
CSI Journal of Computing | Vol. 1 • No. 4, 2012

F. Maraninchi, et. al. 7 : 69

Specification and Validation of Embedded Systems:
A Case Study of a Fault-Tolerant Data Acquisition
System with Lustre Programming environment

1

Specification and Validation of Embedded Systems:
A Case Study of a Fault-Tolerant Data Acquisition

System with Lustre Programming environment†
F. Maraninchi, N. Halbwachs, P. Raymond, C. Parent

Vérimag� , Grenoble University, France
{Florence.Maraninchi,Nicolas.Halbwachs,Pascal.Raymond,C.Parent}@imag.fr

R.K. Shyamasundar
Tata Institute of Fundamental Research, Mumbai, India,

shyam@tifr.res.in

Abstract—We show how to specify and validate an embedded
system using the Lustre programming environment. The case-
study considered is a fault-tolerant system for the acquisition of
gyroscopic data in a military aircraft. We illustrate the use of
Lustre tools for describing, simulating, and verifying the system.
Beside, we show how the formalization of the requirements
by means of an executable language allows ambiguities to be
removed, and how the system can be developed step by step, while
simulation and validation take place at each step. We believe
that this example is representative of a wide class of embedded
systems.

Keywords:Embedded real-time systems,Language design and
implementation, Synchronous languages,Formal methods,Formal
verification,Executable specifications.

I. INTRODUCTION

The family of synchronous languages [BB91], [BCE+03]
has been quite successful in offering formally defined lan-
guages and programming environments for safety-critical re-
active systems.

Lustre [CHPP87] has been defined and studied in the Ver-
imag laboratory. It is a dataflow language, well-suited for the
description of regulation systems. The industrial programming
environment SCADE, developped by Esterel-Technologies1,
is based upon Lustre. SCADE is now a de-facto standard,
worldwide, for the development of critical embedded sotware,
especially in avionics, automotive, or energy production. On
the academic side, several tools have been developed around
Lustre at Verimag: a simulator called Luciole, a debugger
called Ludic, two verification tools — Lesar is a model-
checker, NBac is a tool based on abstract interpretation and
dedicated to the verification of numerical properties — and a
tool for automatic testing, Lurette.

In this paper, we illustrate the use of these tools in the
design of a component of an avionic software. The example
is a fault-tolerant system computing the gyroscopic data for a
military aircraft.

† The authors thank IFCPAR (Indo-French Centre for Promotion of
Advanced Research) under which part of the work was done.
� Verimag is a joint laboratory of Université Joseph Fourier, CNRS and

Grenoble-INP.
1see http://www.esterel-technologies.com/.

a. What is in the paper: Apart from demonstrating the use
of LUSTRE tools, the goal of the paper is twofold:
– it intends to show how the use of an executable,

formally clean, description language can help in un-
derstanding an informal specification, in removing
ambiguities, and in communicating, by showing early
simulation, with the author of the specification.

– it illustrates a progressive top-down design, with sim-
ulation and validation at each step.

b. What is not in the paper: Two important features of the
case studies were not considered during this experiment:
– The considered system aims at fault-tolerance. While

the experiment shows that the approach is well-suited
for programming this kind of fault-tolerance software,
the problem of measuring and validating the fault-
tolerance itself was not addressed at all. On one hand,
it would need the use of completely different valida-
tion tools (taking into account stochastic aspects), and
on the other hand no quantitative requirements were
available for the case study.

– The real implementation should be distributed. In this
study, we only considered the functional aspects of the
specification, and we did not address the distribution.
Note that an ideal approach would be to validate
first a centralized version of such a specification, and
to use automatic code distribution tools preserving
the functional properties. Some proposals for such an
automatic distribution of LUSTRE programs have been
made [CGP99], [CMSW99], [SC04].

II. AN OVERVIEW OF LUSTRE AND ITS PROGRAMMING
ENVIRONMENT

A. The language

In a dataflow language for reactive systems, both the inputs
and outputs of the system are described by their flows of values
along time. Time is discrete and instants may be numbered by
integers. If x is a flow, we will note xn its value at the nth
reaction (or nth instant) of the program.

A program consumes input flows and computes output
flows, possibly using local flows which are not visible from the

F. Maraninchi*, N. Halbwachs*, P. Raymond*, C. Parent* and R. K. Shyamasundar**

* Verimag

1

Specification and Validation of Embedded Systems:
A Case Study of a Fault-Tolerant Data Acquisition

System with Lustre Programming environment†
F. Maraninchi, N. Halbwachs, P. Raymond, C. Parent

Vérimag� , Grenoble University, France
{Florence.Maraninchi,Nicolas.Halbwachs,Pascal.Raymond,C.Parent}@imag.fr

R.K. Shyamasundar
Tata Institute of Fundamental Research, Mumbai, India,

shyam@tifr.res.in

Abstract—We show how to specify and validate an embedded
system using the Lustre programming environment. The case-
study considered is a fault-tolerant system for the acquisition of
gyroscopic data in a military aircraft. We illustrate the use of
Lustre tools for describing, simulating, and verifying the system.
Beside, we show how the formalization of the requirements
by means of an executable language allows ambiguities to be
removed, and how the system can be developed step by step, while
simulation and validation take place at each step. We believe
that this example is representative of a wide class of embedded
systems.

Keywords:Embedded real-time systems,Language design and
implementation, Synchronous languages,Formal methods,Formal
verification,Executable specifications.

I. INTRODUCTION

The family of synchronous languages [BB91], [BCE+03]
has been quite successful in offering formally defined lan-
guages and programming environments for safety-critical re-
active systems.

Lustre [CHPP87] has been defined and studied in the Ver-
imag laboratory. It is a dataflow language, well-suited for the
description of regulation systems. The industrial programming
environment SCADE, developped by Esterel-Technologies1,
is based upon Lustre. SCADE is now a de-facto standard,
worldwide, for the development of critical embedded sotware,
especially in avionics, automotive, or energy production. On
the academic side, several tools have been developed around
Lustre at Verimag: a simulator called Luciole, a debugger
called Ludic, two verification tools — Lesar is a model-
checker, NBac is a tool based on abstract interpretation and
dedicated to the verification of numerical properties — and a
tool for automatic testing, Lurette.

In this paper, we illustrate the use of these tools in the
design of a component of an avionic software. The example
is a fault-tolerant system computing the gyroscopic data for a
military aircraft.

† The authors thank IFCPAR (Indo-French Centre for Promotion of
Advanced Research) under which part of the work was done.
� Verimag is a joint laboratory of Université Joseph Fourier, CNRS and

Grenoble-INP.
1see http://www.esterel-technologies.com/.

a. What is in the paper: Apart from demonstrating the use
of LUSTRE tools, the goal of the paper is twofold:
– it intends to show how the use of an executable,

formally clean, description language can help in un-
derstanding an informal specification, in removing
ambiguities, and in communicating, by showing early
simulation, with the author of the specification.

– it illustrates a progressive top-down design, with sim-
ulation and validation at each step.

b. What is not in the paper: Two important features of the
case studies were not considered during this experiment:
– The considered system aims at fault-tolerance. While

the experiment shows that the approach is well-suited
for programming this kind of fault-tolerance software,
the problem of measuring and validating the fault-
tolerance itself was not addressed at all. On one hand,
it would need the use of completely different valida-
tion tools (taking into account stochastic aspects), and
on the other hand no quantitative requirements were
available for the case study.

– The real implementation should be distributed. In this
study, we only considered the functional aspects of the
specification, and we did not address the distribution.
Note that an ideal approach would be to validate
first a centralized version of such a specification, and
to use automatic code distribution tools preserving
the functional properties. Some proposals for such an
automatic distribution of LUSTRE programs have been
made [CGP99], [CMSW99], [SC04].

II. AN OVERVIEW OF LUSTRE AND ITS PROGRAMMING
ENVIRONMENT

A. The language

In a dataflow language for reactive systems, both the inputs
and outputs of the system are described by their flows of values
along time. Time is discrete and instants may be numbered by
integers. If x is a flow, we will note xn its value at the nth
reaction (or nth instant) of the program.

A program consumes input flows and computes output
flows, possibly using local flows which are not visible from the

 Grenoble University, France, {Florence.Maraninchi, Nicolas.Halbwachs, Pascal.Raymond,
 Catherine.Parent}@imag.fr
** Tata Institute of Fundamental Research, Mumbai, India, shyam@tifr.res.in

We show how to specify and validate an embedded system using the Lustre programming
environment. The case-study considered is a fault-tolerant system for the acquisition of gyroscopic
data in a military aircraft. We illustrate the use of Lustre tools for describing, simulating, and
verifying the system. Beside, we show how the formalization of the requirements by means of an
executable language allows ambiguities to be removed, and how the system can be developed step
by step, while simulation and validation take place at each step. We believe that this example is
representative of a wide class of embedded systems.

Keywords - Embedded real-time systems,Language design and implementation, Synchronous languages,
 Formal methods, Formal verification, Executable specifications.

I. Introduction

The family of synchronous languages [BB91], [BCE+03]
has been quite successful in offering formally defined
languages and programming environments for safety-critical
reactive systems.

Lustre [CHPP87] has been defined and studied in the
Verimag laboratory. It is a dataflow language, well-suited
for the description of regulation systems. The industrial
programming environment SCADE, developped by Esterel-
Technologies1, is based upon Lustre. SCADE is now a de-
facto standard, worldwide, for the development of critical
embedded sotware, especially in avionics, automotive, or
energy production. On the academic side, several tools have
been developed around Lustre at Verimag: a simulator called
Luciole, a debugger called Ludic, two verification tools —
Lesar is a modelchecker, NBac is a tool based on abstract
interpretation and dedicated to the verification of numerical
properties — and a tool for automatic testing, Lurette.

In this paper, we illustrate the use of these tools in the
design of a component of an avionic software. The example is
a fault-tolerant system computing the gyroscopic data for a
military aircraft.
a. What is in the paper: Apart from demonstrating the use

of LUSTRE tools, the goal of the paper is twofold:

 – it intends to show how the use of an executable,
formally clean, description language can help
in understanding an informal specification, in
removing ambiguities, and in communicating, by
showing early simulation, with the author of the
specification.

 – it illustrates a progressive top-down design, with
simulation and validation at each step.

b. What is not in the paper: Two important features of the
case studies were not considered during this experiment:
 – The considered system aims at fault-tolerance.

While the experiment shows that the approach
is well-suited for programming this kind of fault-
tolerance software, the problem of measuring
and validating the faulttolerance itself was not
addressed at all. On one hand, it would need the use
of completely different validation tools (taking into
account stochastic aspects), and on the other hand
no quantitative requirements were available for the
case study.

 – The real implementation should be distributed.
In this study, we only considered the functional
aspects of the specification, and we did not address

1

Specification and Validation of Embedded Systems:
A Case Study of a Fault-Tolerant Data Acquisition

System with Lustre Programming environment†
F. Maraninchi, N. Halbwachs, P. Raymond, C. Parent

Vérimag� , Grenoble University, France
{Florence.Maraninchi,Nicolas.Halbwachs,Pascal.Raymond,C.Parent}@imag.fr

R.K. Shyamasundar
Tata Institute of Fundamental Research, Mumbai, India,

shyam@tifr.res.in

Abstract—We show how to specify and validate an embedded
system using the Lustre programming environment. The case-
study considered is a fault-tolerant system for the acquisition of
gyroscopic data in a military aircraft. We illustrate the use of
Lustre tools for describing, simulating, and verifying the system.
Beside, we show how the formalization of the requirements
by means of an executable language allows ambiguities to be
removed, and how the system can be developed step by step, while
simulation and validation take place at each step. We believe
that this example is representative of a wide class of embedded
systems.

