
Improving WCET Evaluation
using Linear Relation Analysis ∗

Pascal Raymond, Claire Maiza, Catherine Parent-Vigouroux,
Erwan Jahier, Nicolas Halbwachs, Fabienne Carrier, Mihail Asavoae,
Rémy Boutonnet

Univ. Grenoble Alpes and CNRS, VERIMAG, Grenoble, France
first_name.last_name@univ-grenoble-alpes.fr

Abstract
The precision of a worst case execution time
(WCET) evaluation tool on a given program is
highly dependent on how the tool is able to detect
and discard semantically infeasible executions of
the program. In this paper, we propose to use the
classical abstract interpretation-based method of
linear relation analysis to discover and exploit re-
lations between execution paths. For this purpose,

we add auxiliary variables (counters) to the pro-
gram to trace its execution paths. The results are
easily incorporated in the classical workflow of a
WCET evaluator, when the evaluator is based on
the popular implicit path enumeration technique.
We use existing tools — a WCET evaluator and a
linear relation analyzer — to build and experiment
a prototype implementation of this idea.

2012 ACM Subject Classification Real-time systems software
Keywords and phrases Worst Case Execution Time estimation, Infeasible Execution Paths, Abstract
Interpretation
Digital Object Identifier 10.4230/LITES.xxx.yyy.p
Received Date of submission. Accepted Date of acceptance. Published Date of publishing.

Editor LITES section area editor

1 Introduction1

The computation of a precise and safe approximation of the worst case execution time (WCET) of2

programs on a given architecture is an important step in the design of hard real-time systems [41].3

It is part of the validation of the design, and a prerequisite for tasks scheduling. In this computation,4

over-approximation is mainly due to pessimistic abstraction of (1) complex hardware mechanisms5

(caches, pipeline) and (2) the program semantics (loop bounds, infeasible executions). Taking into6

account the target execution platform is, by far, the most difficult problem. It has been largely7

studied in the literature and remarkable tools exist, both in the academia [5, 27, 29] and in the8

industry [40].9

In this paper, we specifically address the problem of taking into account the program semantics.10

The objective is to extract semantic properties that make some executions infeasible, and to exploit11

these properties in an existing WCET evaluator. It is generally admitted that such properties12

are easier to analyze on high-level code — e.g., C programs — than on binary, even if semantic13

analysis of executable code has been explored [3, 4, 36]. WCET evaluation is performed on object14

code in order to be able to take into account the execution architecture. This raises the problem15

of traceability between the source and the object code.16

∗ This work is supported by the French research fundation (ANR) as part of the W-SEPT project (ANR-12-
INSE-0001)

© P. Raymond and C. Maiza;
licensed under Creative Commons License CC-BY

Leibniz Transactions on Embedded Systems, Vol. XXX, Issue YYY, pp. 1–27
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LITES.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

2 Improving WCET Evaluation using Linear Relation Analysis

x = 0; i = 0;
while (i < 100) {

if (x < 10) {
...

}
if (c) {

...
x++;

}
i++;

}

x = 0; i = 0

i < 100?
T

F

x<10?T

c?

F

i++

b0

b1

b2

b4

b6

x++
. . .

. . .

F

T

b3

b5

x = 0; i = 0; α= 0; β= 0; γ= 0;
while (i < 100) {α++;

if (x < 10) {β++;
...

}
if (c) {γ++;

...
x++;

}
i++;

}

(a) initial program (b) control flow graph (c) instrumented program

Figure 1 Instrumenting an example program with counters

The most popular approach to evaluate the WCET is called implicit path enumeration technique17

(IPET) [28]. A micro-architectural analysis provides an evaluation of the duration of each basic18

block of the object-code control-flow graph. The WCET is then expressed as the solution of19

an integer linear programming problem (ILP) where the variables are the number of times each20

basic block is traversed during an execution. Relations between these variables come from the21

control-flow graph (flow equations) and from semantic “flow facts”, including at least loop bounds.22

Indeed, each loop in the program should have a constant bound to guarantee that the execution23

time is finite; such bounds may be provided by the user, or discovered by program analysis.24

Hence, the IPET-based evaluation takes into account semantic properties expressed as linear25

constraints on counters. A natural idea is then to combine it with a semantic analysis devoted to26

the discovery of invariant linear relations. Polyhedra-based abstract interpretation [2, 8, 17, 20],27

also called linear relation analysis (LRA), is such an analysis. It is able to associate with each28

control point of a sequential program a system of linear inequalities (whose set of solutions is a29

convex polyhedron) satisfied by the numerical variables at this control point in any execution of30

the program.31

Our proposal consists in applying LRA to a copy of the source program enriched with counter32

variables, and translate the obtained relations between counters into constraints to be added to33

the ILP. Let us illustrate this proposal with a simple example.34

1.1 An example35

Consider the program fragment of Figure 1.a with its control-flow graph (Fig. 1.b). Let’s add36

counters α, β, γ to the main basic blocks as done in the instrumented program Figure 1.c. These37

counters are initialized to 0 and incremented in their corresponding block. An LRA analysis of38

this instrumented program automatically discovers that the following relations are satisfied at the39

end of the program:40

α = i = 100 , γ = x , β + γ ≤ 110 , γ ≥ 0 , β ≥ 041

The inequality α = 100 gives the exact bound of the loop. More interestingly, β + γ ≤ 110 means42

that there are at most 10 iterations of the loop where both blocks b3 and b5 are executed.43

Assume the object code has the same control structure as the C program, i.e., the basic44

blocks of their control flow graphs are in an one-to-one correspondence. The standard WCET45

evaluation computes pessimistic execution times (say ti, i = 0..6) of the basic blocks (bi, i = 0..6),46

P. Raymond et. al. 3

and constructs the following ILP, where ni (resp., ei,j) denotes the number of occurrences of the47

basic block bi (resp., the edge from bi to bj) in an execution of the program:48

wcet = max
6∑

i=0
ni.ti , with the constraints



n0 = 1 , e0,1 = n0
n1 = e0,1 + e6,1 , e1,2 + 1 = n1
n2 = e1,2 , e2,3 + e2,4 = n2
n3 = e2,3 , e3,4 = n3
n4 = e2,4 + e3,4 , e4,5 + e4,6 = n4
n5 = e4,5 , e5,6 = n5
n6 = e4,6 + e5,6 , e6,1 = n6


49

50

If we are able to maintain the correspondence between basic blocks in the source and the object51

code, i.e., to associate our counters α, β, γ with the variables of the ILP (n2, n3, n5 respectively),52

we can add to the ILP the corresponding constraints: n2 = 100, n3 + n5 ≤ 110, which is likely to53

reduce the maximum value of the objective function1.54

1.2 Contents of the paper55

In Section 2, we focus on some available tools, and experiment their semantics awareness on some56

simple examples. Two recent papers were dedicated to the state of the art related to semantic57

analyses for WCET estimation and infeasible path detection [1, 10]. Section 2.3 presents some58

more recent publications.59

Our proposal consists in combining existing techniques, namely IPET-based WCET analysis60

and Linear Relation Analysis, recalled in Section 3, together with the specific tools that we used61

in our implementation. In Section 4, we explain how the counters are added and related to ILP62

counters thanks to debugging information provided by the compiler. Our implementation of63

the method is used to validate the approach on two existing benchmarks. We also investigated64

the robustness of the approach in presence of compiler optimizations. These experiments are65

summarized in Section 5. We conclude with some future works.66

2 Existing tools67

We have experimented with some existing tools, to evaluate their ability to discover and exploit68

semantic properties. Four tools have been considered, all of which go through similar steps:69

1. extracting a control-flow graph from the object code,70

2. performing a set of micro-architectural analyses to obtain execution times for each basic blocks,71

3. using IPET to compute a safe WCET.72

We compare these tools with respect to their capabilities to extract semantic properties to cut73

infeasible paths.74

2.1 The tools75

2.1.1 The Chronos Timing Analyzer76

Chronos [27] is an academic tool developed at National University of Singapore. It takes as input77

a C program, performs limited data-flow analysis at C source code level to determine loop bounds,78

1 In fact, for this simple example, the results can be computed symbolically: concerning the standard
evaluation, if the number of iterations in the loop (= 100) is given as a flow fact, the result will be
t0 + 101t1 + 100(t2 + t3 + t4 + t5 + t6). Taking the additional constraint into account, we get t0 + 101t1 +
100(t2 + t4 + t6) + 100 max(t3, t5) + 10 min(t3, t5) thus improving the previous result by 90 min(t3, t5).

4 Improving WCET Evaluation using Linear Relation Analysis

and requests the user to provide this information when it fails. The semantic analysis in Chronos79

uses a pattern-based method to detect infeasible paths [39]. The so-called two-phase technique80

addresses infeasibility from a conflicting pairs point of view. In the first phase, an analysis detects81

some conflicts that capture the fact that two branches can not be taken along the same path. In82

the second phase, each conflicting pair relation is encoded into an ILP constraint.83

2.1.2 The Swedish Timing Analyzer84

SWEET2 [29] is a research toolbox developed at Mälardalen Real-Time Research Center (MRTC).85

The main objective of SWEET is flow analysis, which computes flow-facts, i.e., information about86

loop bounds and infeasible paths in the program. The main technique to discover flow-facts is87

abstract execution [16]. Abstract execution is a form of context-sensitive abstract interpretation,88

because it uses a symbolic execution to produce context information for each loop iteration and89

function call. Instead of using the fixpoint engine of abstract interpretation, abstract execution90

executes the program in the abstract domain, merging the execution paths at certain points in91

the program. SWEET does not support LRA. It currently implements only the abstract domain92

of intervals.93

2.1.3 AbsInt - The aiT Tool94

Developed by AbsInt3, aiT is the main industrial product for WCET analysis. It consists of a set95

of binary executables analyzers, which take the intrinsic cache and pipeline behavior into account.96

