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Abstract—We show how to specify and validate an embedded
system using the Lustre programming environment. The case-
study considered is a fault-tolerant system for the acquisition of
gyroscopic data in a military aircraft. We illustrate the use of
Lustre tools for describing, simulating, and verifying the system.
Beside, we show how the formalization of the requirements
by means of an executable language allows ambiguities to be
removed, and how the system can be developed step by step, while
simulation and validation take place at each step. We believe
that this example is representative of a wide class of embedded
systems.
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I. INTRODUCTION

The family of synchronous languages [BB91], [BCE+03]
has been quite successful in offering formally defined lan-
guages and programming environments for safety-critical re-
active systems.

Lustre [CHPP87] has been defined and studied in the Ver-
imag laboratory. It is a dataflow language, well-suited for the
description of regulation systems. The industrial programming
environment SCADE, developped by Esterel-Technologies1,
is based upon Lustre. SCADE is now a de-facto standard,
worldwide, for the development of critical embedded sotware,
especially in avionics, automotive, or energy production. On
the academic side, several tools have been developed around
Lustre at Verimag: a simulator called Luciole, a debugger
called Ludic, two verification tools — Lesar is a model-
checker, NBac is a tool based on abstract interpretation and
dedicated to the verification of numerical properties — and a
tool for automatic testing, Lurette.

In this paper, we illustrate the use of these tools in the
design of a component of an avionic software. The example
is a fault-tolerant system computing the gyroscopic data for a
military aircraft.

† The authors thank IFCPAR (Indo-French Centre for Promotion of
Advanced Research) under which part of the work was done.
� Verimag is a joint laboratory of Université Joseph Fourier, CNRS and

Grenoble-INP.
1see http://www.esterel-technologies.com/.

a. What is in the paper: Apart from demonstrating the use
of LUSTRE tools, the goal of the paper is twofold:
– it intends to show how the use of an executable,

formally clean, description language can help in un-
derstanding an informal specification, in removing
ambiguities, and in communicating, by showing early
simulation, with the author of the specification.

– it illustrates a progressive top-down design, with sim-
ulation and validation at each step.

b. What is not in the paper: Two important features of the
case studies were not considered during this experiment:
– The considered system aims at fault-tolerance. While

the experiment shows that the approach is well-suited
for programming this kind of fault-tolerance software,
the problem of measuring and validating the fault-
tolerance itself was not addressed at all. On one hand,
it would need the use of completely different valida-
tion tools (taking into account stochastic aspects), and
on the other hand no quantitative requirements were
available for the case study.

– The real implementation should be distributed. In this
study, we only considered the functional aspects of the
specification, and we did not address the distribution.
Note that an ideal approach would be to validate
first a centralized version of such a specification, and
to use automatic code distribution tools preserving
the functional properties. Some proposals for such an
automatic distribution of LUSTRE programs have been
made [CGP99], [CMSW99], [SC04].

II. AN OVERVIEW OF LUSTRE AND ITS PROGRAMMING
ENVIRONMENT

A. The language

In a dataflow language for reactive systems, both the inputs
and outputs of the system are described by their flows of values
along time. Time is discrete and instants may be numbered by
integers. If x is a flow, we will note xn its value at the nth
reaction (or nth instant) of the program.

A program consumes input flows and computes output
flows, possibly using local flows which are not visible from the
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I. Introduction

The family of synchronous languages [BB91], [BCE+03] 
has been quite successful in offering formally defined 
languages and programming environments for safety-critical 
reactive systems.

Lustre [CHPP87] has been defined and studied in the 
Verimag laboratory. It is a dataflow language, well-suited 
for the description of regulation systems. The industrial 
programming environment SCADE, developped by Esterel-
Technologies1, is based upon Lustre. SCADE is now a de-
facto standard, worldwide, for the development of critical 
embedded sotware, especially in avionics, automotive, or 
energy production. On the academic side, several tools have 
been developed around Lustre at Verimag: a simulator called 
Luciole, a debugger called Ludic, two verification tools — 
Lesar is a modelchecker, NBac is a tool based on abstract 
interpretation and dedicated to the verification of numerical 
properties — and a tool for automatic testing, Lurette.

In this paper, we illustrate the use of these tools in the 
design of a component of an avionic software. The example is 
a fault-tolerant system computing the gyroscopic data for a 
military aircraft.
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of LUSTRE tools, the goal of the paper is twofold:

 – it intends to show how the use of an executable, 
formally clean, description language can help 
in understanding an informal specification, in 
removing ambiguities, and in communicating, by 
showing early simulation, with the author of the 
specification.

 – it illustrates a progressive top-down design, with 
simulation and validation at each step.

b. What is not in the paper: Two important features of the 
case studies were not considered during this experiment:
 – The considered system aims at fault-tolerance. 

While the experiment shows that the approach 
is well-suited for programming this kind of fault-
tolerance software, the problem of measuring 
and validating the faulttolerance itself was not 
addressed at all. On one hand, it would need the use 
of completely different validation tools (taking into 
account stochastic aspects), and on the other hand 
no quantitative requirements were available for the 
case study.

 – The real implementation should be distributed. 
In this study, we only considered the functional 
aspects of the specification, and we did not address 
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the distribution. Note that an ideal approach would 
be to validate first a centralized version of such a 
specification, and to use automatic code distribution 
tools preserving the functional properties. Some 
proposals for such an automatic distribution of 
LUSTRE programs have been made [CGP99], 
[CMSW99], [SC04].

II. An Overview of Lustre and its Programming  
 Environment

A. The language

In a dataflow language for reactive systems, both the 
inputs and outputs of the system are described by their flows 
of values along time. Time is discrete and instants may be 
numbered by integers. If x is a flow, we will note xn its value 
at the nth reaction (or nth instant) of the program.

A program consumes input flows and computes output 
flows, possibly using local flows which are not visible from 
the environment. Local and output flows are defined by 
equations. An equation “x = y + z” defines the flow x from the 
flows y and z in such a way that, at each instant n, xn = yn + zn.

A set of such equations, using arithmetic, Boolean, etc. 
operators, describes a network of operators, and is similar 
to the description of a combinational circuit. The same 
constraints apply: one should not write sets of equations with 
instantaneous loops, like : {x = y + z; z = x + 1; ...}. This is 
a set of fixpoint equations that perhaps has solutions (see 
[SBT96], for more detailed discussion), but it is not accepted 
as a dataflow program. For referencing the past, the operator 
pre is introduced : "n > 0; (pre(x))n = xn–1.

One typically writes T = pre(T) + i, where T is an 
output, and i is an input. It means that, at each instant, the 
value of the flow T is obtained by adding the current value of 
the input i to the previous value of T. Initialization of flows 
is provided by the –> operator. E –> F is an expression, the 
value of which is the one of E at the first instant (i.e., E0), and 
then the one of F forever (i.e., Fn:"n > 1). The equation X = 
0 –> pre(X) + 1 defines the flow of integers; as a reactive 
program, it produces values on the basic clock.

The conditional structure is a ternary combinational 
operator, and is strict: the two branches are always evaluated. 
One writes: X = if C then E else F, where C is a Boolean 
expression and E1, E2 are two expressions of the same type, 
meaning: "n > 0, Xn = if Cn then En else Fn.

The language is structured by the definition of reusable 
nodes that can be called anywhere in expressions defining 
variables. Programs usually input a library of small 
wellidentified reactive behaviors, like a “two-states” with 
reset, a “bounded counter”, etc.

B. An example Lustre program
As a very simple example of program, we give a Lustre 

node that will be used later in the case study. The node named 
“maintain” denotes an operator that receives an integer n 
and a Boolean b as input parameters, and computes a Boolean 

output m, which is true whenever b has been maintained high 
during the last n cycles. The node uses a counter cpt, which is 
set to n whenever b is false, and decremented to 0 otherwise. 
The output m is true when cpt is zero.

2
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An equation “x = y + z” defines the flow x from the flows y
and z in such a way that, at each instant n, xn = yn + zn.

A set of such equations, using arithmetic, Boolean, etc.
operators, describes a network of operators, and is similar
to the description of a combinational circuit. The same con-
straints apply: one should not write sets of equations with
instantaneous loops, like : {x = y + z, z = x + 1, ...}. This
is a set of fixpoint equations that perhaps has solutions (see
[SBT96], for more detailed discussion), but it is not accepted
as a dataflow program. For referencing the past, the operator
pre is introduced : ∀n > 0, (pre(x))n = xn−1.

One typically writes T = pre(T) + i, where T is an
output, and i is an input. It means that, at each instant, the
value of the flow T is obtained by adding the current value of
the input i to the previous value of T. Initialization of flows
is provided by the -> operator. E -> F is an expression, the
value of which is the one of E at the first instant (i.e., E0),
and then the one of F forever (i.e., Fn.∀n > 1). The equation
X = 0 -> pre(X) + 1 defines the flow of integers; as a
reactive program, it produces values on the basic clock.

The conditional structure is a ternary combinational opera-
tor, and is strict: the two branches are always evaluated. One
writes: X = if C then E else F, where C is a Boolean
expression and E1, E2 are two expressions of the same type,
meaning: ∀n > 0, Xn = if Cn then En else Fn.

The language is structured by the definition of reusable
nodes that can be called anywhere in expressions defining
variables. Programs usually input a library of small well-
identified reactive behaviors, like a “two-states” with reset,
a “bounded counter”, etc.

B. An example Lustre program
As a very simple example of program, we give a Lustre node

that will be used later in the case study. Called “maintain”,
this operator receives an integer n and a Boolean b as input
parameters, and computes a Boolean output m, which is true
whenever b has been maintained high during the last n cycles.
The node uses a counter cpt, which is set to n whenever b
is false, and decremented to 0 otherwise. The output m is true
when cpt is zero.

node maintain (n : int ; b : bool)
returns (m : bool) ;

var cpt : int ;
let

cpt = n -> if b then
if pre(cpt)>0 then

pre(cpt) - 1
else pre(cpt)

else n ;
m = (cpt = 0) ;

tel

C. The programming environment
In addition to the industrial environment SCADE — which

proposes a graphical interface, a simulator, and a compiler —,

an academic toolset has been developed around Lustre. The
following tools or prototypes are available:

• a compiler into C.
• a simulator, called Luciole, which allows an early sim-

ulation of Lustre nodes. It displays an interactive board,
where inputs can be entered and outputs are displayed. It
is connected with the tool Sim2chro, which displays the
history of inputs/outputs by means of timing diagrams.

• two verification tools: they are both restricted to the
verification of safety properties, described by means of
synchronous observers [HLR93]: a synchronous observer
is a Lustre program, taking as inputs the input/output
variables of the program under verification, and signal-
ing whenever the property considered is violated. This
technique is used both for describing required properties,
and assertions about the environment which must be
assumed for these properties to hold. The tools differ in
the techniques applied for verification:
– Lesar [RHR91] is quite a standard symbolic model-

checker [BCM+90]. It checks the property by explor-
ing (enumeratively or symbolically) a finite state model
of the program, which abstracts away all its numerical
aspects. As a consequence, it is not able to verify
properties depending on the dynamic behavior of the
numerical variables. It should be used for control-
dominated properties.

– NBac [JHR99] is able to handle simple numerical
properties, thanks to the use of “Linear Relation Anal-
ysis” [HPR97], a special case of abstract interpreta-
tion [CC77]. However, NBac is much more expensive
than Lesar, and should only be applied to fairly small
programs.

• An automatic testing tool, Lurette [RWNH98], [JRB04].
It requires the specification of the program environment
(telling which input sequences are considered realistic)
and of the expected behavior of the program, both of these
specifications being given as synchronous observers. It is
able to generate an arbitrary number of arbitrarily long
realistic input sequences, while running the program on
these sequences and checking that its behavior satisfies
the specified behavior.

• a prototype debugging tool [MG00].

Industrial vs. academic tools
Since the release of Scade-V6, there are significant dis-

crepancies between the industrial and academic versions of
the language. In particular, Scade-V6 contains a notion of
hierarchic automata [CPP05], inspired both by Esterel [BS91]
and mode automata [MR03], which is not in the academic
version. The mechanisms for defining and handling arrays are
also different. In this paper, we will not use these incompatible
features, thus conforming to both versions.

III. INFORMAL DESCRIPTION OF THE GYROSCOPIC
SYSTEM

A. Development of the Case Study

We started from an informal specification in English, made
of functional requirements and some timing requirements, that

C. The programming environment
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which proposes a graphical interface, a simulator, and a 
compiler —, an academic toolset has been developed around 
Lustre. The following tools or prototypes are available:
 � a compiler into C.
 � a simulator, called Luciole, which allows an early 

simulation of Lustre nodes. It displays an interactive 
board, where inputs can be entered and outputs are 
displayed. It is connected with the tool Sim2chro, 
which displays the history of inputs/outputs by means 
of timing diagrams.

 � two verification tools: they are both restricted to the 
verification of safety properties, described by means 
of synchronous observers [HLR93]: a synchronous 
observer is a Lustre program, taking as inputs 
the input/output variables of the program under 
verification, and signaling whenever the property 
considered is violated. This technique is used both for 
describing required properties, and assertions about 
the environment which must be assumed for these 
properties to hold. The tools differ in the techniques 
applied for verification:
 – Lesar [RHR91] is quite a standard symbolic 

modelchecker [BCM+90]. It checks the property 
by exploring (enumeratively or symbolically) a 
finite state model of the program, which abstracts 
away all its numerical aspects. As a consequence, 
it is not able to verify properties depending on the 
dynamic behavior of the numerical variables. It 
should be used for control dominated properties.

