
The Synchronous Languages 12 Years Later

ALBERT BENVENISTE, FELLOW, IEEE, PAUL CASPI, STEPHEN A. EDWARDS, MEMBER, IEEE,
NICOLAS HALBWACHS, PAUL LE GUERNIC,AND ROBERT DE SIMONE

Invited Paper

Twelve years ago, PROCEEDINGS OF THEIEEE devoted a special
section to the synchronous languages. This paper discusses the im-
provements, difficulties, and successes that have occured with the
synchronous languages since then. Today, synchronous languages
have been established as a technology of choice for modeling, spec-
ifying, validating, and implementing real-time embedded applica-
tions. The paradigm of synchrony has emerged as an engineer-
friendly design method based on mathematically sound tools.

Keywords—Embedded systems, Esterel, formal methods, Lustre,
real-time systems, Signal, synchronous languages.

In 1991, PROCEEDINGS OF THEIEEE devoted a special
section to the synchronous languages [1], [2]. It included
papers describing the three French synchronous languages
Esterel [3], Lustre [4], and Signal [5], which are also the
subject of this paper. At the time, the three languages
were well defined and had seen some industrial use, but
were still under development. In the intervening years, the
languages have been improved, gained a much larger user
community, and have been successfully commercialized.
Today, synchronous languages have been established as a
technology of choice for modeling, specifying, validating,
and implementing real-time embedded applications. The
paradigm of synchrony has emerged as an engineer-friendly
design method based on mathematically sound tools.

This paper discusses the improvements, difficulties, and
successes that have occured with the synchronous languages
since 1991. It begins with a discussion of the synchronous
philosophy and the challenge of maintaining functional,
deterministic system behavior when combining the syn-
chronous notion of instantaneous communication with

Manuscript received December 20, 2001; revised August 31, 2002.
A. Benveniste and P. Le Guernic are with Irisa/Inria, 35042 Rennes cedex,

France (e-mail: Albert.Benveniste@inria.fr).
P. Caspi and N. Halbwachs are with Verimag/CNRS, F-38610 Gières,

France (e-mail: Paul.Caspi@imag.fr).
S. A. Edwards is with Columbia University, New York, NY 10027 USA

(e-mail: sedwards@cs.columbia.edu).
R. de Simone is with INRIA , 06902 Sophia Antipolis, France (e-mail:

Robert.De-Simone@inria.fr).
Digital Object Identifier 10.1109/JPROC.2002.805826

deterministic concurrency. Section II describes successful
uses of the languages in industry and how they have been
commercialized. Section III discusses new technology that
has been developed for compiling these languages, which
has been substantially more difficult than first thought.
Section IV describes some of the major lessons learned
over the last 12 years. Section V discusses some future
challenges, including the limitations of synchrony. Finally,
Section VI concludes the paper with some discussion of
where the synchronous languages will be in the future.

Throughout this paper, we take the area of embedded
control systems as the central target area of discussion,
since this has been the area in which synchronous lan-
guages have best found their way today. These systems
are typically safety critical, such as flight control systems
in flight-by-wire avionics and antiskidding or anticollision
equipment on automobiles.

I. THE SYNCHRONOUSAPPROACH

The synchronous languages Signal, Esterel, and Lustre are
built on a common mathematical framework that combines
synchrony (i.e., time advances in lockstep with one or more
clocks) with deterministic concurrency. This section explores
the reasons for choosing such an approach and its ramifica-
tions.

A. Fundamentals of Synchrony

The primary goal of a designer of safety-critical embedded
systems is convincing him- or herself, the customer, and cer-
tification authorities that the design and its implementation is
correct. At the same time, he or she must keep development
and maintenance costs under control and meet nonfunctional
constraints on the design of the system, such as cost, power,
weight, or the system architecture by itself (e.g., a physi-
cally distributed system comprising intelligent sensors and
actuators, supervised by a central computer). Meeting these
objectives demands design methods and tools that integrate
seamlessly with existing design flows and are built on solid
mathematical foundations.

0018-9219/03$17.00 © 2003 IEEE

64 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

The need for integration is obvious: confidence in a design
is paramount, and anything outside the designers’ experience
will almost certainly reduce that confidence.

The key advantage of using a solid mathematical founda-
tion is the ability to reason formally about the operation of the
system. This facilitates certification because it reduces am-
biguity and makes it possible to construct proofs about the
operation of the system. This also improves the implemen-
tation process because it enables the program manipulations
needed to automatically construct different implementations,
useful, for example, for meeting nonfunctional constraints.

In the 1980s, these observations led to the following deci-
sions for the synchronous languages.

1) Concurrency—The languages must support func-
tional concurrency, and they must rely on notations
that express concurrency in a user-friendly manner.
Therefore, depending on the targeted application area,
the languages should offer as a notation block dia-
grams (also called dataflow diagrams), or hierachical
automata, or some imperative type of syntax, familiar
to the targeted engineering communities. Later, in the
early nineties, the need appeared for mixing these
different styles of notations. This obviously required
that they all have the same mathematical semantics.

2) Simplicity—The languages must have the simplest
formal model possible to make formal reasoning
tractable. In particular, the semantics for the parallel
composition of two processes must be the cleanest
possible.

3) Synchrony—The languages must support the simple
and frequently used implementation models in Fig. 1,
where all mentioned actions are assumed to take finite
memory and time.

B. Synchrony and Concurrency

Combining synchrony and concurrency while maintaining
a simple mathematical model is not so straightforward. Here,
we discuss the approach taken by the synchronous languages.

Synchrony divides time into discrete instants. This model
is pervasive in mathematics and engineering. It appears in
automata, in the discrete-time dynamical systems familiar to
control engineers, and in synchronous digital logic familiar
to hardware designers. Hence, it was natural to decide that
a synchronous program would progress according to succes-
sive atomic reactions.We write this for convenience using
the “pseudomathematical” statement , where de-
notes the set of all possible reactions and the superscript
indicates nonterminating iterations.

In the block diagrams of control engineering, theth reac-
tion of the whole system is the combination of the individual

th reactions for each constitutive block. For block

(1)

where are the (vector) input, state, and output, and
“combination” means that some input or output of blockis

Fig. 1 Two common synchronous execution schemes: event
driven (left) and sample driven (right).

connected to some input of block, say

or (2)

where denotes the th coordinate of vector output of
block at instant . Hence, the whole reaction is simply the
conjunction of the reactions (1) for each block, and the con-
nections (2) between blocks.

Connecting two finite state machines (FSMs) in hardware
is similar. Fig. 2(a) shows how a finite state system is
typically implemented in synchronous digital logic: a block
of acyclic (and hence functional) logic computes outputs
and the next state as a function of inputs and the current
state. Fig. 2(b) shows the most natural way to run two such
FSMs concurrently and have them communicate, i.e., by
connecting some of the outputs of one FSM to the inputs of
the other and vice versa.

Therefore, the following natural definition for par-
allel composition in synchronous languages was chosen:

, where denotes conjunction. Note
that this definition for parallel composition also fits several
variants of the synchronous product of automata. Hence, the
model of synchrony can be summarized by the following
two pseudoequations:

(3)

(4)

However, there is no free lunch. Definition (4) for parallel
composition requires forming the conjunction of the reac-
tions for each component. It is well known that such a con-
junction will not in general be a function but rather arelation
or, equivalently, aconstraint.

The product of automata is a familiar example: two au-
tomata must synchronize when performing a shared transi-
tion; this is a constraint. Similarly, it is well known that al-
lowing arbitrary connections among blocks in a block dia-
gram yieldsimplicit dynamical systems in which a reaction
relates “inputs, states, and outputs” (we put quotes to indi-
cate that the distinction between input and output becomes
subtle). Such implicit models (also called descriptor or be-
havioral in the control community) are in fact extremely con-
venient for modeling systems from first principles, where
balance equations are naturally encountered. The same oc-
curs in hardware: composing two systems as in Fig. 2(b) does
not always produce a system in the form of Fig. 2(a) because
it is possible to create a delay-free (i.e., cyclic) path such as
the one drawn with a dashed line.

BENVENISTEet al.: THE SYNCHRONOUS LANGUAGES 12 YEARS LATER 65

(a)

(b)

Fig. 2 (a) The usual structure of an FSM implemented in
hardware. (b) Connecting two FSMs. The dashed line shows a
path with instantaneous feedback that arises from connecting these
two otherwise functional FSMs.

This problem of functional systems not being closed under
synchronous, concurrent composition can be addressed in at
least four different ways.

1) Microsteps—One can insist that a reaction remains
operational by definining it to be a sequence of ele-
mentarymicrosteps. In this approach, primitive system
components are assumed to be such a sequence of
elementary microsteps, and the parallel composition
of primitive components is performed by interleaving
their evaluation in some appropriate way. This is a
move to an operational type of semantics that violates
the beautiful and simple mathematical operation of
conjunction. Nevertheless, this is the approach taken in
the Very High Speed Integrated Circuit Hardware De-
scription Language (VHDL) [6] and Verilog [7] mod-
eling languages, in Harel’s Statecharts [8], and in the
older formalism of Grafcet [9], [10] used to program
programmable logic controllers in control systems. It
also conforms to the computer science and engineering
view of program execution as a sequence of guarded
actions. Nevertheless, microstep semantics are con-
fusing and prone to many conflicting interpretations
[11], [12].

2) Acyclic—Usually, control engineers simply insist that
their block diagrams contain no zero-delay loops. In
this case, the system is guaranteed to behave function-
ally. This approach turns out to be well-suited to the
sample-driven approach of Fig. 1. The Lustre language
adopts this view.

3) Unique fixpoint—This approach accepts that each re-
action is the solution of a fixpoint equation, but insists
that the system always behave functionally, i.e., that
each reaction is a deterministic function of the form

state, input next state, output (5)

Compiling a program with these semantics becomes
difficult because it is necessary to prove the relations
implied by the program always have a unique solution
of the form (5). Despite these difficulties, the Esterel
language has adopted this approach.

4) Relation or constraint—This approach accepts reac-
tions as constraints and allows each reaction to have
zero solutions (“the program is blocked and has no
reaction”), one solution of the form (5), or multiple
consistent solutions that are interpreted as nondeter-
ministic behavior. Implementations usually demand a
unique solution, but the other cases may be of interest
for partial designs or high-level specifications. In this
approach, all programs have a semantics. But the issue
of checking whether a program is a deterministic func-
tion of the form (5) still remains a prior to generating
executable code. Signal has adopted this approach.

C. How the Fundamentals of Synchrony Were Instantiated
in the Synchronous Languages

In the following sections, we give further details about how
the previously discussed fundamentals of synchrony have
been instantiated in the synchronous languages Lustre, Es-
terel, and Signal.

1) Lustre: The goal of the designers of Lustre (pro-
nounced LOOSE-truh in French) [13], [4] was to propose a
programming language based on the very simple dataflow
model used by most control engineers: their usual for-
malisms are either systems of equations (differential,
finite-difference, Boolean equations) or dataflow networks
(analog diagrams, block-diagrams, gates and flip-flops).
In such formalisms, each variable that is not an input is
defined exactly once in terms of other variables. One writes
“ ,” meaning thatat each instant (or at each
step), . In other words, each variable is
a function of time, which is supposed to be discrete in a
digital implementation: in basic Lustre, any variable or
expression denotes aflow, i.e., an infinite sequence of
values of its type. A basic Lustre program is effectively
an infinite loop, and each variable or expression takes the

th value of its sequence at theth step in the loop. All
the usual operators—Boolean, arithmetic, comparison,
conditional—are implicitly extended to operate pointwise
on flows. For example, one writes

to express that is equal to the absolute value ofin each
step. In the Lustre-based commercial Scade tool, this equa-
tion has a graphical counterpart like the block diagram of
Fig. 3. Notice that constants (like,) represent constant

66 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

flows. Any combinational function on flows can be described
in this way. Two additional temporal operators make it pos-
sible to describe sequential functions.

1. For any flow , is the flow whose value at each
step is theprevious valueof . At the very first step,
takes the undefined valuenil that corresponds to an uninitial-
ized variable in traditional languages.

2. The “ ” operator defines initial values: ifand are
flows of the same type, is the flow that is equal to
in the first step and equal tothereafter.