Concerning semantic analysis, aiT uses a value analysis based on intervals [13] to compute safe97

ranges of values for the program variables. aiT uses this information to determine loop bounds98

and detect infeasible paths. The approach towards computing loop bounds is not general, but it99

handles loop patterns. In order to gain precision, aiT pre-processes each loop by transforming100

its body into a function, in order to expose the iteration contexts. The key element in this101

transformation is to identify the loop index and to set it as a function parameter. Then, an102

interval analysis computes the ranges for all the loop variables. The loop transformation is based103

on loop patterns, which depends on the particularities of the architecture (e.g., parameter order)104

or on the loop structure (e.g., for-loops, triangular-loops, branch conditions). aiT is able to detect105

infeasible paths using the results of the value analysis, like conditions made infeasible because of106

the computed intervals.107

2.1.4 oRange, the flow fact analyzer of OTAWA108

OTAWA [5] is an academic toolbox, developed at IRIT (University of Toulouse), designed as109

a generic framework to develop static analyses for WCET computation. Although OTAWA110

implements several approaches to WCET computation, the one based on IPET is the most mature.111

OTAWA relies on an auxiliary tool, called oRange [9], to compute loop bounds. oRange analyses112

C code. As a first phase, oRange detects loop indices and constructs a normal form: a symbolic113

expression of the bound independently of the call context. In a second phase, by an abstract114

execution, a syntactic tree is built in function of a full or partial call context. It combines loop115

bounds and conditional expressions as numeric or symbolic expressions. Finally, the tree is116

computed in the full context in order to produce a file in the specific flow-facts format FFX [42].117

2 www.mrtc.mdh.se/projects/wcet
3 AbsInt GmbH www.absint.com/ait/

www.mrtc.mdh.se/projects/wcet
www.absint.com/ait/

P. Raymond et. al. 5

y = 2 ; x = y ;
if (x>3){// unreachable

...
}

Example 1

x = 0 ;
while (x<10){

...
if (C1) {

x = ...
...

}
x++ ;
// iteration nbr. may be 6= 10

}

Example 2

see example §1.1
Example 3

max_i = 3 ; s1 = 0;
for (i=0 ; i<10 ; i++) {

s1 = s1 + t[i] ;
// each t[i] assumed to be >5
x = i+1 ;
if (!(i<max_i)) break ;
// intended for 4 iterations

}
int s2 = s1 ;
if (x < 6)

for (i=0 ; i<10 ; i++){
s2 = s2+2 ;
if (!(i<5)) break ;
// intended for 6 iterations

}
int f = 0 ;
if (2*s1 < s2)

// unreachable, since s1>20 and s2=s1+10
for (i=0 ; i<10 ; i++){

f = f+2 ;
if (!(i<4)) break ;

}

Example 4

Figure 2 Various cases of semantic infeasibilities

2.2 Some experiments118

In order to evaluate the capabilities of these tools to detect infeasible paths, we have applied each119

of them to programs containing various situations of semantic infeasibility. These situations are120

given on Figure 2:121

Example 1 is a case where simple pattern-based method may fail, since constant propagation122

is needed.123

Example 2 may be a problem for pattern-based methods for finding iteration numbers, since124

the apparent index x is modified.125

Example 3 is our introductory example of §1.1.126

Example 4 is a fragment of code generated by the SCADE4 compiler, from a design manipulating127

arrays. On one hand, the loops are exited from inside, which makes complex the evaluation of128

iteration numbers. On the other hand, the third loop is unreachable because of some non-trivial129

arithmetic conditions.130

Table 1 summarizes the results of the tools on these examples. On Example 1, Chronos is131

unable to detect dead code5. Example 2 is correctly analyzed only by SWEET, because it unrolls132

loops. None of the tools is able to find the property of Example 3. On Example 4, Chronos133

requires manual annotations for loop bounds; oRange estimates that both loops are iterated 10134

times; SWEET and aiT find the exact loop bounds; only aiT detects dead code.135

In this paper, we propose a method and a tool-chain that is able to discover the infeasible136

paths of these 4 examples, namely, infeasible paths that depend on a semantic analysis and that137

may concern distant program points.138

4 www.esterel-technologies.com/products/scade-suite
5 We used the available version of Chronos. Some additional work has been done that complement the infeasible
path analysis [6, 37], which is not part of the available version.

www.esterel-technologies.com/products/scade-suite

6 Improving WCET Evaluation using Linear Relation Analysis

Chronos SWEET oRange aiT
Example 1 - X X X

Example 2 - X - -
Example 3 - - - -
Example 4

nbr. 1st loop - 4 10 4
nbr. 2nd loop - 5 10 5
dead code - - - X

Table 1 Results of tools on programs of Figure 2

2.3 Other approaches139

An extended state of the art related to semantic analyses for WCET estimation can be found140

in [1] and a general survey of infeasible path detection in [10]. We complement them with some141

more recent publications.142

Several recent works make use of SMT solvers [23, 37]. The idea is to ask the solver if143

the worst-case path obtained by the ILP solver is feasible. Whenever the path is infeasible, a144

corresponding constraint is added to the ILP. As in our approach, adding constraints does not145

always mean that the WCET is refined (2 paths may have the same WCET). In [18], the whole146

path analysis is done through SMT solving instead of ILP: infeasible path analysis and worst-case147

path analysis are merged in one step. Path execution time is expressed as an SMT problem, and148

the question asked is no longer “is this path feasible?”, but “is there a feasible path longer than149

K?”, where K is a given constant (which is adjusted, e.g., by binary search). In [32, 35], a similar150

approach is taken, by asking this question to a bounded model checker.151

3 Used techniques and tools152

This section presents the existing techniques and tools used in our prototype: OTAWA implements153

the classical IPET-based WCET evaluation, and PAGAI performs Linear Relation Analyis.154

3.1 WCET evaluation with OTAWA155

The WCET estimation work-flow (Figure 3) involves a compiler, a Linear Program solver, and156

two tools from the OTAWA toolbox: oRange and owcet.157

Compilation: the source C code is compiled by a third party tool; for this experiment, we use158

a cross compiler from the GNU Compiler Collection (arm-elf-gcc 4.4.2), but other compiler159

can be used, provided that it produces ELF code (Executable and Linkable Format), with160

debugging information in DWARF format.161

oRange is a data flow analyzing tool, dedicated to the discovery of loop bounds. Bounds are162

stored in the OTAWA flow facts format (FFX).163

owcet is the OTAWA command dedicated to the WCET evaluation. The main steps of this164

tool, not detailed in Figure 3, are:165

the construction of the control-flow graph (CFG) of the object code; during the construction,166

and thanks to debugging information, basic blocks (BB) are associated (if possible) to lines167

in the source program; thanks to this correspondence, the loop bounds computed by oRange168

are translated into control flow constraints in the CFG. The annotated CFG can be dumped169

in a file, allowing other tools to exploit it.170

P. Raymond et. al. 7

LP solver

Compiler
(arm-gcc)

Flow facts
(loop bounds) bin

ILP system

WCET est.

C

OTAWA
(owcet)

OTAWA
(oRange)

CFG dump
(with line/BB mapping)

Figure 3 Otawa WCET estimation work-flow

the micro-architectural analysis, which associates a local WCET estimation to each BB of171

the CFG.172

the construction of the Integer Linear Programming (ILP) system; as in the introduction173

example (§1.1) the resulting system gathers (1) structural constraints (CFG structure), (2)174

loop bounds constraints (from oRange flow facts) (3) the objective function to be maximized175

(sum of BB counters weighted by their local WCET).176

ILP solver: the ILP system is then solved by a third-party tool; OTAWA integrates and uses177

LP_SOLVE6 (any other equivalent tool can be used).178

3.2 Linear Relation Analysis with PAGAI179

3.2.1 Principles of LRA180

Linear Relation Analysis [8] is a classical program analysis, based on abstract interpretation [7]. It181

is able to discover, at each control point of a sequential program, a conjunction of linear relations182

(equalities and inequalities) invariantly satisfied by the numerical variables at this point. Classical183

algorithms are used to propagate linear systems over the statements of the program. Several184

causes may result in information lost:185

the analysis safely ignores non-linear expressions in assignments and tests;186

the analysis performs a convex hull at control path junctions, instead of propagating the187

disjunction of incoming information. It means that the propagated value is the most precise188

conjunction of linear relations implied by both incoming systems;189

to avoid infinite propagation along loops, the classical widening-narrowing method is applied190

to guess a safe approximation of the limit. Note that, unlike in symbolic execution [23] or191

SMT methods [18], loops are not unrolled.192

6 web.mit.edu/lpsolve/doc

web.mit.edu/lpsolve/doc

8 Improving WCET Evaluation using Linear Relation Analysis

3.2.2 Applying LRA to our example193

We do not detail further the techniques applied in LRA, and refer the reader to the bibliography.194

We just show the main steps of the analysis of our example of Figure 1. Let’s consider the control195

point at the entry of the while loop. The first step of the analysis straightforwardly computes the196

first iterate:197

x = i = α = β = γ = 0198

Its propagation through the loop body provides, with a convex hull at the end of the conditional:199

i = α = β = 1 , x = γ , 0 ≤ γ ≤ 1200

Now a convex hull with the first iterate gives the second iterate at the entry of the loop:201

i = α = β , 0 ≤ α ≤ 1 , x = γ , 0 ≤ γ ≤ α202

Instead of continuing the iterations, a first widening/narrowing step is performed (using “lookahead203

widening” [14]), which provides:204

i = α = β , x = γ , 0 ≤ γ ≤ α ≤ 100 , γ ≤ 10205

Now, the “else” branch of the test x<10 becomes feasible, and a second widening/narrowing step206

is performed, providing:207

i = α , x = γ , β + γ ≤ α+ 10 , β ≤ α , γ ≤ α ≤ 100208

which is found invariant after one more propagation. Propagated to the end of the program, it209

becomes:210

i = α = 100 , x = γ ≤ 100 , β + γ ≤ 110211

3.2.3 LRA and loop bounds212

It may happen, like in the previous example, that LRA discovers a bound to a loop counter, thus213

providing an essential information for WCET evaluation. However, finding loop bounds is not our214

main goal in this work, as the method is intrinsically unable to discover non linear relations, which215

drastically limits its capability to find loop bounds. As a matter of fact, in presence of nested loops,216

the number of executions of the body of the innermost loop is not linear in the constants of the217

program. For instance, in the program fragment “for(i=0;i<n;i++){for(j=i;j<n;j++){...}}”218

the number of executions of the body of the innermost loop is n(n+ 1)/2, which cannot be found219

by LRA.220

The LRA method must then be used together with some other method able to bound nested221

loops. We can use existing tool, such that oRange that comes with OTAWA, or more basically222

user-given bounds, given as pragmas in the code.223

There exist also approaches based on polyhedra manipulation to find loop bounds, such as224

the one proposed in [38, 30]: it consists in building a polyhedral upper approximation P of the225

iteration domain, i.e., the set of possible valuations of loop counters (in the previous example,226