 – NBac [JHR99] is able to handle simple numerical 
properties, thanks to the use of “Linear Relation 
Analysis” [HPR97], a special case of abstract 
interpretation [CC77]. However, NBac is much 
more expensive than Lesar, and should only be 
applied to fairly small programs.

 � a prototype debugging tool [MG00].
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Industrial vs. academic tools

Since the release of Scade-V6, there are significant 
discrepancies between the industrial and academic versions 
of the language. In particular, Scade-V6 contains a notion 
of hierarchic automata [CPP05], inspired both by Esterel 
[BS91] and mode automata [MR03], which is not in the 
academic version. The mechanisms for defining and handling 
arrays are also different. In this paper, we will not use these 
incompatible features, thus conforming to both versions.

III. Informal description of the Gyroscopic  
 System

A. Development of the Case Study

We started from an informal specification in English, 
made of functional requirements and some timing 
requirements, that are called performance requirements. 
For instance, several distinct working rates are required 
for the parts of the system: 0.05s, 0.0125s, etc.
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are called performance requirements. For instance, several
distinct working rates are required for the parts of the system:
0.05s, 0.0125s, etc.

We first identified the system interface, i.e., the physical
inputs and outputs, and some additional inputs that model
faults. Then we wrote a single-clock Lustre program mim-
icking the internal structure of the informal specification, but
forgetting about the multi-rate requirements. This is already
an interpretation of the informal specification. For instance,
we translated the English “a followed by b immediately” by
“at the next step”.

At each step of the development, we ran manual simulations,
and, as far as possible, we used verification tools to establish
important properties.

B. Physical structure

Figure 2 describes the system and its physical environment.
The system is connected to four gyroscopes, each of them
measuring the angle variations along three axes named roll,
pitch and yaw. The values obtained by one of these physical
devices, for one axis, are transmitted to the computer system
along two wires. Hence the system receives 4× 3× 2 values.
From these 24 values, it has to compute only three, called
secure values.

The first step in modeling the system in Lustre, is to
concentrate on one axis only, since the behaviour on all axes
are all the same2. We shall be using the diagram depicted in
Figure 3 as the reference in the rest of the paper.

2Actually, the behaviour of pitch is slightly different.
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are called performance requirements. For instance, several
distinct working rates are required for the parts of the system:
0.05s, 0.0125s, etc.

We first identified the system interface, i.e., the physical
inputs and outputs, and some additional inputs that model
faults. Then we wrote a single-clock Lustre program mim-
icking the internal structure of the informal specification, but
forgetting about the multi-rate requirements. This is already
an interpretation of the informal specification. For instance,
we translated the English “a followed by b immediately” by
“at the next step”.

At each step of the development, we ran manual simulations,
and, as far as possible, we used verification tools to establish
important properties.

B. Physical structure

Figure 2 describes the system and its physical environment.
The system is connected to four gyroscopes, each of them
measuring the angle variations along three axes named roll,
pitch and yaw. The values obtained by one of these physical
devices, for one axis, are transmitted to the computer system
along two wires. Hence the system receives 4× 3× 2 values.
From these 24 values, it has to compute only three, called
secure values.

The first step in modeling the system in Lustre, is to
concentrate on one axis only, since the behaviour on all axes
are all the same2. We shall be using the diagram depicted in
Figure 3 as the reference in the rest of the paper.

2Actually, the behaviour of pitch is slightly different.

Fig. 2 : Description of the physical system

Fig. 3 : Description of the physical system for one axis
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We first identified the system interface, i.e., the 
physical inputs and outputs, and some additional 
inputs that model faults. Then we wrote a single-clock 
Lustre program mimicking the internal structure of the 
informal specification, but forgetting about the multi-
rate requirements. This is already an interpretation of 
the informal specification. For instance, we translated the 
English “a followed by b immediately” by “at the next step”.

At each step of the development, we ran manual 
simulations, and, as far as possible, we used verification 
tools to establish important properties.

B. Physical structure

Fig. 2 describes the system and its physical 
environment. The system is connected to four gyroscopes, 
each of them measuring the angle variations along three 
axes named roll, pitch and yaw. The values obtained by 
one of these physical devices, for one axis, are transmitted 
to the computer system along two wires. Hence the system 
receives 4 x 3 x 2 values. From these 24 values, it has to 
compute only three, called secure values.

The first step in modeling the system in Lustre, is 
to concentrate on one axis only, since the behaviour on 
all axes are all the same2. We shall be using the diagram 
depicted in Fig. 3 as the reference in the rest of the paper.
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C. The voting principle

The internal structure of the system is as follows: it is made
of four channels, each of them being in charge of the two wires
that come from one of the four gyroscopes (remember we
concentrate on one axis only, say roll). Each channel delivers
one value, and there is a vote to compute one single value
out of four, depending on the current fault conditions. The
behaviour is as follows: if all the channels are working, then
take the Olympic average of the four values (i.e., the average
of all the values, except the two extreme ones); if one channel
has failed, take the median value, among the other three; if two
channels have failed, take the average of the two remaining
ones. Three or more channels having failed at the same time is
supposed to have a very low probability, but the case is handled
by the system emitting a so-called “safe value”, which is to
be maintained for some delay, even when the bad situation
disappears.

Of course, the channels are intended to run on different
processors, for the purpose of redundancy. For simplicity, we
shall ignore these distributed aspects in our modelling.

D. The faults

The difficult part is the detection of faults. First, we have to
define what we call faults, and then to show how the redundant
structure of the gyroscopic system can handle them.

Definition of faults
The system is able to handle two kinds of faults: link faults,

that are due to some bad behavior of a physical link between
the actual measurement devices and the computer; sensor
faults, that are due to the measurement devices (the sensors)

themselves being broken or not working properly for some
time.

Modeling and Detection of faults
Each channel compares the values it receives on the two

wires, and is able to detect local discrepancies. This double
transmission of values from one gyroscope to the computer
system is there to detect transmission faults. Note that, for a
fault to be reported, the two values have to differ by more
than ∆v during consecutive ∆t units of time.

Moreover, in order to support sensor faults, channels talk
to each other and exchange values, so that each of them can
compare its own value to the other three. If one of the gyro-
scopes is not working, the value it delivers will probably differ
from the values given by the three other devices. Channels
also have to exchange their failure statuses, because each one
should compare its value to the values of the other channels,
but only of those that do not declare themselves failed (a
channel declares itself failed when it detects a transmission
fault).

E. Latching faults and resetting

Some faults are considered more serious than others, and
should therefore be latched: even if the cause of the fault
disappears, the channel continues to declare itself failed.
Hence, each channel has an internal state, that reflects the
faults it has encountered.

Typically, transmission faults (discrepancies between the
two values received on the two wires) are not latched, because
they are considered to be physically temporary.

Conversely, faults that are due to cross-channel comparisons
are latched: one of the physical devices is supposed to be off,
and it is unlikely to repair during the flight.

Of course, there should be some way of resetting the latches.
This is done in our system thanks to two kinds of resets,
called OnGroundReset and InAirReset. OnGroundReset can be
thought of as a general resetting mechanism that happens only
when it is really safe to do so, namely on ground. InAirReset
is more interesting. First, it is not automatic, but results from a
pilot action. Hence the pilot should be given some information
about the internal state of the fault-tolerant controller, in order
to decide whether he/she should issue a reset. Moreover, it is
to be taken into account only under some conditions.

The internal state of a channel, regarding the latched faults,
is one of the following:

• Everything is working properly, or there are transmission
faults from time to time, but they are not latched

• There has been at least one serious fault in the past, and
the failure is latched. The internal state can be driven to
the normal one with any of the resets (on ground or in
air), but for the InAirReset to work, some conditions on
the measured values have to hold.

• There have been several serious faults in the past, or one
serious fault followed immediately by a transmission one,
then the fault is latched and reset-inhibited. In this case,
only the OnGroundReset may restore the normal state.
The system should never enter a global state in which

Fig. 1 : The Lustre programming environment

C. The voting principle
The internal structure of the system is as follows: it 

is made of four channels, each of them being in charge of 
the two wires that come from one of the four gyroscopes 

(remember we concentrate on one axis only, say roll). Each 
channel delivers one value, and there is a vote to compute 
one single value out of four, depending on the current fault 
conditions. The behaviour is as follows: if all the channels 
are working, then take the Olympic average of the four 
values (i.e., the average of all the values, except the two 
extreme ones); if one channel has failed, take the median 
value, among the other three; if two channels have failed, 
take the average of the two remaining ones. Three or more 
channels having failed at the same time is supposed to 
have a very low probability, but the case is handled by 
the system emitting a so-called “safe value”, which is to be 
maintained for some delay, even when the bad situation 
disappears.

Of course, the channels are intended to run on different 
processors, for the purpose of redundancy. For simplicity, 
we shall ignore these distributed aspects in our modelling.

D. The faults

The difficult part is the detection of faults. First, we 
have to define what we call faults, and then to show how 
the redundant structure of the gyroscopic system can 
handle them.

Definition of faults

The system is able to handle two kinds of faults: link 
faults, that are due to some bad behavior of a physical link 
between the actual measurement devices and the computer; 
sensor faults, that are due to the measurement devices (the 
sensors) themselves being broken or not working properly 
for some time.

Modeling and Detection of faults

Each channel compares the values it receives on the 
two wires, and is able to detect local discrepancies. This 
double transmission of values from one gyroscope to the 
computer system is there to detect transmission faults. 
Note that, for a fault to be reported, the two values have to 
differ by more than Dv during consecutive Dt units of time.

Each channel compares the values it receives on the 
two wires, and is able to detect local discrepancies. This 
double transmission of values from one gyroscope to the 
computer system is there to detect transmission faults. 
Note that, for a fault to be reported, the two values have 
to differ by more than v during consecutive t units of time. 
Moreover, in order to support sensor faults, channels talk 
to each other and exchange values, so that each of them 
can compare its own value to the other three. If one of 
the gyroscopes is not working, the value it delivers will 
probably differ from the values given by the three other 
devices. Channels also have to exchange their failure 
statuses, because each one should compare its value to the 
values of the other channels, but only of those that do not 
declare themselves failed (a channel declares itself failed 
when it detects a transmission fault).

2 Actually, the behaviour of pitch is slightly different.
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E. Latching faults and resetting

Some faults are considered more serious than others, 
and should therefore be latched: even if the cause of the fault 
disappears, the channel continues to declare itself failed. 
Hence, each channel has an internal state, that reflects the 
faults it has encountered.

Typically, transmission faults (discrepancies between 
the two values received on the two wires) are not latched, 
because they are considered to be physically temporary.

Conversely, faults that are due to cross-channel 
comparisons are latched: one of the physical devices is 
supposed to be off, and it is unlikely to repair during the flight.

Of course, there should be some way of resetting 
the latches. This is done in our system thanks to two 
kinds of resets, called OnGroundReset and InAirReset. 
OnGroundReset can be thought of as a general resetting 
mechanism that happens only when it is really safe to do so, 
namely on ground. InAirReset is more interesting. First, it is 
not automatic, but results from a pilot action. Hence the pilot 
should be given some information about the internal state of 
the fault-tolerant controller, in order to decide whether he/she 
should issue a reset. Moreover, it is to be taken into account 
only under some conditions.

The internal state of a channel, regarding the latched 
faults, is one of the following:
 � Everything is working properly, or there are transmission 

faults from time to time, but they are not latched
 � There has been at least one serious fault in the past, and 

the failure is latched. The internal state can be driven to 
the normal one with any of the resets (on ground or in 
air), but for the InAirReset to work, some conditions on 
the measured values have to hold.

 � There have been several serious faults in the past, or 
one serious fault followed immediately by a transmission 
one, then the fault is latched and reset-inhibited. In this 
case, only the OnGroundReset may restore the normal 
state. The system should never enter a global state in 
which more than two channels are reset-inhibited, since 
it cannot be repaired on board.
A careful reading of the informal documentation gives all 

the details about the possible transitions among these three 
states. Writing down these transitions allowed us to make 
precise the priorities, and to remove some ambiguities. We 
give the automaton point of view on this part of the system, 
in section VI-C below.

F. Special case for third faults

Finally, the faults are not treated the same depending on 
their order of occurrence: the first and second one (among four 
channels) are treated the same, but it is said in the informal 
documentation that a third failure should not cause the 
channels to become reset-inhibited. Hence, we need to treat 
the third faults in a special way – which will be clear in the 
sequel.

IV. Describing the Architecture in Lustre
The architecture of the Lustre program is exactly the 

same as the one described in the informal specification – 
thanks to the dataflow style of the language. Figure 4 shows 
the main structure of the system (for one axis): The four 
channels will be implemented as four identical nodes. The 
voter is another node. An additional node, the global allocator, 
will deal with the problem of third faults.