Keywords:Embedded real-time systems,Language design and
implementation, Synchronous languages,Formal methods,Formal
verification,Executable specifications.

I. INTRODUCTION

The family of synchronous languages [BB91], [BCE+03]
has been quite successful in offering formally defined lan-
guages and programming environments for safety-critical re-
active systems.

Lustre [CHPP87] has been defined and studied in the Ver-
imag laboratory. It is a dataflow language, well-suited for the
description of regulation systems. The industrial programming
environment SCADE, developped by Esterel-Technologies1,
is based upon Lustre. SCADE is now a de-facto standard,
worldwide, for the development of critical embedded sotware,
especially in avionics, automotive, or energy production. On
the academic side, several tools have been developed around
Lustre at Verimag: a simulator called Luciole, a debugger
called Ludic, two verification tools — Lesar is a model-
checker, NBac is a tool based on abstract interpretation and
dedicated to the verification of numerical properties — and a
tool for automatic testing, Lurette.

In this paper, we illustrate the use of these tools in the
design of a component of an avionic software. The example
is a fault-tolerant system computing the gyroscopic data for a
military aircraft.

† The authors thank IFCPAR (Indo-French Centre for Promotion of
Advanced Research) under which part of the work was done.

� Verimag is a joint laboratory of Université Joseph Fourier, CNRS and
Grenoble-INP.

1see http://www.esterel-technologies.com/.

a. What is in the paper: Apart from demonstrating the use
of LUSTRE tools, the goal of the paper is twofold:
– it intends to show how the use of an executable,

formally clean, description language can help in un-
derstanding an informal specification, in removing
ambiguities, and in communicating, by showing early
simulation, with the author of the specification.

– it illustrates a progressive top-down design, with sim-
ulation and validation at each step.

b. What is not in the paper: Two important features of the
case studies were not considered during this experiment:
– The considered system aims at fault-tolerance. While

the experiment shows that the approach is well-suited
for programming this kind of fault-tolerance software,
the problem of measuring and validating the fault-
tolerance itself was not addressed at all. On one hand,
it would need the use of completely different valida-
tion tools (taking into account stochastic aspects), and
on the other hand no quantitative requirements were
available for the case study.

– The real implementation should be distributed. In this
study, we only considered the functional aspects of the
specification, and we did not address the distribution.
Note that an ideal approach would be to validate
first a centralized version of such a specification, and
to use automatic code distribution tools preserving
the functional properties. Some proposals for such an
automatic distribution of LUSTRE programs have been
made [CGP99], [CMSW99], [SC04].

II. AN OVERVIEW OF LUSTRE AND ITS PROGRAMMING
ENVIRONMENT

A. The language

In a dataflow language for reactive systems, both the inputs
and outputs of the system are described by their flows of values
along time. Time is discrete and instants may be numbered by
integers. If x is a flow, we will note xn its value at the nth
reaction (or nth instant) of the program.

A program consumes input flows and computes output
flows, possibly using local flows which are not visible from the

 The authors thank IFCPAR (Indo-French Centre for Promotion of Advanced Research) under which part of the work was done.

1

Specification and Validation of Embedded Systems:
A Case Study of a Fault-Tolerant Data Acquisition

System with Lustre Programming environment†
F. Maraninchi, N. Halbwachs, P. Raymond, C. Parent

Vérimag� , Grenoble University, France
{Florence.Maraninchi,Nicolas.Halbwachs,Pascal.Raymond,C.Parent}@imag.fr

R.K. Shyamasundar
Tata Institute of Fundamental Research, Mumbai, India,

shyam@tifr.res.in

Abstract—We show how to specify and validate an embedded
system using the Lustre programming environment. The case-
study considered is a fault-tolerant system for the acquisition of
gyroscopic data in a military aircraft. We illustrate the use of
Lustre tools for describing, simulating, and verifying the system.
Beside, we show how the formalization of the requirements
by means of an executable language allows ambiguities to be
removed, and how the system can be developed step by step, while
simulation and validation take place at each step. We believe
that this example is representative of a wide class of embedded
systems.

Keywords:Embedded real-time systems,Language design and
implementation, Synchronous languages,Formal methods,Formal
verification,Executable specifications.

I. INTRODUCTION

The family of synchronous languages [BB91], [BCE+03]
has been quite successful in offering formally defined lan-
guages and programming environments for safety-critical re-
active systems.

Lustre [CHPP87] has been defined and studied in the Ver-
imag laboratory. It is a dataflow language, well-suited for the
description of regulation systems. The industrial programming
environment SCADE, developped by Esterel-Technologies1,
is based upon Lustre. SCADE is now a de-facto standard,
worldwide, for the development of critical embedded sotware,
especially in avionics, automotive, or energy production. On
the academic side, several tools have been developed around
Lustre at Verimag: a simulator called Luciole, a debugger
called Ludic, two verification tools — Lesar is a model-
checker, NBac is a tool based on abstract interpretation and
dedicated to the verification of numerical properties — and a
tool for automatic testing, Lurette.

In this paper, we illustrate the use of these tools in the
design of a component of an avionic software. The example
is a fault-tolerant system computing the gyroscopic data for a
military aircraft.

† The authors thank IFCPAR (Indo-French Centre for Promotion of
Advanced Research) under which part of the work was done.
� Verimag is a joint laboratory of Université Joseph Fourier, CNRS and

Grenoble-INP.
1see http://www.esterel-technologies.com/.

a. What is in the paper: Apart from demonstrating the use
of LUSTRE tools, the goal of the paper is twofold:
– it intends to show how the use of an executable,

formally clean, description language can help in un-
derstanding an informal specification, in removing
ambiguities, and in communicating, by showing early
simulation, with the author of the specification.

– it illustrates a progressive top-down design, with sim-
ulation and validation at each step.

b. What is not in the paper: Two important features of the
case studies were not considered during this experiment:
– The considered system aims at fault-tolerance. While

the experiment shows that the approach is well-suited
for programming this kind of fault-tolerance software,
the problem of measuring and validating the fault-
tolerance itself was not addressed at all. On one hand,
it would need the use of completely different valida-
tion tools (taking into account stochastic aspects), and
on the other hand no quantitative requirements were
available for the case study.

– The real implementation should be distributed. In this
study, we only considered the functional aspects of the
specification, and we did not address the distribution.
Note that an ideal approach would be to validate
first a centralized version of such a specification, and
to use automatic code distribution tools preserving
the functional properties. Some proposals for such an
automatic distribution of LUSTRE programs have been
made [CGP99], [CMSW99], [SC04].

II. AN OVERVIEW OF LUSTRE AND ITS PROGRAMMING
ENVIRONMENT

A. The language

In a dataflow language for reactive systems, both the inputs
and outputs of the system are described by their flows of values
along time. Time is discrete and instants may be numbered by
integers. If x is a flow, we will note xn its value at the nth
reaction (or nth instant) of the program.

A program consumes input flows and computes output
flows, possibly using local flows which are not visible from the

 Verimag is a joint laboratory of Universit´e Joseph Fourier, CNRS and Grenoble-INP.
1 see http://www.esterel-technologies.com/.

CSI Journal of Computing | Vol. 1 • No. 4, 2012

7 : 70
 Specification and Validation of Embedded Systems: A Case Study of a

Fault-Tolerant Data Acquisition System with Lustre Programming environment

the distribution. Note that an ideal approach would
be to validate first a centralized version of such a
specification, and to use automatic code distribution
tools preserving the functional properties. Some
proposals for such an automatic distribution of
LUSTRE programs have been made [CGP99],
[CMSW99], [SC04].

II. An Overview of Lustre and its Programming
 Environment

A. The language

In a dataflow language for reactive systems, both the
inputs and outputs of the system are described by their flows
of values along time. Time is discrete and instants may be
numbered by integers. If x is a flow, we will note xn its value
at the nth reaction (or nth instant) of the program.

A program consumes input flows and computes output
flows, possibly using local flows which are not visible from
the environment. Local and output flows are defined by
equations. An equation “x = y + z” defines the flow x from the
flows y and z in such a way that, at each instant n, xn = yn + zn.

A set of such equations, using arithmetic, Boolean, etc.
operators, describes a network of operators, and is similar
to the description of a combinational circuit. The same
constraints apply: one should not write sets of equations with
instantaneous loops, like : {x = y + z; z = x + 1; ...}. This is
a set of fixpoint equations that perhaps has solutions (see
[SBT96], for more detailed discussion), but it is not accepted
as a dataflow program. For referencing the past, the operator
pre is introduced : "n > 0; (pre(x))n = xn–1.

One typically writes T = pre(T) + i, where T is an
output, and i is an input. It means that, at each instant, the
value of the flow T is obtained by adding the current value of
the input i to the previous value of T. Initialization of flows
is provided by the –> operator. E –> F is an expression, the
value of which is the one of E at the first instant (i.e., E0), and
then the one of F forever (i.e., Fn:"n > 1). The equation X =
0 –> pre(X) + 1 defines the flow of integers; as a reactive
program, it produces values on the basic clock.

The conditional structure is a ternary combinational
operator, and is strict: the two branches are always evaluated.
One writes: X = if C then E else F, where C is a Boolean
expression and E1, E2 are two expressions of the same type,
meaning: "n > 0, Xn = if Cn then En else Fn.

The language is structured by the definition of reusable
nodes that can be called anywhere in expressions defining
variables. Programs usually input a library of small
wellidentified reactive behaviors, like a “two-states” with
reset, a “bounded counter”, etc.

B. An example Lustre program
As a very simple example of program, we give a Lustre

node that will be used later in the case study. The node named
“maintain” denotes an operator that receives an integer n
and a Boolean b as input parameters, and computes a Boolean

output m, which is true whenever b has been maintained high
during the last n cycles. The node uses a counter cpt, which is
set to n whenever b is false, and decremented to 0 otherwise.
The output m is true when cpt is zero.

2

environment. Local and output flows are defined by equations.
An equation “x = y + z” defines the flow x from the flows y
and z in such a way that, at each instant n, xn = yn + zn.

A set of such equations, using arithmetic, Boolean, etc.
operators, describes a network of operators, and is similar
to the description of a combinational circuit. The same con-
straints apply: one should not write sets of equations with
instantaneous loops, like : {x = y + z, z = x + 1, ...}. This
is a set of fixpoint equations that perhaps has solutions (see
[SBT96], for more detailed discussion), but it is not accepted
as a dataflow program. For referencing the past, the operator
pre is introduced : ∀n > 0, (pre(x))n = xn−1.

One typically writes T = pre(T) + i, where T is an
output, and i is an input. It means that, at each instant, the
value of the flow T is obtained by adding the current value of
the input i to the previous value of T. Initialization of flows
is provided by the -> operator. E -> F is an expression, the
value of which is the one of E at the first instant (i.e., E0),
and then the one of F forever (i.e., Fn.∀n > 1). The equation
X = 0 -> pre(X) + 1 defines the flow of integers; as a
reactive program, it produces values on the basic clock.

The conditional structure is a ternary combinational opera-
tor, and is strict: the two branches are always evaluated. One
writes: X = if C then E else F, where C is a Boolean
expression and E1, E2 are two expressions of the same type,
meaning: ∀n > 0, Xn = if Cn then En else Fn.

The language is structured by the definition of reusable
nodes that can be called anywhere in expressions defining
variables. Programs usually input a library of small well-
identified reactive behaviors, like a “two-states” with reset,
a “bounded counter”, etc.

