remaining) - 1
else pre(remaining);

tel;

Figure 1: Example of LUSTRE program: A watchdog
cyclenr. | 0 1 2 3 4 5 6 7 8 9 10 11 12
on | ff @ f HF F w0 F w F F F F K
off | ff ff HF w0 F F F F F F F F it
delay | 4 4 4 4 4 2 2 3 3 3 3 3 3
millisecond | ff ff &t ff ¢ f & fF & [F & t ff
active | ff tt &t ff ff it tt tt i tt # it ff
pre(active) | nil ff & t ff ff t @& it t t# it
remaining |ndd 4 3 3 3 2 1 3 2 2 1 0 O
pre(remaining)-1 |ni ndd 3 2 2 2 1 0 2 1 1 0 -1
alarm | ff ff F F F §F F F F F fF ¢ fF

Figure 2: Behavior of the Watchdog program
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Figure 3: The operator net of the watchdog

LUSTRE programs can be viewed as data-flow operator nets: each variable is a “wire”
in the net, and nodes are compound operators. Figure 3 shows the net associated with the
program WATCHDOG. This point of view will be the basis of the translation to hardware.

4 Programmable Active Memories

Let us recall the concept of Programmable Active Memory, as defined in {BRV89):

A PaM is a uniform array of identical cells all connected in the same repetitive
fashion. Each cell, called a PAB for programmable active bit, must be general
enough so that the following holds true: Any synchronous digital circuit can
be realized (through suitable programming) on a large enough PAM for a slow
enough clock.

To support intuition, we shall consider a particular a.rchitectu;re, represented in Fig. 4.
This particular PAM is a matrix of identical PaBs, each of which having (see Fig. 4.a):

o 4 bits of input < ig,41,%2,13 >
¢ 1 bit of output O

o A 1-bit register (fip-flop) with input R and output r, synchronized on the PAM’s
global clock

o A universal combinatorial gate, with inputs < iy, 41, i2,%3,7 > and outputs < O, R >.
This gate can be configured into any boolean function with 5 inputs and 2 outputs,
by means of 2 x 2% = 64 control bits, which specify the truth table of the function.
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Figure 4: A simple Programmable Active Memory

Between the rows and the columns of cells, there are communication lines (see Fig 4.b)
to which the pins of the celis can be connected. These connections and the connections
between horizontal and vertical lines can also be configured by means of additional control
bits.

Such a PAM, with n active bits, can be configured by downloading a sequence of control
bits for configuring the PABs and their connections.

We shall keep this simple model as intuitive support, although the actual target ma-
chine of our prototype compiler is slightly more complicated. The target machine is the
Perle family, studied and built in DEC-PRL, and based on Logic Cell Arrays designed by
Xilinx Inc. [Xil88]. The presently available Perle-0 version is a matrix of 40 x 80 (double)
PaBs, and the next version will be about 4 times larger.

Building the control bitstream corresponding to a given circuit configuration is of
course a non trivial problem, in spite of available tools. In the case of Perle, the standard
tools provided by Xilinx, together with the tools developed in DEC-PRIL, take as input a
logical description of each PAB, together with optional placement indications. They finish
the placement, perform automatic routing, and produce the bitstream. Our goal is to
franslate a LUSTRE program into a description being usable as input of these tools.

5 Implementing boolean LUSTRE on the PAM

We briefly describe the translation of a boolean LUSTRE program into a layout for the
PaM (see [RocBY] for more details). It requires

e translating LUSTRE operators in terms of hardware operators (gates, flip-flops)

e implementing the resulting operator net by means of connected PABs



Translation of LUSTRE operators

The first step of the compilation of a boolean program consists of translating its corre-
sponding operator net into a net of gates and flip-fiops.

The operator net corresponding to a boolean LUSTRE program contains boolean oper-
ators (or, and, not, =), conditional (if_then_else), and temporal {pre, ->) operators.