P = {(i, j) | 0 ≤ i ≤ j ≤ n − 1}). Under realistic assumptions concerning the determinism227

of the program, the number of executions of the innermost loop is bounded by the number of228

integer points in P , and algorithms are available to compute this number. Notice that LRA can229

be combined with this approach, since it can discover linear invariants reducing the iteration230

domain, thus improving the precision of the result. Notice also that LRA can deal with parameters231

(symbolic bounds, like n in our example), an issue specifically addressed by [38].232

P. Raymond et. al. 9

LP solver

LP solver

instrumentation

C
(original)

counter/line
mapping

(§Fig.3)
OTAWA work-flow

line/BB
mapping

ILP system 2

ref. C
+counters

Linear Relation Analyis
(PAGAI)

counter
constraints

ILP constraints
translation & merge

ILP system 1

ref. C

WCET est. 1

WCET est. 2

Figure 4 Instrumentation and analysis workflow

3.2.4 The PAGAI prototype analyzer233

Several tools performing LRA are available ([2, 12, 19, 20] to cite a few). Here, we use the PAGAI234

prototype analyzer, which implements the basic LRA together with recent improvements like235

“lookahead widening” [14] and SMT-based “path focusing” [19]. PAGAI analyses LLVM code [24]236

produced from a C program (thanks to Clang7), and is able to return discovered properties at237

the C level. PAGAI may be used with other abstract domains than general linear systems — like238

octagons [33] — thanks to the common interface APRON [21].239

4 Adding and tracing counters240

4.1 The proposed workflow241

Figure 4 shows the proposed workflow for the experiment. It involves two existing components:242

timing analysis with OTAWA (left) and program analysis with PAGAI (right). Two new tools243

have been developed to complete the workflow: a front-end (top, Instrumentation), which produces244

the input for the analyzers (OTAWA and PAGAI), and a back-end (ILP translation & merge),245

which gathers the results into a more constrained ILP system, and obtains a possibly enhanced246

WCET estimation.247

These tools are detailed in this section. We illustrate the successive steps of the method by248

detailing the processing of an example program, called lcdnum.c, extracted from TacleBench249

programs suite [15]. The main program is given in Figure 5. It calls a function num_to_lcd, the250

execution time of which is taken into account by OTAWA.251

7 http://clang.llvm.org/

http://clang.llvm.org/

10 Improving WCET Evaluation using Linear Relation Analysis

4.2 Instrumented program version252

The goal of the front-end (“instrumentation”, Figure 4, top) is to produce, from the original C253

code, a reference C program. Some semantics preserving transformations of the source code are254

necessary or advisable, in order to use properly the analyzers, and trace the information between255

them.256

Some transformations are purely lexical, and do not change the program structure: because257

the standard ELF/DWARF traceability mechanism is line-based, line breaks are introduced to258

isolate each atomic statements on its own line.259

Some transformations that modify the control structure are necessary because of the limitation260

of the analyzers. For instance, a single-return statement per function is mandatory for exploiting261

the results of PAGAI: this unique control point is the place where counters invariants actually262

express properties on the whole execution of the function. Other transformations are required263

because of the limitation of both OTAWA and PAGAI: the control structure (CFG) must264

be statically known, which forbids dynamic computation of program pointers. In particular,265

“switch/case” statements must be rewritten into a static control structure based on “if” and266

“goto” statements.267

Another transformation is desirable in our case: the current version of PAGAI does not handle268

inter-procedural analysis. In order to exploit the plain capacity of this tool to find invariants,269

a light-weight solution is to inline function calls at the source level. This transformation is270

indeed hardly admissible in real-life, but it must be seen here as a “trick” to reach our goal271

(study the ability of LRA to detect infeasible executions).272

The front-end produces the reference C code in two flavors.273

The reference C code with counters (Figure 4, right) is instrumented with auxiliary counters,274

in the same manner as in the introduction example (§ 1.1). The present version introduces a275

counter for each sequential block in the program control flow. However, some strategy could276

be used to reduce the number of counters by targeting blocks that are more likely to have an277

influence [43].278

The reference C code without counters (Figure 4, left) is the same code, where all lines279

related the counters (declaration, initialization and incrementation) have been commented280

out. This method ensures a semantic equivalence between the programs analyzed by OTAWA281

and PAGAI: since they only differ on the side-effect-free local variables, these programs are282

naturally input/output equivalent. Moreover, at least at the source level, the two programs283

are also structurally equivalent: a block in the reference C code is executed if and only if the284

corresponding block (marked with a counter c) is executed in the reference C program with285

counters. This property becomes false in general at the binary level, since the C compiler may286

modify the control structure: this well-know problem of traceability is discussed later.287

An auxiliary file is generated, that contains the mapping between each counter and its288

corresponding source line in the reference C code.289

Example: Applied to our example program (Figure 5), our instrumentation front-end calls the

P. Raymond et. al. 11

C preprocessor, eliminates the multiple returns and switches (only within num_to_lcd, not
shown), and produces the reference C programs. The first one (without counters) is shown on
Figure 6; the second (not shown) is exactly the same with uncommented lines involving counters.
An auxiliary file (not shown) simply lists the pairs “counter/line” (e.g., (cptr_main_1,144),
(cptr_main_2, 147)).

The first version is provided to OTAWA. Loop bounds computation by oRange is optional,
which allows us to check if PAGAI is able to find them on its own. OTAWA calls the gcc
compiler (here with -O0 optimization level), builds the CFG of the object code, performs the
micro-architectural analysis, and builds the ILP problem.

PAGAI is applied to the second version of the program, and returns the following invariants:

-10+cptr_main_2 = 0
-10+cptr_main_4 = 0
5-cptr_main_3 >= 0

The first equation finds the exact loop bound (which may also be found by oRange). The second
equation is structural (from the shape of the source CFG, cptr_main_2 and cptr_main_4 are
equal). The third property is new, and expresses, in particular, that the function num_to_lcd
is called at most 5 times.

4.3 Tracing back the counters290

The back-end (“ILP constraints translation & merge”, Figure 4, bottom) gathers the information291

coming form OTAWA and PAGAI:292

Thanks to the counter/C-line mapping provided by the front-end, and the C-line/binary-293

BB mapping provided by OTAWA (through the ELF/DWARF information), a counter/BB294

mapping is built. Note that this mapping is partial, and deliberately pessimistic: depending295

on the compilation process, it may happen that a counter is associated either to zero or to296

several binary basic blocks. In this case, the counter is simply ignored: only counters that are297

associated to one single BB are retained.298

Example (cont.): Table 2 shows the mapping between counters and blocks that is built by
our back-end.

The linear constraints on the retained counters are then translated literally into linear con-299

straints on BB, and added to the basic ILP system provided by OTAWA.300

Example (cont.): The translation of the constraints discovered by PAGAI is the following:
x4_main = 10;
x6_main = 10;
x5_main <= 5;

At last, both systems are solved and the corresponding estimations can be compared.301

Example (cont.): After a second call to LP_SOLVE, the final result is printed:
Estimation WITHOUT PAGAI: 1540
Estimation WITH PAGAI: 945

4.4 Traceability and optimization302

In our framework, traceability is the ability to relate execution paths in the binary code (bin.303

CFG) to execution paths in the source code (source CFG).304

Some optimizations performed by the compiler may strongly modify the control structure and305

thus alter traceability: loop unrolling, block replication, out-of-order execution. This is why most306

12 Improving WCET Evaluation using Linear Relation Analysis

unsigned char num_to_lcd(unsigned char a) ;

volatile unsigned char IN = 120;
volatile unsigned char OUT;
int main(void) {

int i;
unsigned char a;
for(i=0; i< 10; i++) {

a = IN;
if(i<5) {

a = a &0x0F;
OUT = num_to_lcd(a);

}
}
return 0;

}

Figure 5 The initial lcdnum.c program

133 int main(void) {
134 int i ;
135 unsigned char a ;
136 unsigned char tmp ;
137 int __retres4 ;
138 //int cptr_main_1 = 0;
139 //int cptr_main_2 = 0;
140 //int cptr_main_3 = 0;
141 //int cptr_main_4 = 0;
142 //int cptr_main_5 = 0;
143 //cptr_main_1 ++; #line 144
144 i = 0;
145 while (i < 10) {
146 //cptr_main_2 ++; #line 147
147 a = (unsigned char)IN;
148 if (i < 5) {
149 //cptr_main_3 ++; #line 150
150 a = (unsigned char)((int)a & 15);
151 tmp = num_to_lcd(a);
152 OUT = (unsigned char volatile)tmp;
153 }
154 //cptr_main_4 ++; #line 155
155 i ++;
156 }
157 //cptr_main_5 ++; #158
158 __retres4 = 0;
159 return (__retres4);
160 }

Figure 6 The reference lcdnum.c program

line number(s) block(s) reliable counter
136,144 1 yes cptr_main_1
145 1;2 no
147;148 4 yes cptr_main_2
150;151;152 5 yes cptr_main_3
155 6 yes cptr_main_4
158;159;160 3 yes cptr_main_5

Table 2 Mapping between counters and blocks

P. Raymond et. al. 13

of the related works assume no compiler optimization to guarantee a perfect matching between307

the two CFGs.308

However forbidding optimization is not satisfactory in real-time domains, where execution309

times have to be predictable, but also short. For a standard compiler like gcc, the observed310

speed-up between no optimization (-O0 option) and a standard level of optimization (-O1) is311

around two.312

The most satisfactory solution would be a compiler that provides a precise traceability even in313

case of CFG optimization. Some work have been done to design and/or adapt the compilation314

process for this purpose, for instance [26, 31, 22].315

Unfortunately, off-the-shelf standard compilers such as gcc hardly provide a precise and reliable316

information in case of CFG optimization. The idea is then to use the compiler options in order to317

forbid (as far as possible) CFG transformations, but still allow other optimizations, in particular318

all that concern data management.319

The gcc compiler proposes numerous options to control optimizations, but there hardly exists320

a comprehensive and exhaustive description of their effects and inter-dependencies. For this321

experiment, we have empirically defined a customized level (called CO in the sequel). We started322

from the standard -O1 level, and remove about 20 individual optimizations using the -fno directive323

(see appendix A). We cannot guarantee that this customized level will preserve the CFG for all324

programs, but the method is safe: as explained in Section 4.3, a counter (and then a source code325

line) that is not associated to exactly one basic block of the binary code is simply ignored. As a326

consequence, the only risk is to loose information that would have made the WCET estimation327

tighter. Note that this statement suppose that the gcc debugging information is reliable, which is328

indeed unprovable, but empirically reasonable.329

Example: When applying the CO method to our running example, we get a 100% traceability. As
a consequence, the interesting counter property (5-cptr_main_3 >= 0) can still be translated
into a BB constraint (x11_main <= 5;) leading to the final result:

Estimation WITHOUT PAGAI: 641
Estimation WITH PAGAI: 421

On this example, we observe that code optimization leads to a initial WCET estimation 2.4x
smaller (641 vs 1540). The traceability is preserved and the improvement due to the counter
analysis is of the same order (34.3% vs 38.6%).