More formally

for
for

for
for

These operators provide the essential descriptive power of
the language. For instance,

;
;

;

defines to be true whenever the Boolean flowhas
a rising edge, to be the step counter (), and

to count the number of rising edges in.
Lustre definitions can be recursive (e.g., depends on

), but the language requires that a variable can only
depend a past values of itself.

Lustre provides the notion of anodeto help structure pro-
gram. Anodeis a function of flows: a node takes a number
of typed input flows and defines a number of output flows by
means of a system of equations that can also use local flows.
Each output or local flow must be defined by exactly one
equation. The order of equations is irrelevant. For instance,
a resettable event counter could be written

.

Using this node, our previous definition of
could be replaced by

This concludes the presentation of the base language. Sev-
eral other features depend on the tools and compiler used.

1) Structured types. Real applications make use of struc-
tured data. This can be delegated to the host language
(imported types and functions, written in C). Lustre V4

Fig. 3 A simple dataflow network.

and the commercial Scade tool offer record and array
types within the language.

2) Clocks and activation conditions. It is often useful to
activate some parts of a program at different rates.
Dataflow synchronous languages provide this facility
usingclocks. In Lustre, a program has abasic clock,
which is the finest notion of time (i.e., the external ac-
tivation cycle). Some flows can follow slower clocks,
i.e., have values only at certain steps of the basic clock:
if is a flow, and is a Boolean flow, when is the
flow whose sequence of values is the one ofwhen
is true. This new flow is on the clock, meaning that
it does not have value whenis false.

The notion of clock has two components.

a) A static aspect, similar to a type mechanism: each flow
has a clock, and there are constraints about the way
flows can be combined. Most operators are required to
operate on flowswith the same clock; e.g., adding two
flows with different clocks does not make sense and is
flagged by the compiler.

b) A dynamic aspect: according to the dataflow philos-
ophy, operators are activated only when their operands
are present, i.e., when their (common) clock is true.
Clocks are the only way to control the activation of
different parts of the program.

The whole clock mechanism was offered in the original
language, but it appeared that actual users mainly needed
its dynamic aspect and considered the clock consistency
constraints tedious. This is why the Scade tool offers another
mechanism calledactivation conditions: any operator or
node can be associated an activation condition that specifies
when the operator is activated. The outputs of such a node,
however, are always available; when the condition is false,
their values are either frozen or take default values before
the first activation.

By definition, a Lustre program may not contain syntac-
tically cyclic definitions. The commercial Scade tool pro-
vides an option for an even stronger constraint that forbids an
output of a node to be fed back as an input without an inter-
vening operator. Users generally accept these constraints.
The first constraint ensures that there is a static dependence
order between flows and allows a very simple generation of
sequential code (the scheduling is just topological sorting).
The second, stronger constraint enables separate compila-
tion: when enforced, the execution order of equations in a
node cannot be affected by how it is called; therefore, the
compiler can schedule each node individually before sched-
uling a system at the node level. Otherwise, the compiler
would have to topologically sort every equation in the pro-
gram.

BENVENISTEet al.: THE SYNCHRONOUS LANGUAGES 12 YEARS LATER 67

2) Esterel: While Lustre is declarative and focuses pri-
marily on specifying data flow, the Esterel language is imper-
ative and suited for describing control. Intuitively, an Esterel
program consists of a collection of nested, concurrently run-
ning threads described using a traditional imperative syntax
(Table 1 is a sampling of the complete language, which has
been described elsewhere [3], [14], [15]) whose execution is
synchronized to a single, global clock. At the beginning of
each reaction, each thread resumes its execution from where
it paused (e.g., at a pause statement) in the last reaction, exe-
cutes traditional imperative code (e.g., assigning the value of
expressions to variables and making control decisions), and
finally either terminates or pauses in preparation for the next
reaction.

Threads communicate exclusively through signals: Es-
terel’s main data type that represents a globally broadcast
event. A coherence rule guarantees that an Esterel program
behaves deterministically: all threads that check a signal in
a particular reaction see the signal as either present (i.e., the
event has occurred) or absent, but never both.

Because it is intended to represent an event, the presence of
a signal does not persist across reactions. Precisely, a signal is
present in a reaction if and only if it is emitted by the program
or is made present by the environment. Thus, signals behave
more like wires in a synchronous digital circuit than variables
in an imperative program.

Preemption statements, which allow a clean, hierarchical
description of state-machine-like behavior, are one of Es-
terel’s novel features. Unlike a traditional if-then-else state-
ment, which tests its predicate once before the statement is
executed, an Esterel preemption statement (e.g.,) tests
its predicate each reaction in which its body runs. Various
preemption statements provide a choice of whether the pred-
icate is checked immediately, whether the body is allowed
to run when the predicate is true, whether the predicate is
checked before or after the body runs, and so forth.

To illustrate how Esterel can be used to describe control
behavior, consider the program fragment in Fig. 4 describing
the user interface of a portable compact disc player. It has
input signals for play and stop and a lock signal that causes
these signals to be ignored until an unlock signal is received,
to prevent the player from accidentally starting while stuffed
in a bag.

Note how the first process ignores the signal when it
is already playing, and how the statement is used to
ignore and signals.

This example uses Esterel’s instantaneous execution and
communication semantics to ensure that the code for the play
operation, for example, starts exactly when the signal
arrives. Say the code for is running. In that reaction,
the statement terminates and the signal
is emitted. This prevents the code for from running,
and immediately starts the code for . Because the
statement does not start checking its condition until the next
reaction, the code for starts even though the
signal is present.

As mentioned earlier, Esterel regards a reaction as a fix-
point equation, but only permits programs that behave func-

Table 1
Some Basic Esterel Statements

Fig. 4 An Esterel program fragment describing the user interface
of a portable CD player. Play and stop inputs represent the usual
pushbutton controls. The presence of the lock input causes these
commands to be ignored.

tionally in every possible reaction. This is a subtle point: Es-
terel’s semantics do allow programs such as cyclic arbiters
where a static analysis would suggest a deadlock, but dynam-
ically the program can never reach a state where the cycle is
active.

Checking whether a Esterel program is deadlock-free
is termed causality analysis,and involves ensuring that
causality constraints are never contradictory in any reach-
able state. These constraints arise from control dependencies
(e.g, the “ ; ” sequencing operator requires its second
instruction to start after the first has terminated, the present
statment requires its predicate to be tested before either
branch may run) and data dependencies (e.g.,
must run before even if they are running in
parallel). Thus, a statement like
has contradictory constraints and is considered illegal, but

68 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

may be
legal if signal is never present in a reaction in which this
statement runs.

Formally, Esterel’s semantics are based onconstructive
causality [15], which is discussed more in a later section
on Esterel compilation techniques. The understanding of
this problem and its clean mathematical treatment is one
of Esterel’s most significant contributions to the semantic
foundations of reactive synchronous systems. Incomplete
understanding of this problem is exactly what prevented
the designers of the Verilog [7], [16], VHDL [6], and Stat-
echarts [8], [12] languages from having truly synchronous
semantics. Instead, they have semantics based on awkward
delta-cycle microsteps or delayed relation notions with an
unclear semantic relation to the natural models of syn-
chronous circuits and Mealy machines. This produces a gap
between simulation behavior and hardware implementations
that Esterel avoids.

From Esterel’s beginnings, optimization, analysis, and
verification were considered central to the compilation
process. Again, this was possible only because of formal
semantics. The automata-based V3 compiler came with
model checkers (Auto/Graph and later Fc2Tools) based on
explicit state space reduction and bisimulation minimiza-
tion. The netlist-based V4 and V5 compilers used the logic
optimization techniques in Berkeley’s SIS environment
[17] to optimize its intermediate representation. In the V5
compiler, constructive causality analysis as well as symbolic
binary decision diagram (BDD)–based model checking
(implemented in the Xeve verification tool [18]) rely on an
implicit state space representation implemented with the
efficient TiGeR BDD library.

3) Signal: Signal is designed for specifying systems [5],
[19], [20]. In contrast with programs, systems must be con-
sideredopen: a system may be upgraded by adding, deleting,
or changing components. How can we avoid modifying the
rest of the specification while doing this?

It is tempting to say any synchronous programdoes
something at each reaction. In this case we say theactiva-
tion clockof coincides with its successive reactions. This
is the viewpoint taken for the execution schemes of Fig. 1: in
an event-driven system, at least one input event is required to
produce a reaction; in a sample-driven system, reactions are
triggered by the clock ticks.

However, if is an open system, it may be embedded
in some environment that gets activated whendoes not.
So we must distinguish the activation clock offrom the
“ambient” sequence of reactions and take the viewpoint that
each program possesses its own local activation clock. Par-
allel composition relates the activation clocks of the different
components, and the “ambient” sequence of reactions is im-
plicit (not visible to the designer). A language that supports
this approach is called amulticlocklanguage. Signal is a mul-
ticlock language.

Signal allows systems to be specified as block diagrams.
Blocks represent components or subsystems and can be con-
nected together hierarchically to form larger blocks. Blocks
involve signalsand relate them by means of operators. In

Signal each signal has an associated clock1 and the activa-
tion clock of a program is the supremum of the clocks of its
involved signals. Signals are typed sequences (Boolean, in-
teger, real, …) whose domain is augmented with the extra
value that denotes the absence of the signal in a particular
reaction. The user is not allowed to manipulate thesymbol
to prevent him from manipulating the ambient sequence of
reactions.

Signal has a small number of primitive constructs.2 listed
in Table 2. In this table, denotes the status (absence, or
actual carried value) of signalX in an arbitrary reaction.

In the first two statements, the involved signals are either
all present (they are) or all absent, in the considered re-
action. We say that all signals involved havethe same clock,
and the corresponding statements are calledsingle-clocked.
In these first two statements, integerrepresents instants at
which signals arepresent,and denotes a generic operation

extended pointwise to sequences. Note that index
is implicit and does not appear in the syntax. The third and

fourth statements are multiclock ones. In the third statement,
is a Boolean signal, andtruedenotes the value “true.” With

this set of primitives, Signal supports the two synchronous
execution schemes of Fig. 1. The statement is an ex-
ample of the first scheme; it corresponds to the Esterel state-
ment

.

The generic statement is an example of the first scheme;
it coincides with the Lustre statement

More generally, Signal allows the designer to mixreactive
communication (offered by the environment) andproactive
communication (demanded by the program).

The first two statements impose constraints on signals’
clocks, which can be used to impose arbitrary constraints.
Say you wish to assert that the Boolean-valued expression

always holds. Define and write
. This statement says must be equal to

, which says is eithertrue or absent; false is
inconsistent. Therefore, the program

states that either are all absent, or condition
is satisfied. Thus, invariant properties can be

included in the specification and are guaranteed to hold by

1Lustre also has clocks, but they have been largely supplanted by activa-
tion conditions. Unlike clocks, activation conditions are operators, not types,
and do not impose a consistency check.

2In addition to these primitive statements, the actual syntax also includes
derived operators that can, for example, handle constraints on clocks.

BENVENISTEet al.: THE SYNCHRONOUS LANGUAGES 12 YEARS LATER 69

Table 2
Signal Operators (Left), and Their Meaning (Right)

construction. This also allows incomplete or partial designs
to be specified.

In Signal, reactions are therefore transitionrelations in
general, so executing a reaction involves solving the cor-
responding fixpoint equation (cf. the discussion at the end
of Section I-B). In the current version of the compiler, this
is achieved by applying the abstraction technique shown in
Table 3. In this abstraction, denotes the clock of signal,
defined by

and statement “ ” is to be interpreted as “
causally depends on when and are present and is
true”; stands for . Each Signal
statement is abstracted as a set of equations, and symbol
in this table refers to the union of such sets. The resulting
abstract domain involves Boolean and clock types plus
directed graphs, and equations can be solved in this abstract
domain. Benvenisteet al. [21] prove that if the abstraction
of the program has a unique, functional solution, then the
original program does as well. This clock and causality
calculus is the basis of Signal compilation. For convenience,
“ ” has been added as an actual primitive
statement of Signal since 1995, so the clock and causality
calculus can be expressed using Signal itself.

Signal has an equational style. Hence, similarly to Lustre,
its primary visualization is in the form of hierarchical block-
diagrams (sometimes called dataflow diagrams).