B. An example Lustre program
As a very simple example of program, we give a Lustre node

that will be used later in the case study. Called “maintain”,
this operator receives an integer n and a Boolean b as input
parameters, and computes a Boolean output m, which is true
whenever b has been maintained high during the last n cycles.
The node uses a counter cpt, which is set to n whenever b
is false, and decremented to 0 otherwise. The output m is true
when cpt is zero.

node maintain (n : int ; b : bool)
returns (m : bool) ;

var cpt : int ;
let

cpt = n -> if b then
if pre(cpt)>0 then

pre(cpt) - 1
else pre(cpt)

else n ;
m = (cpt = 0) ;

tel

C. The programming environment
In addition to the industrial environment SCADE — which

proposes a graphical interface, a simulator, and a compiler —,

an academic toolset has been developed around Lustre. The
following tools or prototypes are available:

• a compiler into C.
• a simulator, called Luciole, which allows an early sim-

ulation of Lustre nodes. It displays an interactive board,
where inputs can be entered and outputs are displayed. It
is connected with the tool Sim2chro, which displays the
history of inputs/outputs by means of timing diagrams.

• two verification tools: they are both restricted to the
verification of safety properties, described by means of
synchronous observers [HLR93]: a synchronous observer
is a Lustre program, taking as inputs the input/output
variables of the program under verification, and signal-
ing whenever the property considered is violated. This
technique is used both for describing required properties,
and assertions about the environment which must be
assumed for these properties to hold. The tools differ in
the techniques applied for verification:
– Lesar [RHR91] is quite a standard symbolic model-

checker [BCM+90]. It checks the property by explor-
ing (enumeratively or symbolically) a finite state model
of the program, which abstracts away all its numerical
aspects. As a consequence, it is not able to verify
properties depending on the dynamic behavior of the
numerical variables. It should be used for control-
dominated properties.

– NBac [JHR99] is able to handle simple numerical
properties, thanks to the use of “Linear Relation Anal-
ysis” [HPR97], a special case of abstract interpreta-
tion [CC77]. However, NBac is much more expensive
than Lesar, and should only be applied to fairly small
programs.

• An automatic testing tool, Lurette [RWNH98], [JRB04].
It requires the specification of the program environment
(telling which input sequences are considered realistic)
and of the expected behavior of the program, both of these
specifications being given as synchronous observers. It is
able to generate an arbitrary number of arbitrarily long
realistic input sequences, while running the program on
these sequences and checking that its behavior satisfies
the specified behavior.

• a prototype debugging tool [MG00].

Industrial vs. academic tools
Since the release of Scade-V6, there are significant dis-

crepancies between the industrial and academic versions of
the language. In particular, Scade-V6 contains a notion of
hierarchic automata [CPP05], inspired both by Esterel [BS91]
and mode automata [MR03], which is not in the academic
version. The mechanisms for defining and handling arrays are
also different. In this paper, we will not use these incompatible
features, thus conforming to both versions.

III. INFORMAL DESCRIPTION OF THE GYROSCOPIC
SYSTEM

A. Development of the Case Study

We started from an informal specification in English, made
of functional requirements and some timing requirements, that

C. The programming environment

In addition to the industrial environment SCADE —
which proposes a graphical interface, a simulator, and a
compiler —, an academic toolset has been developed around
Lustre. The following tools or prototypes are available:
 � a compiler into C.
 � a simulator, called Luciole, which allows an early

simulation of Lustre nodes. It displays an interactive
board, where inputs can be entered and outputs are
displayed. It is connected with the tool Sim2chro,
which displays the history of inputs/outputs by means
of timing diagrams.

 � two verification tools: they are both restricted to the
verification of safety properties, described by means
of synchronous observers [HLR93]: a synchronous
observer is a Lustre program, taking as inputs
the input/output variables of the program under
verification, and signaling whenever the property
considered is violated. This technique is used both for
describing required properties, and assertions about
the environment which must be assumed for these
properties to hold. The tools differ in the techniques
applied for verification:
 – Lesar [RHR91] is quite a standard symbolic

modelchecker [BCM+90]. It checks the property
by exploring (enumeratively or symbolically) a
finite state model of the program, which abstracts
away all its numerical aspects. As a consequence,
it is not able to verify properties depending on the
dynamic behavior of the numerical variables. It
should be used for control dominated properties.

 – NBac [JHR99] is able to handle simple numerical
properties, thanks to the use of “Linear Relation
Analysis” [HPR97], a special case of abstract
interpretation [CC77]. However, NBac is much
more expensive than Lesar, and should only be
applied to fairly small programs.

 � a prototype debugging tool [MG00].

CSI Journal of Computing | Vol. 1 • No. 4, 2012

F. Maraninchi, et. al. 7 : 71

Industrial vs. academic tools

Since the release of Scade-V6, there are significant
discrepancies between the industrial and academic versions
of the language. In particular, Scade-V6 contains a notion
of hierarchic automata [CPP05], inspired both by Esterel
[BS91] and mode automata [MR03], which is not in the
academic version. The mechanisms for defining and handling
arrays are also different. In this paper, we will not use these
incompatible features, thus conforming to both versions.

III. Informal description of the Gyroscopic
 System

A. Development of the Case Study

We started from an informal specification in English,
made of functional requirements and some timing
requirements, that are called performance requirements.
For instance, several distinct working rates are required
for the parts of the system: 0.05s, 0.0125s, etc.

3

physical connections
each of them made of 2 wires

4 x 3 Faulty

(4 x 3 values, deg/s)
4 identical physical devices

Roll

Pitch

Yaw

(4 x 3 x 2 inputs)

system
tolerant
Fault-

3 “secure”
values

Fig. 2. Description of the physical system

physical connections
each of them made of 2 wires

4 x 1 Faulty

(4 x 1 values, deg/s)
4 identical physical devices

Roll

system
tolerant
Fault-

1 ”secure”
value

(4 x 1 x 2 inputs)

Fig. 3. Description of the physical system for one axis

are called performance requirements. For instance, several
distinct working rates are required for the parts of the system:
0.05s, 0.0125s, etc.

We first identified the system interface, i.e., the physical
inputs and outputs, and some additional inputs that model
faults. Then we wrote a single-clock Lustre program mim-
icking the internal structure of the informal specification, but
forgetting about the multi-rate requirements. This is already
an interpretation of the informal specification. For instance,
we translated the English “a followed by b immediately” by
“at the next step”.

At each step of the development, we ran manual simulations,
and, as far as possible, we used verification tools to establish
important properties.

B. Physical structure

Figure 2 describes the system and its physical environment.
The system is connected to four gyroscopes, each of them
measuring the angle variations along three axes named roll,
pitch and yaw. The values obtained by one of these physical
devices, for one axis, are transmitted to the computer system
along two wires. Hence the system receives 4× 3× 2 values.
From these 24 values, it has to compute only three, called
secure values.

The first step in modeling the system in Lustre, is to
concentrate on one axis only, since the behaviour on all axes
are all the same2. We shall be using the diagram depicted in
Figure 3 as the reference in the rest of the paper.

2Actually, the behaviour of pitch is slightly different.

3

physical connections
each of them made of 2 wires

4 x 3 Faulty

(4 x 3 values, deg/s)
4 identical physical devices

Roll

Pitch

Yaw

(4 x 3 x 2 inputs)

system
tolerant
Fault-

3 “secure”
values

Fig. 2. Description of the physical system

physical connections
each of them made of 2 wires

4 x 1 Faulty

(4 x 1 values, deg/s)
4 identical physical devices

Roll

system
tolerant
Fault-

1 ”secure”
value

(4 x 1 x 2 inputs)

Fig. 3. Description of the physical system for one axis

are called performance requirements. For instance, several
distinct working rates are required for the parts of the system:
0.05s, 0.0125s, etc.

We first identified the system interface, i.e., the physical
inputs and outputs, and some additional inputs that model
faults. Then we wrote a single-clock Lustre program mim-
icking the internal structure of the informal specification, but
forgetting about the multi-rate requirements. This is already
an interpretation of the informal specification. For instance,
we translated the English “a followed by b immediately” by
“at the next step”.

At each step of the development, we ran manual simulations,
and, as far as possible, we used verification tools to establish
important properties.

B. Physical structure

Figure 2 describes the system and its physical environment.
The system is connected to four gyroscopes, each of them
measuring the angle variations along three axes named roll,
pitch and yaw. The values obtained by one of these physical
devices, for one axis, are transmitted to the computer system
along two wires. Hence the system receives 4× 3× 2 values.
From these 24 values, it has to compute only three, called
secure values.

The first step in modeling the system in Lustre, is to
concentrate on one axis only, since the behaviour on all axes
are all the same2. We shall be using the diagram depicted in
Figure 3 as the reference in the rest of the paper.

2Actually, the behaviour of pitch is slightly different.

Fig. 2 : Description of the physical system

Fig. 3 : Description of the physical system for one axis

CSI Journal of Computing | Vol. 1 • No. 4, 2012

7 : 72
 Specification and Validation of Embedded Systems: A Case Study of a

Fault-Tolerant Data Acquisition System with Lustre Programming environment

We first identified the system interface, i.e., the
physical inputs and outputs, and some additional
inputs that model faults. Then we wrote a single-clock
Lustre program mimicking the internal structure of the
informal specification, but forgetting about the multi-
rate requirements. This is already an interpretation of
the informal specification. For instance, we translated the
English “a followed by b immediately” by “at the next step”.

At each step of the development, we ran manual
simulations, and, as far as possible, we used verification
tools to establish important properties.

B. Physical structure

Fig. 2 describes the system and its physical
environment. The system is connected to four gyroscopes,
each of them measuring the angle variations along three
axes named roll, pitch and yaw. The values obtained by
one of these physical devices, for one axis, are transmitted
to the computer system along two wires. Hence the system
receives 4 x 3 x 2 values. From these 24 values, it has to
compute only three, called secure values.

The first step in modeling the system in Lustre, is
to concentrate on one axis only, since the behaviour on
all axes are all the same2. We shall be using the diagram
depicted in Fig. 3 as the reference in the rest of the paper.

4

Lustre

SCADE

program

Lustre
front-end Luciole

Lesar

NBac

simulation

Boolean

numeric
verification

verification

Lustre
compiler

C code automatic
testingLurette

Fig. 1. The Lustre programming environment

C. The voting principle

The internal structure of the system is as follows: it is made
of four channels, each of them being in charge of the two wires
that come from one of the four gyroscopes (remember we
concentrate on one axis only, say roll). Each channel delivers
one value, and there is a vote to compute one single value
out of four, depending on the current fault conditions. The
behaviour is as follows: if all the channels are working, then
take the Olympic average of the four values (i.e., the average
of all the values, except the two extreme ones); if one channel
has failed, take the median value, among the other three; if two
channels have failed, take the average of the two remaining
ones. Three or more channels having failed at the same time is
supposed to have a very low probability, but the case is handled
by the system emitting a so-called “safe value”, which is to
be maintained for some delay, even when the bad situation
disappears.

Of course, the channels are intended to run on different
processors, for the purpose of redundancy. For simplicity, we
shall ignore these distributed aspects in our modelling.

D. The faults

The difficult part is the detection of faults. First, we have to
define what we call faults, and then to show how the redundant
structure of the gyroscopic system can handle them.

Definition of faults
The system is able to handle two kinds of faults: link faults,

that are due to some bad behavior of a physical link between
the actual measurement devices and the computer; sensor
faults, that are due to the measurement devices (the sensors)

themselves being broken or not working properly for some
time.

Modeling and Detection of faults
Each channel compares the values it receives on the two

wires, and is able to detect local discrepancies. This double
transmission of values from one gyroscope to the computer
system is there to detect transmission faults. Note that, for a
fault to be reported, the two values have to differ by more
than ∆v during consecutive ∆t units of time.