This direct translation of the specification into the 
program architecture highlights the advantages of some 
features of the language:
 � the notion of concurrency corresponds to the logical 

concurrency of the specification; 
 � moreover, this concurrency can model a physical 

concurrency, as it is the case, here, if the four channels 
are to be distributed; the communication — here, it 
will be simply a delay — is an abstract model of the 
real communication between distributed processes (see 
[Cas01], [HB02], [JHR+07] for a more accurate modeling 
of physical concurrency);

 � the connections between nodes clearly reflect the 
specification, thanks to the data-flow communication 
between nodes;

 �  the four channels will be essentially instantiations of 
a single node – thanks to the functional nature of the 
language.

A. Global inputs and outputs

The system receives:
 � 4 pairs (or 2 4-tuples, Roll_a and Roll_b) of flows of type 

“real”, coming from the sensors;
 � 2 Boolean flows, On_Ground_Reset and In_Air_Reset.

It computes a single safe value for Roll.

B. The component interfaces

 The channels

Each channel receives a pair (roll_a, roll_b) from 
outside. The reset signals OnGroundReset and InAirReset 
(implemented as Boolean flows) also come from outside. It 
receives also, from each other channel, the computed value 
foreign_roll and the failure status foreign failure roll. Finally, 
it receives a Boolean flow Inhib_Roll_Allowed from the global 
allocator.

The channel computes three outputs: its local value 
local_roll for roll, its transmission failure status transmit_
failure_roll (which will be broadcast both to other channels and 
to the voter), and a request for “reset inhibition” arbitration, 
Ask_inhib_roll to the global allocator.

The exchange of values foreign_roll and foreign_failure_
roll among channels at once raises a problem, since local roll 
and transmit_failure_roll will be computed as combinational 
functions of the inputs foreign roll and foreign failure roll. 
As a consequence, delays should be introduced somewhere, 
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to prevent local_roll and transmit_failure_roll to depend 
instantaneously on themselves (remember that combinational 
loops are forbidden in Lustre, and rejected by all tools). So, we 
delay broadcasting the value (using a “pre” operator) when 
entering the channel. For instance, if we call foreign_rollij 
the value entering the channel j coming from channel i, and 
local_rolli the value computed by channel i, we will have

  foreign_rollij = pre(local_rolli)

The voter

It simply receives the values local roll and transmit_
failure_roll from the channels, and computes the safe value 
Roll. However, it is not combinational (see §V).

The global allocator

It is in charge of dealing with “reset inhibition”. It needs 
the outputs local_roll, transmit failure_roll and Ask_inhib_roll 
from the channels, and returns four Boolean allowed (one for 
each channel). Here again, to avoid combinational loops, the 
input Inhib_Roll_Allowed to each channel will be the delayed 
version of the corresponding output allowed of the global 
allocator.

C. Connecting the four channels together
According to the general architecture described above, 

we are able to write the main node, which invokes the main 

components, with suitable connections. It is described3 in Fig. 
5.

D. One channel

We can go one step further in the description of the 
architecture, by giving the internal structure of one channel 
(see Fig. 6). It is made of two parts: Monitor detects the 
transmission discrepancies; FailDetect talks to the three 
other channels and knows about the internal fail status of 
the channel. It also talks to the global allocator, which knows 
about the failure status of all the four channels, and is able to 
prevent a third failure from becoming reset-inhibited.

V. The Voter
The voter is only a consumer of values produced by 

other modules. Thus, it can be designed in isolation. Fig. 7 
describes the Lustre code for the complete voter. The details 
of its parts are described below. Notice that the voter is not a 
combinational node: it has to memorize a fragment of its past.

A. The timing aspects
Remember that the “safe value” must be maintained if 

three or more channels have been faulty “recently”. The first 
three lines define a counter cpt_roll, which is non zero 
exactly when there was a case with three failures, in the recent 
past. “recent” means within the last SAFE_COUNTER_TIME 
units of time, where SAFE_COUNTER_TIME is a constant. The 

3 Because of the very regular structure of this node, it would be more concisely and elegantly described by means of Lustre-V4 arrays. 
However, since these arrays differ significantly from those of Scade, we decided not to make use of them.
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transmission discrepancies; FailDetect talks to the three
other channels and knows about the internal fail status of the
channel. It also talks to the global allocator, which knows
about the failure statuses of the four channels, and is able to
prevent a third failure from becoming reset-inhibited.

V. THE VOTER

The voter is only a consumer of values produced by other
modules. Thus, it can be designed in isolation. Figure 7
describes the Lustre code for the complete voter. The details
of its parts are described below. Notice that the voter is not a
combinational node: it has to memorize a fragment of its past.

A. The timing aspects

Remember that the “safe value” must me maintained if
three of more channels have been faulty “recently”. The first
three lines define a counter cpt_roll, which is non zero
exactly when there was a case with three failures, in the recent
past. “recent” means within the last SAFE_COUNTER_TIME
units of time, where SAFE_COUNTER_TIME is a constant.
The writing in Lustre is quite simple: just restart the counter
with value SAFE_COUNTER_TIME each time there are three
faults, and then decrement it at each step, until it reaches zero :

cpt_roll = 0 ->
if three_roll then SAFE_COUNTER_TIME
else if pre (cpt_roll)> 0

then pre(cpt_roll)-1
else 0 ;

B. Counting faults

The nodes noneof, oneoffour, twooffour,
threeoffour are intended to count the faults, i.e.,
the number of Boolean variables that have value true, among
f1, f2, f3, f4. They can be programmed with integers,
of course, like in Fig. reftwooffour.a. However, there is also
a form that does not make use of numerical variables, and
that can be necessary for decidability reasons when trying
to perform formal verification with Lesar. Hence, we will
sometimes use the node of Fig. 8.b.

Similar nodes for noneof, oneoffour, and
threeoffour are easy to write.

C. The voting mechanism itself

Then comes the voting itself. The conditional expression
mimics the informal documentation. The auxiliary nodes
OlympicAverage, Median, and Average are straightforward.

D. Validation

It is difficult to express properties of the voter, apart
from the whole specification (which would be a rephras-
ing of the program). For this simple device, we can just
try a simulation using Luciole. Fig. 9 shows such a sim-
ulation: we choose constant inputs for the values x1, x2,
x3, x4 coming from the channels, and just play with the
occurrences of transmission faults f1, f2, f3, f4, observ-
ing that the correct output is computed in each case. The
simulation is done with SAFE COUNTER TIME = 3 and
FAIL SAFE ROLL VALUE = 0.

Fig. 4 : Architecture of the Lustre program: connecting the four channels together
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writing in Lustre is quite simple: just restart the counter with 
value SAFE_COUNTER_TIME each time there are three faults, 
and then decrement it at each step, until it reaches zero :
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transmission discrepancies; FailDetect talks to the three
other channels and knows about the internal fail status of the
channel. It also talks to the global allocator, which knows
about the failure statuses of the four channels, and is able to
prevent a third failure from becoming reset-inhibited.

V. THE VOTER

The voter is only a consumer of values produced by other
modules. Thus, it can be designed in isolation. Figure 7
describes the Lustre code for the complete voter. The details
of its parts are described below. Notice that the voter is not a
combinational node: it has to memorize a fragment of its past.

A. The timing aspects

Remember that the “safe value” must me maintained if
three of more channels have been faulty “recently”. The first
three lines define a counter cpt_roll, which is non zero
exactly when there was a case with three failures, in the recent
past. “recent” means within the last SAFE_COUNTER_TIME
units of time, where SAFE_COUNTER_TIME is a constant.
The writing in Lustre is quite simple: just restart the counter
with value SAFE_COUNTER_TIME each time there are three
faults, and then decrement it at each step, until it reaches zero :

cpt_roll = 0 ->
if three_roll then SAFE_COUNTER_TIME
else if pre (cpt_roll)> 0

then pre(cpt_roll)-1
else 0 ;

B. Counting faults

The nodes noneof, oneoffour, twooffour,
threeoffour are intended to count the faults, i.e.,
the number of Boolean variables that have value true, among
f1, f2, f3, f4. They can be programmed with integers,
of course, like in Fig. reftwooffour.a. However, there is also
a form that does not make use of numerical variables, and
that can be necessary for decidability reasons when trying
to perform formal verification with Lesar. Hence, we will
sometimes use the node of Fig. 8.b.

Similar nodes for noneof, oneoffour, and
threeoffour are easy to write.

C. The voting mechanism itself

Then comes the voting itself. The conditional expression
mimics the informal documentation. The auxiliary nodes
OlympicAverage, Median, and Average are straightforward.

D. Validation

It is difficult to express properties of the voter, apart
from the whole specification (which would be a rephras-
ing of the program). For this simple device, we can just
try a simulation using Luciole. Fig. 9 shows such a sim-
ulation: we choose constant inputs for the values x1, x2,
x3, x4 coming from the channels, and just play with the
occurrences of transmission faults f1, f2, f3, f4, observ-
ing that the correct output is computed in each case. The
simulation is done with SAFE COUNTER TIME = 3 and
FAIL SAFE ROLL VALUE = 0.

B. Counting faults

The nodes noneof, oneoffour, twooffour, 
threeoffour are intended to count the faults, i.e., the 
number of Boolean variables that have value true, among f1, 
f2, f3, f4. They can be programmed with integers, of course, 

like in Fig. reftwooffour.a. However, there is also a form that 
does not make use of numerical variables, and that can be 
necessary for decidability reasons when trying to perform 
formal verification with Lesar. Hence, we will sometimes use 
the node of Fig. 8.b.

Similar nodes for noneof, oneoffour, and 
threeoffour are easy to write.

C. The voting mechanism itself
Then comes the voting itself. The conditional expression 

mimics the informal documentation. The auxiliary nodes 
OlympicAverage, Median, and Average are straightforward.

D. Validation
It is difficult to express properties of the voter, apart from 

the whole specification (which would be a rephrasing of the 
program). For this simple device, we can do a simulation using 
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node GYRO ( Roll_a_1, Roll_b_1, Roll_a_2, Roll_b_2,
Roll_a_3, Roll_b_3, Roll_a_4, Roll_b_4 : real;
On_Ground_Reset, In_Air_Reset : bool)

returns (Roll : real);
var

local_roll_1, local_roll_2, local_roll_3, local_roll_4 : real;
transmit_failure_1, transmit_failure_2,
transmit_failure_3, transmit_failure_4 : bool;
ask_1, ask_2, ask_3, ask_4 : bool;
allowed_1, allowed_2, allowed_3, allowed_4 : bool;

let
(local_roll_1, transmit_failure_1, ask_1) =

Channel(Roll_a_1, Roll_b_1, On_Ground_Reset, In_Air_Reset,
pre(local_roll_2), pre(transmit_failure_2),
pre(local_roll_3), pre(transmit_failure_3),
pre(local_roll_4), pre(transmit_failure_4),
allowed_1);

(local_roll_2, transmit_failure_2, ask_2) =
Channel(Roll_a_2, Roll_b_2, On_Ground_Reset, In_Air_Reset,

pre(local_roll_1), pre(transmit_failure_1),
pre(local_roll_3), pre(transmit_failure_3),
pre(local_roll_4), pre(transmit_failure_4),
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local_roll_3, local_roll_4,
transmit_failure_1, transmit_failure_2,
transmit_failure_3, transmit_failure_4);

tel

Fig. 5. The main node
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node Voter ( x1, x2, x3, x4 : real ; -- four values given by the channels
f1, f2, f3, f4 : bool ; -- failure statuses seen by the four channels

)
returns (x : real)
var

zero_roll, one_roll, two_roll, three_roll : bool ; -- numbers of failures
cpt_roll : int ; -- a counter

let
cpt_roll = 0 -> if three_roll then SAFE_COUNTER_TIME

else if pre (cpt_roll)>0 then pre(cpt_roll) - 1
else 0 ;

zero_roll = noneof (f1, f2, f3, f4) ;
one_roll = oneoffour (f1, f2, f3, f4) ;
two_roll = twooffour (f1, f2, f3, f4) ;
three_roll = threeoffour (f1, f2, f3, f4) ;
x = if (zero_roll and cpt_roll = 0 ) then

OlympicAverage (x1, x2, x3, x4)
else if (one_roll and cpt_roll = 0 ) then

Median (x1, x2, x3, x4, f1, f2, f3, f4 )
else if (two_roll and cpt_roll = 0 ) then

Average (x1, x2, x3, x4, f1, f2, f3, f4 )
else FAIL_SAFE_ROLL_VALUE ;

tel ;

Fig. 7. The voter in Lustre

node twooffour (f1, f2, f3, f4 : bool)
returns (r : bool)

let
r = ((if f1 then 1 else 0) +

(if f2 then 1 else 0) +
(if f3 then 1 else 0) +
(if f4 then 1 else 0)) = 2 ;

tel

(a) A version with counter

node twooffour (f1, f2, f3, f4 : bool)
returns (r : bool)

let
r = f1 and

(f2 and not f3 and not f4 or
f3 and not f2 and not f4 or
f4 and not f2 and not f3) or

f2 and
(f1 and not f3 and not f4 or
f3 and not f1 and not f4 or
f4 and not f1 and not f3) or

f3 and
(f2 and not f1 and not f4 or
f1 and not f2 and not f4 or
f4 and not f2 and not f1) or

f4 and
(f2 and not f3 and not f1 or
f3 and not f2 and not f1 or
f1 and not f2 and not f3) ;

tel

(b) A purely Boolean version

Fig. 8. The node twooffour
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Fig. 9. A Luciole simulation of the voter — Initially, there is no fault, so
the output is the olympic average of the inputs (i.e., the average of
2 and 4). At step 2, a fault occurs on channel 4, so the outputs is the
median of x1, x2, x3, which is 2. At step 3, channel 3 becomes
faulty, so the result is the average of x1 and x2. At step 4, a third
fault occurs, so the output takes the “safe” value 0 for 3 units of
time.
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the inputs (i.e., the average of 2 and 4). At step 2, a fault 
occurs on channel 4, so the outputs is the median of x1, 
x2, x3, which is 2. At step 3, channel 3 becomes faulty, so 
the result is the average of x1 and x2. At step 4, a third 
fault occurs, so the output takes the “safe” value 0 for 3 
units of time.