4) Variants: Many researchers have proposed extensions
and variants of the synchronous language model. We mention
only a few.

Some work has been done on developing common inter-
mediate representations (OC, DC and DC+ [22]) for the syn-
chronous languages, allowing parts of different compilation
chains to be combined.

The SyncCharts formalism [23] originated in work by
Charles André at the University of Nice (France), and has
since been incorporated in the commercial system from
Esterel Techologies. SyncCharts attempts to provide a
Statecharts-like graphical syntax with additional constructs
that allow a fully synchronous semantics.

Also closely related to Statecharts, Maranichi’s Argos [24]
and its follow-up Mode-Automata formalism [25] were de-
veloped by the Lustre team to add states and control modes to

Table 3
Signal Operators (Left) and Their Abstraction (Right)

declarative dataflow style of synchronous reactive program-
ming.

Imperative formalisms such as state diagrams, automata,
and Statecharts can and have been expanded into Signal [26],
[27].

ECL (Esterel C language, designed at Cadence Berkeley
Labs) [28] and Jester (java-Esterel, designed at the Italian
PARADES consortium) [29] aim at providing Esterel con-
structs in a C or Java syntax. These appear to be increas-
ingly successful at attracting a wider body of programmers:
ECL has been integrated into the system released from Es-
terel Technologies.

The Synchronous Eiffel language, part of the Synchronie
Workbench developed at the German National Research
Center for Computer Science (aka GMD) [30], is an at-
tempt to reconcile imperative Esterel features with the
Lustre declarative style in a single object oriented frame-
work. Lucid Synchrone [31], [32]3 takes advantage of the
(first-order) functional aspect of Lustre so as to generalize it
to higher order constructs in an ML-like style. In particular,
the Lustre clock calculus is extended and inferred as an
ML-type system. Recently, a Scade compiler has been
designed based on these principles.

Schneider has proposed the Quartz language [33], [34]
as a verifiable alternative to Esterel that adds assertions
and very precisely prescribed forms of nondeterminisim.
Designed within the Higher Order Logic (aka HOL) theorem
prover, Quartz has a mechanically proven translation to
circuits.

II. HIGHLIGHTS OF THELAST 12 YEARS

The last 12 years have seen a number of successful indus-
trial uses of the synchronous languages. Here, we describe
some of these engagements.

A. Getting Tools to Market

The Esterel compilers from Berry’s group at INRIA/CMA
have long been distributed freely in binary form.4 The com-
mercial version of Esterel was first marketed in 1998 by the
French software company Simulog. In 1999, this division

3http://www-spi.lip6.fr/softs/lucid-synchrone.html
4http://www.esterel.org/

70 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

was spun off to form the independent company Esterel Tech-
nologies.5 Esterel Technologies recently acquired the com-
mercial Scade environment for Lustre programs to combine
two complementary synchronous approaches.

In the early 1990s, Signal was licensed to Techniques
Nouvelles pour l’Informatique (TNI),6 a French software
company located in Brest, in western France. From this li-
cense, TNI developed and marketed the Sildex tool in 1993.
Several versions have been issued since then, most recently
Sildex-V6. Sildex supports hierarchical dataflow diagrams
and state diagrams within an integrated graphical user
interface, and allows Simulink and Stateflow discrete-time
models from Matlab to be imported. Globally asynchronous
locally synchronous (GALS) modeling is supported (see
Section V-B for details). Model checking is a built-in
service. The RTBuilder add-on package is dedicated to
real-time and timeliness assessments. TNI recently merged
with Valiosys, a startup operating in the area of validation
techniques, and Arexys, a startup developing tools for
system-on-chip design. Together, they will offer tools for
embedded system design.

B. The Cooperation with Airbus and Schneider Electric

Lustre’s users pressed for its commercialization. In
France in the 1980s, two big industrial projects including
safety-critical software were launched independently: the
N4 series of nuclear power plants and the Airbus A320
(the first commercial fly-by-wire aircraft). Consequently,
two companies, Aerospatiale (now Airbus Industries) and
Merlin-Gerin (now Schneider Electric) were faced with
the challenge of designing highly safety-critical software,
and unsuccessfully looked for suitable existing tools. Both
decided to build their own tools: SAO at Aerospatiale and
SAGA at Schneider Electric. Both of these proprietary tools
were based on synchronous dataflow formalisms. SAGA
used Lustre because of an ongoing cooperation between
Schneider Electric and the Lustre research group. After
some years of successfully using these tools, both companies
were faced with the problem of maintaining and improving
them, and admitted that it was not their job. Eventually, the
software company Verilog undertook the development of a
commercial version of SAGA that would also subsume the
capabilities of SAO. This is the Scade environment, and it
currently offers an editor that manipulates both graphical
and textual descriptions; two code generators, one of which
is accepted by certification authorities for qualified software
production; a simulator; and an interface to verification
tools such as Prover plug-in.7 The year 2001 brought further
convergence: Esterel Technologies purchased the Scade
business unit.

Scade has been used in many industrial projects, including
the integratednuclearprotectionsystemof thenewFrenchnu-
clearplants (SchneiderElectric),partof the flight control soft-
wareof theAirbusA340–600,andthere-engineeredtrackcon-
trol system of the Hong Kong subway (CS Transport).

5http://www.esterel-technologies.com/
6http://www.tni-valiosys.com
7http://www.prover.com

C. The Cooperation with Dassault Aviation

Dassault Aviation was one of the earliest supporters of the
Esterel project, and has long been one of its major users. They
have conducted many large case studies, including the full
specification of the control logic for an airplane landing gear
system and a fuel management system that handles complex
transfers between various internal and external tanks.

These large-scale programs, provided in Esterel’s early
days, were instrumental in identifying new issues for fur-
ther research, to which Dassault engineers often brought their
own preliminary solutions. Here are three stories that illus-
trate the pioneering role of this company on Esterel [35].

Some of the Dassault examples did exhibit legitimate com-
binational loops when parts were assembled. Compiling the
full program therefore required constructive causality anal-
ysis. This was strong motivation for tackling the causality
issue seriously from the start; it was not a purely theoretical
question easily sidestepped.

Engineers found a strong need for modular or separate
compilation of submodules, again for simply practical rea-
sons. Indeed, some of the optimization techniques for re-
ducing program size would not converge on global designs
because they were simply too big. Some partial solutions
have been found [36], but a unified treatment remains a re-
search topic.

Object-oriented extensions were found to be desirable for
“modeling in the large” and software reuse. A proposal for an
Esterel/UML coupling was drafted by Dassault [37], which
has since been adopted by and extended in the commercial
Esterel tools.

D. The Cooperation with Snecma

During the 1980s, Signal was developed with the contin-
uing support of CNET.8 This origin explains the name. The
original aim of Signal was to serve as a development lan-
guage for signal processing applications running on digital
signal processors (DSPs). This led to its dataflow and graph-
ical style and its handling of arrays and sliding windows,
features common to signal processing algorithms. Signal be-
came a joint trademark of CNET and INRIA in 1988.

Signal was licensed to TNI in the early nineties, and the
cooperation between Snecma and TNI started soon there-
after. Snecma was searching for modeling tools and methods
for embedded systems that closely mixed dataflow and au-
tomaton styles with a formally sound basis. Aircraft engine
control was the target application. As an early adopter of
Sildex, Snecma largely contributed to the philosophy and
style of the toolset and associated method.

E. The Cooperation with Texas Instruments

Engineers at Texas Intruments design large DSP chips tar-
geted at wireless communication systems. The circuitry is
typically synthesized from a specification written in VHDL,
and the validation process consists of confronting the VHDL

8Centre National d’Etudes des Télécommunications, the former national
laboratory for research in telecommunications, now part of France Telecom
(FTR&D).

BENVENISTEet al.: THE SYNCHRONOUS LANGUAGES 12 YEARS LATER 71

with a referencemodel written in C. Currently, validation is
performed by simulating test sequences on both models and
verifying their behavior is identical. The quality of the test
suite therefore determines the quality of the validation.

Esterel was introduced in the design flow as part of a col-
laboration with Texas Instruments’ Wireless Terminals Busi-
ness Center (Villeneuve-Loubet, France) [38]. Parts of the
C specification were rewritten in Esterel, mostly at specific
safety-critical locations. The language provided formal se-
mantics and an FSM interpretation so that tests could be auto-
matically synthesized with the goal of attaining full coverage
of the control state space. An early result from these exper-
iments showed that the usual test suites based on functional
coverage exercised only about 30% of the full state space
of these components. With the help of dedicated algorithms
on BDD structures, full state coverage was achieved for the
specifications considered, and further work was conducted
on transitioncoverage, i.e., making sure the test suite exer-
cised all program behaviors. Of course, the coverage checks
apply only to the components represented in Esterel, which
are only a small part of a much larger C specification.

The work conducted in this collaboration proved highly
beneficial, since such simulation-based validation seems to
be prevalent in industry. With luck, the methodology estab-
lished here can easily be applied elsewhere. Automatic test
suite generation with guaranteed state/transition coverage is
a current marketing lead for Esterel.

III. SOME NEW TECHNOLOGY

Modeling and code generation are often required in the de-
sign flow of embedded systems. In addition, verification and
test generation are of increasing importance due to the sky-
rocketing complexity of embedded systems. In this section,
we describe synchronous-language-related efforts in these
areas.

A. Handling Arrays

In a dataflow language, arrays are much more than a data
structure; they are a very powerful way of structuring pro-
grams and defining parameterized regular networks. For ex-
ample, it is often useful to apply the same operator to all ele-
ments of an array (the “map” operation). Avoiding run-time
array-index-out-of-bounds errors is another issue in the con-
text of synchronous languages. Consequently, only restricted
primitives must be provided to manipulate arrays.

Arrays were first introduced in Lustre [39] for describing
circuits (arrays are virtually mandatory when manipulating
bits). The Lustre-V4 compiles arrays by expansion: in both
the circuit and the generated code, an array is expanded into
one variable per element. This is suitable for hardware, but
can be very inefficient in software. Because instantaneous de-
pendencies among array elements are allowed, compiling this
mechanism into code with arrays and loops is problematic.

The Lustre-V4 experience showed that arrays are manipu-
lated in a few common ways in most applications, suggesting
the existence of a small set of “iterators.” These iterators,
which are well known in the functional language community,

are convenient for most applications and can be easily com-
piled into small, efficient sequential code [40]. With these
iterators, arrays can be compiled into arrays, operations on
arrays can be compiled into loops, and many implicit inter-
mediate arrays can be replaced with scalar variables (“ac-
cumulators”) in the generated code. For example, consider
Fig. 5, a very simple sequential adder that obeys a classical
iterator structure, where is a standard full adder that sums
two input bits and a carry and produces a sum and carry out.
If we expand this structure, all the array elements, ,
and become separate variables in the code along with all
the carries , which are described as an auxiliary array in
the source program. Using the iterator “map-red” (map fol-
lowed by reduction) to describe the structure, the need for
the auxiliary array vanishes and the generated code becomes
a loop

where and represent code for computingand in .
The Scade tool implements these techniques, and similar

technology is provided in the Sildex tool. One typical oper-
ator has the form , where is an array of integers and

is an array of any type. This is treated as a composition of
maps where represents a (possibly multidimensional) iter-
ation over the elements of. Extensions of this basic mech-
anism are provided.

B. New Techniques for Compiling Esterel

The first Esterel compilers were based on the literal
interpretation of its semantics written in Plotkin’s structural
operational style [41]. The V1 and V2 compilers [42] built
automata for Esterel programs using Brzozowski’s algo-
rithm for taking derivatives of regular expressions [43]. Later
work by Gonthier [44] and others produced the V3 compiler
[45], which drastically accelerated the automata-building
process by simulating the elegant intermediate code (aka
IC) format—a concurrent control-flow graph hanging from
a reconstruction tree representing the hierarchical nesting of
preemption statements. The automata techniques of the first
three compilers work well for small programs, and produces
very fast code, but they do not scale well to industrial-sized
examples because of the state explosion problem. Some
authors have tried to improve the quality of automata code
by merging common elements to reduce its size [46] or
performing other optimizations [47]. Nevertheless, none of
these techniques are able to compile concurrent programs
longer than about 1000 lines.