Moreover, in order to support sensor faults, channels talk
to each other and exchange values, so that each of them can
compare its own value to the other three. If one of the gyro-
scopes is not working, the value it delivers will probably differ
from the values given by the three other devices. Channels
also have to exchange their failure statuses, because each one
should compare its value to the values of the other channels,
but only of those that do not declare themselves failed (a
channel declares itself failed when it detects a transmission
fault).

E. Latching faults and resetting

Some faults are considered more serious than others, and
should therefore be latched: even if the cause of the fault
disappears, the channel continues to declare itself failed.
Hence, each channel has an internal state, that reflects the
faults it has encountered.

Typically, transmission faults (discrepancies between the
two values received on the two wires) are not latched, because
they are considered to be physically temporary.

Conversely, faults that are due to cross-channel comparisons
are latched: one of the physical devices is supposed to be off,
and it is unlikely to repair during the flight.

Of course, there should be some way of resetting the latches.
This is done in our system thanks to two kinds of resets,
called OnGroundReset and InAirReset. OnGroundReset can be
thought of as a general resetting mechanism that happens only
when it is really safe to do so, namely on ground. InAirReset
is more interesting. First, it is not automatic, but results from a
pilot action. Hence the pilot should be given some information
about the internal state of the fault-tolerant controller, in order
to decide whether he/she should issue a reset. Moreover, it is
to be taken into account only under some conditions.

The internal state of a channel, regarding the latched faults,
is one of the following:

• Everything is working properly, or there are transmission
faults from time to time, but they are not latched

• There has been at least one serious fault in the past, and
the failure is latched. The internal state can be driven to
the normal one with any of the resets (on ground or in
air), but for the InAirReset to work, some conditions on
the measured values have to hold.

• There have been several serious faults in the past, or one
serious fault followed immediately by a transmission one,
then the fault is latched and reset-inhibited. In this case,
only the OnGroundReset may restore the normal state.
The system should never enter a global state in which

Fig. 1 : The Lustre programming environment

C. The voting principle
The internal structure of the system is as follows: it

is made of four channels, each of them being in charge of
the two wires that come from one of the four gyroscopes

(remember we concentrate on one axis only, say roll). Each
channel delivers one value, and there is a vote to compute
one single value out of four, depending on the current fault
conditions. The behaviour is as follows: if all the channels
are working, then take the Olympic average of the four
values (i.e., the average of all the values, except the two
extreme ones); if one channel has failed, take the median
value, among the other three; if two channels have failed,
take the average of the two remaining ones. Three or more
channels having failed at the same time is supposed to
have a very low probability, but the case is handled by
the system emitting a so-called “safe value”, which is to be
maintained for some delay, even when the bad situation
disappears.

Of course, the channels are intended to run on different
processors, for the purpose of redundancy. For simplicity,
we shall ignore these distributed aspects in our modelling.

D. The faults

The difficult part is the detection of faults. First, we
have to define what we call faults, and then to show how
the redundant structure of the gyroscopic system can
handle them.

Definition of faults

The system is able to handle two kinds of faults: link
faults, that are due to some bad behavior of a physical link
between the actual measurement devices and the computer;
sensor faults, that are due to the measurement devices (the
sensors) themselves being broken or not working properly
for some time.

Modeling and Detection of faults

Each channel compares the values it receives on the
two wires, and is able to detect local discrepancies. This
double transmission of values from one gyroscope to the
computer system is there to detect transmission faults.
Note that, for a fault to be reported, the two values have to
differ by more than Dv during consecutive Dt units of time.

Each channel compares the values it receives on the
two wires, and is able to detect local discrepancies. This
double transmission of values from one gyroscope to the
computer system is there to detect transmission faults.
Note that, for a fault to be reported, the two values have
to differ by more than v during consecutive t units of time.
Moreover, in order to support sensor faults, channels talk
to each other and exchange values, so that each of them
can compare its own value to the other three. If one of
the gyroscopes is not working, the value it delivers will
probably differ from the values given by the three other
devices. Channels also have to exchange their failure
statuses, because each one should compare its value to the
values of the other channels, but only of those that do not
declare themselves failed (a channel declares itself failed
when it detects a transmission fault).

2 Actually, the behaviour of pitch is slightly different.

CSI Journal of Computing | Vol. 1 • No. 4, 2012

F. Maraninchi, et. al. 7 : 73

E. Latching faults and resetting

Some faults are considered more serious than others,
and should therefore be latched: even if the cause of the fault
disappears, the channel continues to declare itself failed.
Hence, each channel has an internal state, that reflects the
faults it has encountered.

Typically, transmission faults (discrepancies between
the two values received on the two wires) are not latched,
because they are considered to be physically temporary.

Conversely, faults that are due to cross-channel
comparisons are latched: one of the physical devices is
supposed to be off, and it is unlikely to repair during the flight.

Of course, there should be some way of resetting
the latches. This is done in our system thanks to two
kinds of resets, called OnGroundReset and InAirReset.
OnGroundReset can be thought of as a general resetting
mechanism that happens only when it is really safe to do so,
namely on ground. InAirReset is more interesting. First, it is
not automatic, but results from a pilot action. Hence the pilot
should be given some information about the internal state of
the fault-tolerant controller, in order to decide whether he/she
should issue a reset. Moreover, it is to be taken into account
only under some conditions.

The internal state of a channel, regarding the latched
faults, is one of the following:
 � Everything is working properly, or there are transmission

faults from time to time, but they are not latched
 � There has been at least one serious fault in the past, and

the failure is latched. The internal state can be driven to
the normal one with any of the resets (on ground or in
air), but for the InAirReset to work, some conditions on
the measured values have to hold.

 � There have been several serious faults in the past, or
one serious fault followed immediately by a transmission
one, then the fault is latched and reset-inhibited. In this
case, only the OnGroundReset may restore the normal
state. The system should never enter a global state in
which more than two channels are reset-inhibited, since
it cannot be repaired on board.
A careful reading of the informal documentation gives all

the details about the possible transitions among these three
states. Writing down these transitions allowed us to make
precise the priorities, and to remove some ambiguities. We
give the automaton point of view on this part of the system,
in section VI-C below.

F. Special case for third faults

Finally, the faults are not treated the same depending on
their order of occurrence: the first and second one (among four
channels) are treated the same, but it is said in the informal
documentation that a third failure should not cause the
channels to become reset-inhibited. Hence, we need to treat
the third faults in a special way – which will be clear in the
sequel.

IV. Describing the Architecture in Lustre
The architecture of the Lustre program is exactly the

same as the one described in the informal specification –
thanks to the dataflow style of the language. Figure 4 shows
the main structure of the system (for one axis): The four
channels will be implemented as four identical nodes. The
voter is another node. An additional node, the global allocator,
will deal with the problem of third faults.

This direct translation of the specification into the
program architecture highlights the advantages of some
features of the language:
 � the notion of concurrency corresponds to the logical

concurrency of the specification;
 � moreover, this concurrency can model a physical

concurrency, as it is the case, here, if the four channels
are to be distributed; the communication — here, it
will be simply a delay — is an abstract model of the
real communication between distributed processes (see
[Cas01], [HB02], [JHR+07] for a more accurate modeling
of physical concurrency);

 � the connections between nodes clearly reflect the
specification, thanks to the data-flow communication
between nodes;

 � the four channels will be essentially instantiations of
a single node – thanks to the functional nature of the
language.

A. Global inputs and outputs

The system receives:
 � 4 pairs (or 2 4-tuples, Roll_a and Roll_b) of flows of type

“real”, coming from the sensors;
 � 2 Boolean flows, On_Ground_Reset and In_Air_Reset.

It computes a single safe value for Roll.

B. The component interfaces

 The channels

Each channel receives a pair (roll_a, roll_b) from
outside. The reset signals OnGroundReset and InAirReset
(implemented as Boolean flows) also come from outside. It
receives also, from each other channel, the computed value
foreign_roll and the failure status foreign failure roll. Finally,
it receives a Boolean flow Inhib_Roll_Allowed from the global
allocator.

The channel computes three outputs: its local value
local_roll for roll, its transmission failure status transmit_
failure_roll (which will be broadcast both to other channels and
to the voter), and a request for “reset inhibition” arbitration,
Ask_inhib_roll to the global allocator.

The exchange of values foreign_roll and foreign_failure_
roll among channels at once raises a problem, since local roll
and transmit_failure_roll will be computed as combinational
functions of the inputs foreign roll and foreign failure roll.
As a consequence, delays should be introduced somewhere,

CSI Journal of Computing | Vol. 1 • No. 4, 2012

7 : 74
 Specification and Validation of Embedded Systems: A Case Study of a

Fault-Tolerant Data Acquisition System with Lustre Programming environment

to prevent local_roll and transmit_failure_roll to depend
instantaneously on themselves (remember that combinational
loops are forbidden in Lustre, and rejected by all tools). So, we
delay broadcasting the value (using a “pre” operator) when
entering the channel. For instance, if we call foreign_rollij
the value entering the channel j coming from channel i, and
local_rolli the value computed by channel i, we will have

 foreign_rollij = pre(local_rolli)

The voter

It simply receives the values local roll and transmit_
failure_roll from the channels, and computes the safe value
Roll. However, it is not combinational (see §V).

The global allocator

It is in charge of dealing with “reset inhibition”. It needs
the outputs local_roll, transmit failure_roll and Ask_inhib_roll
from the channels, and returns four Boolean allowed (one for
each channel). Here again, to avoid combinational loops, the
input Inhib_Roll_Allowed to each channel will be the delayed
version of the corresponding output allowed of the global
allocator.

C. Connecting the four channels together
According to the general architecture described above,

we are able to write the main node, which invokes the main

components, with suitable connections. It is described3 in Fig.
5.

D. One channel

We can go one step further in the description of the
architecture, by giving the internal structure of one channel
(see Fig. 6). It is made of two parts: Monitor detects the
transmission discrepancies; FailDetect talks to the three
other channels and knows about the internal fail status of
the channel. It also talks to the global allocator, which knows
about the failure status of all the four channels, and is able to
prevent a third failure from becoming reset-inhibited.

V. The Voter
The voter is only a consumer of values produced by

other modules. Thus, it can be designed in isolation. Fig. 7
describes the Lustre code for the complete voter. The details
of its parts are described below. Notice that the voter is not a
combinational node: it has to memorize a fragment of its past.

A. The timing aspects
Remember that the “safe value” must be maintained if

three or more channels have been faulty “recently”. The first
three lines define a counter cpt_roll, which is non zero
exactly when there was a case with three failures, in the recent
past. “recent” means within the last SAFE_COUNTER_TIME
units of time, where SAFE_COUNTER_TIME is a constant. The

3 Because of the very regular structure of this node, it would be more concisely and elegantly described by means of Lustre-V4 arrays.
However, since these arrays differ significantly from those of Scade, we decided not to make use of them.

6

Roll bRoll a
In Air Reset

On Ground Reset

values

failures

Channel 0
Channel 1

Channel 3 Channel 2
Calculate

Roll

(the voter)

Global

Allocator

allowed

ask

transmit failure

local roll

Fig. 4. Architecture of the Lustre program: connecting the four channels together

transmission discrepancies; FailDetect talks to the three
other channels and knows about the internal fail status of the
channel. It also talks to the global allocator, which knows
about the failure statuses of the four channels, and is able to
prevent a third failure from becoming reset-inhibited.

V. THE VOTER

The voter is only a consumer of values produced by other
modules. Thus, it can be designed in isolation. Figure 7
describes the Lustre code for the complete voter. The details
of its parts are described below. Notice that the voter is not a
combinational node: it has to memorize a fragment of its past.