8

node Voter ( x1, x2, x3, x4 : real ; -- four values given by the channels
f1, f2, f3, f4 : bool ; -- failure statuses seen by the four channels

)
returns (x : real)
var

zero_roll, one_roll, two_roll, three_roll : bool ; -- numbers of failures
cpt_roll : int ; -- a counter

let
cpt_roll = 0 -> if three_roll then SAFE_COUNTER_TIME

else if pre (cpt_roll)>0 then pre(cpt_roll) - 1
else 0 ;

zero_roll = noneof (f1, f2, f3, f4) ;
one_roll = oneoffour (f1, f2, f3, f4) ;
two_roll = twooffour (f1, f2, f3, f4) ;
three_roll = threeoffour (f1, f2, f3, f4) ;
x = if (zero_roll and cpt_roll = 0 ) then

OlympicAverage (x1, x2, x3, x4)
else if (one_roll and cpt_roll = 0 ) then

Median (x1, x2, x3, x4, f1, f2, f3, f4 )
else if (two_roll and cpt_roll = 0 ) then

Average (x1, x2, x3, x4, f1, f2, f3, f4 )
else FAIL_SAFE_ROLL_VALUE ;

tel ;

Fig. 7. The voter in Lustre

node twooffour (f1, f2, f3, f4 : bool)
returns (r : bool)

let
r = ((if f1 then 1 else 0) +

(if f2 then 1 else 0) +
(if f3 then 1 else 0) +
(if f4 then 1 else 0)) = 2 ;

tel

(a) A version with counter

node twooffour (f1, f2, f3, f4 : bool)
returns (r : bool)

let
r = f1 and

(f2 and not f3 and not f4 or
f3 and not f2 and not f4 or
f4 and not f2 and not f3) or

f2 and
(f1 and not f3 and not f4 or
f3 and not f1 and not f4 or
f4 and not f1 and not f3) or

f3 and
(f2 and not f1 and not f4 or
f1 and not f2 and not f4 or
f4 and not f2 and not f1) or

f4 and
(f2 and not f3 and not f1 or
f3 and not f2 and not f1 or
f1 and not f2 and not f3) ;

tel

(b) A purely Boolean version

Fig. 8. The node twooffour

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

x1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

x2 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

x3 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

x4 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

f1
f2
f3
f4

x

3.00

2.00
1.50

0.00 0.00 0.00

1.50
2.00

3.00 3.00 3.00

Fig. 9. A Luciole simulation of the voter — Initially, there is no fault, so
the output is the olympic average of the inputs (i.e., the average of
2 and 4). At step 2, a fault occurs on channel 4, so the outputs is the
median of x1, x2, x3, which is 2. At step 3, channel 3 becomes
faulty, so the result is the average of x1 and x2. At step 4, a third
fault occurs, so the output takes the “safe” value 0 for 3 units of
time.

8

node Voter ( x1, x2, x3, x4 : real ; -- four values given by the channels
f1, f2, f3, f4 : bool ; -- failure statuses seen by the four channels

)
returns (x : real)
var

zero_roll, one_roll, two_roll, three_roll : bool ; -- numbers of failures
cpt_roll : int ; -- a counter

let
cpt_roll = 0 -> if three_roll then SAFE_COUNTER_TIME

else if pre (cpt_roll)>0 then pre(cpt_roll) - 1
else 0 ;

zero_roll = noneof (f1, f2, f3, f4) ;
one_roll = oneoffour (f1, f2, f3, f4) ;
two_roll = twooffour (f1, f2, f3, f4) ;
three_roll = threeoffour (f1, f2, f3, f4) ;
x = if (zero_roll and cpt_roll = 0 ) then

OlympicAverage (x1, x2, x3, x4)
else if (one_roll and cpt_roll = 0 ) then

Median (x1, x2, x3, x4, f1, f2, f3, f4 )
else if (two_roll and cpt_roll = 0 ) then

Average (x1, x2, x3, x4, f1, f2, f3, f4 )
else FAIL_SAFE_ROLL_VALUE ;

tel ;

Fig. 7. The voter in Lustre

node twooffour (f1, f2, f3, f4 : bool)
returns (r : bool)

let
r = ((if f1 then 1 else 0) +

(if f2 then 1 else 0) +
(if f3 then 1 else 0) +
(if f4 then 1 else 0)) = 2 ;

tel

(a) A version with counter

node twooffour (f1, f2, f3, f4 : bool)
returns (r : bool)

let
r = f1 and

(f2 and not f3 and not f4 or
f3 and not f2 and not f4 or
f4 and not f2 and not f3) or

f2 and
(f1 and not f3 and not f4 or
f3 and not f1 and not f4 or
f4 and not f1 and not f3) or

f3 and
(f2 and not f1 and not f4 or
f1 and not f2 and not f4 or
f4 and not f2 and not f1) or

f4 and
(f2 and not f3 and not f1 or
f3 and not f2 and not f1 or
f1 and not f2 and not f3) ;

tel

(b) A purely Boolean version

Fig. 8. The node twooffour

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

x1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

x2 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

x3 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

x4 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

f1
f2
f3
f4

x

3.00

2.00
1.50

0.00 0.00 0.00

1.50
2.00

3.00 3.00 3.00

Fig. 9. A Luciole simulation of the voter — Initially, there is no fault, so
the output is the olympic average of the inputs (i.e., the average of
2 and 4). At step 2, a fault occurs on channel 4, so the outputs is the
median of x1, x2, x3, which is 2. At step 3, channel 3 becomes
faulty, so the result is the average of x1 and x2. At step 4, a third
fault occurs, so the output takes the “safe” value 0 for 3 units of
time.

Luciole. Fig. 9 shows such a simulation: we choose constant 
inputs for the values x1, x2, x3, x4 coming from the channels, 
and just play with the occurrences of transmission faults f1, 
f2, f3, f4, observing that the correct output is computed in 
each case. The simulation is done with SAFE_COUNTER_TIME 
= 3 and FAIL_SAFE_ROLL_VALUE = 0.

VI. Incremental implementation of functionality

Once we have designed the global architecture of the 
program, and taken decisions about where to place Lustre 
pre’s, we can develop the whole program progressively. We can 
start by giving each node some trivial behavior (like output 
= constant), just to see whether the architecture indeed 
compiles. It allows typing and self-dependence problems to 
be detected.

Then we can start writing more and more appropriate 
code for each of the nodes. We used four steps, each of which 
with simulation :
 � We start (§VI-A) with the detection of transmission 

failures only (the channels do not talk to each other). 

This can be observed on one channel only, first, and then 
we can put together all the four channels. 

 � Then (§VI-B), we add the detection of faults that are 
due to cross-channels comparisons, but without latching 
them. 

 � Then we implement the latching of faults and the effect 
of resets (§VI-C). 

 � Finally, we implement the global allocator (§VI-D) that 
allows a special behavior to be given to third fault.

A. Local detection of transmission faults only

 Lustre code

In each channel, the node Monitor determines if the 
two values received by the channel differ too much for too 
long a time. It also transmits some combination of the two 
values received as its “local” value. Nothing is said about the 
combination function in the informal documentation.We have 
chosen to output the first value. Any other choice could be 
implemented in a very simple way.
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VI. IMPLEMENTING THE FUNCTIONNALITIES ONE BY ONE

Once we have designed the global architecture of the
program, and taken decisions about where to put Lustre pre’s,
we can develop the whole program progressively. We can
start by giving each node some trivial behavior (like output
= constant), just to see whether the architecture indeed
compiles. It allows typing and self-dependence problems to
be detected.

Then we can start writing more and more appropriate code
for each of the nodes. We used four steps, each of which with
simulation :

• We start (§VI-A) with the detection of transmission
failures only (the channels do not talk to each other).
This can be observed on one channel only, first, and then
by putting the four channels together.

• Then (§VI-B), we add the detection of faults that are due
to cross-channels comparisons, but without latching them.

• Then we implement the latching of faults and the effect
of resets (§VI-C).

• Finally, we implement the global allocator (§VI-D) that
allows a special behavior to be given to third fault.

A. Local detection of transmission faults only

Lustre code

In each channel, the node Monitor determines if the two
values received by the channel differ too much for a too
long time. It also transmits some combination of the two
values received as its “local” value. Nothing is said about the
combination function in the informal documentation. We chose
to output the first value. Any other choice can be implemented
in a very simple way.

node Monitor (
xa, xb : real ; -- two input values

)
returns (

local_value : real ;
-- the value seen by this channel
failure : bool ;
-- detection of a transmission fault

)
let

failure = maintain(TIME_ROLL, abs(xa - xb)
> DELTA_ROLL);

local_value = xa ;
tel

TIME_ROLL and DELTA_ROLL are two constants;
maintain is the Lustre node presented in §II-B.

Simulations

Fig. 10 shows a simulation of the node Monitor, with
constants

DELTA_ROLL = 14 and TIME_ROLL = 3

B. Adding non-latched cross-channel comparisons

Lustre code

For cross-channel comparisons, the local value xi is com-
pared to those among the foreign ones that are not declared
failed (that is why we need the fail statuses of the three foreign
channels). Intuitively, the local value is faulty if it differs too
much (i.e., more than a constant CROSS_CH_TOL_ROLL)
from all the other (supposedly correct) values. Moreover, a
cross-channel failure is reported only if this situation lasts
for some delay (TIME_CROSS_ROLL). This detection is
performed by a node values_nok, called by the component
FailDetect of the channel, and which is given below, and
then discussed:

node values_nok (
pfother1, pfother2, pfother3 : bool ;
-- foreign values status: true if faulty
xi : real ; -- local value
pxother1, pxother2, pxother3 : real ;
-- foreign values

)
returns (

fault : bool
-- there is a cross channel fault

)
var

diff1, diff2, diff3 : bool ;
-- comparisons of xi with the three
-- foreign values

let
diff1 = abs (xi - pxother1)

> CROSS_CH_TOL_ROLL ;
diff2 = abs (xi - pxother2)

> CROSS_CH_TOL_ROLL ;
diff3 = abs (xi - pxother3)

> CROSS_CH_TOL_ROLL ;
fault =

maintain(TIME_CROSS_ROLL,
if pfother1 then
-- don’t take this one into account
if pfother2 then -- the same
if pfother3
then false else diff3

else if pfother3 then diff2
else (diff2 and diff3)

else if pfother2 then
if pfother3 then diff1

else (diff1 and diff3)
else if pfother3 then

(diff1 and diff2)
else (diff1 and diff2 and diff3)) ;

tel

In Section VII-A, this node will be formally checked for
equivalence with another version.

Notice that the informal specification is unclear: we de-
cided to report a failure when the conjunction “diff1 and
diff2 and diff3” holds for the given delay. We could
have chosen another solution, first detecting if each foreign
value differs from the local one for the given delay, and then
reporting the conjunction of these conditions.
Whatever be the correct choice, the body of the node

TIME_ROLL and DELTA_ROLL are two constants; 
maintain is the Lustre node presented in §II-B.

Simulations

Fig. 10 shows a simulation of the node Monitor, with 
constants

DELTA_ROLL = 14 and TIME_ROLL = 3

B. Adding non-latched cross-channel comparisons

 Lustre code

For cross-channel comparisons, the local value xi is 
compared to those among the foreign ones that are not 
declared failed (that is why we need the fail status of the 
three foreign channels). Intuitively, the local value is faulty 
if it differs too much (i.e., more than a constant CROSS_CH_
TOL_ROLL) from all the other (supposedly correct) values. 
Moreover, a cross-channel failure is reported only if this 
situation lasts for some delay (TIME_CROSS_ROLL). This 
detection is performed by a node values_nok, called by the 
component FailDetect of the channel and which is given 
below, along with a description in the sequel.:
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FailDetect of the channel, and which is given below, and
then discussed:

node values_nok (
pfother1, pfother2, pfother3 : bool ;
-- foreign values status: true if faulty
xi : real ; -- local value
pxother1, pxother2, pxother3 : real ;
-- foreign values

)
returns (

fault : bool
-- there is a cross channel fault

)
var

diff1, diff2, diff3 : bool ;
-- comparisons of xi with the three
-- foreign values

let
diff1 = abs (xi - pxother1)

> CROSS_CH_TOL_ROLL ;
diff2 = abs (xi - pxother2)

> CROSS_CH_TOL_ROLL ;
diff3 = abs (xi - pxother3)

> CROSS_CH_TOL_ROLL ;
fault =

maintain(TIME_CROSS_ROLL,
if pfother1 then
-- don’t take this one into account
if pfother2 then -- the same
if pfother3
then false else diff3

else if pfother3 then diff2
else (diff2 and diff3)

else if pfother2 then
if pfother3 then diff1

else (diff1 and diff3)
else if pfother3 then

(diff1 and diff2)
else (diff1 and diff2 and diff3)) ;

tel

In Section VII-A, this node will be formally checked for
equivalence with another version.