The successors to the automata compilers are based on
translating Esterel into digital logic [48]. This translation is
natural because of Esterel’s synchronous, finite state seman-
tics. In particular, unlike automata, it is nearly one-to-one
(each source statement becomes a few logic gates), so it

72 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

Fig. 5 Simple sequential adder obeying a classical iterator
structure.

scales very well to large programs. Although the executables
generated by these compilers can be much smaller than
those from the automata compilers, there is still much room
for improvement. For example, there are techniques for
reducing the number of latches in the generated circuit and
improving both the size and speed of the generated code
[49]. Executables generated by these compilers simply
simulate the netlist after topologically sorting its gates.

The V4 compiler, the earliest based on the digital logic
approach, met with resistance from users because it consid-
ered incorrect many programs that compiled under the V3
compiler. The problem stemmed from the V4 compiler in-
sisting that the generated netlist be acyclic, effectively re-
quiring control and data dependencies to be consistent in
every possible state, even those which the program cannot
possibly enter. The V3 compiler, by contrast, considers con-
trol and data dependencies on a state-by-state basis, allowing
them to vary, and considers only states that the program ap-
pears to be able to reach.

The solution to the problem of the overly restrictive
acyclic constraint came from recasting Esterel’s semantics
in a constructive framework. Initial inspiration arose from
Malik’s work on cyclic combinational circuits [50]. Malik
considers these circuits correct if three-valued simulation
produces a two-valued result in every reachable state of
the circuit. In Esterel, this translates into allowing a cyclic
dependency when it is impossible for the program to enter
a state where all the statements in the cycle can execute in
a single reaction. These semantics turn out to be a strict
superset of the V3 compiler’s.

Checking whether a program is constructive—that no
static cycle is ever activated—is costly. It appears to require
knowledge of the program’s reachable states, and the imple-
mentation of the V5 compiler relies on symbolic state space
traversal, as described by Shipleet al. [51]. Slow generated
code is the main drawback of the logic network-based com-
pilers, primarly because logic networks are a poor match to
imperative languages such as C or processor assembly code.
The program generated by these compilers wastes time
evaluating idle portions of the program, since it is resigned
to evaluating each gate in the network in every clock cycle.
This inefficiency can produce code 100 times slower than
that from an automata-based compiler [52].

Two recently developed techniques for compiling Es-
terel attempt to combine the capacity of the netlist-based
compilers with the efficiency of code generated by the
automata-based compilers. Both represent an Esterel pro-
gram as a graph of basic blocks related by control and data
dependencies. A scheduling step then orders these blocks
and code is generated from the resulting scheduled graph.

The compiler of Edwards [52] uses a concurrent con-
trol-flow graph with explicit data dependencies as its
intermediate representation. In addition to traditional as-
signment and decision nodes, the graph includes fork and
join nodes that start and collect parallel threads of execution.
Data dependencies are used to establish the relative execu-
tion order of statements in concurrently running threads.
These are computed by adding an arc from each emission of
a signal to eachpresentstatement that tests it.

An executable C program is generated by stepping through
the control-flow graph in scheduled order and tracking which
threads are currently running. Fork and join nodes define
thread boundaries in the intermediate representation. Nor-
mally, the code for each node is simply appended to the pro-
gram being generated, but when the node is in a different
thread, the compiler inserts code that simulates a context
switch with a statement that writes a constant into a vari-
able that holds the program counter for the thread being sus-
pended followed by a multiway branch that restores the pro-
gram counter of the thread being resumed.

This approach produces fast executables (consistently
about half the speed of automata code and as many as a
hundred times faster than the netlist-based compilers) for
large programs, but is restricted to compiling the same
statically acyclic class of programs as the V4 compiler.
Because the approach relies heavily on the assumption the
existence of a static schedule, it is not clear how it can be
extended to compile the full class of constructive programs
accepted by the V5 compilers.

Another related compilation technique due to Weilet al.
[53] compiles Esterel programs using a technique resem-
bling that used by compiled-code discrete-event simulators.
Frenchet al.[54] describe the basic technique: the program is
divided into short segments broken at communication bound-
aries, and each segment becomes a separate C function in-
voked by a centralized scheduler. Weilet al.’s SAXO-RT
compiler works on a similar principle. It represents an Esterel
program as an event graph: each node is a small sequence of
instructions, and the arcs between them indicate activation in
the current reaction or the next. The compiler schedules the
nodes in this graph according to control and data dependen-
cies and generates a scheduler that dispatches them in that
order. Instead of a traditional event queue, it uses a pair of
bit arrays, one representing the events to run in the current
reaction, the other representing those that will run in the next.
The scheduler steps through these arrays in order, executing
each pending event, which may add events to either array.

Because the SAXO-RT compiler uses a fixed schedule,
like Edwards’ approach and the V4 compiler it is limited to
compiling statically acyclic programs and therefore does not
implement Esterel’s full constructive semantics. However, a
more flexible, dynamic scheduler might allow the SAXO-RT
compiler to handle all constructively valid Esterel programs.

An advantage of these two latter approaches, which only
the SAXO-RT compiler has exploited [55], is the ability to
impose additional constraints on the order in which state-
ments execute in each cycle, allowing some control over the
order in which inputs may arrive and outputs produced within

BENVENISTEet al.: THE SYNCHRONOUS LANGUAGES 12 YEARS LATER 73

a cycle. Although this view goes beyond the idealized, zero-
delay model of the language, it is useful from a modeling or
implementation standpoint where system timing does play a
role.

C. Observers for Verification and Testing

Synchronous observers [56], [57] are a way of specifying
properties of programs, or, more generally, to describe non-
deterministic behaviors. A well-known technique [58] for
verifying programs consists of specifying the desired prop-
erty by means of a language acceptor (generally a Büchi au-
tomaton) describing theunwantedtraces of the program and
showing that the synchronous product of this automaton with
the program has no behaviors, meaning that no trace of the
program is accepted by the automaton.

We adopt a similar approach, restricting ourselves to
safety propertiesfor the following reasons. First, for the
applications we address, almost all the critical properties
are safety properties: nobody cares that a traineventually
stops, it must stop before some time or distance to avoid
an obstacle. Second, safety properties are easier to specify,
since a simple finite automaton is sufficient (no need for
Büchi acceptance criterion). Finally, safety properties are
generally easier to verify. In particular, they are preserved by
abstraction: if an abstraction of a program is safe, it follows
that the concrete program is, too.

Verification by observers is natural for synchronous lan-
guages becausethe synchronous product used to compute
trace intersection is precisely the parallel composition pro-
vided by the languages.This means safety properies can be
specified with a special program called an observer that ob-
serves the variables or signals of interest and at each step
decides if the property is fulfilled up to this step, emitting a
signal that indicates whether it was. A program satisfies the
property if and only if the observer never complains during
any execution. This technique for specifying properties has
several advantages.

1) The property can be wrtitten in the same language than
the program. It is surely an argument to convince users
to write formal specifications: they do not need to learn
another formalism.

2) The observer can be executed; so testing it is a way
to get convinced that it correctly expresses the user’s
intention. It can also be run during the actual execution
of the program, to perform autotest.

Several verification tools use this technique [59], [18],
[60]–[62]: in general, such a tool takes a program, an
observer of the desired property, and an observer of the
assumptions on the environment under which the property
is intended to hold. Then, it explores the set of reachable
states of the synchronous product of these three compo-
nents, checking that if the property observer complains in a
reachable state then another state was reached before where
the assumption observer complained. In other words, it is
not possible to violate the property without first violating the
assumption. Such an “assume-garantee” approach allows
also compositional verification [63], [64].

Adding observers has other applications, such as auto-
matic testing [65], [66]. Here, the property observer is used
as an oracle that decides whether a test passes. Even more in-
teresting is the use of an assumption observer, which may be
used to automatically generaterealistic test sequences that
satisfy some assumptions. This is often critical for the pro-
grams we consider, since they oftencontrol their environ-
ments, at least in part. Consequently, one cannot generate in-
teresting test sequences or check that the control is correct
without assuming that the environment obeys the program’s
commands.

IV. M AJOR LESSONS

Now that time has passed, research has produced results,
and usage has provided feedback, some lessons can be
drawn. We summarize them in this section.

A. The Strength of the Mathematical Model

The main lesson from the last decade has been that the
fundamental model [time as a sequence of discrete instants
(3) and parallel composition as a conjunction of behaviors
(4)] has remained valid and was never questioned. We believe
this will continue, but it is interesting to see how the model
resisted gradual shifts in requirements.

In the 1980s, the major requirement was to have a clean
abstract notion of time in which “delay 1; delay 2” exactly
equals “delay 3” (due to G. Berry), something not guaran-
teed by real-time languages (e.g., Ada) or operating systems
at that time. Simiarly, deterministic parallel composition
was considered essential. The concept of reaction (3) an-
swered the first requirement and parallel composition as a
conjunction (4) answered the second. These design choices
allowed the development of a first generation of compilers
and code generators. Conveniently, unlike the then-standard
asynchronous interleaving approach to concurrency, this
definition of parallel composition (4) greatly reduces the
state-explosion problem and made program verification
feasible.

Compiling functional concurrency into embedded code
running under the simple schemes of Fig. 1 allowed crit-
ical applications to be deployed without the need for any
operating system scheduler. This was particularly attractive
to certification authorities, since it greatly reduced system
complexity. For them, standard operating systems facilities
such as interrupts were already dangerously unpredictable.
The desire for simplicity in safety-critical real-time systems
appears to be universal [67], so the synchronous approach
seems to be an excellent match for these systems.

In the late 1980s, it appeared that both imperative and
dataflow styles were useful and that mixing them was
desirable. The common, clean underlying mathematics
allowed multiple synchronous formalisms to be mixed
without compromising rigor or mathematical soundness.
For example, the imperative Esterel language was compiled
into a logic-netlist-based intermediate representation that
enabled existing logic optimization technology to be used
to optimize Esterel programs.

74 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

In the early 1990s, research on program verification and
synthesis lead to the need for expressing specifications
in the form of invariants. Unlike programs, invariants are
generally not deterministic, but fortunately nondeterminism
fits smoothly into the synchronous framework. Signal
has considered nondeterministic systems from the very
beginning but has supplied it in a disciplined forms. Unlike
other formalisms in which parallel composition is nonde-
terministic, nondeterminism in Signal is due exclusively to
a fixpoint equation having multiple solutions, a property
that can be formally checked whenever needed. Similarly,
assertions were added to Lustre to impose constraints on the
environment for use in proofs.

Defining the behavior in a reaction as a fixpoint equa-
tion resulted in subtle causality problems, mainly for Es-
terel and Signal (Lustre solves this trivially by forbidding
delay-free loops). For years this was seen as a drawback
of synchronous languages. The hunt for causality analysis
in Esterel was like a Mary Higgins Clark novel: each time
the right solution was reported found, a flaw in it was re-
ported soon thereafter. However, G. Berry’s constructive se-
mantics does appear to be the solution and has stood unchal-
lenged for more than five years. A similar struggle occured
for Signal behind the scenes, but this mathematical difficulty
turned out to be a definite advantage. In 1995, dependency
was added as an first-class operator in both Signal and the
DC and DC+ common formats for synchronous languages.
Besides encoding causality constraints, this allowed sched-
uling constraints to be specified explicitly and has proven to
be an interesting alternative to the use of the imperative “;”.

In the late nineties, the focus extended beyond simple pro-
gramming to the design of systems. This calls for models
of components and interfaces with associated behavioral se-
mantics. Although this is still research under progress, initial
results indicate the synchronous model will continue to do
the job.

Everything has its limits, including the model of syn-
chrony. But its clean mathematics has allowed the study of
synchrony intertwined with other models, e.g., asynchrony.

B. Compilation Has Been Surprisingly Difficult but Was
Worth the Effort

Of the three languages, Esterel has been the most chal-
lenging to compile because its semantics include both control
and data dependencies. We described the various compilation
technologies in Section III-B, and observed that although
many techniques are known, none is considered wholly sat-
isfactory.

The principle of Signal compilation has not changed since
1988; it consists of solving the abstraction of the program de-
scribed by the clock and causality calculus shown in Table 3.
However, it was not until 1994 that it was proven that the
internal format of the compiler was a canonical form for the
corresponding program [68], [69], therefore guaranteeing the
uniqueness of this format and establishing the compilation
strategy on a firm basis.