A. The timing aspects

Remember that the “safe value” must me maintained if
three of more channels have been faulty “recently”. The first
three lines define a counter cpt_roll, which is non zero
exactly when there was a case with three failures, in the recent
past. “recent” means within the last SAFE_COUNTER_TIME
units of time, where SAFE_COUNTER_TIME is a constant.
The writing in Lustre is quite simple: just restart the counter
with value SAFE_COUNTER_TIME each time there are three
faults, and then decrement it at each step, until it reaches zero :

cpt_roll = 0 ->
if three_roll then SAFE_COUNTER_TIME
else if pre (cpt_roll)> 0

then pre(cpt_roll)-1
else 0 ;

B. Counting faults

The nodes noneof, oneoffour, twooffour,
threeoffour are intended to count the faults, i.e.,
the number of Boolean variables that have value true, among
f1, f2, f3, f4. They can be programmed with integers,
of course, like in Fig. reftwooffour.a. However, there is also
a form that does not make use of numerical variables, and
that can be necessary for decidability reasons when trying
to perform formal verification with Lesar. Hence, we will
sometimes use the node of Fig. 8.b.

Similar nodes for noneof, oneoffour, and
threeoffour are easy to write.

C. The voting mechanism itself

Then comes the voting itself. The conditional expression
mimics the informal documentation. The auxiliary nodes
OlympicAverage, Median, and Average are straightforward.

D. Validation

It is difficult to express properties of the voter, apart
from the whole specification (which would be a rephras-
ing of the program). For this simple device, we can just
try a simulation using Luciole. Fig. 9 shows such a sim-
ulation: we choose constant inputs for the values x1, x2,
x3, x4 coming from the channels, and just play with the
occurrences of transmission faults f1, f2, f3, f4, observ-
ing that the correct output is computed in each case. The
simulation is done with SAFE COUNTER TIME = 3 and
FAIL SAFE ROLL VALUE = 0.

Fig. 4 : Architecture of the Lustre program: connecting the four channels together

CSI Journal of Computing | Vol. 1 • No. 4, 2012

F. Maraninchi, et. al. 7 : 75

writing in Lustre is quite simple: just restart the counter with
value SAFE_COUNTER_TIME each time there are three faults,
and then decrement it at each step, until it reaches zero :

6

Roll bRoll a
In Air Reset

On Ground Reset

values

failures

Channel 0
Channel 1

Channel 3 Channel 2
Calculate

Roll

(the voter)

Global

Allocator

allowed

ask

transmit failure

local roll

Fig. 4. Architecture of the Lustre program: connecting the four channels together

transmission discrepancies; FailDetect talks to the three
other channels and knows about the internal fail status of the
channel. It also talks to the global allocator, which knows
about the failure statuses of the four channels, and is able to
prevent a third failure from becoming reset-inhibited.

V. THE VOTER

The voter is only a consumer of values produced by other
modules. Thus, it can be designed in isolation. Figure 7
describes the Lustre code for the complete voter. The details
of its parts are described below. Notice that the voter is not a
combinational node: it has to memorize a fragment of its past.

A. The timing aspects

Remember that the “safe value” must me maintained if
three of more channels have been faulty “recently”. The first
three lines define a counter cpt_roll, which is non zero
exactly when there was a case with three failures, in the recent
past. “recent” means within the last SAFE_COUNTER_TIME
units of time, where SAFE_COUNTER_TIME is a constant.
The writing in Lustre is quite simple: just restart the counter
with value SAFE_COUNTER_TIME each time there are three
faults, and then decrement it at each step, until it reaches zero :

cpt_roll = 0 ->
if three_roll then SAFE_COUNTER_TIME
else if pre (cpt_roll)> 0

then pre(cpt_roll)-1
else 0 ;

B. Counting faults

The nodes noneof, oneoffour, twooffour,
threeoffour are intended to count the faults, i.e.,
the number of Boolean variables that have value true, among
f1, f2, f3, f4. They can be programmed with integers,
of course, like in Fig. reftwooffour.a. However, there is also
a form that does not make use of numerical variables, and
that can be necessary for decidability reasons when trying
to perform formal verification with Lesar. Hence, we will
sometimes use the node of Fig. 8.b.

Similar nodes for noneof, oneoffour, and
threeoffour are easy to write.

C. The voting mechanism itself

Then comes the voting itself. The conditional expression
mimics the informal documentation. The auxiliary nodes
OlympicAverage, Median, and Average are straightforward.

D. Validation

It is difficult to express properties of the voter, apart
from the whole specification (which would be a rephras-
ing of the program). For this simple device, we can just
try a simulation using Luciole. Fig. 9 shows such a sim-
ulation: we choose constant inputs for the values x1, x2,
x3, x4 coming from the channels, and just play with the
occurrences of transmission faults f1, f2, f3, f4, observ-
ing that the correct output is computed in each case. The
simulation is done with SAFE COUNTER TIME = 3 and
FAIL SAFE ROLL VALUE = 0.

B. Counting faults

The nodes noneof, oneoffour, twooffour,
threeoffour are intended to count the faults, i.e., the
number of Boolean variables that have value true, among f1,
f2, f3, f4. They can be programmed with integers, of course,

like in Fig. reftwooffour.a. However, there is also a form that
does not make use of numerical variables, and that can be
necessary for decidability reasons when trying to perform
formal verification with Lesar. Hence, we will sometimes use
the node of Fig. 8.b.

Similar nodes for noneof, oneoffour, and
threeoffour are easy to write.

C. The voting mechanism itself
Then comes the voting itself. The conditional expression

mimics the informal documentation. The auxiliary nodes
OlympicAverage, Median, and Average are straightforward.

D. Validation
It is difficult to express properties of the voter, apart from

the whole specification (which would be a rephrasing of the
program). For this simple device, we can do a simulation using

7

node GYRO (Roll_a_1, Roll_b_1, Roll_a_2, Roll_b_2,
Roll_a_3, Roll_b_3, Roll_a_4, Roll_b_4 : real;
On_Ground_Reset, In_Air_Reset : bool)

returns (Roll : real);
var

local_roll_1, local_roll_2, local_roll_3, local_roll_4 : real;
transmit_failure_1, transmit_failure_2,
transmit_failure_3, transmit_failure_4 : bool;
ask_1, ask_2, ask_3, ask_4 : bool;
allowed_1, allowed_2, allowed_3, allowed_4 : bool;

let
(local_roll_1, transmit_failure_1, ask_1) =

Channel(Roll_a_1, Roll_b_1, On_Ground_Reset, In_Air_Reset,
pre(local_roll_2), pre(transmit_failure_2),
pre(local_roll_3), pre(transmit_failure_3),
pre(local_roll_4), pre(transmit_failure_4),
allowed_1);

(local_roll_2, transmit_failure_2, ask_2) =
Channel(Roll_a_2, Roll_b_2, On_Ground_Reset, In_Air_Reset,

pre(local_roll_1), pre(transmit_failure_1),
pre(local_roll_3), pre(transmit_failure_3),
pre(local_roll_4), pre(transmit_failure_4),
allowed_2);

(local_roll_3, transmit_failure_3, ask_3) =
Channel(Roll_a_3, Roll_b_3, On_Ground_Reset, In_Air_Reset,

pre(local_roll_1), pre(transmit_failure_1),
pre(local_roll_2), pre(transmit_failure_2),
pre(local_roll_4), pre(transmit_failure_4),
allowed_3);

(local_roll_4, transmit_failure_4, ask_4) =
Channel(Roll_a_4, Roll_b_4, On_Ground_Reset, In_Air_Reset,

pre(local_roll_1), pre(transmit_failure_1),
pre(local_roll_2), pre(transmit_failure_2),
pre(local_roll_3), pre(transmit_failure_3),
allowed_4);

(allowed_1, allowed_2, allowed_3, allowed_4) =
Allocator(ask_1, ask_2, ask_3, ask_4);

Roll = Voter(local_roll_1, local_roll_2,
local_roll_3, local_roll_4,
transmit_failure_1, transmit_failure_2,
transmit_failure_3, transmit_failure_4);

tel

Fig. 5. The main node

Foreign roll

InAirReset
OnGroundReset

Foreign failure roll

MONITOR

transmit failure

Inhib roll Allowed

roll1 roll2

FAIL DETECT

Ask inhib roll

failure roll

Local roll

Fig. 6. Architecture of the Lustre program: a channel

Fig. 5 : The main node

CSI Journal of Computing | Vol. 1 • No. 4, 2012

7 : 76
 Specification and Validation of Embedded Systems: A Case Study of a

Fault-Tolerant Data Acquisition System with Lustre Programming environment

7

node GYRO (Roll_a_1, Roll_b_1, Roll_a_2, Roll_b_2,
Roll_a_3, Roll_b_3, Roll_a_4, Roll_b_4 : real;
On_Ground_Reset, In_Air_Reset : bool)

returns (Roll : real);
var

local_roll_1, local_roll_2, local_roll_3, local_roll_4 : real;
transmit_failure_1, transmit_failure_2,
transmit_failure_3, transmit_failure_4 : bool;
ask_1, ask_2, ask_3, ask_4 : bool;
allowed_1, allowed_2, allowed_3, allowed_4 : bool;

let
(local_roll_1, transmit_failure_1, ask_1) =

Channel(Roll_a_1, Roll_b_1, On_Ground_Reset, In_Air_Reset,
pre(local_roll_2), pre(transmit_failure_2),
pre(local_roll_3), pre(transmit_failure_3),
pre(local_roll_4), pre(transmit_failure_4),
allowed_1);

(local_roll_2, transmit_failure_2, ask_2) =
Channel(Roll_a_2, Roll_b_2, On_Ground_Reset, In_Air_Reset,

pre(local_roll_1), pre(transmit_failure_1),
pre(local_roll_3), pre(transmit_failure_3),
pre(local_roll_4), pre(transmit_failure_4),
allowed_2);

(local_roll_3, transmit_failure_3, ask_3) =
Channel(Roll_a_3, Roll_b_3, On_Ground_Reset, In_Air_Reset,

pre(local_roll_1), pre(transmit_failure_1),
pre(local_roll_2), pre(transmit_failure_2),
pre(local_roll_4), pre(transmit_failure_4),
allowed_3);

(local_roll_4, transmit_failure_4, ask_4) =
Channel(Roll_a_4, Roll_b_4, On_Ground_Reset, In_Air_Reset,

pre(local_roll_1), pre(transmit_failure_1),
pre(local_roll_2), pre(transmit_failure_2),
pre(local_roll_3), pre(transmit_failure_3),
allowed_4);

(allowed_1, allowed_2, allowed_3, allowed_4) =
Allocator(ask_1, ask_2, ask_3, ask_4);

Roll = Voter(local_roll_1, local_roll_2,
local_roll_3, local_roll_4,
transmit_failure_1, transmit_failure_2,
transmit_failure_3, transmit_failure_4);

tel

Fig. 5. The main node

Foreign roll

InAirReset
OnGroundReset

Foreign failure roll

MONITOR

transmit failure

Inhib roll Allowed

roll1 roll2

FAIL DETECT

Ask inhib roll

failure roll

Local roll

Fig. 6. Architecture of the Lustre program: a channel

Fig. 6 : Architecture of the Lustre program: a channel

Fig. 7 : The voter in Lustre

8

node Voter (x1, x2, x3, x4 : real ; -- four values given by the channels
f1, f2, f3, f4 : bool ; -- failure statuses seen by the four channels