Notice that what we call “boolean operators” in LUSTRE are not strictly boolean
because of the undefined value nil. However, although most of the LUSTRE operators
are strict with respect to nil, in a legal LUSTRE program, the apparition of a nil value
may not influence the outputs of the program. This property is checked by the compiler.
So, in a legal program we can replace the undefined value by any boolean value without
changing the outputs of the program. As a consequence, LUSTRE boolean operators can
be straightforwardly translated into gates. The conditional operator can also be translated
into a set of gates, using the boolean identity:

if A then B else C = (B and A) or {(C and not A)

The “previous” operator will be obviously implemented by means of a flip-flop. In
the technology used, the initial value of fip-flops is 0, so nil is considered to be 0. The
“followed-by” operator is implemented by means of the resef input of the circuit:

A ->B = if RESET then A else B = (A and RESET) or (B and not RESET)

Example: The definition of the variable active of the watchdog

active = false -> if on then true
else if off then false
else pre(active)

will be translated into

active = (false and RESET) or
{(not RESET and ((true and on) or (not on and
((false and off) or (not off and FLIP_FLOP(activel})))))

which, of course, can be simplified into

active = not RESET and (on or {(not off and FLIP FLOP{active)))

“Packing” operators into PaBs

The next task concerns the expression of the resulting net of gates and flip-flops by means
of PABs. The simplest way for performing this task consists of using one PAB for each
operator in the net. Of course this solution is very unefficient, but we shall use it as a
starting point. It is then improved by applying a set of packing rules. Fig. 5.b shows some
of these rules, using the notations of Fig. 5.a. The rules are applied according to some
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Figure 5: Some rules for packing operators into PABs

simple heuristics. For instance, the net computing the variable active (see Fig. 6) may
be packed into one PAB.

6 Extending LUSTRE for programming the PAam

We have shown that the implementation of boolean LUSTRE on the PAM is quite straight-
forward. If we want to deal with a greatest subset of the language, we have to implement
integer variables by vectors of bits. On the other hand, LLUSTRE is a good candidate as a
high level language for programming the PaM, but lacks some features, concerning regular
structures (arrays) and net geometry. In this section, we propose some extensions to the
language, which permit

o to deal with a greatest subset of LUSTRE than the purely boolean part. In particular,

integers will be considered as vectors of bits.

e to make easier its use for describing circuits. Arrays will be available for describing

regular structures. They will also carry placement informations.
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Figure 6: The net computing the variable “active”

6.1 Arrays in LUSTRE

Although they were considered in the very first design of the language, arrays have not
yet been introduced in L.USTRE, since their translation to sequential code raises difficult
problems, concerning the order of computations. These problems disappear when a fully
parallel implementation is considered. We propose here a notion of array, compatible with
the principles of the language. Introducing arrays will allow integer values to be considered
as boolean arrays, with arithmetic operators operating on arrays. Considering a number
as e.g., a 32-bit array instead of 32 unrelated boolean variables, is also interesting for
placement on the PAM: it strongly suggests to implement it as a register.

LUSTRE contains three predefined data types: boolean, integer and real, and allows
abstract data types to be imported from an host language. There is only one way for
building compound types, by tupling: if 7o, 71, ..., T, are types, so is [y, 71, . .., s}, which
is the type of tuples {Xg,X;,...,X,] of LUSTRE variables, where X; is of type 7;. If X is
an expression of type tuple and i is an integer constant, X[i] denotes the (i + 1)-th
component of X (tuple components are numbered from 0},

The notion of array we propose is a special case of tuple: Let us define an indez to
be a non negative integer constant, known at compile time. If 7 is a type, and n is an
index, then 77n is the type of arrays of n elements of type 7, numbered from 0 to n-1 (this
notation refers to Cartesian power of 7). An array is a tuple, all components of which
have the same type. As a consequence, if X is an array of type 7°n and i is an index,
X[1] denotes the i-th component of X (provided 0<i<n). One can also access a slice of
an array: If X is as above and i and j are indexes smaller than n, then X[i..j] is the
array

o [X[i],X[i+1],...,X[j1] of type 7~ (j-i+1) , if i<
o [X[il],X[i-1],...,X[j]] of type 7~ (i~j+1) , otherwise.

If Ey4, Eo, ..., E, are expressions of the same type v, [E;,E;,...,E,] denotes the array
whose i-th component is E;. By extension, E"n denotes the array [E,E,...,E].