Properly handling arrays within the compilation process
has been a difficult challenge, and no definitive solution ex-
ists yet.

Compilation usually requires substantially transforming
the program, usually making it much harder to trace,
especially in the presence of optimization. Unfortunately,
designers of safety-critical systems often insist on trace-
ability because of certification constraints. Some effort has
been made to offer different tradeoffs between efficiency and
traceability. Separate compilation is one possible answer,
and direct solutions are also available. This has been an
important focus for the Scade/ Lustre compiler, which is
DO178B certified.

Overall, the developed compilation techniques can be re-
garded as a deep and solid body of technologies.

V. FUTURE CHALLENGES

Rather than a complete methodology, synchronous
programming is more a step in the overall system develop-
ment process, which may include assembling components,
defining architecture, and deploying the result. A frequently
leveled complaint about the synchronous model is that not
all execution architectures comply with it, yet the basic
paradigm of synchrony demands global specifications.
Exploring the frontiers of synchrony and beyond is therefore
the next challenge. In this section, we discuss three topics
that toe this boundary: architecture modeling, deployment
on asynchronous architectures, and building systems from
components.

A. Architecture Modeling

As seen before, synchronous languages are excellent tools
for thefunctionalspecification of embedded systems. As dis-
cussed in more detail in Section V-B, embedded applications
are frequently deployed on architectures that do not comply
with the execution model of synchrony examplified in Fig. 1.
Typical instances are found in process industries, automo-
biles, or aircraft, in which the control system is often dis-
tributed over a communication infrastructure consisting of
buses or serial lines. Fig. 6 shows a situation of interest. In
this figure, a distributed architecture for an embedded system
is shown. It consist of three computers communicating by
means of serial lines and a bus. The computer on the left
processes data from some sensor, the computer on the right
computes controls for some actuator, and the central com-
puter supervises the system. There are typically two sources
of deviation from the synchronous execution model in this
architecture.

1) The bus and the serial lines may not comply with the
synchronous model, unless they have been carefully
designed with this objective in mind. The family of
Time-Triggered Architectures (TTAs) is such a syn-
chrony-compliant architecture [70]–[72]. But most are
not, and still are used in embedded sytems.

2) The A/D and D/A converters and more generally the
interfaces with the analog world of sensors and actu-

BENVENISTEet al.: THE SYNCHRONOUS LANGUAGES 12 YEARS LATER 75

Fig. 6 Synchronous computers communicating through serial
lines and a bus.

ators, by definition, lie beyond the scope of the syn-
chronous model.

While some architectures avoid difficulty 1), difficulty 2)
cannot be avoided. Whence the following:

Problem 1 (Architecture Modeling)—How to Assist the
Designer in Understanding How Her/His Synchronous Spec-
ification Behaves, When Faced with Difficulties 1) and/or
2)?: Assume that the considered synchronous specification
decomposes as and the three components
are mapped, from left to right, onto the three processors
shown in Fig. 6. Assume, for the moment, that eachcan
run “infinitely fast” on its processor. Then the difficulties
are concentrated on the communications between these pro-
cessors: they cannot be considered synchronous. Now, the
possible behaviors of each communication element (sensor,
actuator, serial line, bus) can be modeled by resourcing to
the continuousreal-time of analog systems.Discrete time
approximations of these models can be considered.

Take the example of a serial line consisting of a first-in,
first-out (FIFO) queue of length 1. Its continuous time model
says

where means that the FIFO has been
empty for some time interval until now. Now, the cor-
responding discrete time approximation reads exactly
the same. But the preceding model is just an invariant
synchronous system, performing a reaction at each dis-
cretization step—it does not, however, behave functionally.
As explained in Section I-C3, this invariant can be specified
in Signal. It can also be specified using the mechanism of
Lustre assertions which are statements of the form assert

, where is a Boolean flow—the meaning is that is
asserted to be always true.

This trick can then be applied to (approximately) model all
communication elements. The deployment of specification
on the architecture of Fig. 6 is then modeled as, where

The resulting program can be confronted to formal verifica-
tions. By turning nondeterminism into additional variables,
it can also be simulated.

Now, what if the assumption that the three processors
run infinitely fast cannot be accepted? All compilers of
synchronous languages compute schedulings that comply
with the causality constraints imposed by the specification
(see the related discussions in Section I-C). This way, each
reaction decomposes into atomic actions that are partially
ordered; call athreadany maximal totally ordered sequence
of such atomic actions. Threads that are too long for being
considered instantaneous with respect to the time discretiza-
tion step, are broken into successivemicrothreadsexecuted
in successive discretization steps. The original synchronous
semantics of each is preserved if we make sure that
microthreads from different reactions do not overlap. We
just performed synchronoustime refinement.

The above technique has been experimented in the SafeAir
project using the Signal language, and in the Crisys project
using the Lustre language [73], [74]. It is now available as a
service for architecture modeling with Sildex-V6.9

So much for problem 1. However, the alert reader must
have noticed in passing that the breaking of threads into mi-
crothreads is generally subtle, and therefore calls for assis-
tance. To this end, we consider the next problem:

Problem 2 (Architecture Profiling)—How to Profile a
Scheduled Architecture?:Look closely at the discussions
on causality and scheduling in Section I-C, and particularly
in Section I-C3. Reactions decompose into atomic actions
that are partially ordered by the causality analysis of the
program. Additionalscheduling constraintscan be enforced
by the designer, provided they do not contradict the causality
constraints. This we call thescheduledprogram; note that
it is only partially ordered, not totally. Scheduled programs
can be, for instance, specified in Signal by using the state-
ment introduced in Table 3—in doing so,
the latter statement is used for encoding both the causality
constraints and the additional scheduling constraints set by
the designer.

Now, assume that holds in the current reac-
tion of the considered scheduled program, i.e., are the
closest predecessors ofin the scheduled program. Denote
by the earliest date of availability of in the current re-
action. We have

(6)

where is the additional duration of the operator needed
(if any) to produce from and . Basically, the trick used
consists in replacing the scheduled program

by (6). If we regard (6) as a Signal program, the resulting
mapping is ahomomorphismof the set of Signal programs
into itself. Performing this systematically, from a scheduled
program, yields an associatedprofiling program, which
models the timing behavior of the original scheduled
program. This solves problem 2. This technique has been
implemented in Signal [75].

9http://www.tni-valiosys.com

76 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

A related technique has been developed at Verimag and
FTR&D Grenoble in the framework of the TAXYS project
[76], for profiling Esterel designs.

B. Beyond Synchrony

The execution schemes of Fig. 1 are relevant for embedded
systems, but they do not encompass all needs. While the syn-
chronous model is still pervasive in synchronous hardware,
GALS architectures are now considered for hardware built
from components, or for hardware/software hybrid architec-
tures such as encountered in system-on-a-chip designs [77].
Similarly, embedded control architectures, e.g., in automo-
biles or aircraft, are distributed ones. Although some recent
design choices favor so-called TTAs [70] complying with our
model of synchrony, many approaches still rely on a (par-
tially) asynchronous medium of communication.

It turns out that the model (3) and (4) of synchrony was
clean enough to allow a formal study of its relationships with
some classes of asynchronous models. This allowed the de-
velopment of methods for deploying synchronous designs on
asynchronous architectures. It also allowed the study of how
robust the deployment of a synchronous program can be on
certain classes of asynchronous distributed real-time archi-
tectures.

Synchronous programs can be deployed on GALS archi-
tectures satisfying the following assumption:

Assumption 1: The architecture obeys the model of a net-
work of synchronous modules interconnected by point-to-
point wires, one per each communicated signal; each indi-
vidual wire is lossless and preserves the ordering of mes-
sages, but the different wires are not mutually synchronized.

An important body of theory and techniques have been de-
veloped to support the deployment of synchronous programs
onto such GALS architectures [21], [78], [79]. We shall give
a flavor of this by explaining how Lustre and Signal programs
can be mapped to an asynchronous network of dataflow ac-
tors in the sense of Ptolemy [80], [81], an instance of an ar-
chitecture satisfying assumption 1. In this model, each in-
dividual actor proceeds by successive salvos; in each salvo,
input tokens are consumed and output tokens are produced.
Hence, each individual actor can be seen as a synchronous
machine. Then, tokens travel along the network wires asyn-
chronously, in a way compliant with assumption 1.

Table 4 shows the translation for Lustre. The aim is that
each Lustre statement would be replaced by its associated
dataflow actor; thus, a Lustre program would result in a token
based dataflow network. The right side of Table 4 reads as
follows: the diagrams on the left show the enabling condi-
tion of the dataflow actor; the corresponding diagrams on
the right depict the result of the firing. When several lines
are shown for the same statement, they correspond to dif-
ferent cases, depending on the enabling condition. The first
two statements translate exactly into the actors shown in the
right column. Each actor consumes one token on each input
and produces one token on its outputs. The delay operator
pre is modeled by the presence of an initial token inside the
actor. For the when statement, in the Boolean guardthe

Table 4
From Lustre Statements (Left) to Dataflow Actors (Right).

black patch indicates atruevalue for the token, while a white
patch indicates afalse. When the Boolean guard has atrue
token, the token passes the “gate,” whereas it is lost when
the Boolean guard holds afalse token. This performs data
dependent downsampling. Note that, unlike in the when op-
erator of Signal (Table 2), both inputsand must have the
same clock in the Lustre statement.

The firing of an actor is interpreted as the corresponding
Lustre statement performing a reaction. It has been proved
[82] that a structural translation of any clock consistent10

Lustre program using this table yields a dataflow network.
Furthermore, in this network a single-token buffer execution
is possible. Therefore, any Lustre program possesses a fully
asynchronous interpretation as well. Based on a similar re-
mark, Lustre programs were deployed on a distributed archi-
tecture by means of the OC automaton-format [83]. Since
then, it appeared that this deployment technique closely re-
lates to the old-fashioned Gilles Kahn’s dataflow networks
[84].

This was easy, since Lustre is afunctional language, i.e,
a language in which each correct program behaves function-
ally. The case of Signal is different, as can be expected from
the fact that Signal regards reactions as relations, not func-
tions.

Referring to Table 2, a first attempt of translation of the de-
fault is depicted by the top portion of Table 5. However, this
translation is incorrect, as the actor cannot tell the difference
between “no token” and “late token.” This missing informa-
tion is provided in the correct translation shown in the bottom
portion of Table 5. The main point here is thatadditional sig-
naling is neededin the form of the Boolean guards and

indicating the presence (valuetrue) and absence (value
false) of and . These guards are not part of the original
Signal statement. This augmentation can be systematically
performed for each Signal primitive statement. This transla-
tion requires introducing additional signaling and operators.
This overhead is the price to pay for the multiclock nature of
Signal: the ambient reaction is not visible in Signal; it must
be made explicit prior to the translation into dataflow actors.

Clearly, a naive structural mapping would result in an un-
acceptable overhead and is not applicable. Instead, by per-
forming a powerful symbolic analysis of the clock set of this
program, one can transform it into a Lustre-like program by

10As said at the end of Section I-C1, Lustre clocks can be used as a type
system, and corresponding type consistency can be checked.

BENVENISTEet al.: THE SYNCHRONOUS LANGUAGES 12 YEARS LATER 77

Table 5
The Signal Default Statement and Its Associated Dataflow
Actors: A First and Incorrect Attempt (top), and the
Correct Version (bottom).

synthesizing a minimal additional signaling. Then translation
into dataflow actors becomes straightforward, as seen from
Table 4. For a formal theory supporting this technique, see
[21], [78], [85], [86], where the two fundamental concepts of
endochrony(informally discussed here) andisochrony(not
discussed here) were introduced. This approach can be seen
as a way to systematically synthesize the needed protocols
to maintain the program semantics when a distributed imple-
mentation is performed, using an asynchronous communica-
tion architecture. It is implemented in the Signal Inria com-
piler.11

The method applies to any asynchronous communication
infrastructure satisfying assumption 1. GALS implementa-
tions can be derived in this way. Extensions of this method
can be used in combination with separate compilation to de-
sign systems by assembling components within a GALS ar-
chitecture.