)
returns (x : real)
var

zero_roll, one_roll, two_roll, three_roll : bool ; -- numbers of failures
cpt_roll : int ; -- a counter

let
cpt_roll = 0 -> if three_roll then SAFE_COUNTER_TIME

else if pre (cpt_roll)>0 then pre(cpt_roll) - 1
else 0 ;

zero_roll = noneof (f1, f2, f3, f4) ;
one_roll = oneoffour (f1, f2, f3, f4) ;
two_roll = twooffour (f1, f2, f3, f4) ;
three_roll = threeoffour (f1, f2, f3, f4) ;
x = if (zero_roll and cpt_roll = 0) then

OlympicAverage (x1, x2, x3, x4)
else if (one_roll and cpt_roll = 0) then

Median (x1, x2, x3, x4, f1, f2, f3, f4)
else if (two_roll and cpt_roll = 0) then

Average (x1, x2, x3, x4, f1, f2, f3, f4)
else FAIL_SAFE_ROLL_VALUE ;

tel ;

Fig. 7. The voter in Lustre

node twooffour (f1, f2, f3, f4 : bool)
returns (r : bool)

let
r = ((if f1 then 1 else 0) +

(if f2 then 1 else 0) +
(if f3 then 1 else 0) +
(if f4 then 1 else 0)) = 2 ;

tel

(a) A version with counter

node twooffour (f1, f2, f3, f4 : bool)
returns (r : bool)

let
r = f1 and

(f2 and not f3 and not f4 or
f3 and not f2 and not f4 or
f4 and not f2 and not f3) or

f2 and
(f1 and not f3 and not f4 or
f3 and not f1 and not f4 or
f4 and not f1 and not f3) or

f3 and
(f2 and not f1 and not f4 or
f1 and not f2 and not f4 or
f4 and not f2 and not f1) or

f4 and
(f2 and not f3 and not f1 or
f3 and not f2 and not f1 or
f1 and not f2 and not f3) ;

tel

(b) A purely Boolean version

Fig. 8. The node twooffour

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

x1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

x2 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

x3 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

x4 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

f1
f2
f3
f4

x

3.00

2.00
1.50

0.00 0.00 0.00

1.50
2.00

3.00 3.00 3.00

Fig. 9. A Luciole simulation of the voter — Initially, there is no fault, so
the output is the olympic average of the inputs (i.e., the average of
2 and 4). At step 2, a fault occurs on channel 4, so the outputs is the
median of x1, x2, x3, which is 2. At step 3, channel 3 becomes
faulty, so the result is the average of x1 and x2. At step 4, a third
fault occurs, so the output takes the “safe” value 0 for 3 units of
time.

CSI Journal of Computing | Vol. 1 • No. 4, 2012

F. Maraninchi, et. al. 7 : 77

Fig. 8 : The node twooffour

Fig. 9 : A Luciole simulation of the voter — Initially,
there is no fault, so the output is the olympic average of
the inputs (i.e., the average of 2 and 4). At step 2, a fault
occurs on channel 4, so the outputs is the median of x1,
x2, x3, which is 2. At step 3, channel 3 becomes faulty, so
the result is the average of x1 and x2. At step 4, a third
fault occurs, so the output takes the “safe” value 0 for 3
units of time.

8

node Voter (x1, x2, x3, x4 : real ; -- four values given by the channels
f1, f2, f3, f4 : bool ; -- failure statuses seen by the four channels

)
returns (x : real)
var

zero_roll, one_roll, two_roll, three_roll : bool ; -- numbers of failures
cpt_roll : int ; -- a counter

let
cpt_roll = 0 -> if three_roll then SAFE_COUNTER_TIME

else if pre (cpt_roll)>0 then pre(cpt_roll) - 1
else 0 ;

zero_roll = noneof (f1, f2, f3, f4) ;
one_roll = oneoffour (f1, f2, f3, f4) ;
two_roll = twooffour (f1, f2, f3, f4) ;
three_roll = threeoffour (f1, f2, f3, f4) ;
x = if (zero_roll and cpt_roll = 0) then

OlympicAverage (x1, x2, x3, x4)
else if (one_roll and cpt_roll = 0) then

Median (x1, x2, x3, x4, f1, f2, f3, f4)
else if (two_roll and cpt_roll = 0) then

Average (x1, x2, x3, x4, f1, f2, f3, f4)
else FAIL_SAFE_ROLL_VALUE ;

tel ;

Fig. 7. The voter in Lustre

node twooffour (f1, f2, f3, f4 : bool)
returns (r : bool)

let
r = ((if f1 then 1 else 0) +

(if f2 then 1 else 0) +
(if f3 then 1 else 0) +
(if f4 then 1 else 0)) = 2 ;

tel

(a) A version with counter

node twooffour (f1, f2, f3, f4 : bool)
returns (r : bool)

let
r = f1 and

(f2 and not f3 and not f4 or
f3 and not f2 and not f4 or
f4 and not f2 and not f3) or

f2 and
(f1 and not f3 and not f4 or
f3 and not f1 and not f4 or
f4 and not f1 and not f3) or

f3 and
(f2 and not f1 and not f4 or
f1 and not f2 and not f4 or
f4 and not f2 and not f1) or

f4 and
(f2 and not f3 and not f1 or
f3 and not f2 and not f1 or
f1 and not f2 and not f3) ;

tel

(b) A purely Boolean version

Fig. 8. The node twooffour

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

x1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

x2 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

x3 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

x4 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

f1
f2
f3
f4

x

3.00

2.00
1.50

0.00 0.00 0.00

1.50
2.00

3.00 3.00 3.00

Fig. 9. A Luciole simulation of the voter — Initially, there is no fault, so
the output is the olympic average of the inputs (i.e., the average of
2 and 4). At step 2, a fault occurs on channel 4, so the outputs is the
median of x1, x2, x3, which is 2. At step 3, channel 3 becomes
faulty, so the result is the average of x1 and x2. At step 4, a third
fault occurs, so the output takes the “safe” value 0 for 3 units of
time.

8

node Voter (x1, x2, x3, x4 : real ; -- four values given by the channels
f1, f2, f3, f4 : bool ; -- failure statuses seen by the four channels

)
returns (x : real)
var

zero_roll, one_roll, two_roll, three_roll : bool ; -- numbers of failures
cpt_roll : int ; -- a counter

let
cpt_roll = 0 -> if three_roll then SAFE_COUNTER_TIME

else if pre (cpt_roll)>0 then pre(cpt_roll) - 1
else 0 ;

zero_roll = noneof (f1, f2, f3, f4) ;
one_roll = oneoffour (f1, f2, f3, f4) ;
two_roll = twooffour (f1, f2, f3, f4) ;
three_roll = threeoffour (f1, f2, f3, f4) ;
x = if (zero_roll and cpt_roll = 0) then

OlympicAverage (x1, x2, x3, x4)
else if (one_roll and cpt_roll = 0) then

Median (x1, x2, x3, x4, f1, f2, f3, f4)
else if (two_roll and cpt_roll = 0) then

Average (x1, x2, x3, x4, f1, f2, f3, f4)
else FAIL_SAFE_ROLL_VALUE ;

tel ;

Fig. 7. The voter in Lustre

node twooffour (f1, f2, f3, f4 : bool)
returns (r : bool)

let
r = ((if f1 then 1 else 0) +

(if f2 then 1 else 0) +
(if f3 then 1 else 0) +
(if f4 then 1 else 0)) = 2 ;

tel

(a) A version with counter

node twooffour (f1, f2, f3, f4 : bool)
returns (r : bool)

let
r = f1 and

(f2 and not f3 and not f4 or
f3 and not f2 and not f4 or
f4 and not f2 and not f3) or

f2 and
(f1 and not f3 and not f4 or
f3 and not f1 and not f4 or
f4 and not f1 and not f3) or

f3 and
(f2 and not f1 and not f4 or
f1 and not f2 and not f4 or
f4 and not f2 and not f1) or

f4 and
(f2 and not f3 and not f1 or
f3 and not f2 and not f1 or
f1 and not f2 and not f3) ;

tel

(b) A purely Boolean version

Fig. 8. The node twooffour

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

x1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

x2 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

x3 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

x4 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

f1
f2
f3
f4

x

3.00

2.00
1.50

0.00 0.00 0.00

1.50
2.00

3.00 3.00 3.00

Fig. 9. A Luciole simulation of the voter — Initially, there is no fault, so
the output is the olympic average of the inputs (i.e., the average of
2 and 4). At step 2, a fault occurs on channel 4, so the outputs is the
median of x1, x2, x3, which is 2. At step 3, channel 3 becomes
faulty, so the result is the average of x1 and x2. At step 4, a third
fault occurs, so the output takes the “safe” value 0 for 3 units of
time.

Luciole. Fig. 9 shows such a simulation: we choose constant
inputs for the values x1, x2, x3, x4 coming from the channels,
and just play with the occurrences of transmission faults f1,
f2, f3, f4, observing that the correct output is computed in
each case. The simulation is done with SAFE_COUNTER_TIME
= 3 and FAIL_SAFE_ROLL_VALUE = 0.

VI. Incremental implementation of functionality

Once we have designed the global architecture of the
program, and taken decisions about where to place Lustre
pre’s, we can develop the whole program progressively. We can
start by giving each node some trivial behavior (like output
= constant), just to see whether the architecture indeed
compiles. It allows typing and self-dependence problems to
be detected.

Then we can start writing more and more appropriate
code for each of the nodes. We used four steps, each of which
with simulation :
 � We start (§VI-A) with the detection of transmission

failures only (the channels do not talk to each other).

This can be observed on one channel only, first, and then
we can put together all the four channels.

 � Then (§VI-B), we add the detection of faults that are
due to cross-channels comparisons, but without latching
them.

 � Then we implement the latching of faults and the effect
of resets (§VI-C).

 � Finally, we implement the global allocator (§VI-D) that
allows a special behavior to be given to third fault.

A. Local detection of transmission faults only

 Lustre code

In each channel, the node Monitor determines if the
two values received by the channel differ too much for too
long a time. It also transmits some combination of the two
values received as its “local” value. Nothing is said about the
combination function in the informal documentation.We have
chosen to output the first value. Any other choice could be
implemented in a very simple way.

CSI Journal of Computing | Vol. 1 • No. 4, 2012

7 : 78
 Specification and Validation of Embedded Systems: A Case Study of a

Fault-Tolerant Data Acquisition System with Lustre Programming environment

9

VI. IMPLEMENTING THE FUNCTIONNALITIES ONE BY ONE

Once we have designed the global architecture of the
program, and taken decisions about where to put Lustre pre’s,
we can develop the whole program progressively. We can
start by giving each node some trivial behavior (like output
= constant), just to see whether the architecture indeed
compiles. It allows typing and self-dependence problems to
be detected.

Then we can start writing more and more appropriate code
for each of the nodes. We used four steps, each of which with
simulation :

• We start (§VI-A) with the detection of transmission
failures only (the channels do not talk to each other).
This can be observed on one channel only, first, and then
by putting the four channels together.

• Then (§VI-B), we add the detection of faults that are due
to cross-channels comparisons, but without latching them.

• Then we implement the latching of faults and the effect
of resets (§VI-C).

• Finally, we implement the global allocator (§VI-D) that
allows a special behavior to be given to third fault.

A. Local detection of transmission faults only

Lustre code

In each channel, the node Monitor determines if the two
values received by the channel differ too much for a too
long time. It also transmits some combination of the two
values received as its “local” value. Nothing is said about the
combination function in the informal documentation. We chose
to output the first value. Any other choice can be implemented
in a very simple way.

node Monitor (
xa, xb : real ; -- two input values

)
returns (

local_value : real ;
-- the value seen by this channel
failure : bool ;
-- detection of a transmission fault

)
let

failure = maintain(TIME_ROLL, abs(xa - xb)
> DELTA_ROLL);

local_value = xa ;
tel

TIME_ROLL and DELTA_ROLL are two constants;
maintain is the Lustre node presented in §II-B.