5 Experiments330

5.1 Benchmarks331

We tested our approach on programs from the TacleBench [11], a set of C programs widely used332

in the WCET community. A first check has been made to retain only purely sequential programs333

that compile “out of the box”: 53 applications of the 58 in the TacleBench8334

For each program, we try to estimate the WCET of all functions appearing in the code,335

including the top-level one (main). For each function, inner function calls are recursively inlined at336

the C level (see Section 4.2). Recursive functions are rejected during this step, and not considered337

for WCET analysis.338

8 The 5 missing applications are OS and/or architecture dependent.

14 Improving WCET Evaluation using Linear Relation Analysis

Our goal is to study the influence of our counter-based method (Fig. 4) on a classical estima-339

tion (Fig. 3). A prerequisite is therefore that a reference estimation exists; hence the programs340

for which the basic WCET estimation fails are not selected. The OTAWA estimation may fails341

because of unsupported programming features (pointer arithmetics), or because the analysis does342

not terminates before a chosen timeout (2 hours).343

After this initial selection, 589 functions (out of 639) from the 53 programs of the TacleBench344

suite are retained.345

5.2 Experimental setup346

The proposed framework as presented on Fig. 4 has numerous parameters (C code instrumenta-347

tion, linear analysis tuning, compiler optimization etc.) leading to a combinatorial numbers of348

possibilities. For this systematic experiment, we focus only on two kinds of parameters: those349

that influence the precision of linear analysis, and those that influence the traceability. The other350

parameters are fixed once and for all as follows:351

OTAWA hardware model: our goal is not to bench or “stress” OTAWA in terms of hardware.352

We only want it to give an initial IPET system in which we will insert flow facts discovered353

via LRA. In order to maximize the number of test benches for which OTAWA gives an initial354

ILP in reasonable time, we consider a very simple, cache-free, ARM-based architecture.355

Misc CFG transformations: some CFG transformations are necessary, due to limitations of356

OTAWA (switch statements not supported) and /or PAGAI (multiple return statements). This357

transformations are performed using the CIL library [34].358

Inlining: because the current version of PAGAI has limited support for inter-procedural analysis,359

function calls are systematically inlined. This transformation is also implemented using the360

CIL library. This method improves the precision of the analysis, but makes the analysis much361

costly in time and memory.362

Loop bounds: as explained in 3.2.3, our method is intrinsically unable to bound nested loops,363

so a complementary method is necessary to find loop bounds. For this purpose, we can use364

oRange, but it appears that the CFG transformations performed using CIL strongly alters its365

performance9. In order to maximize the size of the benchmark we thus systematically exploit,366

when available, the user pragmas given in source code. Nevertheless, we made a complementary367

experiment, without using pragmas nor oRange, in order to identify the cases where LRA is368

sufficient to bound the execution time.369

5.3 Lessons learnt370

This section presents the lessons learnt form the experiment, by focusing on several points:371

the ability of the linear analysis to discover “flow facts”, and hopefully to enhance the WCET372

estimation; the influence of the abstract domain on the analysis; the ability of linear analysis to373

discover loop bounds, and finally the influence of compiler optimizations on traceablity.374

5.3.1 Linear analysis and flow facts discovery375

When traceability allows it, the constraints discovered by linear analysis are directly translated376

into flow facts giving information on the (im)possible execution paths. These flow facts may be377

useless if they are redundant with the structural constraints, otherwise they are new facts, giving378

9 The CIL tool normalizes the code by using only unbounded while and break statements, that are badly handled
by oRange. However oRange performs well for the original programs, made of human-written for loops.

P. Raymond et. al. 15

Terminates

86.4%

Fails

13.6%

Facts found

58.9%

New facts

45.5%

WCET enhanced

12.9%

(a) polyhedra domain

Terminates

88.1%

Fails

11.9%

Facts found

62.5%

New facts

46.7%

WCET enhanced

13.9%

(b) octagon domain

Figure 7 LRA analysis statistics on 589 functions, for the two relational abstract domains.

Table 3 Some WCET improvement results (full table page 25)

Initial Box Octagons Polyhedra
Ref WCET ∆ Impt Time ∆ Impt Time ∆ Impt Time
cr.2 227K 111K 48.7 <1s 111K 48.7 4s 111K 48.7 1s

md.13 2648 0 0.0 <1s 1920 72.5 <1s 1920 72.5 <1s
gs.9 6934 0 0.0 1s 738 10.6 4m 4428 63.8 29m
an.0 466M 0 0.0 4s 4M 0.8 7m 115M 24.6 1m
mp.9 52M 27M 51.1 56m - - - - - -
md.14 51K 0 0.0 2m 5K 10.4 21m - - -
md.5 13M 0 0.0 2m - - - 3M 21.0 35m

non trivial information on the execution paths. However, even new facts can be useless if they do379

not concern the worst case execution path. A utility has been developed to check whether the380

facts discovered by LRA analysis are new or not. Each fact is checked by adding its negation to381

the set of structural constraints: the fact is redundant if and only if the system becomes infeasible.382

Figure 7 gives statistic on the behavior of the LRA method, for the two relational domains383

(octagon and polyhedra). Let’s focus on the polyhedra case first (a). The PAGAI tool terminates384

for 509 cases out of 589 (86.4%); for the missing cases (13.6%), it runs out of resources in memory385

or time. Flow facts are found in 347 cases, and at least one fact is new for 268 ones; finally, new386

facts lead to a WCET improvement for 76 cases. Statistics are similar for the octagon domain,387

except that it terminates more often: this explains why the WCET is enhanced more often with388

octagons, even if this domain is less precise.389

A possible conclusion is that LRA, when it works, is actually good at finding non redundant390

semantic facts (more than half of the time, when it terminates), but that those facts do not391

necessarily lead to a WCET improvement (about 15% of the termination cases).392

5.3.2 Abstract domains393

The main goal of the experiment is to observe the influence of the linear analysis on the WCET394

estimation. The linear analysis performed by PAGAI is parameterized by the choice of an abstract395

domain to represent the possible values of the counters. Two domains proposed by PAGAI are396

relational, and thus are likely to express relations between our counters and the original variables397

in the programs:398

16 Improving WCET Evaluation using Linear Relation Analysis

Figure 8 WCET improvement and analysis time depending on abstract domains (b=box, o=octagons,
p=polyhedra

The polyhedra domain is the most precise since it can handle any linear relation, and its399

algorithmic cost is exponential in the worst case.400

The octagon domain handles intervals and bounded pairwise sums or differences. It is less401

precise, but has a polynomial cost in the worst case: O(n3) in time, and O(n2) in space.402

To be exhaustive, we also consider the domain box, which handles only intervals. Since this403

domain is non-relational, it is intrinsically unable to relate our additional counters to the program404

variables. The flow facts that can be discovered with the box domain are thus limited (basically,405

counters stuck down to zero, which correspond to dead code).406

The WCET estimation is improved by at least one domain for 90 functions. The gain ranges407

from negligible (0.1%) to interesting (around 10%) or even huge (more than 50%). We limit here408

the comments to the cases where the enhancement is greater 0.8%. The detailed results for these409

60 cases are given in appendix (table 6, page 25), and a selection of typical cases is given in table 3.410

The experiment gives some interesting information:411

The interest of the box domain is very limited: it is an indirect way of performing constant412

propagation and dead code “pruning”. Most of the time it gives no improvement (42 out of 60,413

e.g., md.13, gs.9). However, since it is the cheapest domain, it may give results when other414

domains fail (6 times, e.g., mp.9).415

When both octagons and polyhedra terminate, they often give the same result (34 out of 60416

cases, e.g., cr.2, md.13). However there are some cases (12 out of 60, e.g., gs.9), where the417

expressiveness of polyhedra is actually useful (constraint involving 3 or more variables, and418

pairwise relations with non unit coefficients).419

In compliance with the theoretical complexity, octagons may terminates while polyhedra fails420

(7 cases, e.g., md.14). Nevertheless, there is also one case where octagons fail while polyhedra421

works (md.5). This is due to the fact that the cost of octagons is almost always cubic in the422

number of variables, while the exponential cost of polyhedra is rarely reached in practice.423

P. Raymond et. al. 17

Table 4 Impact of compiler optimizations on WCET and LRA

O0 CO
Initial Best Best Opt. Initial Best Best Traceability

Ref WCET WCET Impt speedup WCET WCET Impt

md.13 2648 728 72.5 3.3x 791 215 72.8 100% of 2
an.0 466M 351M 24.6 3.0x 157M 116M 25.9 100% of 44
cr.2 227K 116K 48.7 2.3x 97K 50K 48.7 41% of 24
md.5 13M 10M 21.0 3.4x 4M 3M 15.0 80% of 40
ex.2 278K 224K 19.2 1.3x 218K 218K 0.0 46% of 13