C. Real Time and Logical Time

There is a striking difference between the two preceding
approaches, which both describe some aspects of desyn-
chronization: in the GALS situation discussed in Section
V-B, desynchronised programs stay functionally equivalent
to their original synchronised versions; thus, any design and
validation result that has been obtained in the synchronous
world remains valid in the desynchronised one. This is not
the case in the approach of Fig. 6; here, we have shown how
to faithfully mimic the architecture within the synchronous
framework, but it is quite clear that the program that
mimics the implementation will not, in general, behave like
the synchronous specification. This is due to the fact that

11http://www.irisa.fr/espresso/welcome_english.html

the added architectural features do not behave like ideal
synchronous communication mechanisms.

But this is a constant situation: in many real-time systems,
real devices do not behave like ideal synchronous devices,
and some care has to be taken when extrapolating design and
validation results from the ideal synchronous world to the
real real-time world.

This kind of problem have been investigated within the
Crisys Esprit project [87]. Some identified reasons for such
a thorough extrapolation are as follows.

1) Continuity. The extrapolation of analog computation
techniques has played an important part in the origin of
synchronous programming, and continuity is clearly a
fundamental aspect of analog computing. Therefore, it
is not surprising that it also plays a part in synchronous
programming.

2) Bounded variability. Continuity is important because
it implies some bandwidth limitation. This can be ex-
tended to noncontinuous cases, provided systems do
not exhibit unbounded variability.

3) Race avoidance. However, bounded variability is not
enough when sequential behaviors are considered,
because of intrinsic phenomena like “essential haz-
ards.” This is why good designers take great care to
avoid critical races in their designs, so as to preserve
validation results. This implies using in some cases
asynchronous programming techniques, e.g., causality
chains.

D. From Programs to Components and Systems

Building systems from components is accepted as the
today-and-tomorrow solution for constructing and main-
taining large and complex systems. This also holds for
embedded systems, with the additional difficulty that com-
ponents can be hybrid hardware/software made. Object
oriented technologies have had this as their focus for many
years. Object oriented design of systems has been sup-
ported by a large variety of notations and methods, and this
profusion eventually converged to the Universal Modeling
Language (UML)12 standard [88].

Synchronous languages can have a significant contribu-
tion for the design of embedded systems from components,
by allowing the designer to master accurately the behavioral
aspects of her/his application. To achieve this, synchronous
languages must support the following.

1) Genericity and inheritance. Sophisticated typing
mechanisms have been developed to this end in
object-oriented languages; however, the behavioral
aspects are less understood. Some behavioral gener-
icity is offered in synchronous languages by providing
adequate polymorphic primitive operators for ex-
pressing control (see Section I-C for instances of such
operators). Behavioral inheritance in the framework
of synchronous languages is far less understood and
is still a current topic for research.

12http://uml.systemhouse.mci.com/

78 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

2) Interfaces and abstractions. We shall show that the
synchronous approach offers powerful mechanisms to
handle the behavioral facet of interfaces and abstrac-
tions.

3) Implementations, separate compilation, and imports.
Handling separate compilation and performing im-
ports with finely tuning the behavioral aspects is a
major contribution of synchronous languages, which
we shall develop hereafter.

4) Multifaceted notations,à la UML.
5) Dynamicity. Dynamic creation/deletion of instances is

an important feature of large systems. Clearly, this is
also a dangereous feature when critical systems are
considered.

In this section, we concentrate on items 2), 3), and 4), and
provide some hints for 5).

1) What Are the Proper Notions of Abstraction, Interface,
and Implementation for Synchronous Components?:See
[89] and references therein for general discussions on this
topic. We discuss these matters in the context of Signal.
Consider the following Signal component:

It consistsof theparallel compositionof twosingle-clocked
statements and ; be careful that no rela-
tion is specified between the clocks of the two inputsand ,
meaning that they can independently occur at any reaction of

.Atentative implementationofcould followthesecondex-
ecution scheme of Fig. 1; call it

We can equivalently represent implementationby the
following Signal program; we call it again :

The added scheduling constraint in expresses
that when both and occur in the same reaction, emission
of should occur prior the reading of. Now, consider an-
other component

It can be implemented as

Now, the composition of these two compo-
nents is the system

it can, for instance, be implemented by

Unfortunately, the parallel composition of the two im-
plementations and is blocking, since will starvate,
waiting for to come from component , and symmetri-
cally for . This problem is indeed best revealed using the
Signal writing of the parallel composition of and

which exhibits the causality circuit

Therefore, according to [89], cannot be considered as a
valid implementation of for subsequent reuse as a compo-
nent, since composing and does not yield a valid im-
plementation of ! This is too bad, since a standard compila-
tion of would typically yield as an executable code. The
following lessons can be derived from this example about ab-
straction and implementations of synchronous components.

1) Brute force separate compilation of components can
result in being unable to reuse components for de-
signing systems.

2) Keeping causality and scheduling constraints explicit
is required when performing the abstraction of a com-
ponent.

What can be valid abstractions and implementations for
synchronous components? Consider the following compo-
nent :

in which is a local signal. A valid implementation of is

which is obtained by simply making the causality constraints
explicit. can be rewritten as

which is more illuminating, since it shows the structuration
of into two sequentialthreads, which must be kept con-
current. Therefore, a valid implementation of component

BENVENISTEet al.: THE SYNCHRONOUS LANGUAGES 12 YEARS LATER 79

doesnot obey any of the execution schemes of Fig. 1, but
rather has the form of concurrent threads supervised by a
scheduler, where each thread can be safely separately com-
piled—for the particular case of the scheduler is trivial,
since the two threads can freely occur at each reaction.

Next, we claim that a valid abstraction of is obtained
as follows. Start from . Abstract into its clock
abstraction , and similarly for other statements. This
yields the program

and we can hide in it the local signal. The result is a valid
abstraction for ; denote it by

Of course, less wild abstractions can be performed,
in which not every signal is replaced by its clock—e.g.,
Boolean signals can be kept.

To summarize, a theory of synchronous components
uses causality/scheduling constraints as a fundamental tool.
This is definitely a novel feature, compared with usual
approaches relying on trace- or bisimulation-based refine-
ments (see [89] and references therein). Component-based
design is supported by Signal in its latest version13 by means
of a set of services, including abstractions, imports, and
implementations.

Performing separate compilation for Esterel, based on the
constructive causality,raises similar difficulties. In fact, the
current algorithm-checking constructive causality computes
a more refined result asserting the necessary preconditions
for causal correctness; this plays a role like Signal’s causality
constraints discussed before. Research is in progress to figure
how this information can be best kept and exploited for sep-
arate compilation. Also, it appears that the new compilations
techniques developed by Edwards, or Weilet al. (see Sec-
tion III-B), use an internal representation of programs sim-
ilar to the previously discussed structures developed in the
context of Signal.

2) Multifaceted Notations à la UML, and Related
Work: The UML community has done a very nice job of
defining a multifaceted set of views for a system and its
components. The different views provide information on
the structure of the system (class and object diagrams),
some high-level scenarios for use, involving different
objects of the system (use cases, sequence diagrams), and
behavioral notations to specify the behavior of components
(state diagrams, Statecharts). How can the advantages of
this multifaceted approach be combined with those of the
synchronous approach?

The Esterel Studio toolset from Esterel Technologies of-
fers a coupling with the class and object diagrams to help

13http://www.irisa.fr/espresso/welcome_english.html

structuring the system description. However, lifting the mul-
tifaceted modeling approach to the synchronous paradigm is
still under progress. Charles Andréet al. [90] have proposed
a version of the sequence diagrams, which is fully compliant
with the synchronous model. Benoît Caillaudet al.[91] have
proposed the formalism BDL as a semantic backbone sup-
porting the different behavioral notations of UML (scenarios
and state diagrams), and providing a clear semantics to sys-
tems, not just components.

3) Dynamic Instantiation, Some Hints:We conclude this
subsection by discussing this much more prospective topic:
can synchronous components be dynamically instantiated? A
truly functional version of Lustre has been proposed by Caspi
andPouzet [32],whichofferscertainpossibilities fordynamic
instantiationofnodes.Thesemanticseithercanbestrictlysyn-
chronous or can be derived from the asynchronous Kahn net-
works [84]. On the other hand, the work of Benvenisteet al.
on endo/isochrony [21], [78] opens possibilities for the dy-
namic instantiationofsynchronouscomponents inaGALSar-
chitecture, in which the communication between components
is asynchronous. But the most advanced proposal for an im-
plementation is the toolsetReactive Programmingand the lan-
guageSugarCubesforJava14 proposedbyFrédéricBoussinot.
Its core consists of a set of Java classes implementing logical
threadsandamechanismofglobalreactionsrelyingonaglobal

control point, shared by all objects. The corresponding
model issynchronous(it isevensingle-clocked).ReactivePro-
gramming can also be used with a more usual but less formal
asynchronous interpretation,anddynamic instantiationcanbe
used in the latter case.

VI. CONCLUSION AND PERSPECTIVES

The synchronous programming approach has found its
way in the application area of embedded systems. We have
described some important features of them, mentioned
some applications, and discussed some recent advances and
future plans. One question remains about the future of this
paradigm: where do we go?

For some time it was expected that synchronous tech-
nology would operate by hiding behind dominant methods
and notations. One example is the Matlab/Simulink/State-
flow tool commonly used for signal processing algorithm
design. Another example is UML and the general trend
toward model engineering. This has happened to some
extent, since Scade can import discrete time Simulink
diagrams and Sildex can import Simulink/Stateflow discrete
time diagrams. Here, the user can ignore the synchronous
formalisms and notations and just use the synchronous
tools. A similar situation is occuring with Esterel Studio and
Rational Rose.

Another way to bring synchronous technology to bear in-
volves blending synchronous features for control into wide-
spread languages. An example of this is the ECL language,
mentioned in Section I-C4, in which features from Esterel are
embedded into C. Synchronous analysis techniques are cur-
rently limited to the Esterel-derived portion of the language,

14http://www-sop.inria.fr/mimosa/rp/

80 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

but this could be enlarged in the future by adding more static
analysis techniques.

An often-asked question is, why several languages instead
of just one? The common formats OC, DC, and DC+ (see
Section I-C4) were attempts to achieve this quietly that have
not panned out. Instead, more dataflow-like constructs have
been merged into Esterel, such as Lustre’s “pre.” Esterel
Technologies’ recent acquisition of the Lustre-derived Scade
tool paves the way for more such additions.

Today, we see with some surprise that visual notations for
synchronous languages have found their way to successful
industrial use with the support of commercial vendors. This
probably reveals that building a visual formalism on the top of
a mathematically sound model gives actual strength to these
formalisms and makes them attractive to users. The need
toward integrating these technologies in larger design flows
remains, but is achieved by means of suitable links with other
tools. And this seems to be the winning trend nowadays.

REFERENCES

[1] A. Benveniste and G. Berry, “Prolog to the special section on
another look at real-time programming,”Proc. IEEE, vol. 79, pp.
1268–1269, Sept. 1991.

[2] , “The synchronous approach to reactive real-time systems,”
Proc. IEEE, vol. 79, pp. 1270–1282, Sept. 1991.

[3] F. Boussinot and R. de Simone, “The Esterel language,”Proc. IEEE,
vol. 79, pp. 1293–1304, Sept. 1991.

[4] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The syn-
chronous data flow programming language LUSTRE,”Proc. IEEE,
vol. 79, pp. 1305–1320, Sept. 1991.

[5] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire, “Pro-
gramming real-time applications with SIGNAL,”Proc. IEEE, vol.
79, pp. 1321–1336, Sept. 1991.

[6] IEEE Standard VHDL Language Reference Manual, IEEE Press,
Piscataway, NJ, 1994, pp. 1076–1993.

[7] IEEE Standard Hardware Description Language Based on the Ver-
ilog Hardware Description Language, IEEE Press, New York, NY,
1996, pp. 1364–1995.

[8] D. Harel, “Statecharts: A visual formalism for complex systems,”
Sci. Comput. Program., vol. 8, pp. 231–274, June 1987.

[9] R. David and H. Alla,Petri Nets and Grafcet: Tools for Modeling
of Discrete Event Systems. Englewood Cliffs, NJ: Prentice-Hall,
1992.

[10] R. David, “Grafcet: A powerful tool for the specification of logic
controllers,” IEEE Trans. Contr. Syst. Tech., vol. 3, pp. 253–268,
1995.