Notice that the informal specification is unclear: we de-
cided to report a failure when the conjunction “diff1 and
diff2 and diff3” holds for the given delay. We could
have chosen another solution, first detecting if each foreign
value differs from the local one for the given delay, and then
reporting the conjunction of these conditions.
Whatever be the correct choice, the body of the node

9

VI. IMPLEMENTING THE FUNCTIONNALITIES ONE BY ONE

Once we have designed the global architecture of the
program, and taken decisions about where to put Lustre pre’s,
we can develop the whole program progressively. We can
start by giving each node some trivial behavior (like output
= constant), just to see whether the architecture indeed
compiles. It allows typing and self-dependence problems to
be detected.

Then we can start writing more and more appropriate code
for each of the nodes. We used four steps, each of which with
simulation :

• We start (§VI-A) with the detection of transmission
failures only (the channels do not talk to each other).
This can be observed on one channel only, first, and then
by putting the four channels together.

• Then (§VI-B), we add the detection of faults that are due
to cross-channels comparisons, but without latching them.

• Then we implement the latching of faults and the effect
of resets (§VI-C).

• Finally, we implement the global allocator (§VI-D) that
allows a special behavior to be given to third fault.

A. Local detection of transmission faults only

Lustre code

In each channel, the node Monitor determines if the two
values received by the channel differ too much for a too
long time. It also transmits some combination of the two
values received as its “local” value. Nothing is said about the
combination function in the informal documentation. We chose
to output the first value. Any other choice can be implemented
in a very simple way.

node Monitor (
xa, xb : real ; -- two input values

)
returns (

local_value : real ;
-- the value seen by this channel
failure : bool ;
-- detection of a transmission fault

)
let

failure = maintain(TIME_ROLL, abs(xa - xb)
> DELTA_ROLL);

local_value = xa ;
tel

TIME_ROLL and DELTA_ROLL are two constants;
maintain is the Lustre node presented in §II-B.

Simulations

Fig. 10 shows a simulation of the node Monitor, with
constants

DELTA_ROLL = 14 and TIME_ROLL = 3

B. Adding non-latched cross-channel comparisons

Lustre code

For cross-channel comparisons, the local value xi is com-
pared to those among the foreign ones that are not declared
failed (that is why we need the fail statuses of the three foreign
channels). Intuitively, the local value is faulty if it differs too
much (i.e., more than a constant CROSS_CH_TOL_ROLL)
from all the other (supposedly correct) values. Moreover, a
cross-channel failure is reported only if this situation lasts
for some delay (TIME_CROSS_ROLL). This detection is
performed by a node values_nok, called by the component
FailDetect of the channel, and which is given below, and
then discussed:

node values_nok (
pfother1, pfother2, pfother3 : bool ;
-- foreign values status: true if faulty
xi : real ; -- local value
pxother1, pxother2, pxother3 : real ;
-- foreign values

)
returns (

fault : bool
-- there is a cross channel fault

)
var

diff1, diff2, diff3 : bool ;
-- comparisons of xi with the three
-- foreign values

let
diff1 = abs (xi - pxother1)

> CROSS_CH_TOL_ROLL ;
diff2 = abs (xi - pxother2)

> CROSS_CH_TOL_ROLL ;
diff3 = abs (xi - pxother3)

> CROSS_CH_TOL_ROLL ;
fault =

maintain(TIME_CROSS_ROLL,
if pfother1 then
-- don’t take this one into account
if pfother2 then -- the same
if pfother3
then false else diff3

else if pfother3 then diff2
else (diff2 and diff3)

else if pfother2 then
if pfother3 then diff1

else (diff1 and diff3)
else if pfother3 then

(diff1 and diff2)
else (diff1 and diff2 and diff3)) ;

tel

In Section VII-A, this node will be formally checked for
equivalence with another version.

Notice that the informal specification is unclear: we de-
cided to report a failure when the conjunction “diff1 and
diff2 and diff3” holds for the given delay. We could
have chosen another solution, first detecting if each foreign
value differs from the local one for the given delay, and then
reporting the conjunction of these conditions.
Whatever be the correct choice, the body of the node

In Section VII-A, this node will be formally checked for 
equivalence with another version. 10
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Fig. 10. A simulation of the Monitor

FailDetect is simply:

failure = transmit_failure or cross_failure;
cross_failure =

values_nok(pfother1, pfother2, pfother3,
xi, pxother1, pxother2, pxother3);

Simulations
We can run a simulation on this program, using Luciole,

the Lustre simulator. Since the current version of Luciole
only shows the values of input/output variables, while it is
interesting to see also the internal variables corresponding
to failures (transmit failurei, cross failurei), we first
modify the program so that these variables be output. The
simulation is performed with the following values for relevant
constants:

DELTA_ROLL = 4.0 ;
CROSS_CH_TOL_ROLL = 10.0 ;
TIME_ROLL = TIME_CROSS_ROLL = 3 ;

Fig. 11 shows an execution (where we introduce first a
transmission fault on the first channel (steps 2 to 5), then a
cross failure on channel 4 (steps 3 to 7), then a cross failure
on channel 3 alone (from step 9), on which an other cross
failure, on channel 1, is combined (from step 12) ).
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Fig. 11. A simulation of transmission and cross failures
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Fig. 12. The automaton driving failure latching

C. Latching the cross-channel faults

Now, recall that some serious faults must be latched (i.e.,
sustained even when their cause has disapeared), until the
occurence of some reset command. This latching is performed
by the node FailDetect, and depends on the state of an
automaton, as described by Fig. 12:

• State 1 is the normal state: everything is working prop-
erly, or there are transmission faults from time to time,
which are not latched;

• In state 2, there has been at least one serious fault in
the past, which is latched, but may be reset either by
“OnGroundReset” or by “InAirReset”;

• In state 3, there have been several serious faults in the
past, or one serious fault followed immediately by a
transmission one, and the fault is latched and reset-

Fig. 10 : A simulation of the Monitor
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FailDetect is simply:

failure = transmit_failure or cross_failure;
cross_failure =

values_nok(pfother1, pfother2, pfother3,
xi, pxother1, pxother2, pxother3);

Simulations
We can run a simulation on this program, using Luciole,

the Lustre simulator. Since the current version of Luciole
only shows the values of input/output variables, while it is
interesting to see also the internal variables corresponding
to failures (transmit failurei, cross failurei), we first
modify the program so that these variables be output. The
simulation is performed with the following values for relevant
constants:

DELTA_ROLL = 4.0 ;
CROSS_CH_TOL_ROLL = 10.0 ;
TIME_ROLL = TIME_CROSS_ROLL = 3 ;

Fig. 11 shows an execution (where we introduce first a
transmission fault on the first channel (steps 2 to 5), then a
cross failure on channel 4 (steps 3 to 7), then a cross failure
on channel 3 alone (from step 9), on which an other cross
failure, on channel 1, is combined (from step 12) ).
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Fig. 12. The automaton driving failure latching

C. Latching the cross-channel faults

Now, recall that some serious faults must be latched (i.e.,
sustained even when their cause has disapeared), until the
occurence of some reset command. This latching is performed
by the node FailDetect, and depends on the state of an
automaton, as described by Fig. 12:

• State 1 is the normal state: everything is working prop-
erly, or there are transmission faults from time to time,
which are not latched;

• In state 2, there has been at least one serious fault in
the past, which is latched, but may be reset either by
“OnGroundReset” or by “InAirReset”;

• In state 3, there have been several serious faults in the
past, or one serious fault followed immediately by a
transmission one, and the fault is latched and reset-

Fig. 11 : A simulation of transmission and cross 
failures

Notice that the informal specification is unclear: we 
decided to report a failure when the conjunction “diff1 
and diff2 and diff3” holds for the given delay. We could 
have chosen another solution, first detecting if each foreign 
value differs from the local one for the given delay, and then 
reporting the conjunction of these conditions.

Whatever be the correct choice, the body of the node 
FailDetect is simply:
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Fig. 10. A simulation of the Monitor

FailDetect is simply:

failure = transmit_failure or cross_failure;
cross_failure =

values_nok(pfother1, pfother2, pfother3,
xi, pxother1, pxother2, pxother3);

Simulations
We can run a simulation on this program, using Luciole,

the Lustre simulator. Since the current version of Luciole
only shows the values of input/output variables, while it is
interesting to see also the internal variables corresponding
to failures (transmit failurei, cross failurei), we first
modify the program so that these variables be output. The
simulation is performed with the following values for relevant
constants:

DELTA_ROLL = 4.0 ;
CROSS_CH_TOL_ROLL = 10.0 ;
TIME_ROLL = TIME_CROSS_ROLL = 3 ;

Fig. 11 shows an execution (where we introduce first a
transmission fault on the first channel (steps 2 to 5), then a
cross failure on channel 4 (steps 3 to 7), then a cross failure
on channel 3 alone (from step 9), on which an other cross
failure, on channel 1, is combined (from step 12) ).
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Fig. 12. The automaton driving failure latching

C. Latching the cross-channel faults

Now, recall that some serious faults must be latched (i.e.,
sustained even when their cause has disapeared), until the
occurence of some reset command. This latching is performed
by the node FailDetect, and depends on the state of an
automaton, as described by Fig. 12:

• State 1 is the normal state: everything is working prop-
erly, or there are transmission faults from time to time,
which are not latched;

• In state 2, there has been at least one serious fault in
the past, which is latched, but may be reset either by
“OnGroundReset” or by “InAirReset”;

• In state 3, there have been several serious faults in the
past, or one serious fault followed immediately by a
transmission one, and the fault is latched and reset-

Simulations

We can run a simulation on this program, using Luciole, 
the Lustre simulator. Since the current version of Luciole 
only shows the values of input/output variables, while it is 
interesting to see also the internal variables corresponding to 
failures (transmit failure

i
; cross failurei), we first 

modify the program so that these variables be output. The 

simulation is performed with the following values for relevant 
constants:

DELTA_ROLL = 4.0 ;
CROSS_CH_TOL_ROLL = 10.0 ;
TIME_ROLL = TIME_CROSS_ROLL = 3 ;
Fig. 11 shows an execution (where we introduce first a 

transmission fault on the first channel (steps 2 to 5), then a 
cross failure on channel 4 (steps 3 to 7), then a cross failure on 
channel 3 alone (from step 9), on which an other cross failure, 
on channel 1, is combined (from step 12) ).
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Fig. 10. A simulation of the Monitor

FailDetect is simply:

failure = transmit_failure or cross_failure;
cross_failure =

values_nok(pfother1, pfother2, pfother3,
xi, pxother1, pxother2, pxother3);

Simulations
We can run a simulation on this program, using Luciole,

the Lustre simulator. Since the current version of Luciole
only shows the values of input/output variables, while it is
interesting to see also the internal variables corresponding
to failures (transmit failurei, cross failurei), we first
modify the program so that these variables be output. The
simulation is performed with the following values for relevant
constants:

DELTA_ROLL = 4.0 ;
CROSS_CH_TOL_ROLL = 10.0 ;
TIME_ROLL = TIME_CROSS_ROLL = 3 ;

Fig. 11 shows an execution (where we introduce first a
transmission fault on the first channel (steps 2 to 5), then a
cross failure on channel 4 (steps 3 to 7), then a cross failure
on channel 3 alone (from step 9), on which an other cross
failure, on channel 1, is combined (from step 12) ).
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Fig. 12. The automaton driving failure latching

C. Latching the cross-channel faults

Now, recall that some serious faults must be latched (i.e.,
sustained even when their cause has disapeared), until the
occurence of some reset command. This latching is performed
by the node FailDetect, and depends on the state of an
automaton, as described by Fig. 12:

• State 1 is the normal state: everything is working prop-
erly, or there are transmission faults from time to time,
which are not latched;

• In state 2, there has been at least one serious fault in
the past, which is latched, but may be reset either by
“OnGroundReset” or by “InAirReset”;

• In state 3, there have been several serious faults in the
past, or one serious fault followed immediately by a
transmission one, and the fault is latched and reset-

Fig. 12 : The automaton driving failure latching

C. Latching the cross-channel faults

It may be noted that some serious faults must be latched 
(i.e., sustained even when their cause has disappeared), 
until the occurence of some reset command. This latching 
is performed by the node FailDetect, and depends on the 
state of an automaton, as described by Fig. 12:
 � State 1 is the normal state: everything is working 

properly, or there are transmission faults from time to 
time, which are not latched;

 � In state 2, there has been at least one serious fault in 
the past, which is latched, but may be reset either by 
“OnGroundReset” or by “InAirReset”;

 � In state 3, there have been several serious faults in 
the past, or one serious fault followed immediately by 
a transmission one, and the fault is latched and reset 
inhibited. In this case, only the “OnGroundReset” can 
restore the normal state.
The failure output is true when in state 2 or 3, and is 

equal to transmit_failure when in state 1. The transitions 
between these states are driven by the following conditions:
 � from state 1: if the locally computed variable involves a 

cross-failure, it is considered more serious if its value is 
“in the nominal range” (since it can be later considered 
as correct). So, in this case, one moves to state 3. If the 
erroneous value lies outside the nominal range, one 
moves to state 2.