5.3.3 Loop bounds424

LRA is intrinsically limited to the discovery of single loop bounds (cf. 3.2.3). We made a425

complementary experiment to check if and when LRA actually finds such loops. For this experiment,426

we only consider the short-list of programs from Table 6 where PAGAI terminates when using a427

relational domain (octagon and polyhedra); as a matter of fact, using the box domain is irrelevant428

since it can’t find any loop bound other than 0.429

For these 54 programs, we have:430

computed the loop level, which is maximal depth of nested loops appearing in the program (0:431

no loop at all, 1: only single loops, 2 or more: nested loops);432

launched our tool without using oRange nor user-pragmas. The LRA analysis is performed433

twice: with the octagon and the polyhedra domain, and we keep only the best result.434

Table ?? (page 26) lists the results; the column “pagai” simply indicates if the analysis give a435

bounded WCET, since the WCET value is, in this case, the same as the one in Table 6.436

There are 10 test cases that are loop-free, and thus with no bounds to found. There are 25437

programs with only single loops (level=1); these are the cases where PAGAI is supposed to find438

bounds, and it actually does it for most of the cases (19 out of 25). In fact, PAGAI find the439

bounds for all loops that are semantically guarded by a counter condition, that is, for loops or440

equivalent. The cases where PAGAI does not find bounds are those where the loop is guarded by441

a points-to condition (e.g., while (*p++)).442

We expected PAGAI to not bound any program with a loop level greater than 1, which is the443

case except for one program (ex.2). In fact this example is a “false counter-example”: the loop444

depth is syntactically 2, but the inner-loop appears in a branch which is never executed. The loop445

depth is then semantically 1.446

5.3.4 Optimization level and traceability447

The main focus of this work is the influence of linear analysis on the precision of the WCET.448

Nevertheless, since analysis is performed at the C level, the problem of the traceability between449

the C and the binary code must be considered. Forbidding any optimization is not an option450

in real-time domain. We argue that a well-chosen set of optimizations can lead to a reasonable451

compromise between traceability and program speed-up.452

For all functions that give some enhancement on the non-optimized code, we run the experiments453

using the custom optimization (CO) level defined in 4.4. Since the counter analysis is completely454

independent to the compilation method, the linear relations found are the same, and the ability455

to enhance the WCET estimation is only due to traceability.456

The detailed results of this experiment are given in appendix (table 8, page 27), and a selection457

of typical cases is given in table 4. The table gathers the results obtained with the non-optimized458

18 Improving WCET Evaluation using Linear Relation Analysis

binary code O0, and the optimized one CO. For each optimization level, the table gives:459

the Initial WCET, in cpu-cycles, computed by OTAWA,460

the Best WCET, enhanced thanks to the properties discovered with PAGAI, with some abstract461

domain,462

the corresponding Improvement percentage.463

The table also shows the Optimization speedup, which is the ratio between the initial O0 and the464

initial CO estimation, i.e., it measures the gain obtained just because of the compilation, before465

applying the counter method. Finally, for CO compilation, the table gives an information on the466

Traceability: the percentage of counters introduced for LRA at C level, that are actually associated467

to some basic block, at binary level. Traceability in the O0 mode is not shown in the table as it is468

always 100%.469

The interesting information given by the experiment are:470

Even if the CO level is very limited (subset of O1 level, and a fortiori of O2), it generates a471

fairly optimized code: the speedup is mostly between 2x and 4x.472

In most of the cases (53 out of 60) traceability is 100%, and one can observe an enhancement473

due to LRA similar to the one obtained with O0 code. Indeed, this improvement is obtained474

on the CO initial WCET, which is already much smaller than the O0 one (e.g., md.13, an.0).475

In some cases, traceability is partly lost, but remain sufficient to enhance the estimation (4476

cases, e.g., cr.2, md.5).477

Finally, for 3 cases, partial traceability leads to no enhancement (e.g., ex.2).478

6 Conclusion and future work479

Linear Relation Analysis is a powerful technique to discover invariant linear relations between480

numerical variables of a program. On the other hand, the classical evaluation of WCET using481

Implicit Path Enumeration Technique is based on expressing the WCET as the solution of an482

Integer Linear Program, the variables of which are counters associated with the basic blocks of the483

program. So, the idea of adding these counters as auxiliary variables in the program, and using484

the results of LRA as semantic flow-facts to be added to the ILP, is rather natural. Our goal, in485

this paper, was to conduct a light-weight experiment — by combining existing tools — to evaluate486

the benefits of the approach. Secondarily, such an experiment raised the question of traceability,487

since semantic flow-facts are discovered on the source program, while the WCET is evaluated on488

the executable code. The conclusion of this experiment on public benchmarks is manyfold:489

LRA finds new semantic facts in many examples (46%), but many of these new facts don’t490

influence the evaluated WCET. However, the WCET is improved on a significant subset (almost491

14%) of the examples, and the improvement is often interesting.492

the traceability problems can be safely dealt with, using the debugging information provided493

by the compiler; this is the case even in presence of strong compiling optimizations, as long as494

these optimizations don’t modify too much the control structure of the program.495

This work could be continued in several directions.496

It would be interesting to limit the number of counters, as the cost of LRA can be exponential497

in the number of variables. Of course, counters which are structurally related by flow equations498

can be saved, but their cost is low in polyhedra computations (they are linked to each other by499

equations). An appealing idea would be to introduce counters on the branches of a conditional,500

only when these branches appear to have strongly different execution times, a measure that is501

roughly available after the micro-architectural analysis [43].502

Existing LRA analyzers (like PAGAI) are generally not inter-procedural, which forced us to503

inline the procedures in our experiments. An inter-procedural version of LRA must be studied504

P. Raymond et. al. 19

to solve this problem. The relational nature of LRA is surely an advantage, since a procedure505

can be associated a summary as an input-output relation. Summaries of called procedures can506

then be used in the caller, in a bottom-up fashion.507

Traceability is still a concern, which would benefit from a better cooperation of the compiler [25].508

References
1 Mihail Asavoae, Claire Maiza, and Pascal Ray-

mond. Program semantics in model-based WCET
analysis: A state of the art perspective. In
13th International Workshop on Worst-Case Exe-
cution Time Analysis, WCET 2013, July 9, 2013,
Paris, France, volume 30 of OASICS, pages 32–
41. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2013.

2 Roberto Bagnara, Elisa Ricci, Enea Zaffanella, and
Patricia M. Hill. Possibly not closed convex poly-
hedra and the Parma polyhedra library. In M. V.
Hermenegildo and G. Puebla, editors, 9th Inter-
national Symposium on Static Analysis, SAS’02,
Madrid, Spain, September 2002. LNCS 2477. doi:
10.1007/3-540-45789-5_17.

3 Gogul Balakrishnan and Thomas W. Reps. DI-
VINE: DIscovering variables IN executables. In
Verification, Model Checking, and Abstract Inter-
pretation, VMCAI 2007, pages 1–28, Nice, France,
January 2007.

4 Gogul Balakrishnan, Thomas W. Reps, David Mel-
ski, and Tim Teitelbaum. WYSINWYX: what you
see is not what you execute. In Verified Software:
Theories, Tools, Experiments, VSTTE 2005, pages
202–213, Zurich, Switzerland, October 2005.

5 Clément Ballabriga, Hugues Cassé, Christine
Rochange, and Pascal Sainrat. OTAWA: An open
toolbox for adaptive WCET analysis. In SEUS,
2010.

6 Duc-Hiep Chu, Joxan Jaffar, and Rasool
Maghareh. Precise cache timing analysis via
symbolic execution. In 2016 IEEE Real-Time
and Embedded Technology and Applications
Symposium (RTAS), pages 1–12, 2016.

7 Patrick Cousot and Radia Cousot. Abstract inter-
pretation: a unified lattice model for static analy-
sis of programs by construction or approximation
of fixpoints. In 4th ACM Symposium on Principles
of Programming Languages, POPL’77, Los Ange-
les, January 1977.

8 Patrick Cousot and Nicolas Halbwachs. Automatic
discovery of linear restraints among variables of a
program. In 5th ACM Symposium on Principles of
Programming Languages, POPL’78, Tucson (Ari-
zona), January 1978.

9 Marianne de Michiel, Armelle Bonenfant, Hugues
Cassé, and Pascal Sainrat. Static loop bound anal-
ysis of C programs based on flow analysis and ab-
stract interpretation. In IEEE Int’l Conf. on Em-
bedded and Real-Time Computing Systems and Ap-
plications (RTCSA), 2008.

10 Sun Ding, Hee Beng Kuan Tan, and Kaiping Liu.
A survey of infeasible path detection. In Proceed-
ings of the 7th International Conference on Eval-
uation of Novel Approaches to Software Engineer-
ing (ENASE 2012), Wroclaw, Poland, 29-30 June,
2012., pages 43–52, 2012.

11 Heiko Falk, Sebastian Altmeyer, Peter Hellinckx,
Björn Lisper, Wolfgang Puffitsch, Christine
Rochange, Martin Schoeberl, Rasmus Bo
Sorensen, Peter Wägemann, and Simon We-
gener. Taclebench: A benchmark collection to
support worst-case execution time research. In
16th International Workshop on Worst-Case
Execution Time Analysis, WCET 2016, July 5,
2016, Toulouse, France, pages 2:1–2:10, 2016.

12 Paul Feautrier and Laure Gonnord. Accelerated in-
variant generation for C programs with Aspic and
C2fsm. In Tools for Automatic Program AnalysiS
(TAPAS), Perpignan, France, September 2010.

13 Christian Ferdinand, Florian Martin, Christoph
Cullmann, Marc Schlickling, Ingmar Stein,
Stephan Thesing, and Reinhold Heckmann. New
developments in WCET analysis. In Program
Analysis and Compilation, pages 12–52, 2006.

14 Denis Gopan and Thomas Reps. Lookahead widen-
ing. In CAV’06, Seattle, 2006.

15 Jan Gustafsson, Adam Betts, Andreas Ermedahl,
and Björn Lisper. The Mälardalen WCET bench-
marks: Past, present and future. In Proc. of
WCET, pages 136–146, 2010.

16 Jan Gustafsson, Andreas Ermedahl, Christer Sand-
berg, and Björn Lisper. Automatic derivation of
loop bounds and infeasible paths for WCET anal-
ysis using abstract execution. In RTSS, 2006.