[11] M. von der Beeck, “A comparison of statecharts variants,” inLecture
Notes in Computer Science, Formal Techniques in Real-Time and
Fault-Tolerant Systems. Heidelberg, Germany: Springer-Verlag,
1994, vol. 863.

[12] D. Harel and A. Naamad, “The stalemate semantics of statecharts,”
ACM Trans. Softw. Eng. Methodology, vol. 5, pp. 293–333, Oct.
1996.

[13] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, “LUSTRE:
A declarative language for programming synchronous systems,” in
ACM Symp. Principles Program. Lang. (POPL), Munich, Germany,
1987, pp. 178–188.

[14] G. Berry, “The foundations of Esterel,” inProof Language and Inter-
action: Essays in Honor of Robin Milner. Cambridge, MA: MIT
Press, 2000.

[15] , The Constructive Semantics of Pure Esterel, 1999.
[16] D. E. Thomas and P. R. Moorby,The Verilog Hardware Description

Language, 4th ed. Norwell, MA: Kluwer, 1998.
[17] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A.

Sal-danha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangio-
vanni-Vincentelli, “SIS: A System for Sequential Circuit Synthesis,”
University of California, Berkeley, UCB/ERL M92/41, 1992.

[18] A. Bouali, “Xeve: An Esterel verification environment,” inProc.
10th Int. Conf. Comput.-Aided Verification (CAV ’98), vol. 1427,
LNCS, Vancouver, BC, 1998.

[19] A. Benveniste and P. L. Guemic, “Hybrid dynamical systems theory
and the SIGNAL language,”IEEE Trans. Automat. Contr., vol.
AC-35, pp. 535–546, May 1990.

[20] A. Benveniste, P. L. Guernic, and C. Jacquemot, “Programming with
events and relations: The SIGNAL language and its semantics,”Sci.
Comput. Program., vol. 16, pp. 103–149, 1991.

[21] A. Benveniste, B. Caillaud, and P. L. Guernic, “Compositionality
in dataflow synchronous languages: Specification distributed code
generation,”Inform. Comput., vol. 163, pp. 125–171, 2000.

[22] J.-P. Paris, G. Berry, F. Mignard, P. Couronneé, P. Caspi, N. Halb-
wachs, Y. Sorel, A. Benveniste, T. Gautier, P. L. Guernic, F. Dupont,
and C. L. Maire, “Projet Synchrone : les Formats Communs des Lan-
gages Synchrones,” Irisa, Rennes, France, Rep. No. 157, 1993.

[23] C. André. Representation and analysis of reactive behaviors: A
synchronous approach. presented at Comput. Eng. Syst. Applicat.
(CESA). [Online]. Available: http://www-sop.inria.fr/meije/Es-
terel/syncCharts/

[24] F. Maraninchi, “The Argos language: Graphical representation of
automata and description of reactive systems,” presented at the IEEE
Workshop Visual Lang., Kobe, Japan, 1991.

[25] F. Maraninchi and Y. Rémond, “Mode-automata: About modes and
states for reactive systems,” presented at the Eur. Symp. Program.
(ESOP), Lisbon, Portugal, 1998.

[26] Y. Wang, J. P. Talpin, A. Benveniste, and P. Le Guernic. Compilation
and distribution of state machines using SPOT S. presented at 16th
IFIP World Comput. Congress (WCC 2000). [Online]. Available:
ftp://ftil.irisa.fr/local/signal/publis/articles//WCC-00.ps.gz

[27] J.-R. Beauvais, E. Rutten, T. Gautier, P. Le Guernic, and Y.-M. Tang,
“Modeling statecharts and activitycharts as signal equations,”ACM
Trans. Softw. Eng. Methodol., vol. 10, no. 4, 2001.

[28] L. Lavagno and E. Sentovich, “ECL: A specification environment for
system-level design,” inProc. 36th Design Automation Conf., 1999,
pp. 511–516.

[29] M. Antoniotti and A. Ferrari. (2000) Jester, A Reactive Java
Extension Proposal by Esterel Hosting. [Online]. Available:
http://www.parades.rm.crir.it/projects/jester/jester.html

[30] A. Poigne, M. Morley, O. Maffeis, L. Holenderski, and R. Budde,
“The synchronous approach to designing reactive systems,”Formal
Methods Syst. Design, vol. 12, no. 2, pp. 163–187, 1998.

[31] P. Caspi and M. Pouzet, “Synchronous Kahn networks,” presented
at the Int. Conf. Functional Program., Philadelphia, PA, 1996.

[32] , A co-iterative characterization of synchronous stream func-
tions. presented at Proc. Workshop Coalgebraic Methods Comput.
Sci.. [Online]. Available: http://www.elsevier.nl/locate/entcs

[33] K. Schneider, “A verified hardware synthesis for Esterel programs,”
presented at the Proc. Int. IFIP Workshop Distrib. Parallel Embedded
Syst. (DIPES) , Paderborn, Germany, 2000.

[34] K. Schneider and M. Wenz, “A new method for compiling schizo-
phrenic synchronous programs,” presented at the International Con-
ference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES) , Atlanta, GA, 2001.

[35] G. Berry, A. Bouali, X. Fornari, E. Ledinot, E. Nassor, and R. De
Simone, “Esterel: A formal method applied to avionic software de-
velopment,”Sci. Comput. Program., vol. 36, pp. 5–25, Jan. 2000.

[36] O. Hainque, L. Pautet, Y. L. Biannic, and E. Nassor, “Cronos:
A separate compilation toolset for modular Esterel applica-
tions,” in Lecture Notes in Computer Science, FM’99—Formal
Methods. Heidelberg, Germany: Springer-Verlag, 1999, vol. 1709.

[37] Y. L. Biannic, E. Nassor, E. Ledinot, and S. Dissoubray. UML object
specification for real-time software. presented at RTS 2000 Show.
[Online]. Available: http://www.esterel-technologies.com/v2/down-
load/download_papers.html

[38] L. Arditi, A. Bouali, H. Boufaied, G. Clave, M. Hadj-Chaib, L.
Leblanc, and R. de Simone, “Using Esterel and formal methods to
increase the confidence in the functional validation of a commercial
DSP,” presented at the ERCIM Workshop Formal Methods Ind.
Crit. Syst. (FMICS) , Trento, Italy, 1999.

[39] F. Rocheteau and N. Halbwachs, “POLLUX, a lustre-based hard-
ware design environment,” presented at the Conf. Algorithms and
Parallel VLSI Archi-TecturesII, Chateau de Bonas, P. Quinton and
Y. Robert, Eds., Gers, France, 1991.

[40] L. Morel, Efficient Compilation of Array Iterators for Lustre, 2002,
to be published.

[41] G. D. Plotkin, “A structural approach to operational semantics,”
Aarhus University, Åarhus, Denmark, DAIMI FN-19, 1981.

[42] G. Berry and L. Cosserat, “The ESTEREL synchronous program-
ming language and its mathematical semantics,” inLecture Notes
in Computer Science, Seminar on Concurrency, S. D. Brookes, A.
W. Roscoe, and G. Winskel, Eds. Heidelberg, Germany: Springer-
Verlag, 1984, vol. 197, pp. 389–448.

[43] J. A. Brzozowski, “Derivates of regular expressions,”J. Assoc.
Comput. Mach., vol. 11, pp. 481–494, Oct. 1964.

BENVENISTEet al.: THE SYNCHRONOUS LANGUAGES 12 YEARS LATER 81

[44] G. Gonthier, “Sémantiques et Modéles d’Exècution des Langages
Rèactifs Synchrones: Application Esterel. [Semantics and Models of
Execution of the Synchronous Reactive Languages: Application to
Esterel],” These d’Informatique, Universite d’Orsay, Orsay, France,
1988.

[45] G. Berry and G. Gonthier, “The Esterel synchronous programming
language: Design, semantics, implementation,”Sci. Comput. Pro-
gram., vol. 19, pp. 87–152, Nov. 1992.

[46] M. Chiodo, P. Giusto, A. Jurecska, L. Lavagno, H. Hsieh, K. Suzuki,
A. Sangiovanni-Vincentelli, and E. Sentovich, “Synthesis of soft-
ware programs for embedded control applications,” inProc. 32nd
Design Autom. Conf., June 1995, pp. 587–592.

[47] C. Castelluccia, W. Dabbous, and S. O’Malley, “Generating efficient
protocol code from an abstract specification,”IEEE/ACM Trans.
Networking, vol. 5, pp. 514–524, Aug. 1997.

[48] G. Berry, “Esterel on hardware,”Philos. Trans. Roy. Soc. London,
ser. A, vol. 339, pp. 87–104, 1992.

[49] H. Toma, E. Sentovich, and G. Berry, “Latch optimization in circuits
generated from high-level descriptions,” presented at the IEEE/ACM
Int. Conf. Comput. Aided Design (ICCAD) , San Jose, CA, 1996.

[50] S. Malik, “Analysis of cyclic combinational circuits,”IEEE Trans.
Computer-Aided Design, vol. 13, pp. 950–956, July 1994.

[51] T. R. Shiple, G. Berry, and H. Touati. Constructive analysis
of cyclic circuits. presented at Eur. Design Test Conf.. [On-
line]. Available: ftp://ic.eecs.berkeley.edu/pub/Memos_Confer-
ence/edtc96.SBT.ps.Z.

[52] S. A. Edwards, “An Esterel compiler for large control-dominated
systems,”IEEE Trans. Computer-Aided Design, vol. 21, Feb. 2002.

[53] D. Weil, V. Berlin, E. Closse, M. Poize, P. Venier, and J. Pulou,
“Efficient compilation of Esterel for real-time embedded systems,”
in Proc. Int. Conf. Compilers, Architecture, and Synthesis for Em-
bedded Syst. (CASES), San Jose, CA, Nov. 2000, pp. 2–8.

[54] R. S. French, M. S. Lam, J. R. Levitt, and K. Olukotun. A gen-
eral method for compiling event-driven simulations. presented
at 32nd Design Automation Conference. [Online]. Available:
http://suif.stanford.edu/papers/rfrench95.ps

[55] V. Berlin, M. Poize, J. Pulou, and J. Sifakis. Toward validated
real-time software. presented at 12th Euromicro Conf. Real-Time
Syst. (ECRTS). [Online]. Available: http://ecrts00.twi.tudelft.nl/

[56] N. Halbwachs, F. Lagnier, and P. Raymond, “Synchronous observers
and the verification of reactive systems,” presented at the 3rd Int.
Conf. Algebraic Methodol. and Softw. Technol., AMAST’93 , M.
Nivat, C. Rattray, T. Rus, and G. Scollo, Eds., Twente, Netherlands,
June 1993.

[57] N. Halbwachs and P. Raymond, “Validation of synchronous re-
active systems: From formal verification to automatic testing,”
in ASIAN’99, Asian Comput. Sci. Conf., Phuket, Thailand, Dec.
1999.

[58] M. Y. Vardi and P. Wolper, “An automata-theoretic approach to auto-
matic program verification,” inProc. 1st Symp. Logic Comput. Sci,
Cambridge, MA, 1986, pp. 332–344.

[59] N. Halbwachs, F. Lagnier, and C. Ratel, “Programming and veri-
fying real-time systems by means of the synchronous data-flow pro-
gramming language lustre,”IEEE Trans. Software Eng., vol. 18, pp.
785–793, Sept. 1992.

[60] H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic,
“Synthesis of discrete-event controllers based on the signal envi-
ronment,”Discrete Event Dyn. Syst.: Theory and Applicat., vol. 10,
pp. 325–346, Oct. 2000.

[61] H. Marchand, E. Rutten, M. Le Borgne, and M. Samaan, “Formal
verification of programs specified with signal: Application to a
power transformer station controller,”Sci. Comput. Program., vol.
41, no. 1, pp. 85–104, Sept. 2001.

[62] B. Jeannet, “Dynamic partitioning in linear relation analysis, appli-
cation to the verification of synchronous programs,” Formal Method
Syst. Design, 2001, to be published.

[63] M. Westhead and S. Nadjm-Tehrani, “Verification of embedded sys-
tems using synchronous observers,” inLecture Notes in Computer
Science, Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems. Heidelberg, Germany: Springer-Verlag, 1996, vol. 1135.