 � from state 2: any reset signal restores the normal state 
(1); a cross-failure immediately followed by a foreign 
failure involves a move to state 3; a transmission failure 
occurring in state 2 also involves a move to state 3.
from state 3: only the “OnGroundReset” can restore the 

normal state.

Lustre code

Programming such an automaton in Lustre is tedious, 
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but rather systematic. The state is encoded by an integer 
variable, ranging from 1 to 3. Notice that the order in which 
the transition conditions are tested for is relevant: for 
instance, it allows priority to be given to reset:
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inhibited. In this case, only the “OnGroundReset” can
restore the normal state.

The failure output is true when in state 2 or 3, and
is equal to transmit_failure when in state 1. The
transitions between these states are driven by the following
conditions:

• from state 1: if the locally computed variable involves a
cross-failure, it is considered more serious if its value is
“in the nominal range” (since it can be later considered
as correct). So, in this case, one moves to state 3. If
the erroneous value lies outside the nominal range, one
moves to state 2.

• from state 2: any reset signal restores the normal state
(1); a cross-failure immediately followed by a foreign
failure involves a move to state 3; a transmission failure
occurring in state 2 also involves a move to state 3.

• from state 3: only the “OnGroundReset” can restore the
normal state.

Lustre code

Programming such an automaton in Lustre is tedious, but
rather systematic. The state is encoded by an integer variable,
ranging from 1 to 3. Notice that the order in which the
transition conditions are tested for is relevant: for instance,
it allows priority to be given to reset:

state = 1 ->
if pre(state)=1 then

if pre(reset) then 1
-- reset has priority

else if pre(from1to2) then 2
else if pre(from1to3) then 3 else 1

else if pre(state)=2 then
if pre(from2to1) then 1
else if pre(from2to3) then 3 else 2

else -- pre(state)=3
if pre(from3to1) then 1 else 3 ;

The definitions of transition conditions follow the specifi-
cation:

from1to2 = cross_failure and
not InNominalRange (xi) ;

from1to3 = cross_failure and
InNominalRange (xi) ;

from2to3 = (pre(cross_failure) and
foreign_failure)

or transmit_failure ;
from2to1 = inairreset or ongroundreset;
from3to1 = ongroundreset;

Fig. 13 shows the whole code for the node FailDetect.

D. Taking into account the requirement on third fault

In the real system, a special device — called “Global
Allocator” — is in charge of preventing more than two units
from becoming reset-inhibited (i.e., from entering state 3). The
node Fail-Detect must be changed as follows: whenever
the automaton should move to state 3, it sends a request, say
r, to the global allocator, and only performs the move if the

allocator sends it an authorization back, say a. The node has an
additional Boolean input a, and sends an additional Boolean
output r. The transitions are then modified as follows:
• The request is the disjunction of the condition which
involved a move from state 1 to state 3, and the one which
involved a move from state 2 to state 3.

r = false -> (pre(state) = 1 and try1to3)
or (pre(state) = 2 and try2to3);

where try1to3 and try2to3 obey the previous definitions
of from1to3 and from2to3:
try1to3 = cross_failure and InNominalRange(xi);
try2to3 = (pre(cross_failure)

and foreign_failure)
or transmit_failure ;

• The actual moves occur only when the authorization is given:

from1to3 = try1to3 and a;
from2to3 = try2to3 and a;

The global allocator is quite simple: it receives requests
ri from the units, together with the “OnGroundReset” signal,
and returns authorizations. An internal counter nb is used
to count the number of units that are “reset-inhibited”, and
authorizations are given in order to prevent this counter from
reaching 3. The “OnGroundReset” signal resets the allocator
in its initial configuration (because it causes all automata to
leave state 3)4.

node allocator(r1,r2,r3,r4,reset: bool)
returns (a1,a2,a3,a4: bool);
var nb_aut, already: int;
let

already = if (true -> reset)
then 0 else pre(nb_aut);

a1 = r1 and already <= 1;
a2 = r2 and

((not r1 and already <= 1)
or (r1 and already = 0)
);

a3 = r3 and
((not r1 and not r2 and already <= 1)
or (#(r1,r2) and already = 0)
);

a4 = r4 and
((not r1 and not r2 and not r3 and

already <= 1)
or (#(r1,r2,r3) and already = 0)
);

nb_aut = if (true -> reset) then 0
else pre(nb_aut) +

(if a1 then 1 else 0) +
(if a2 then 1 else 0) +
(if a3 then 1 else 0) +
(if a4 then 1 else 0) ;

tel

Notice that there is an “instantaneous dialogue” between the
units and the allocator: in the very same step, the unit asks
the allocator for an authorization, the allocator replies, and the
unit takes the transition or not, according to this reply.

4The “#” operator, in Lustre, is a n-ary Boolean operator, which returns
“true” if and only if at most one of its operand is true.

The definitions of transition conditions follow the 
specification:
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inhibited. In this case, only the “OnGroundReset” can
restore the normal state.

The failure output is true when in state 2 or 3, and
is equal to transmit_failure when in state 1. The
transitions between these states are driven by the following
conditions:

• from state 1: if the locally computed variable involves a
cross-failure, it is considered more serious if its value is
“in the nominal range” (since it can be later considered
as correct). So, in this case, one moves to state 3. If
the erroneous value lies outside the nominal range, one
moves to state 2.

• from state 2: any reset signal restores the normal state
(1); a cross-failure immediately followed by a foreign
failure involves a move to state 3; a transmission failure
occurring in state 2 also involves a move to state 3.

• from state 3: only the “OnGroundReset” can restore the
normal state.

Lustre code

Programming such an automaton in Lustre is tedious, but
rather systematic. The state is encoded by an integer variable,
ranging from 1 to 3. Notice that the order in which the
transition conditions are tested for is relevant: for instance,
it allows priority to be given to reset:

state = 1 ->
if pre(state)=1 then

if pre(reset) then 1
-- reset has priority

else if pre(from1to2) then 2
else if pre(from1to3) then 3 else 1

else if pre(state)=2 then
if pre(from2to1) then 1
else if pre(from2to3) then 3 else 2

else -- pre(state)=3
if pre(from3to1) then 1 else 3 ;

The definitions of transition conditions follow the specifi-
cation:

from1to2 = cross_failure and
not InNominalRange (xi) ;

from1to3 = cross_failure and
InNominalRange (xi) ;

from2to3 = (pre(cross_failure) and
foreign_failure)

or transmit_failure ;
from2to1 = inairreset or ongroundreset;
from3to1 = ongroundreset;

Fig. 13 shows the whole code for the node FailDetect.

D. Taking into account the requirement on third fault

In the real system, a special device — called “Global
Allocator” — is in charge of preventing more than two units
from becoming reset-inhibited (i.e., from entering state 3). The
node Fail-Detect must be changed as follows: whenever
the automaton should move to state 3, it sends a request, say
r, to the global allocator, and only performs the move if the

allocator sends it an authorization back, say a. The node has an
additional Boolean input a, and sends an additional Boolean
output r. The transitions are then modified as follows:
• The request is the disjunction of the condition which
involved a move from state 1 to state 3, and the one which
involved a move from state 2 to state 3.

r = false -> (pre(state) = 1 and try1to3)
or (pre(state) = 2 and try2to3);

where try1to3 and try2to3 obey the previous definitions
of from1to3 and from2to3:
try1to3 = cross_failure and InNominalRange(xi);
try2to3 = (pre(cross_failure)

and foreign_failure)
or transmit_failure ;

• The actual moves occur only when the authorization is given:

from1to3 = try1to3 and a;
from2to3 = try2to3 and a;

The global allocator is quite simple: it receives requests
ri from the units, together with the “OnGroundReset” signal,
and returns authorizations. An internal counter nb is used
to count the number of units that are “reset-inhibited”, and
authorizations are given in order to prevent this counter from
reaching 3. The “OnGroundReset” signal resets the allocator
in its initial configuration (because it causes all automata to
leave state 3)4.

node allocator(r1,r2,r3,r4,reset: bool)
returns (a1,a2,a3,a4: bool);
var nb_aut, already: int;
let

already = if (true -> reset)
then 0 else pre(nb_aut);

a1 = r1 and already <= 1;
a2 = r2 and

((not r1 and already <= 1)
or (r1 and already = 0)
);

a3 = r3 and
((not r1 and not r2 and already <= 1)
or (#(r1,r2) and already = 0)
);

a4 = r4 and
((not r1 and not r2 and not r3 and

already <= 1)
or (#(r1,r2,r3) and already = 0)
);

nb_aut = if (true -> reset) then 0
else pre(nb_aut) +

(if a1 then 1 else 0) +
(if a2 then 1 else 0) +
(if a3 then 1 else 0) +
(if a4 then 1 else 0) ;

tel

Notice that there is an “instantaneous dialogue” between the
units and the allocator: in the very same step, the unit asks
the allocator for an authorization, the allocator replies, and the
unit takes the transition or not, according to this reply.

4The “#” operator, in Lustre, is a n-ary Boolean operator, which returns
“true” if and only if at most one of its operand is true.

Fig. 13 : shows the whole code for the node FailDetect.

D. Taking into account the requirement on third 
fault
In the real system, a special device — called “Global 

Allocator” — is in charge of preventing more than two units 
from becoming reset-inhibited (i.e., from entering state 3). The 
node Fail-Detect must be changed as follows: whenever 
the automaton should move to state 3, it sends a request, 
say r, to the global allocator, and only performs the move if 
the allocator sends it an authorization back, say a. The node 
has an additional Boolean input a, and sends an additional 
Boolean output r. The transitions are then modified as follows:
 � The request is the disjunction of the condition which 

involved a move from state 1 to state 3, and the one 
which involved a move from state 2 to state 3.

r = false -> (pre(state) = 1 and try1to3)
 or (pre(state) = 2 and try2to3);
where try1to3 and try2to3 obey the previous definitions
of from1to3 and from2to3:
try1to3 = cross_failure and InNominalRange(xi);
try2to3 = (pre(cross_failure)
    and foreign_failure)

 or transmit_failure ;

The actual moves occur only when the authorization is 
given:
from1to3 = try1to3 and a;
from2to3 = try2to3 and a;
The global allocator is quite simple: it receives requests ri 
from the units, together with the “OnGroundReset” signal, 
and returns authorizations. An internal counter nb is used to 
count the number of units that are “reset-inhibited”, and 
authorizations are given in order to prevent this counter from 
reaching 3. The “OnGroundReset” signal resets the allocator 
in its initial configuration (because it causes all automata to 
leave state 3)4.
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inhibited. In this case, only the “OnGroundReset” can
restore the normal state.

The failure output is true when in state 2 or 3, and
is equal to transmit_failure when in state 1. The
transitions between these states are driven by the following
conditions:

• from state 1: if the locally computed variable involves a
cross-failure, it is considered more serious if its value is
“in the nominal range” (since it can be later considered
as correct). So, in this case, one moves to state 3. If
the erroneous value lies outside the nominal range, one
moves to state 2.

• from state 2: any reset signal restores the normal state
(1); a cross-failure immediately followed by a foreign
failure involves a move to state 3; a transmission failure
occurring in state 2 also involves a move to state 3.

• from state 3: only the “OnGroundReset” can restore the
normal state.

Lustre code

Programming such an automaton in Lustre is tedious, but
rather systematic. The state is encoded by an integer variable,
ranging from 1 to 3. Notice that the order in which the
transition conditions are tested for is relevant: for instance,
it allows priority to be given to reset:

state = 1 ->
if pre(state)=1 then

if pre(reset) then 1
-- reset has priority

else if pre(from1to2) then 2
else if pre(from1to3) then 3 else 1

else if pre(state)=2 then
if pre(from2to1) then 1
else if pre(from2to3) then 3 else 2

else -- pre(state)=3
if pre(from3to1) then 1 else 3 ;

The definitions of transition conditions follow the specifi-
cation:

from1to2 = cross_failure and
not InNominalRange (xi) ;

from1to3 = cross_failure and
InNominalRange (xi) ;

from2to3 = (pre(cross_failure) and
foreign_failure)

or transmit_failure ;
from2to1 = inairreset or ongroundreset;
from3to1 = ongroundreset;

Fig. 13 shows the whole code for the node FailDetect.