17 Nicolas Halbwachs, Yann-Eric Proy, and Patrick
Roumanoff. Verification of real-time systems using
linear relation analysis. Formal Methods in System
Design, 11(2):157–185, August 1997.

18 Julien Henry, Mihail Asavoae, David Monniaux,
and Claire Maiza. How to compute worst-case ex-
ecution time by optimization modulo theory and
a clever encoding of program semantics. In SIG-
PLAN/SIGBED Conference on Languages, Com-
pilers and Tools for Embedded Systems 2014,
LCTES ’14, pages 43–52, june 2014.

19 Julien Henry, David Monniaux, and Matthieu Moy.
Pagai: A path sensitive static analyser. Electr.
Notes Theor. Comput. Sci., 289:15–25, 2012.

20 François Irigoin, Pierre Jouvelot, and Rémy Trio-
let. Semantical interprocedural parallelization: An
overview of the PIPS project. In ACM Int. Conf.
on Supercomputing, ICS’91, Köln, 1991.

21 Bertrand Jeannet and Antoine Miné. Apron: A li-
brary of numerical abstract domains for static anal-
ysis. In Computer Aided Verification (CAV 2009),
Grenoble, France, pages 661–667, June 2009.

22 Raimund Kirner, Peter Puschner, and Adrian
Prantl. Transforming flow information during code
optimization for timing analysis. Journal on Real-
Time Systems, 45(1-2), 2010.

23 Jens Knoop, Laura Kovács, and Jakob Zwirch-
mayr. WCET squeezing: on-demand feasibility
refinement for proven precise WCET-bounds. In

http://dx.doi.org/10.1007/3-540-45789-5_17
http://dx.doi.org/10.1007/3-540-45789-5_17

20 Improving WCET Evaluation using Linear Relation Analysis

Proceedings of the 21st International Conference
on Real-Time Networks and Systems, pages 161–
170. ACM, 2013.

24 Chris Lattner and Vikram Adve. LLVM: a com-
pilation framework fopr lifelong program analysis
& transformation. In CGO’04, pages 75–86, Wash-
ington, DC, August 2004. IEEE Computer Society.

25 Hanbing Li, Isabelle Puaut, and Erven Rohou.
Traceability of flow information: Reconciling com-
piler optimizations andWCET estimation. In 22nd
International Conference on Real-Time Networks
and Systems, RTNS’14, Versailles, France, Octo-
ber 8-10, 2014, 2014.

26 Hanbing Li, Isabelle Puaut, and Erven Rohou.
Tracing Flow Information for Tighter WCET Es-
timation: Application to Vectorization. In 21st
IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications,
page 10, Hong-Kong, China, August 2015. URL:
https://hal.inria.fr/hal-01177902.

27 Xianfeng Li, Liang Yun, Tulika Mitra, and Abhik
Roychoudhury. Chronos: A timing analyzer for
embedded software. Sci. Comput. Program., 69(1-
3):56–67, 2007.

28 Yau-Tsun Steven Li and Sharad Malik. Per-
formance analysis of embedded software using
implicit path enumeration. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and
Systems, 16(12), 1997.

29 Björn Lisper. SWEET – a tool for WCET flow
analysis. In 6th International Symposium On
Leveraging Applications of Formal Methods, Veri-
fication and Validation (ISOLA), October 2014.

30 Paul Lokuciejewski, Daniel Cordes, Heiko Falk,
and Peter Marwedel. A fast and precise static loop
analysis based on abstract interpretation, program
slicing and polytope models. In Proceedings of the
CGO 2009, The Seventh International Symposium
on Code Generation and Optimization, pages 136–
146, Seattle, Washington, USA, March 2009.

31 Paul Lokuciejewski and Peter Marwedel. Worst-
Case Execution Time Aware Compilation Tech-
niques for Real-Time Systems. Springer, 2011.
doi:10.1007/978-90-481-9929-7.

32 Ravindra Metta, Martin Becker, Prasad Bokil,
Samarjit Chakraborty, and R. Venkatesh. TIC: a
scalable model checking based approach to WCET
estimation. In Proceedings of the 17th ACM SIG-
PLAN/SIGBED Conference on Languages, Com-
pilers, Tools, and Theory for Embedded Systems,
LCTES 2016, Santa Barbara, CA, USA, June
13 - 14, 2016, pages 72–81, 2016. doi:10.1145/
2907950.2907961.

33 Antoine Miné. The octagon abstract domain. In
Proceedings of the Eighth Working Conference on
Reverse Engineering, WCRE’01, Stuttgart, Ger-
many, October 2-5, 2001, page 310, 2001. doi:
10.1109/WCRE.2001.957836.

34 George C. Necula, Scott McPeak, Shree P. Rahul,
and Westley Weimer. Cil: Intermediate language

and tools for analysis and transformation of c pro-
grams. In R. Nigel Horspool, editor, Compiler
Construction, pages 213–228, Berlin, Heidelberg,
2002. Springer Berlin Heidelberg.

35 Pascal Raymond, Claire Maiza, Catherine Parent-
Vigouroux, Fabienne Carrier, and Mihail Asavoae.
Timing analysis enhancement for synchronous pro-
gram. Real-Time Systems, pages 1–29, 2015.

36 Jordy Ruiz and Hugues Cassé. Using SMT
solving for the lookup of infeasible paths in bi-
nary programs (regular paper). In Workshop on
Worst-Case Execution Time Analysis, Lund, Swe-
den, 07/07/2015, pages 95–104. OASICs, Dagstuhl
Publishing, July 2015.

37 Thomas Sewell, Felix Kam, and Gernot Heiser.
Complete, high-assurance determination of loop
bounds and infeasible paths for WCET analysis.
In 2016 IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), Vienna,
Austria, April 11-14, 2016, pages 185–195, 2016.
doi:10.1109/RTAS.2016.7461326.

38 Björn Lisper Stefan Bygde, Andreas Ermedahl. An
efficient algorithm for parametric WCET calcula-
tion. Journal of Systems Architecture, 57(6):614–
624, May 2011.

39 Vivy Suhendra, Tulika Mitra, Abhik Roychoud-
hury, and Ting Chen. Efficient detection and ex-
ploitation of infeasible paths for software timing
analysis. In DAC, pages 358–363, 2006.

40 Stephan Thesing, Jean Souyris, Reinhold Heck-
mann, Famantanantsoa Randimbivololona, Marc
Langenbach, Reinhard Wilhelm, and Christian Fer-
dinand. An abstract interpretation-based timing
validation of hard real-time avionics software. In
DSN, pages 625–632, 2003.

41 Reinhard Wilhelm, Jakob Engblom, Andreas Er-
medahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller,
Isabelle Puaut, Peter Puschner, Jan Staschulat,
and Per Stenström. The worst-case execution-time
problem - overview of methods and survey of tools.
ACM Trans. Embedded Comput. Syst. (TECS),
7(3), 2008.

42 Jakob Zwirchmayr, Armelle Bonenfant, Marianne
de Michiel, Hugues Cassé, Laura Kovács, and Jens
Knoop. FFX: A portable WCET annotation lan-
guage (regular paper). In International Confer-
ence on Real-Time and Network Systems (RTNS),
Pont-à-Mousson, 08/11/2012-09/11/2012, pages
91–100, November 2012.

43 Jakob Zwirchmayr, Pascal Sotin, Armelle Bonen-
fant, Denis Claraz, and Philippe Cuenot. Identify-
ing Relevant Parameters to Improve WCET Anal-
ysis (regular paper). In Workshop on Worst-Case
Execution Time Analysis, Madrid, 08/07/2014,
pages 91–100. OASICs, Dagstuhl Publishing, juil-
let 2014.

https://hal.inria.fr/hal-01177902
http://dx.doi.org/10.1007/978-90-481-9929-7
http://dx.doi.org/10.1145/2907950.2907961
http://dx.doi.org/10.1145/2907950.2907961
http://dx.doi.org/10.1109/WCRE.2001.957836
http://dx.doi.org/10.1109/WCRE.2001.957836
http://dx.doi.org/10.1109/RTAS.2016.7461326

P. Raymond et. al. 21

A Compiler optimization level509

Options controlling optimizations are numerous and may vary a lot depending on the targeted510

processor and the compiler version. Options listed here are for the compiler used for our experiment511

(arm-elf-gcc (GCC) 4.4.2), with no guarantee that they apply directly to other compilers.512

Ensuring the coherence of a set of optimizations is technically hard, this is why we start with513

a predefined level of optimization (-O1) and remove optimizations that may modify the control514

structure (using the corresponding -fno flag). To select the options, we just rely on the user515

manual: we remove any optimization that mention a possible influence on the control structure or516

that may affect the precision of the debugging information (i.e. the association instruction/source517

line).518

Loop transformations may drastically change the structure of the program, and are thus519

forbidden.520

-fno-loop-block \521

-fno-loop-interchange \522

-fno-loop-strip-mine \523

-fno-move-loop-invariants \524

-fno-reschedule-modulo-scheduled-loops \525

-fno-unroll-loops \526

-fno-unroll-all-loops \527

-fno-unsafe-loop-optimizations \528

Miscelaneous CFG transformations concern dead code elimination, inlining, branch529

removal, block reordering etc.530

-fno-dce \531

-fno-dse \532

-fno-guess-branch-probability \533

-fno-inline-small-functions \534

-fno-crossjumping \535

-fno-if-conversion \536

-fno-if-conversion2 \537

-fno-jump-tables \538

-fno-reorder-blocks \539

-fno-reorder-blocks-and-partition \540

-fno-unswitch-loops \541

SSA tree optimizations and misc. global optimizations have an indirect influence in542

the control structure, by removing, regrouping or re-ordering instructions. They also affect the543

precision of the debugging information (dwarf) which is the only information we have to relate544

the binary and the source code.545

-fno-tree-builtin-call-dce \546

-fno-tree-ccp \547

-fno-tree-ch \548

-fno-tree-copyrename \549

-fno-tree-dce \550

-fno-tree-dominator-opts \551

-fno-tree-dse \552

-fno-tree-fre \553

22 Improving WCET Evaluation using Linear Relation Analysis

-fno-tree-loop-distribution \554

-fno-tree-loop-im \555

-fno-tree-loop-ivcanon \556

-fno-tree-loop-linear \557

-fno-tree-loop-optimize \558

-fno-tree-sra \559

-fno-tree-ter \560

-fno-auto-inc-dec \561

-fno-cprop-registers \562

-fno-defer-pop \563

-fno-ipa-pure-const \564

-fno-ipa-reference \565

-fno-merge-constants\566

-fno-split-wide-types \567

-fno-unit-at-a-time \568

B Experiment Results569

Experiment was performed on 589 individual C functions extracted from the TACLeBench [11].570