Of course, polymorphic LUSTRE operators can be applied to arrays. We introduce also
the following notion of polymorphism: any operator op of sort

TIX Ty X ooa Ty = T X Ty X o]

10



Al0] Al1] Al[2] A[n-1]

L, L

null
NULL[0] NULLE1] NULLE2] NULL[n-1]
Figure 7: The net of the Zero comparator
(i.e., taking ¢ parameters of respective types 71,72, ...,7; and returning j results of respec-

tive types 75, Ta,y . . ., 'r;) is implicitly overloaded to have the sort
TTAXTAX ... D — TITAX X ... T

for any index n. For instance, the operator and, of sort bool X boocl — bool may
be applied to two arrays 4 and B of type bool~n, returning the array C such that
Cli] = (A{i] and B[il), for any i=0...n-1.

6.2 Examples

We shall translate our watchdog program into a boolean program. First, we have to
express arithmetic operators as operating on boolean vectors. Let us give a comparator
to zero and a combinatorial decrementer:

Zero comparator : It takes a vector of booleans, representing an integer, together with
its size, and returns true if and only if the represented integer is zero (see the resulting
net on Fig. 7):

node NULL(const m: int; A4: bool"n) returns(mull: bool);
var NULL: bool™n;
let
null = NULL[n-1];
NULL[1..n-1] = NULL[O..n~2] and not A[1..n-1];
NULL[0] = mot A{0];
tel;

+

Combinatorial decrementer: It is made of a general adder:

node DECR(const n: dint; A: bool™n) returns (D: bool~n};
var carryout: bool;
let
(8,carry_out) = ADD(n,A,true"n)};
tel;

11



The n-bits adder is standard; it is made of n 1-bit adders:

node ADD(const n:int;A,B:bool"n) returns (S:bool”n; carry.out:bool);
var CARRY: bool"n+1;
let
CARRY[0] = false;
(S,CARRY[1..n]) = AP1(A,B,CARRY[0..n-11);
carry_out = CARRY[n];
tel;

node AD1(a,b,carry-in: bool) returns (s, carry-out: bool);

let

s = X0R(a, XOR(b,carry.in));

carry_out = (a and b) or (b and carry_in) or (carry_in and a);
tel;

Full watchdog: Using these boolean implementations of arithmetic operators, the watch-
dog program can be translated into a boolean program. Here we choose a 8-bits represen-
tation of integers:

const size = 8B;
type Int = bool”size;
node WATCHDOG (on, off, millisecond: bool; delay: Int)
returns (alarm: bool};
var active: bool; remaining: Int;
let
alarm = active and NULL(size,remaining);
active = if on then true
else if off then false else (false~>pre(active));
remaining = if on"size then delay
else if (active and millisecond) “size
then DECR(size, pre(remaining))
else pre(remaining);
tel;

The automatic translation of the initial program into this one is not yet implemented.
However, our prototype compiler, called POLLUX, translates the above program into the
layout (for Perle-0) shown in Fig. 8, described in a format that can be provided to standard
CAD tools. This layout must be interpreted as follows:

¢ Cell (a) computes the 4th bit of remaining~1, according to the equation

D3] = PR[3] xor 1 zor C[2]

o Cells (b) and (c) respectively compute the 3rd and 2nd bits of remaining-1 and the

12
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Figure 8: Layout of the Watchdog on Perle-0
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corresponding carry, according to the equations

p{2] = PRI2] xor 1 xor C[1]
C{2] = PR[2]) oxr C[1]
D{i] = PRI1] xor 1 xor C[0]
¢[1] = PR[1] or C[0]

]

il

o Cell (d) computes its first bit and the first carry

pio]
cio]

not PR[O]
PR[0O]

»

Cells (e), (f), (g), (h) compute the 4 bits of remaining and pre(remaining), ac-
cording to the equations:

PR[i¢] = Flop(remaining[:])
remaining[i] = (on and delay[:]) or (decr and D[i]) or PR[:]

o Cell (i) computes

alarm = active and not(remaining[0] or
remaining[1] or remainingl[2] or remaining[3])

e Cell (j) computes

active = on or (not off and not RESET and Flop(active))
decr = active and millisecond

Its critical path is of about 60ns (much less than the time needed by a MC-68000 to
perform a “load register” statement!).
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