D. Taking into account the requirement on third fault

In the real system, a special device — called “Global
Allocator” — is in charge of preventing more than two units
from becoming reset-inhibited (i.e., from entering state 3). The
node Fail-Detect must be changed as follows: whenever
the automaton should move to state 3, it sends a request, say
r, to the global allocator, and only performs the move if the

allocator sends it an authorization back, say a. The node has an
additional Boolean input a, and sends an additional Boolean
output r. The transitions are then modified as follows:
• The request is the disjunction of the condition which
involved a move from state 1 to state 3, and the one which
involved a move from state 2 to state 3.

r = false -> (pre(state) = 1 and try1to3)
or (pre(state) = 2 and try2to3);

where try1to3 and try2to3 obey the previous definitions
of from1to3 and from2to3:
try1to3 = cross_failure and InNominalRange(xi);
try2to3 = (pre(cross_failure)

and foreign_failure)
or transmit_failure ;

• The actual moves occur only when the authorization is given:

from1to3 = try1to3 and a;
from2to3 = try2to3 and a;

The global allocator is quite simple: it receives requests
ri from the units, together with the “OnGroundReset” signal,
and returns authorizations. An internal counter nb is used
to count the number of units that are “reset-inhibited”, and
authorizations are given in order to prevent this counter from
reaching 3. The “OnGroundReset” signal resets the allocator
in its initial configuration (because it causes all automata to
leave state 3)4.

node allocator(r1,r2,r3,r4,reset: bool)
returns (a1,a2,a3,a4: bool);
var nb_aut, already: int;
let

already = if (true -> reset)
then 0 else pre(nb_aut);

a1 = r1 and already <= 1;
a2 = r2 and

((not r1 and already <= 1)
or (r1 and already = 0)
);

a3 = r3 and
((not r1 and not r2 and already <= 1)
or (#(r1,r2) and already = 0)
);

a4 = r4 and
((not r1 and not r2 and not r3 and

already <= 1)
or (#(r1,r2,r3) and already = 0)
);

nb_aut = if (true -> reset) then 0
else pre(nb_aut) +

(if a1 then 1 else 0) +
(if a2 then 1 else 0) +
(if a3 then 1 else 0) +
(if a4 then 1 else 0) ;

tel

Notice that there is an “instantaneous dialogue” between the
units and the allocator: in the very same step, the unit asks
the allocator for an authorization, the allocator replies, and the
unit takes the transition or not, according to this reply.

4The “#” operator, in Lustre, is a n-ary Boolean operator, which returns
“true” if and only if at most one of its operand is true.

Notice that there is an “instantaneous dialogue” between 
the units and the allocator: in the very same step, the unit 
asks the allocator for an authorization, the allocator replies, 
and the unit takes the transition or not, according to this 
reply.

In Section VII-B, some properties of this allocation 
mechanism will be formally verified.

VII. Some Experiences in Formal Verification
Ideally, the formal verification of such a program should 

consist of comparing it with a global, abstract specification. 
As it is often the case with real case-studies, this specification 
is not available. The problem even more serious, here, since 
the abstract specification of such a fault-tolerant system 

4 The “#” operator, in Lustre, is a n-ary Boolean operator, which returns “true” if and only if at most one of its operand is true.
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node FailDetect (
transmit_failure : bool ;
xi : real ;
ongroundreset, inairreset : bool ;
choffi : bool ;
pxother1, pxother2, pxother3 : real ; -- other values (pre)
pfother1, pfother2, pfother3 : bool ; -- other failures (pre)

)
returns (

failure : bool ; -- failure detected by this channel
)
var

cross_failure : bool ;
state : int ; -- only 1, 2, 3 are relevant
from1to2, from1to3, from2to3, from2to1, from3to1 : bool ;
reset, foreign_failure : bool ;

let
-- the state -------------------------------------------------------
state = 1 ->

if pre(state)=1 then
if pre(reset) then 1 -- reset has priority
else if pre(from1to2) then 2
else if pre(from1to3) then 3
else 1

else if pre(state)=2 then
if pre(from2to1) then 1
else if pre(from2to3) then 3
else 2

else -- pre(state)=3
if pre(from3to1) then 1
else 3 ;

reset = ongroundreset or (inairreset and not cross_failure) ;
foreign_failure = pfother1 or pfother2 or pfother3 ;
-- The output ------------------------------------------------------
failure = (state = 2) or (state = 3) or (state = 1 and transmit_failure) ;
-- All the transitions ---------------------------------------------
from1to2 = cross_failure and not InNominalRange (xi) ;
from1to3 = cross_failure and InNominalRange (xi) ;
from2to3 = (pre(cross_failure) and foreign_failure) or transmit_failure ;
from2to1 = reset ;
from3to1 = ongroundreset ;
-- Cross channel comparisons ---------------------------------------
cross_failure = values_nok (pfother1, pfother2, pfother3,

xi, pxother1, pxother2, pxother3) ;
tel

Fig. 13. Latching Failures

In Section VII-B, some properties of this allocation mechanism
will be formally verified.

VII. SOME EXPERIENCES IN FORMAL VERIFICATION

Ideally, the formal verification of such a program should
consist of comparing it with a global, abstract specification.
As it is often the case with real case-studies, this specification
is not available. The problem even more serious, here, since
the abstract specification of such a fault-tolerant system should
probably involve probabilistic properties, which are stated
nowhere, and which could not be handled by usual verification
tools.

So, we don’t know “what to verify” on the complete
program. However, there are two common cases where ver-
ification tools can be applied “locally”:

• When there are two ways of writing a node, one can write
both and try to show that they are equivalent. If they are
not, a bug is detected, at least, in one of them. If they
are, this increases the confidence one can have in any
of them. We will illustrate this situation on two versions

of the node values_nok, which detects cross-channel
faults.

• When some consistency properties are clearly expressed
in the requirements: for instance, we will try to prove that
at most two channels can become “reset-inhibited”.

A. Cross-channel fault detection

In the version of the node values_nok given
in Section VI-B, the output fault is defined as
maintain(TIME_CROSS_ROLL, cond), where cond
is a Boolean expression carefully detailing all the possible
combinations of failures. One could look for a more compact
and symmetrical condition, say cond1, expressing that all
the significant other measures are too different from the local
measure:

cond1 = ∀i ∈ [1..3], (¬pfotheri) ⇒ diffi
or

fault = maintain(TIME_CROSS_ROLL,
(pfother1 or diff1)

and (pfother2 or diff2)

Fig. 13 : Latching Failures

should probably involve probabilistic properties, which are 
stated nowhere, and which could not be handled by usual 
verification tools.

So, we don’t know “what to verify” on the complete 
program. However, there are two common cases where 
verification tools can be applied “locally”:

 � When there are two ways of writing a node, one can write 
both and try to show that they are equivalent. If they are 
not, a bug is detected, at least, in one of them. If they 
are, this increases the confidence one can have in any of 
them. We will illustrate this situation on two versions 
of the node values_nok, which detects cross-channel 
faults.

 � When some consistency properties are clearly expressed 
in the requirements: for instance, we will try to prove 
that at most two channels can become “reset-inhibited”.

A. Cross-channel fault detection

In the version of the node values_nok given in Section 
VI-B, the output fault is defined as maintain(TIME_
CROSS_ROLL, cond), where cond is a Boolean expression 
carefully detailing all the possible combinations of failures. 
One could look for a more compact and symmetrical condition, 
say cond1, expressing that all the significant other measures 
are too different from the local measure:

cond1 = "i Î [1...3]; (Øpfotheri)) diffi

or
fault = maintain(TIME_CROSS_ROLL,
    pfother1 or diff1)
    and (pfother2 or diff2)
    and (pfother3 or diff3));

So, we can write two complete versions of the node 
values_nok, with the same definition for the diffi and a 
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different definition for r. Then, we try, using our verification 
tools, to show that, whatever be the input sequences, they 
provide the same output sequence:
 � with the verification tool Lesar, the verification fails. 

The diagnosis returned by Lesar shows that it is due 
to the weakness of the tool: Lesar considers only the 
Boolean aspects of the program, and abstracts away all 
the numerical expressions. As a consequence, it produces 
a counter-example where the Boolean variables diff1, 
diff2, and diff3 (which are defined by numerical 
expressions) appearing in the two versions of the node 
have distinct values. It is a case of false negative.

 � the prototype NBac is able, to some extend, to take into 
account numerical aspects in the verification. It also fails 
in proving the equivalence of the two nodes, but indicates 
that the output may differ when all the inputs pfotheri 
are true. This is an actual discrepancy: in this case, the 
first version outputs fault = false (since none of 
other values is significant, the local one is assumed to be 
good), while the second version outputs fault = true. 
It is probably a bug in the second version, which can be 
fixed as follows:
fault = maintain(TIME_CROSS_ROLL,
   pfother1 or diff1)
 and (pfother2 or diff2)
 and (pfother3 or diff3)
 and not(pfother1 and pfother2 
 and pfother3));

Now, NBac shows that this fixed version is equivalent to 
the first one.

B. Allocation of “reset-inhibition”

In section VI-D we designed the “Global Allocator”, 
the role of which is to prevent more than two channels to 
become “reset-inhibited. We can try to verify the behavior 
of the allocator alone: we know that nb_aut, the number 
of authorizations, should stay smaller than 2. Of course, 
because of numerical variables, Lesar is not able to prove this 
property (the range of the counter being small, the node could 
be rewritten only with Boolean variables, but it is neither 
very natural, nor efficient). NBac proves the property very 
easily (in about 0.5 sec.).

A more ambitious verification consists in proving, on 
the integrated system, that at most two units can become 
resetinhibited, i.e., that not only are the authorizations 
correctly delivered, but also that they are correctly obeyed by 
the units.

The current version of NBac is not able to perform this 
verification, for two reasons:
 � on one hand, there are too many numerical variables, 

which makes the symbolic computations very complex. An 
interesting remark is that the variables corresponding to 
“roll” measures, while being used to determine failures, 
have no real influence on the property; the tool is not able 
to detect this fact, and to “slice” these variables away.

 � on the other hand, the determination of the suitable 

control structure is quite complex. Obviously, the 
automata involved in “FailDetect” should be taken into 
account, but the tool takes a very long time to find it.
These limitations suggest some improvements to the 

tool, which will be discussed in the conclusion.
So, we decided to use Lesar for this verification. For that, 

we have to modify the program, so that the property involves 
only Boolean computations. Since it only uses counters up to 
4, it is quite easy:
 � “FailDetect” must be changed to work only with Boolean 

variables: instead of encoding states by integers, we use 
pairs of Booleans, and we define a node to compare such 
pairs for equality:
const state1 = [false, true];
 state2 = [true, false];
 state3 = [true, true];
node EQState (s1, s2: [bool,bool])
  returns (eq: bool);
let
  eq =(s1[0]=s2[0]) and (s1[1]=s2[1]);
tel

Then, we change the definition of the state as follows:
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and (pfother3 or diff3));

So, we can write two complete versions of the node
values_nok, with the same definition for the diffi and a
different definition for r. Then, we try, using our verification
tools, to show that, whatever be the input sequences, they
provide the same output sequence:

• with the verification tool Lesar, the verification fails.
The diagnosis returned by Lesar shows that it is due
to the weakness of the tool: Lesar considers only the
Boolean aspects of the program, and abstracts away all
the numerical expressions. As a consequence, it produces
a counter-example where the Boolean variables diff1,
diff2, and diff3 (which are defined by numerical
expressions) appearing in the two versions of the node
have distinct values. It is a case of false negative.

• the prototype NBac is able, to some extend, to take into
account numerical aspects in the verification. It also
fails in proving the equivalence of the two nodes, but
indicates that the output may differ when all the inputs
pfotheri are true. This is an actual discrepancy: in
this case, the first version outputs fault = false
(since none of other values is significant, the local one is
assumed to be good), while the second version outputs
fault = true. It is probably a bug in the second
version, which can be fixed as follows:

fault = maintain(TIME_CROSS_ROLL,
pfother1 or diff1)

and (pfother2 or diff2)
and (pfother3 or diff3)
and not(pfother1 and pfother2

and pfother3));

Now, NBac shows that this fixed version is equivalent to
the first one.

B. Allocation of “reset-inhibition”

In section VI-D we designed the “Global Allocator”, the
role of which is to prevent more than two channels to
become “reset-inhibited. We can try to verify the behavior
of the allocator alone: we know that nb_aut, the number of
authorizations, should stay smaller than 2. Of course, because
of numerical variables, Lesar is not able to prove this property
(the range of the counter being small, the node could be
rewritten only with Boolean variables, but it is neither very
natural, nor efficient). NBac proves the property very easily
(in about 0.5 sec.).

A more ambitious verification consists in proving, on the
integrated system, that at most two units can become reset-
inhibited, i.e., that not only are the authorizations correctly
delivered, but also that they are correctly obeyed by the units.

The current version of NBac is not able to perform this
verification, for two reasons:

• on one hand, there are too many numerical variables,
which makes the symbolic computations very complex.
An interesting remark is that the variables corresponding
to “roll” measures, while being used to determine failures,
have no real influence on the property; the tool is not able
to detect this fact, and to “slice” these variables away.

• on the other hand, the determination of the suitable con-
trol structure is quite complex. Obviously, the automata
involved in “FailDetect” should be taken into account,
but the tool takes a very long time to find it.

These limitations suggest some improvements to the tool,
which will be discussed in the conclusion.