An improvement of the WCET estimation is observed for 90 functions (15% of the cases). This571

section details the results for the 60 cases where the improvement is greater than 0.8%.572

Table 5 contains label definitions to ease and shorten the reference to the bench functions:573

the label (column 1), the source folder in the TACLeBench (column 2), and the function name574

(column 3).575

Table 6 contains the experiment results using the gcc -O0 compilation level. The first column576

holds the function label, and the second one holds the initial WCET estimation computed by577

OTAWA. The remaining columns hold information related to the improvement obtained (or not)578

with Linear relation analysis, using 3 different abstract domains: boxes (intervals), octagons579

and polyhedra. For each domain, the table gives the improvement in number of cycles (∆) and580

percentage (Impt), and the time necessary to perform the LRA with PAGAI10. Numbers in bold581

highlight the best improvements among various methods (box, octagons, polyhedra). Empty cells582

(’-’) mean that the corresponding case triggered the 2 hours timeout set for the experiment.583

Table ?? gives information on the ability of PAGAI to discover loop bounds ; to obtain this584

table, the experiments are re-played without the help of a external loop-bound method (neither585

oRange nor the user-given pragmas). For each program, the table gives its loop level (maximal586

depth of nested loops) and indicated wheter PAGAI finds a bounded WCET or not.587

Finally, table 8 aims at observing the impact of compiler optimization on WCET estimation in588

general, and our method in particular. We consider two optimization levels: the standard -O0 (no589

optimization at all), and the ad hoc customized -O1 level (designed to limit CFG transformation590

and maximize traceability). Since the LRA analysis is performed at the C level, the flow facts591

discovered are the same whatever is the optimization level. A lack of improvement in the case of592

optimized code is then necessarily du to an “imperfect” traceability.593

The first group of columns recalls the results optained with -O0; it only gives the best result,594

obtained for one of the possible abstract domains (refer to Table 6 for details). The second group595

gives information on the optimized code:596

10Results obtained on an Intel(R) Xeon(R) CPU E5-2683 v3 @ 2.00GHz

P. Raymond et. al. 23

the initial WCET estimation given by OTAWA, together with the corresponding speedup factor597

which indicates how “faster” is the optimized code compared to the non-optimized one;598

the best WCET estimation (together with the improvement percentage) optained using PAGAI;599

the traceability ratio indicates how many counters introduced by our method are actually600

associated to some basic block in the binary code. With a traceability of 100%, we expect601

to observe an improvement percentage of the same order than the one obtained on the602

non-optimized code. Note that the traceability with the non-optimized code is always 100%.603

24 Improving WCET Evaluation using Linear Relation Analysis

Table 5 TacleBench functions Reference Labels

Ref Directory Function Names
ad.6 sequential/adpcm_dec adpcm_dec_logsch
ad.7 sequential/adpcm_dec adpcm_dec_logscl
ad.14 sequential/adpcm_dec adpcm_dec_uppol2
ae.7 sequential/adpcm_enc adpcm_enc_logsch
ae.8 sequential/adpcm_enc adpcm_enc_logscl
ae.10 sequential/adpcm_enc adpcm_enc_quantl
ae.16 sequential/adpcm_enc adpcm_enc_uppol2
am.12 sequential/ammunition ammunition_bit_string_set
am.17 sequential/ammunition ammunition_divide_unsigned_integer
am.18 sequential/ammunition ammunition_divide_unsigned_integer_without_overflow
am.47 sequential/ammunition ammunition_multiply_integer
am.49 sequential/ammunition ammunition_multiply_unsigned_integer
am.50 sequential/ammunition ammunition_multiply_unsigned_integer_without_overflow
am.68 sequential/ammunition ammunition_unsigned_integer_remainder
an.0 sequential/anagram anagram_AddWords
an.2 sequential/anagram anagram_BuildWord
an.8 sequential/anagram anagram_init
an.14 sequential/anagram anagram_ReadDict
an.15 sequential/anagram anagram_Reset
an.16 sequential/anagram anagram_return
bs.0 kernel/bsort bsort_BubbleSort
bs.3 kernel/bsort bsort_main
bs.4 kernel/bsort bsort_return
bs.5 kernel/bsort main
cr.2 crc main
du.2 test/duff duff_init
du.5 test/duff main
ex.2 expint main
gd.4 sequential/gsm_dec gsm_dec_Coefficients_0_12
gd.5 sequential/gsm_dec gsm_dec_Coefficients_13_26
gd.6 sequential/gsm_dec gsm_dec_Coefficients_27_39
gd.11 sequential/gsm_dec gsm_dec_Decoding_of_the_coded_Log_Area_Ratios
gd.16 sequential/gsm_dec gsm_dec_Postprocessing
ge.11 sequential/gsm_encode Gsm_Preprocess
ge.13 sequential/gsm_encode Gsm_Short_Term_Analysis_Filter
gs.2 sequential/g723_enc g723_enc_fmult
gs.8 sequential/g723_enc g723_enc_predictor_pole
gs.9 sequential/g723_enc g723_enc_predictor_zero
gs.10 sequential/g723_enc g723_enc_quan
gs.11 sequential/g723_enc g723_enc_quantize
gs.16 sequential/g723_enc g723_enc_update
hd.1 sequential/h264_dec h264_dec_init
lc.0 lcdnum main
li.3 app/lift lift_controller
li.7 app/lift lift_ctrl_set_vals
md.3 kernel/md5 md5_final
md.5 kernel/md5 md5_InitRandomStruct
md.13 kernel/md5 md5_R_RandomInit
md.14 kernel/md5 md5_R_RandomUpdate
md.15 kernel/md5 md5_transform
md.16 kernel/md5 md5_update
mp.9 sequential/mpeg2 mpeg2_frame_estimate
mp.11 sequential/mpeg2 mpeg2_fullsearch
sh.2 kernel/sha sha_final
sm.0 sequential/statemate main
sm.1 sequential/statemate statemate_FH_DU
sm.2 sequential/statemate statemate_generic_BLOCK_ERKENNUNG_CTRL
sm.3 sequential/statemate statemate_generic_EINKLEMMSCHUTZ_CTRL
sm.4 sequential/statemate statemate_generic_FH_TUERMODUL_CTRL
sm.8 sequential/statemate statemate_main

P. Raymond et. al. 25

Table 6 How LRA can improve the estimated WCET of TacleBench

Initial Box Octagons Polyhedra
Ref WCET ∆ Impt Time ∆ Impt Time ∆ Impt Time
md.13 2648 0 0.0 <1s 1920 72.5 <1s 1920 72.5 <1s
an.15 173K 0 0.0 <1s 121K 69.9 1s 121K 69.9 <1s
gs.2 1105 0 0.0 <1s 738 66.7 9s 738 66.7 4s
hd.1 2092K 0 0.0 <1s 1371K 65.5 <1s 1371K 65.5 <1s
gs.8 2268 0 0.0 <1s 1476 65.0 1m 1476 65.0 1m
gs.9 6934 0 0.0 1s 738 10.6 4m 4428 63.8 29m
du.2 19K 0 0.0 <1s 12K 60.1 <1s 12K 60.1 <1s
du.5 22K 0 0.0 <1s 12K 53.8 <1s 12K 53.8 <1s
mp.9 52M 27M 51.1 56m - - - - - -
mp.11 10M 5M 51.1 2m - - - - - -
cr.2 227K 111K 48.7 <1s 111K 48.7 4s 111K 48.7 1s
lc.0 1540 0 0.0 <1s 595 38.6 <1s 595 38.6 <1s

md.15 8600 0 0.0 <1s 2304 26.7 <1s 2304 26.7 <1s
an.2 235K 0 0.0 <1s 58K 24.8 16s 58K 24.8 2s
an.0 466M 0 0.0 4s 4M 0.8 7m 115M 24.6 1m
md.5 13M 0 0.0 2m - - - 3M 21.0 35m
ex.2 278K 1K 0.1 4s 28K 9.9 23s 53K 19.2 6s
sm.3 87 16 18.3 <1s 16 18.3 <1s 16 18.3 <1s
md.3 34K 0 0.0 18s 6K 17.2 6m 6K 18.2 31m
md.16 13K 0 0.0 7s 2K 17.7 19s 2K 17.7 10s
sm.0 268K 46K 17.1 16s - - - - - -
gs.10 942 0 0.0 <1s 126 13.3 1s 126 13.3 <1s
am.47 3649 0 0.0 13m 76 2.0 14m 485 13.2 14m
gs.11 2020 0 0.0 1s 252 12.4 17s 252 12.4 4s
md.14 51K 0 0.0 2m 5K 10.4 21m - - -
sm.4 595 62 10.4 3s 62 10.4 2m 62 10.4 72m
li.7 1088 0 0.0 <1s 102 9.3 2s 102 9.3 <1s
gs.16 3760 0 0.0 7s 254 6.7 63m - - -
ad.6 66 0 0.0 <1s 4 6.0 <1s 4 6.0 <1s
ae.7 66 0 0.0 <1s 4 6.0 <1s 4 6.0 <1s
ad.7 67 0 0.0 <1s 4 5.9 <1s 4 5.9 <1s
ae.8 67 0 0.0 <1s 4 5.9 <1s 4 5.9 <1s
sm.1 266K 14K 5.1 21s - - - - - -
sm.8 266K 14K 5.1 26s - - - - - -
an.16 530 0 0.0 <1s 25 4.7 <1s 25 4.7 <1s
am.50 2251 0 0.0 15m 76 3.3 15m 95 4.2 15m
am.49 2281 0 0.0 9m 76 3.3 14m 95 4.1 12m
sm.2 248 10 4.0 <1s 10 4.0 1s 10 4.0 1s
bs.4 5580 0 0.0 <1s 196 3.5 <1s 196 3.5 <1s
am.12 468 0 0.0 12m 16 3.4 12m 16 3.4 12m
ad.14 120 0 0.0 <1s 4 3.3 <1s 4 3.3 <1s
ae.16 120 0 0.0 <1s 4 3.3 <1s 4 3.3 <1s
li.3 3405 0 0.0 11s 102 2.9 47m - - -
ae.10 1473 0 0.0 <1s 33 2.2 <1s 33 2.2 <1s
ge.11 47K 0.16K 0.3 1s 1K 2.0 1m 1K 2.0 16s
am.68 12K 0 0.0 10m 0.15K 1.3 73m - - -
gd.16 23K 0.32K 1.3 <1s 0.32K 1.3 2s 0.32K 1.3 <1s
gd.4 1333 16 1.2 1s 16 1.2 6s 16 1.2 1s
gd.6 1333 16 1.2 <1s 16 1.2 3s 16 1.2 <1s
sh.2 25K 0.31K 1.2 6s 0.31K 1.2 3m 0.31K 1.2 1m
an.8 3079K 0 0.0 <1s 0 0.0 7s 34K 1.1 1s
an.14 3079K 0 0.0 <1s 0 0.0 5s 34K 1.1 1s
gd.11 1420 16 1.1 1s 16 1.1 35m - - -
ge.13 727K 8K 1.0 1m - - - - - -
bs.0 1045K 0 0.0 <1s 0 0.0 2s 10K 0.9 <1s
bs.3 1045K 0 0.0 <1s 0 0.0 1s 10K 0.9 <1s
bs.5 1053K 0 0.0 <1s 0.20K 0.0 7s 10K 0.9 1s
gd.5 837 8 0.9 <1s 8 0.9 1s 8 0.9 <1s
am.17 8930 0 0.0 9m 76 0.8 20m - - -
am.18 8901 0 0.0 11m 76 0.8 20m - - -