[64] L. Holenderski, “Compositional verification of synchronous net-
works,” in Lecture Notes in Computer Science, Formal Techniques
in Real-Time and Fault-Tolerant Systems. Heidelberg, Germany:
Springer-Verlag, 2000, vol. 1926.

[65] L. Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon,
“Lutess: testing environment for synchronous software,” inTool
Support for System Specification Development and Verification, Ad-
vances in Computing Science. Berlin, Germany: Springer-Verlag,
1998.

[66] P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs, “Automatic
testing of reactive systems,” inProc. 19th IEEE Real-Time Syst.
Symp., Madrid, Spain, Dec. 1998, pp. 200–209.

[67] N. Wirth, “Embedded systems and real-time programming,” inLec-
ture Notes in Computer Science, Embedded Software. Heidelberg,
Germany: Springer-Verlag, 2001, vol. 2211.

[68] T. Amagbegnon, L. Besnard, and P. L. Guernic, “Arborescent
Canonical Form of Boolean Expressions,” Irisa, Rennes, France,
Rep. No. 2290, 1994.

[69] T. Amagbegnon, L. Besnard, and P. Le Guemic, “Implementation
of the data-flow synchronous language signal,” inProc. ACM SIG-
PLAN ’95 Conf. Program. Lang. Design and Implementation, La
Jolla, CA, 1995, pp. 163–173.

[70] H. Kopetz,Real-Time Systems, Design Principles for Distributed
Embedded Applications, 3rd ed. London, U.K.: Kluwer, 1997.

[71] H. Kopetz and G. Bauer, “The time-triggered architecture,”Proc.
IEEE, vol. 91, Jan. 2003.

[72] T. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-trig-
gered language for embedded programming,”Proc. IEEE, vol. 91,
Jan. 2003.

[73] P. Caspi, C. Mazuet, R. Salem, and D. Weber, “Formal design of dis-
tributed control systems with lustre,” inLecture Notes in Computer
Science, Computer Safety, Reliability and Security. Heidelberg,
Germany: Springer-Verlag, 1999, vol. 1698.

[74] P. Caspi, C. Mazuet, and N. Reynaud-Parigot, “About the design
of distributed control systems: The quasisynchronous approach,” in
Lecture Notes in Computer Science, Computer Safety, Reliability
and Security. Heidelberg, Germany: Springer-Verlag, 2001, vol.
2187.

[75] A. Kountouris and P. Le Guemic, “Profiling of signal programs and
its application in the timing evaluation of design implementations,”
in Proc. IEE Colloq. HW-SW Cosynthesis Reconfig. Syst., 1996, pp.
6/1–6/9.

[76] V. Bertin, E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D.
Weil, and S. Yovine, “Taxys = Esterel + Kronos, A tool for verifying
real-time properties of embedded systems,”Proc. 40th IEEE Conf.
Decision Contr. (CDC 2001), pp. 137–137, Dec. 2001.

[77] G. D. Micheli, R. Ernst, and W. Wolf,Readings in Hardware/Soft-
ware Co-Design. San Francisco, CA: Morgan Kaufmann, 2002.

[78] A. Benveniste, B. Caillaud, and P. L. Guemic, “From syn-
chrony to asynchrony,” inLecture Notes in Computer Science,
CONCUR’99: Concurrency Theory, J. C. M. Baeten and S. Mauw,
Eds. Heidelberg, Germany: Springer-Verlag, 1999, vol. 1664, pp.
162–177.

[79] A. Benveniste, “Some synchronization issues when designing em-
bedded systems from components,” inLecture Notes in Computer
Science, Embedded Software, T. A. Henzinger and C. Hirsch,
Eds. Heidelberg, Germany: Springer-Verlag, 2001, vol. 2211, pp.
32–49.

[80] J. Buck, S. Ha, E. Lee, and D. Messerschmitt, “Ptolemy: A frame-
work for simulating and prototyping heterogeneous systems,”Int. J.
Comput. Simulat., vol. 4, pp. 155–182, Apr. 1994.

[81] J. Janneck, E. Lee, J. Liu, S. Neuendorffer, and S. Sachs, “Taming
heterogeneity with hierarchy—The Ptolemy approach,” Proc. IEEE
.

[82] P. Caspi, “Clocks in dataflow languages,”Theor. Comput. Sci., vol.
94, pp. 125–140, 1992.

[83] P. Caspi, A. Girault, and D. Pilaud, “Automatic distribution of reac-
tive systems for asynchronous networks of processors,”IEEE Trans.
Software Eng., vol. 25, pp. 416–427, May 1999.

[84] G. Kahn, “The semantics of a simple language for parallel
programming,” in Information Processing 74, J. L. Rosenfeld,
Ed. Stockholm, Sweden: North-Holland, Aug. 1974, pp. 471–475.

[85] T. Gautier and P. Le Guemic. Code generation in the sacres
project. presented at Safety-Critical Syst. Symp., SSS’99.
[Online]. Available: ftp://ftp.irisa.tr/local/signal/publis/arti-
cles/SSS-99:format-dist.ps.gz.

[86] A. Benveniste and P. Caspi, “Distributing Synchronous Programs
on a Loosely Synchronous, Distributed Architecture,” Irisa, Rennes,
France, Rep. No. 1289, 1999.

[87] P. Caspi, “Embedded control: From asynchrony to synchrony and
back,” in Lecture Notes in Computer Science, Embedded Software,
T. Henzinger and C. Kirsch, Eds. Heidelberg, Germany: Springer-
Verlag, 2001, vol. 2211, pp. 80–96.

[88] J. Rumbaugh, I. Jacobson, and G. Booch,The Unified Modeling Lan-
guage Reference Manual, ser. Object Technologies. Boston, MA:
Addison-Wesley, 1999.

82 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

[89] L. de Alfaro and T. Henzinger, “Interface theories for component-
based designs,” inLecture Notes in Computer Science, Embedded
Software, T. Henzinger and C. Kirsch, Eds. Heidelberg, Germany:
Springer-Verlag, 2001, vol. 2211, pp. 148–165.

[90] C. André, M. Peraldi-Frati, and J. Rigault, “Scenario and property
checking of real-time systems using a synchronous approach,” in
Proc. 4th IEEE Int. Symp. Object-Oriented Real-Time Distributed
Comput., Magdeburg, Germany, July 2001, pp. 438–444.

[91] J. Talpin, A. Benveniste, B. Caillaud, C. Jard, Z. Bouziane, and
H. Canon. Bdl, A language of distributed reactive objects. pre-
sented at IEEE Int. Symp. Object-Oriented Real-Time Distributed
Comput.. [Online]. Available: http://www.irisa.fr/sigma2/ben-
veniste/pub/CTJBJ2000.html

Albert Benveniste (Fellow, IEEE) received the
these d’etatdegree in mathematics (probability
theory) at the University of Paris 6, Paris, France,
in 1975.

From 1976 to 1979, he was Associate Pro-
fessor in Mathematics at Université de Rennes
I, Rennes, France. He is currentlyDirecteur de
Recherchéat INRIA, Le Chesnay, France. From
1994 to 1996, he wasDirecteur Scientifique(Se-
nior Chief Scientist) at INRIA, and since 1996 he
has been a member of the INRIA board in charge

of planning future research directions. With M. Metivier and P. Priouret, he
coauthoredAdaptive Algorithms and Stochastic Approximations(Berlin,
Germany: Springer-Verlag, 1990) and edited, jointly with M. Basseville, the
collective monographDetection of Abrupt Changes in Signals and Systems.
He has been Associate Editor forInternational Journal of Adaptive Control
and Signal Processingand Discrete Event Dynamical Systems: Theory
and Applications. His research interests include system indentification
and change detection in signal processing and automatic control, vibration
mechanics, and reactive and real-time systems design in computer science.
With Paul Le Guernic, he is co-inventor of the synchronous language
Signal for reactive systems design.

From 1986 to 1990, Dr. Benveniste was Vice-Chairman of the IFAC
committee on theory and from 1991 to 1993 was its chairman. From 1997
to 2001, he was chairman of the “software chapter” of the funding program
of the French ministeries for research and telecommunications (Réseau Na-
tional de la Recherché en Telecommunications). In 1980, he was co-winner
of the IEEE TRANSACTIONS ON AUTOMATIC CONTROL Best Transaction
Paper Award for his paper on blind deconvolution in data communications.
In 1990, he received the CNRS silver medal. From 1987 to 1990 he was
Associate Editor of IEEE TRANSACTIONS ONAUTOMATIC CONTROL, and,
from 1991 to 1995, was Associate Editor at Large for that transaction. He is
currently a Member of the Editorial Board of PROCEEDINGS OF THEIEEE.

Paul Caspi received thedocteur es sciences
degree in automatic control from Institut Na-
tional de Programmation de Grenoble, Grenoble,
France, in 1978.

He is currentlyDirecteur de Recherché CNRS
at Verimag Laboratory, Grenoble, France. He also
served as a consultant for several French compa-
nies and administrations, on problems related to
safety-critical computing systems. His current re-
search interests include computer science applied
to automatic control. He is mainly concerned with

safety problems in critical applications, from both hardware and software
points of view. This has led him to be involved in the design of Lustre, a
dataflow programming language for safety-critical automatic control appli-
cations. His present research domain deals with synchrony and the relation-
ships between synchrony and asynchrony. This has led him to study dis-
tributed implementations of synchronous programs, from both theoretical
and practical points of view.

Stephen A. Edwards(Member, IEEE) received
the B.S. degree in electrical engineering from the
California Institute of Technology, Pasadena, in
1992, and the M.S. and Ph.D degrees in electrical
engineering from the University of California,
Berkeley, in 1994 and 1997, respectively.

He was previously with Synopsys, Inc.,
Mountain View, CA. He is currently an Assistant
Professor in the Computer Science Department
of Columbia University in New York. He is
the author ofLanguages for Digital Embedded

Systems(Boston: Kluwer, 2000) as well as numerous journal and con-
ference papers. His research interests include embedded system design,
domain-specific languages, and compilers.

Dr. Edwards is a recipient of the NSF CAREER Award.

Nicolas Halbwachs received the these de
troisième cycledegree in abstract interpretation
from Grenoble University, Grenoble, France, in
1979. He received thethese d’etatdegree on a
formal model of real-time system behavior at
the Institut National Polytechnique de Grenoble,
Grenoble, France, in 1984.

He joined the Centre National de la Recherché
Scientifique (CNRS), the French National
Center of Scientific Research, in 1980. From
1992 to 1993, he was also an Invited Professor

at Stanford University, Stanford, CA. He is currently Research Director
at CNRS, working at Verimag Laboratory, Grenoble, France. He is the
author ofSynchronous Programming of Reactive Systems(Boston: Kluwer,
1993), and of many articles published in international journals. His current
research interests concern language design, compilation to software
and hardware, and verification and testing techniques for synchronous
programs. He was one of the main designers of the synchronous dataflow
language Lustre. He is strongly involved in the industrial transfer of Lustre
technology.

Paul Le Guernic graduated from Institut
National des Sciences Appliquées de Rennes in
1974. He received thethese de troisième cycle
degree in computer science from the Université
de Rennes 1, Rennes, France, in 1976.

From 1978 to 1984, he held a research posi-
tion at INRIA, Le Chesnay, France. He is cur-
rently Directeur de Recherchéat INRIA. He has
been Head of the Programming Environment for
Real Time Applications group, which has defined
and developed the Signal language. His current

research interests include the development of theories, tools, and methods
for the design of real-time embedded heterogeneous systems and SoCs.

Dr. Le Guernic is currently a member of the Executive Board of the French
Network in Software Technology, where he is in charge of embedded sys-
tems.

Robert de Simone received the Ph.D. degree
in Computer Science fromLe Campus Jussieu,
L’Université Paris 7—Denis Diderot, Paris,
France, in 1982.

He is currently heading the Tick research
team at INRIA, Le Chesnay, France. He has
been active in the fields of concurrency theory
and process algebras, and in the design of
model-checking methods and tools for dis-
tributed systems. He then turned to the study
of synchronous reactive formalisms, and more

specifically Esterel, with a focus on the merging of verification techniques
with optimization and synthesis methods.

BENVENISTEet al.: THE SYNCHRONOUS LANGUAGES 12 YEARS LATER 83

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