Simulations

Fig. 10 shows a simulation of the node Monitor, with
constants

DELTA_ROLL = 14 and TIME_ROLL = 3

B. Adding non-latched cross-channel comparisons

Lustre code

For cross-channel comparisons, the local value xi is com-
pared to those among the foreign ones that are not declared
failed (that is why we need the fail statuses of the three foreign
channels). Intuitively, the local value is faulty if it differs too
much (i.e., more than a constant CROSS_CH_TOL_ROLL)
from all the other (supposedly correct) values. Moreover, a
cross-channel failure is reported only if this situation lasts
for some delay (TIME_CROSS_ROLL). This detection is
performed by a node values_nok, called by the component
FailDetect of the channel, and which is given below, and
then discussed:

node values_nok (
pfother1, pfother2, pfother3 : bool ;
-- foreign values status: true if faulty
xi : real ; -- local value
pxother1, pxother2, pxother3 : real ;
-- foreign values

)
returns (

fault : bool
-- there is a cross channel fault

)
var

diff1, diff2, diff3 : bool ;
-- comparisons of xi with the three
-- foreign values

let
diff1 = abs (xi - pxother1)

> CROSS_CH_TOL_ROLL ;
diff2 = abs (xi - pxother2)

> CROSS_CH_TOL_ROLL ;
diff3 = abs (xi - pxother3)

> CROSS_CH_TOL_ROLL ;
fault =

maintain(TIME_CROSS_ROLL,
if pfother1 then
-- don’t take this one into account
if pfother2 then -- the same
if pfother3
then false else diff3

else if pfother3 then diff2
else (diff2 and diff3)

else if pfother2 then
if pfother3 then diff1

else (diff1 and diff3)
else if pfother3 then

(diff1 and diff2)
else (diff1 and diff2 and diff3)) ;

tel

In Section VII-A, this node will be formally checked for
equivalence with another version.

Notice that the informal specification is unclear: we de-
cided to report a failure when the conjunction “diff1 and
diff2 and diff3” holds for the given delay. We could
have chosen another solution, first detecting if each foreign
value differs from the local one for the given delay, and then
reporting the conjunction of these conditions.
Whatever be the correct choice, the body of the node

TIME_ROLL and DELTA_ROLL are two constants;
maintain is the Lustre node presented in §II-B.

Simulations

Fig. 10 shows a simulation of the node Monitor, with
constants

DELTA_ROLL = 14 and TIME_ROLL = 3

B. Adding non-latched cross-channel comparisons

 Lustre code

For cross-channel comparisons, the local value xi is
compared to those among the foreign ones that are not
declared failed (that is why we need the fail status of the
three foreign channels). Intuitively, the local value is faulty
if it differs too much (i.e., more than a constant CROSS_CH_
TOL_ROLL) from all the other (supposedly correct) values.
Moreover, a cross-channel failure is reported only if this
situation lasts for some delay (TIME_CROSS_ROLL). This
detection is performed by a node values_nok, called by the
component FailDetect of the channel and which is given
below, along with a description in the sequel.:

9

VI. IMPLEMENTING THE FUNCTIONNALITIES ONE BY ONE

Once we have designed the global architecture of the
program, and taken decisions about where to put Lustre pre’s,
we can develop the whole program progressively. We can
start by giving each node some trivial behavior (like output
= constant), just to see whether the architecture indeed
compiles. It allows typing and self-dependence problems to
be detected.

Then we can start writing more and more appropriate code
for each of the nodes. We used four steps, each of which with
simulation :

• We start (§VI-A) with the detection of transmission
failures only (the channels do not talk to each other).
This can be observed on one channel only, first, and then
by putting the four channels together.

• Then (§VI-B), we add the detection of faults that are due
to cross-channels comparisons, but without latching them.

• Then we implement the latching of faults and the effect
of resets (§VI-C).

• Finally, we implement the global allocator (§VI-D) that
allows a special behavior to be given to third fault.

A. Local detection of transmission faults only

Lustre code

In each channel, the node Monitor determines if the two
values received by the channel differ too much for a too
long time. It also transmits some combination of the two
values received as its “local” value. Nothing is said about the
combination function in the informal documentation. We chose
to output the first value. Any other choice can be implemented
in a very simple way.

node Monitor (
xa, xb : real ; -- two input values

)
returns (

local_value : real ;
-- the value seen by this channel
failure : bool ;
-- detection of a transmission fault

)
let

failure = maintain(TIME_ROLL, abs(xa - xb)
> DELTA_ROLL);

local_value = xa ;
tel

TIME_ROLL and DELTA_ROLL are two constants;
maintain is the Lustre node presented in §II-B.

Simulations

Fig. 10 shows a simulation of the node Monitor, with
constants

DELTA_ROLL = 14 and TIME_ROLL = 3

B. Adding non-latched cross-channel comparisons

Lustre code

For cross-channel comparisons, the local value xi is com-
pared to those among the foreign ones that are not declared
failed (that is why we need the fail statuses of the three foreign
channels). Intuitively, the local value is faulty if it differs too
much (i.e., more than a constant CROSS_CH_TOL_ROLL)
from all the other (supposedly correct) values. Moreover, a
cross-channel failure is reported only if this situation lasts
for some delay (TIME_CROSS_ROLL). This detection is
performed by a node values_nok, called by the component
FailDetect of the channel, and which is given below, and
then discussed:

node values_nok (
pfother1, pfother2, pfother3 : bool ;
-- foreign values status: true if faulty
xi : real ; -- local value
pxother1, pxother2, pxother3 : real ;
-- foreign values

)
returns (

fault : bool
-- there is a cross channel fault

)
var

diff1, diff2, diff3 : bool ;
-- comparisons of xi with the three
-- foreign values

let
diff1 = abs (xi - pxother1)

> CROSS_CH_TOL_ROLL ;
diff2 = abs (xi - pxother2)

> CROSS_CH_TOL_ROLL ;
diff3 = abs (xi - pxother3)

> CROSS_CH_TOL_ROLL ;
fault =

maintain(TIME_CROSS_ROLL,
if pfother1 then
-- don’t take this one into account
if pfother2 then -- the same
if pfother3
then false else diff3

else if pfother3 then diff2
else (diff2 and diff3)

else if pfother2 then
if pfother3 then diff1

else (diff1 and diff3)
else if pfother3 then

(diff1 and diff2)
else (diff1 and diff2 and diff3)) ;

tel

In Section VII-A, this node will be formally checked for
equivalence with another version.

Notice that the informal specification is unclear: we de-
cided to report a failure when the conjunction “diff1 and
diff2 and diff3” holds for the given delay. We could
have chosen another solution, first detecting if each foreign
value differs from the local one for the given delay, and then
reporting the conjunction of these conditions.
Whatever be the correct choice, the body of the node

9

VI. IMPLEMENTING THE FUNCTIONNALITIES ONE BY ONE

Once we have designed the global architecture of the
program, and taken decisions about where to put Lustre pre’s,
we can develop the whole program progressively. We can
start by giving each node some trivial behavior (like output
= constant), just to see whether the architecture indeed
compiles. It allows typing and self-dependence problems to
be detected.

Then we can start writing more and more appropriate code
for each of the nodes. We used four steps, each of which with
simulation :

• We start (§VI-A) with the detection of transmission
failures only (the channels do not talk to each other).
This can be observed on one channel only, first, and then
by putting the four channels together.

• Then (§VI-B), we add the detection of faults that are due
to cross-channels comparisons, but without latching them.

• Then we implement the latching of faults and the effect
of resets (§VI-C).

• Finally, we implement the global allocator (§VI-D) that
allows a special behavior to be given to third fault.

A. Local detection of transmission faults only

Lustre code

In each channel, the node Monitor determines if the two
values received by the channel differ too much for a too
long time. It also transmits some combination of the two
values received as its “local” value. Nothing is said about the
combination function in the informal documentation. We chose
to output the first value. Any other choice can be implemented
in a very simple way.

node Monitor (
xa, xb : real ; -- two input values

)
returns (

local_value : real ;
-- the value seen by this channel
failure : bool ;
-- detection of a transmission fault

)
let

failure = maintain(TIME_ROLL, abs(xa - xb)
> DELTA_ROLL);

local_value = xa ;
tel

TIME_ROLL and DELTA_ROLL are two constants;
maintain is the Lustre node presented in §II-B.

Simulations

Fig. 10 shows a simulation of the node Monitor, with
constants

DELTA_ROLL = 14 and TIME_ROLL = 3

B. Adding non-latched cross-channel comparisons

Lustre code

For cross-channel comparisons, the local value xi is com-
pared to those among the foreign ones that are not declared
failed (that is why we need the fail statuses of the three foreign
channels). Intuitively, the local value is faulty if it differs too
much (i.e., more than a constant CROSS_CH_TOL_ROLL)
from all the other (supposedly correct) values. Moreover, a
cross-channel failure is reported only if this situation lasts
for some delay (TIME_CROSS_ROLL). This detection is
performed by a node values_nok, called by the component
FailDetect of the channel, and which is given below, and
then discussed:

node values_nok (
pfother1, pfother2, pfother3 : bool ;
-- foreign values status: true if faulty
xi : real ; -- local value
pxother1, pxother2, pxother3 : real ;
-- foreign values

)
returns (

fault : bool
-- there is a cross channel fault

)
var

diff1, diff2, diff3 : bool ;
-- comparisons of xi with the three
-- foreign values

let
diff1 = abs (xi - pxother1)

> CROSS_CH_TOL_ROLL ;
diff2 = abs (xi - pxother2)

> CROSS_CH_TOL_ROLL ;
diff3 = abs (xi - pxother3)

> CROSS_CH_TOL_ROLL ;
fault =

maintain(TIME_CROSS_ROLL,
if pfother1 then
-- don’t take this one into account
if pfother2 then -- the same
if pfother3
then false else diff3

else if pfother3 then diff2
else (diff2 and diff3)

else if pfother2 then
if pfother3 then diff1

else (diff1 and diff3)
else if pfother3 then

(diff1 and diff2)
else (diff1 and diff2 and diff3)) ;

tel

In Section VII-A, this node will be formally checked for
equivalence with another version.