So, we decided to use Lesar for this verification. For that,
we have to modify the program, so that the property involves
only Boolean computations. Since it only uses counters up to
4, it is quite easy:

• “FailDetect” must be changed to work only with Boolean
variables: instead of encoding states by integers, we use
pairs of Booleans, and we define a node to compare such
pairs for equality:

const state1 = [false, true];
state2 = [true, false];
state3 = [true, true];

node EQState (s1, s2: [bool,bool])
returns (eq: bool);

let
eq =(s1[0]=s2[0]) and (s1[1]=s2[1]);

tel

Then, we change the definition of the state as follows:

state= state1 ->
if EQState(ps,state1) then

if pre(reset) then state1
else if pre(from1to2) then state2
else if pre(from1to3) then state3
else state1

else if EQState(ps,state2) then
if pre(from2to1) then state1
else if pre(from2to3) then state3
else state2

else
if pre(from3to1) then state1
else state3 ;

• The property must be expressed only with Boolean vari-
ables: the observer receives the states of the channels,
and returns a single Boolean which is false when at least
three of them are in state 3.

node verif(st1, st2, st3, st4:[bool,bool])
returns (ok: bool);

var three: bool;
inhib1, inhib2, inhib3, inhib4: bool;

let
-- at most 2 channels reset inhibited
ok = not three;

-- counting the number of inhibited units
three =(inhib1 and inhib2 and inhib3) or

(inhib1 and inhib2 and inhib4) or
(inhib1 and inhib3 and inhib4) or
(inhib2 and inhib3 and inhib4);

inhib1 = EQState(st1,state3);
inhib2 = EQState(st2,state3);
inhib3 = EQState(st3,state3);
inhib4 = EQState(st4,state3);

tel

Lesar proves this property in 69 sec.

 � The property must be expressed only with Boolean 
variables: the observer receives the states of the channels, 
and returns a single Boolean which is false when at least 
three of them are in state 3.
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The diagnosis returned by Lesar shows that it is due
to the weakness of the tool: Lesar considers only the
Boolean aspects of the program, and abstracts away all
the numerical expressions. As a consequence, it produces
a counter-example where the Boolean variables diff1,
diff2, and diff3 (which are defined by numerical
expressions) appearing in the two versions of the node
have distinct values. It is a case of false negative.

• the prototype NBac is able, to some extend, to take into
account numerical aspects in the verification. It also
fails in proving the equivalence of the two nodes, but
indicates that the output may differ when all the inputs
pfotheri are true. This is an actual discrepancy: in
this case, the first version outputs fault = false
(since none of other values is significant, the local one is
assumed to be good), while the second version outputs
fault = true. It is probably a bug in the second
version, which can be fixed as follows:

fault = maintain(TIME_CROSS_ROLL,
pfother1 or diff1)

and (pfother2 or diff2)
and (pfother3 or diff3)
and not(pfother1 and pfother2

and pfother3));

Now, NBac shows that this fixed version is equivalent to
the first one.

B. Allocation of “reset-inhibition”

In section VI-D we designed the “Global Allocator”, the
role of which is to prevent more than two channels to
become “reset-inhibited. We can try to verify the behavior
of the allocator alone: we know that nb_aut, the number of
authorizations, should stay smaller than 2. Of course, because
of numerical variables, Lesar is not able to prove this property
(the range of the counter being small, the node could be
rewritten only with Boolean variables, but it is neither very
natural, nor efficient). NBac proves the property very easily
(in about 0.5 sec.).

A more ambitious verification consists in proving, on the
integrated system, that at most two units can become reset-
inhibited, i.e., that not only are the authorizations correctly
delivered, but also that they are correctly obeyed by the units.

The current version of NBac is not able to perform this
verification, for two reasons:

• on one hand, there are too many numerical variables,
which makes the symbolic computations very complex.
An interesting remark is that the variables corresponding
to “roll” measures, while being used to determine failures,
have no real influence on the property; the tool is not able
to detect this fact, and to “slice” these variables away.

• on the other hand, the determination of the suitable con-
trol structure is quite complex. Obviously, the automata
involved in “FailDetect” should be taken into account,
but the tool takes a very long time to find it.

These limitations suggest some improvements to the tool,
which will be discussed in the conclusion.

So, we decided to use Lesar for this verification. For that,
we have to modify the program, so that the property involves
only Boolean computations. Since it only uses counters up to
4, it is quite easy:

• “FailDetect” must be changed to work only with Boolean
variables: instead of encoding states by integers, we use
pairs of Booleans, and we define a node to compare such
pairs for equality:

const state1 = [false, true];
state2 = [true, false];
state3 = [true, true];

node EQState (s1, s2: [bool,bool])
returns (eq: bool);

let
eq =(s1[0]=s2[0]) and (s1[1]=s2[1]);

tel

Then, we change the definition of the state as follows:

state= state1 ->
if EQState(ps,state1) then

if pre(reset) then state1
else if pre(from1to2) then state2
else if pre(from1to3) then state3
else state1

else if EQState(ps,state2) then
if pre(from2to1) then state1
else if pre(from2to3) then state3
else state2

else
if pre(from3to1) then state1
else state3 ;

• The property must be expressed only with Boolean vari-
ables: the observer receives the states of the channels,
and returns a single Boolean which is false when at least
three of them are in state 3.

node verif(st1, st2, st3, st4:[bool,bool])
returns (ok: bool);

var three: bool;
inhib1, inhib2, inhib3, inhib4: bool;

let
-- at most 2 channels reset inhibited
ok = not three;

-- counting the number of inhibited units
three =(inhib1 and inhib2 and inhib3) or

(inhib1 and inhib2 and inhib4) or
(inhib1 and inhib3 and inhib4) or
(inhib2 and inhib3 and inhib4);

inhib1 = EQState(st1,state3);
inhib2 = EQState(st2,state3);
inhib3 = EQState(st3,state3);
inhib4 = EQState(st4,state3);

tel

Lesar proves this property in 69 sec.Lesar proves this property in 69 sec.
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An other interesting property is that the allocator allows 
a maximum number of channels to become reset-inhibited. In 
other words, we want that, whenever at least two channels 
have requested to become reset-inhibited since the last “On- 
GroundReset”, then at least two of them (in fact, exactly two, 
because of the previous property) are actually reset-inhibited. 
This property can be expressed by the following observer: it 
receives the requests from channels to become reset-inhibited, 
the OnGroundReset” signal, and the state of the channels. 
The requests are memorized from each reset signal. Then the 
output is true iff whenever there is at least two memorized 
requests, at least two channels are in state 3 (remember that, 
in Lustre, #(x1,x2,...,xn) is a Boolean expression which 
is true iff at most 1 of its Boolean arguments xi is true; so, its 
negation expresses that at least two of them are true):
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An other interesting property is that the allocator allows a
maximum number of channels to become reset-inhibited. In
other words, we want that, whenever at least two channels
have requested to become reset-inhibited since the last “On-
GroundReset”, then at least two of them (in fact, exactly two,
because of the previous property) are actually reset-inhibited.
This property can be expressed by the following observer: it
receives the requests from channels to become reset-inhibited,
the OnGroundReset” signal, and the state of the channels.
The requests are memorized from each reset signal. Then the
output is true iff whenever there is at least two memorized
requests, at least two channels are in state 3 (remember that, in
Lustre, #(x1,x2,...,xn) is a Boolean expression which
is true iff at most 1 of its Boolean arguments xi is true; so,
its negation expresses that at least two of them are true):

node verif(ask1, ask2, ask3, ask4, reset: bool;
st1, st2, st3, st4: [bool, bool])

returns (ok: bool);
var morethantwoasks : bool;

req1, req2, req3, req4: bool;
inhib1, inhib2, inhib3, inhib4: bool;

let
-- if more than 2 requests, then
-- at least 2 channels in state 3
ok = (morethantworeqs =>

not #(inhib1, inhib2, inhib3, inhib4));

inhib1 = EQState(st1,state3);
inhib2 = EQState(st2,state3);
inhib3 = EQState(st3,state3);
inhib4 = EQState(st4,state3);

req1 = if (true -> reset) then false
else pre(req1) or ask1;

req2 = if (true -> reset) then false
else pre(req2) or ask2;

req3 = if (true -> reset) then false
else pre(req3) or ask3;

req4 = if (true -> reset) then false
else pre(req4) or ask4;

morethantworeqs =
not #(req1, req2, req3, req4);

tel

Lesar finds that this property is false. This is due to the fact
that requests only produce state changes at the next step. The
correct property must be written:

ok = true ->
(pre(morethantworeqs) =>
not #(inhib1, inhib2, inhib3, inhib4));

Now, Lesar finds, in 130 sec., that the property is satisfied.

VIII. CONCLUSION

We presented a real case study5 described in Lustre, and
validated with associated tools. The study throws light on

5For concision and confidentiality reasons, the case study was slightly
simplified in the paper, but it is still representative of the complexity of actual
system.

several aspects: the language itself, the design methodology,
and the validation tools.

The study demonstrates that case study is quite well-
suited for Lustre. A similar experiment performed with Esterel
[RS00], [SS03] showed that a data-flow language is much
more natural for most features of the system. Now, we
restricted ourselves to using only the kernel of Lustre which is
compatible with the industrial tool Scade. In the full academic
version of Lustre, we also have a powerful notion of arrays,
the use of which would have significantly reduced the size
of the description: all data symmetrically processed in each
channel should be structured in arrays. This usefulness of
arrays, both concerning the structure of the source program,
and the quality of the generated code, was confirmed by other
case studies. The most imperative part of the system is the
automata used in FailDetect for defining reset-inhibition.
While the description of such small automata is not difficult in
Lustre, it would be obviously easier with an extension based
on automata [MR03].

Concerning programming methodology, we have tried to
promote a progressive approach: the whole architecture is
designed first, and its components are progressively detailed
in turn. The interest is that an integrated — yet still in-
complete —, version of the program is always available for
simulation and validation. This approach completely differs
from the “progressive refinement” generally advocated (e.g.,
in B [Abr95]), where a non-deterministic specification is
progressively refined (i.e., made more deterministic) into a
program. Here, since we use a programming language, all
our descriptions are deterministic. So the design proceeds in
the reverse direction: an initial, very simplified description, is
progressively enriched until it matches the whole specification.
Of course, this pragmatic approach is less “formal”, but we
believe that it is more realistic, since it better meets engineers
uses. Also, because of the weaknesses of formal validation
tools, in their present state, early error detection by early
simulation — which is allowed by our approach — seems
to be more practical than early proof.

Finally, it was an interesting challenge for our validation
tools. We showed, first, that the Luciole simulator is extremely
useful, at each stage of the development, to quickly check
either the whole program or a single node. Concerning veri-
fication, we faced the usual problems due to lack of global
specification. However, some properties were available. A
first remark is that proving properties directly on the source
program requires, in most cases, a verification tool with
some numerical capabilities. Such capabilities are provided
by NBac, but the size of problems that it can handle must
be increased. The case study suggests some ways in which
the user can help NBac: as mentioned already, there should
be a way of abstracting away some Boolean variables whose
dependences on numerical values obviously don’t influence
the validity of the property; it was the case, in our example,
of the failure detections. On the other hand, the user should
be able to suggest an initial control structure; for instance the
automata used to determine the reset-inhibition were obviously
relevant to the verification. We were not able to apply our auto-
matic testing tool to this example, mainly because of missing

Lesar finds that this property is false. This is due to the 
fact that requests only produce state changes at the next step. 
The correct property must be written:
ok = true ->
  (pre(morethantworeqs) =>
   not #(inhib1, inhib2, inhib3, inhib4));

Now, Lesar finds, in 130 sec., that the property is 
satisfied.

VIII.  Conclusion
  We presented a real case study5 described in Lustre, 

and validated with associated tools. The study throws light on 
several aspects: the language itself, the design methodology, 
and the validation tools.

The study demonstrates that case study is quite 
wellsuited for Lustre. A similar experiment performed with 
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While the description of such small automata is not difficult 
in Lustre, it would be obviously easier with an extension 
based on automata [MR03].

Concerning programming methodology, we have tried 
to promote a progressive approach: the whole architecture 
is designed first, and its components are progressively 
detailed in turn. The interest is that an integrated — yet still 
incomplete —, version of the program is always available 
for simulation and validation. This approach completely 
differs from the “progressive refinement” generally advocated 
(e.g., in B [Abr95]), where a non-deterministic specification 
is progressively refined (i.e., made more deterministic) into 
a program. Here, since we use a programming language, 
all our descriptions are deterministic. So the design 
proceeds in the reverse direction: an initial, very simplified 
description, is progressively enriched until it matches the 
whole specification. Of course, this pragmatic approach is 
less “formal”, but we believe that it is more realistic, since it 
better meets engineers uses. Also, because of the weaknesses 
of formal validation tools, in their present state, early error 
detection by early simulation — which is allowed by our 
approach — seems to be more practical than early proof.

Finally, it was an interesting challenge for our validation 
tools. We showed, first, that the Luciole simulator is 
extremely useful, at each stage of the development, to quickly 
check either the whole program or a single node. Concerning 
verification, we faced the usual problems due to lack of global 
specification. However, some properties were available. A 
first remark is that proving properties directly on the source 
program requires, in most cases, a verification tool with 
some numerical capabilities. Such capabilities are provided 
by NBac, but the size of problems that it can handle must 
be increased. The case study suggests some ways in which 
the user can help NBac: as mentioned already, there should 
be a way of abstracting away some Boolean variables whose 
dependences on numerical values obviously don’t influence 
the validity of the property; it was the case, in our example, 
of the failure detections. On the other hand, the user should 

5 For concision and confidentiality reasons, the case study was slightly simplified in the paper, but it is still representative of the 
complexity of actual system.
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be able to suggest an initial control structure; for instance 
the automata used to determine the reset-inhibition were 
obviously relevant to the verification. We were not able to 
apply our automatic testing tool to this example, mainly 
because of missing knowledge, both about the assumptions 
on the environment and about the global properties to be 
checked on the whole system. This is a challenging area of 
pursuit.
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