26 Improving WCET Evaluation using Linear Relation Analysis

Table 7 Loop bounds discovery, using PAGAI without the help of oRange nor the user-given bounds.
This experiment is performed for the 54 cases from Table 6 where PAGAI terminates with either octagons
or polyhedra ; the box domain is unable to find loop bounds and is not considered here. Within this
test set, 10 programs contain no loop and are thus trivially bounded (adVI, adVII, adXIV, aeVII, aeVIII,
aeXVI, gdXI, smII, smIII, smIV). For the remaining programs, first column gives the depth of nested
loops and column two indicates if PAGAI gives a bounded (i.e., finite) WCET estimation. The WCET
value is not given: it corresponds to the best PAGAI estimation in Table 6. The “paradoxal” result for
ex.2 (loop depth 2 and bounded) is due to the fact that PAGAI “bounds” the inner-loop to 0 (i.e., the
loop appears in a infeasible branch).

loop depth PAGAI
ae.10 1 bounds
bs.4 1 bounds
gd.4 1 bounds
gd.5 1 bounds
gd.6 1 bounds
gd.16 1 bounds
ge.11 1 bounds
gs.2 1 bounds
gs.8 1 bounds
gs.16 1 bounds
lc.0 1 bounds
li.7 1 bounds

md.15 1 bounds
du.2 1 bounds
du.5 1 bounds
hd.1 1 bounds
md.13 1 bounds
an.15 1 bounds
an.16 1 bounds
am.12 1 >
an.2 1 >
gs.10 1 >
gs.11 1 >
li.3 1 >
sh.2 1 >

loop depth PAGAI
ex.2 2 bounds
am.47 2 >
am.49 2 >
am.50 2 >
an.8 2 >
an.14 2 >
bs.0 2 >
bs.3 2 >
bs.3 2 >
cr.2 2 >
gs.9 2 >
md.3 2 >
md.14 2 >
md.16 2 >
am.17 3 >
am.18 3 >
am.68 3 >
an.0 3 >
md.5 4 >

P. Raymond et. al. 27

Table 8 Observing the impact of compilation levels on LRA

O0 CO
Initial Best Best Opt. Initial Best Best Traceability

Ref WCET WCET Impt speedup WCET WCET Impt

md.13 2648 728 72.5 3.3x 791 215 72.8 100% of 2
an.15 173K 52K 69.9 3.0x 58K 17K 69.9 100% of 6
gs.2 1105 367 66.7 2.3x 479 171 64.3 100% of 14
hd.1 2092K 721K 65.5 2.1x 1019K 350K 65.6 100% of 4
gs.8 2268 792 65.0 2.4x 963 347 63.9 100% of 28
gs.9 6934 2506 63.8 2.4x 2910 1062 63.5 100% of 28
du.2 19K 8K 60.1 2.3x 8K 3K 64.0 100% of 2
du.5 22K 10K 53.8 2.4x 9K 4K 59.3 100% of 3
mp.9 52M 25M 51.1 4.6x 11M 11M 0.0 79% of 890
mp.11 10M 5M 51.1 4.6x 2M 2M 0.0 79% of 178
cr.2 227K 116K 48.7 2.3x 97K 50K 48.7 41% of 24
lc.0 1540 945 38.6 2.4x 641 421 34.3 100% of 4

md.15 8600 6296 26.7 2.8x 3064 2200 28.1 100% of 2
an.2 235K 176K 24.8 2.9x 80K 59K 25.9 100% of 21
an.0 466M 351M 24.6 3.0x 157M 116M 25.9 100% of 44
md.5 13M 10M 21.0 3.4x 4M 3M 15.0 80% of 40
ex.2 278K 224K 19.2 1.3x 218K 218K 0.0 46% of 13
sm.3 87 71 18.3 1.1x 78 59 24.3 100% of 5
md.3 34K 28K 18.2 2.7x 13K 10K 17.1 100% of 23
md.16 13K 11K 17.7 2.6x 5K 4K 17.2 100% of 10
sm.0 268K 222K 17.1 1.1x 237K 193K 18.8 100% of 108
gs.10 942 816 13.3 2.5x 381 325 14.6 100% of 4
am.47 3649 3164 13.2 2.6x 1417 1282 9.5 100% of 26
gs.11 2020 1768 12.4 2.4x 830 718 13.4 100% of 11
md.14 51K 46K 10.4 2.7x 19K 17K 10.8 97% of 37
sm.4 595 533 10.4 1.1x 547 493 9.8 100% of 42
li.7 1088 986 9.3 2.1x 516 468 9.3 100% of 9
gs.16 3760 3506 6.7 2.3x 1653 1539 6.8 100% of 69
ad.6 66 62 6.0 3.0x 22 20 9.0 100% of 3
ae.7 66 62 6.0 3.0x 22 20 9.0 100% of 3
ad.7 67 63 5.9 2.9x 23 21 8.6 100% of 3
ae.8 67 63 5.9 2.9x 23 21 8.6 100% of 3
sm.1 266K 252K 5.1 1.1x 237K 224K 5.1 100% of 97
sm.8 266K 252K 5.1 1.1x 237K 224K 5.1 100% of 96
an.16 530 505 4.7 1.7x 316 299 5.3 100% of 3
am.50 2251 2156 4.2 2.6x 860 823 4.3 100% of 8
am.49 2281 2186 4.1 2.6x 865 839 3.0 100% of 9
sm.2 248 238 4.0 1.1x 230 220 4.3 100% of 11
bs.4 5580 5384 3.5 1.9x 2883 2687 6.7 100% of 5
am.12 468 452 3.4 2.6x 181 177 2.2 100% of 13
ad.14 120 116 3.3 2.6x 46 44 4.3 100% of 8
ae.16 120 116 3.3 2.6x 46 44 4.3 100% of 8
li.3 3405 3303 2.9 1.6x 2093 2045 2.2 100% of 57
ae.10 1473 1440 2.2 2.1x 706 690 2.2 100% of 6
ge.11 47K 46K 2.0 2.5x 19K 18K 5.0 100% of 24
am.68 12K 12K 1.3 1.2x 9K 9K 0.5 100% of 52
gd.16 23K 23K 1.3 2.3x 10K 10K 3.1 100% of 12
gd.4 1333 1317 1.2 2.4x 553 537 2.8 100% of 12
gd.6 1333 1317 1.2 2.4x 553 537 2.8 100% of 12
sh.2 25K 24K 1.2 2.2x 11K 11K 0.9 76% of 39
an.8 3079K 3045K 1.1 2.3x 1333K 1310K 1.7 100% of 14
an.14 3079K 3045K 1.1 2.3x 1333K 1310K 1.7 100% of 15
gd.11 1420 1404 1.1 2.4x 601 585 2.6 100% of 121
ge.13 727K 719K 1.0 1.9x 377K 369K 2.0 100% of 289
bs.0 1045K 1035K 0.9 2.7x 389K 385K 0.9 100% of 6
bs.3 1045K 1035K 0.9 2.7x 389K 385K 0.9 100% of 5
bs.5 1053K 1043K 0.9 2.7x 393K 389K 1.0 100% of 10
gd.5 837 829 0.9 2.5x 337 329 2.3 100% of 7
am.17 8930 8854 0.8 1.1x 8431 8405 0.3 100% of 36
am.18 8901 8825 0.8 1.1x 8426 8400 0.3 100% of 36

	Introduction
	An example
	Contents of the paper

	Existing tools
	The tools
	The Chronos Timing Analyzer
	The Swedish Timing Analyzer
	AbsInt - The aiT Tool
	oRange, the flow fact analyzer of OTAWA

	Some experiments
	Other approaches

	Used techniques and tools
	WCET evaluation with OTAWA
	Linear Relation Analysis with PAGAI
	Principles of LRA
	Applying LRA to our example
	LRA and loop bounds
	The PAGAI prototype analyzer

	Adding and tracing counters
	The proposed workflow
	Instrumented program version
	Tracing back the counters
	Traceability and optimization

	Experiments
	Benchmarks
	Experimental setup
	Lessons learnt
	Linear analysis and flow facts discovery
	Abstract domains
	Loop bounds
	Optimization level and traceability

	Conclusion and future work
	Compiler optimization level
	Experiment Results