Notice that the informal specification is unclear: we de-
cided to report a failure when the conjunction “diff1 and
diff2 and diff3” holds for the given delay. We could
have chosen another solution, first detecting if each foreign
value differs from the local one for the given delay, and then
reporting the conjunction of these conditions.
Whatever be the correct choice, the body of the node

In Section VII-A, this node will be formally checked for
equivalence with another version. 10

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

xa

12.10 12.20

6.10 6.10 6.10
7.00 7.50

15.20

18.20

20.10 20.30 20.50 20.70

27.30 27.50 27.80

15.20 15.20

xb 14.60
15.20

21.20 21.20 21.20

12.10
11.50

9.90
8.90

8.10 7.90 7.70 7.50

5.90 5.70 5.40

9.10 9.10

local value

12.10 12.20

6.10 6.10 6.10
7.00 7.50

15.20

18.20

20.10 20.30 20.50 20.70

27.30 27.50 27.80

15.20 15.20

inline monitor failed

Fig. 10. A simulation of the Monitor

FailDetect is simply:

failure = transmit_failure or cross_failure;
cross_failure =

values_nok(pfother1, pfother2, pfother3,
xi, pxother1, pxother2, pxother3);

Simulations
We can run a simulation on this program, using Luciole,

the Lustre simulator. Since the current version of Luciole
only shows the values of input/output variables, while it is
interesting to see also the internal variables corresponding
to failures (transmit failurei, cross failurei), we first
modify the program so that these variables be output. The
simulation is performed with the following values for relevant
constants:

DELTA_ROLL = 4.0 ;
CROSS_CH_TOL_ROLL = 10.0 ;
TIME_ROLL = TIME_CROSS_ROLL = 3 ;

Fig. 11 shows an execution (where we introduce first a
transmission fault on the first channel (steps 2 to 5), then a
cross failure on channel 4 (steps 3 to 7), then a cross failure
on channel 3 alone (from step 9), on which an other cross
failure, on channel 1, is combined (from step 12)).

xa1

xb1

xa2

xb2

xa3

xb3

xa4

xb4

x

debug localfailure2

debug localfailure3

debug localfailure4

debug cross failure1

debug cross failure2

debug cross failure3

debug cross failure4

debug localfailure1

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

0.00
-2.00 -2.00 -2.00 -2.00

3.00 3.00 3.00 3.00 3.00 3.00

15.00 15.00 15.00 15.00 15.00

0.00
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

9.00 9.00 9.00

13.00 13.00

0.00
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

0.00
4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

0.00

3.50 3.50 3.50 3.50 3.50 3.50 3.50

-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00

0.00
2.50 2.50 2.50 2.50 2.50 2.50 2.50

-15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00

0.00

5.00

16.00 16.00 16.00 16.00 16.00

3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

0.00

4.00

15.00 15.00 15.00 15.00 15.00

2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

0.00
3.25 3.25 3.50 3.25 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Fig. 11. A simulation of transmission and cross failures

1

2

3

Fig. 12. The automaton driving failure latching

C. Latching the cross-channel faults

Now, recall that some serious faults must be latched (i.e.,
sustained even when their cause has disapeared), until the
occurence of some reset command. This latching is performed
by the node FailDetect, and depends on the state of an
automaton, as described by Fig. 12:

• State 1 is the normal state: everything is working prop-
erly, or there are transmission faults from time to time,
which are not latched;

• In state 2, there has been at least one serious fault in
the past, which is latched, but may be reset either by
“OnGroundReset” or by “InAirReset”;

• In state 3, there have been several serious faults in the
past, or one serious fault followed immediately by a
transmission one, and the fault is latched and reset-

Fig. 10 : A simulation of the Monitor

CSI Journal of Computing | Vol. 1 • No. 4, 2012

F. Maraninchi, et. al. 7 : 79
10

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

xa

12.10 12.20

6.10 6.10 6.10
7.00 7.50

15.20

18.20

20.10 20.30 20.50 20.70

27.30 27.50 27.80

15.20 15.20

xb 14.60
15.20

21.20 21.20 21.20

12.10
11.50

9.90
8.90

8.10 7.90 7.70 7.50

5.90 5.70 5.40

9.10 9.10

local value

12.10 12.20

6.10 6.10 6.10
7.00 7.50

15.20

18.20

20.10 20.30 20.50 20.70

27.30 27.50 27.80

15.20 15.20

inline monitor failed

Fig. 10. A simulation of the Monitor

FailDetect is simply:

failure = transmit_failure or cross_failure;
cross_failure =

values_nok(pfother1, pfother2, pfother3,
xi, pxother1, pxother2, pxother3);

Simulations
We can run a simulation on this program, using Luciole,

the Lustre simulator. Since the current version of Luciole
only shows the values of input/output variables, while it is
interesting to see also the internal variables corresponding
to failures (transmit failurei, cross failurei), we first
modify the program so that these variables be output. The
simulation is performed with the following values for relevant
constants:

DELTA_ROLL = 4.0 ;
CROSS_CH_TOL_ROLL = 10.0 ;
TIME_ROLL = TIME_CROSS_ROLL = 3 ;

Fig. 11 shows an execution (where we introduce first a
transmission fault on the first channel (steps 2 to 5), then a
cross failure on channel 4 (steps 3 to 7), then a cross failure
on channel 3 alone (from step 9), on which an other cross
failure, on channel 1, is combined (from step 12)).

xa1

xb1

xa2

xb2

xa3

xb3

xa4

xb4

x

debug localfailure2

debug localfailure3

debug localfailure4

debug cross failure1

debug cross failure2

debug cross failure3

debug cross failure4

debug localfailure1

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

0.00
-2.00 -2.00 -2.00 -2.00

3.00 3.00 3.00 3.00 3.00 3.00

15.00 15.00 15.00 15.00 15.00

0.00
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

9.00 9.00 9.00

13.00 13.00

0.00
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

0.00
4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

0.00

3.50 3.50 3.50 3.50 3.50 3.50 3.50

-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00

0.00
2.50 2.50 2.50 2.50 2.50 2.50 2.50

-15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00

0.00

5.00

16.00 16.00 16.00 16.00 16.00

3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

0.00

4.00

15.00 15.00 15.00 15.00 15.00

2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

0.00
3.25 3.25 3.50 3.25 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Fig. 11. A simulation of transmission and cross failures

1

2

3

Fig. 12. The automaton driving failure latching

C. Latching the cross-channel faults

Now, recall that some serious faults must be latched (i.e.,
sustained even when their cause has disapeared), until the
occurence of some reset command. This latching is performed
by the node FailDetect, and depends on the state of an
automaton, as described by Fig. 12:

• State 1 is the normal state: everything is working prop-
erly, or there are transmission faults from time to time,
which are not latched;

• In state 2, there has been at least one serious fault in
the past, which is latched, but may be reset either by
“OnGroundReset” or by “InAirReset”;

• In state 3, there have been several serious faults in the
past, or one serious fault followed immediately by a
transmission one, and the fault is latched and reset-

Fig. 11 : A simulation of transmission and cross
failures

Notice that the informal specification is unclear: we
decided to report a failure when the conjunction “diff1
and diff2 and diff3” holds for the given delay. We could
have chosen another solution, first detecting if each foreign
value differs from the local one for the given delay, and then
reporting the conjunction of these conditions.

Whatever be the correct choice, the body of the node
FailDetect is simply:

10

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

xa

12.10 12.20

6.10 6.10 6.10
7.00 7.50

15.20

18.20

20.10 20.30 20.50 20.70

27.30 27.50 27.80

15.20 15.20

xb 14.60
15.20

21.20 21.20 21.20

12.10
11.50

9.90
8.90

8.10 7.90 7.70 7.50

5.90 5.70 5.40

9.10 9.10

local value

12.10 12.20

6.10 6.10 6.10
7.00 7.50

15.20

18.20

20.10 20.30 20.50 20.70

27.30 27.50 27.80

15.20 15.20

inline monitor failed

Fig. 10. A simulation of the Monitor

FailDetect is simply:

failure = transmit_failure or cross_failure;
cross_failure =

values_nok(pfother1, pfother2, pfother3,
xi, pxother1, pxother2, pxother3);

Simulations
We can run a simulation on this program, using Luciole,

the Lustre simulator. Since the current version of Luciole
only shows the values of input/output variables, while it is
interesting to see also the internal variables corresponding
to failures (transmit failurei, cross failurei), we first
modify the program so that these variables be output. The
simulation is performed with the following values for relevant
constants:

DELTA_ROLL = 4.0 ;
CROSS_CH_TOL_ROLL = 10.0 ;
TIME_ROLL = TIME_CROSS_ROLL = 3 ;

Fig. 11 shows an execution (where we introduce first a
transmission fault on the first channel (steps 2 to 5), then a
cross failure on channel 4 (steps 3 to 7), then a cross failure
on channel 3 alone (from step 9), on which an other cross
failure, on channel 1, is combined (from step 12)).

xa1

xb1

xa2

xb2

xa3

xb3

xa4

xb4

x

debug localfailure2

debug localfailure3

debug localfailure4

debug cross failure1

debug cross failure2

debug cross failure3

debug cross failure4

debug localfailure1

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

0.00
-2.00 -2.00 -2.00 -2.00

3.00 3.00 3.00 3.00 3.00 3.00

15.00 15.00 15.00 15.00 15.00

0.00
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

9.00 9.00 9.00

13.00 13.00

0.00
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

0.00
4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

0.00

3.50 3.50 3.50 3.50 3.50 3.50 3.50

-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00

0.00
2.50 2.50 2.50 2.50 2.50 2.50 2.50

-15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00

0.00

5.00

16.00 16.00 16.00 16.00 16.00

3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

0.00

4.00

15.00 15.00 15.00 15.00 15.00

2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

0.00
3.25 3.25 3.50 3.25 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Fig. 11. A simulation of transmission and cross failures

1

2

3

Fig. 12. The automaton driving failure latching

C. Latching the cross-channel faults

Now, recall that some serious faults must be latched (i.e.,
sustained even when their cause has disapeared), until the
occurence of some reset command. This latching is performed
by the node FailDetect, and depends on the state of an
automaton, as described by Fig. 12:

• State 1 is the normal state: everything is working prop-
erly, or there are transmission faults from time to time,
which are not latched;

• In state 2, there has been at least one serious fault in
the past, which is latched, but may be reset either by
“OnGroundReset” or by “InAirReset”;

• In state 3, there have been several serious faults in the
past, or one serious fault followed immediately by a
transmission one, and the fault is latched and reset-

Simulations

We can run a simulation on this program, using Luciole,
the Lustre simulator. Since the current version of Luciole
only shows the values of input/output variables, while it is
interesting to see also the internal variables corresponding to
failures (transmit failure

i
; cross failurei), we first

modify the program so that these variables be output. The

simulation is performed with the following values for relevant
constants:

DELTA_ROLL = 4.0 ;
CROSS_CH_TOL_ROLL = 10.0 ;
TIME_ROLL = TIME_CROSS_ROLL = 3 ;
Fig. 11 shows an execution (where we introduce first a

transmission fault on the first channel (steps 2 to 5), then a
cross failure on channel 4 (steps 3 to 7), then a cross failure on
channel 3 alone (from step 9), on which an other cross failure,
on channel 1, is combined (from step 12)).

10

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

xa

12.10 12.20

6.10 6.10 6.10
7.00 7.50

15.20

18.20

20.10 20.30 20.50 20.70

27.30 27.50 27.80

15.20 15.20

xb 14.60
15.20

21.20 21.20 21.20

12.10
11.50

9.90
8.90

8.10 7.90 7.70 7.50

5.90 5.70 5.40

9.10 9.10

local value

12.10 12.20

6.10 6.10 6.10
7.00 7.50

15.20

18.20

20.10 20.30 20.50 20.70

27.30 27.50 27.80

15.20 15.20

inline monitor failed

Fig. 10. A simulation of the Monitor

FailDetect is simply:

failure = transmit_failure or cross_failure;
cross_failure =

values_nok(pfother1, pfother2, pfother3,
xi, pxother1, pxother2, pxother3);

Simulations
We can run a simulation on this program, using Luciole,

the Lustre simulator. Since the current version of Luciole
only shows the values of input/output variables, while it is
interesting to see also the internal variables corresponding
to failures (transmit failurei, cross failurei), we first
modify the program so that these variables be output. The
simulation is performed with the following values for relevant
constants:

DELTA_ROLL = 4.0 ;
CROSS_CH_TOL_ROLL = 10.0 ;
TIME_ROLL = TIME_CROSS_ROLL = 3 ;

Fig. 11 shows an execution (where we introduce first a
transmission fault on the first channel (steps 2 to 5), then a
cross failure on channel 4 (steps 3 to 7), then a cross failure
on channel 3 alone (from step 9), on which an other cross
failure, on channel 1, is combined (from step 12)).

xa1

xb1

xa2

xb2

xa3

xb3

xa4

xb4

x

debug localfailure2

debug localfailure3

debug localfailure4

debug cross failure1

debug cross failure2

debug cross failure3

debug cross failure4

debug localfailure1

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

0.00
-2.00 -2.00 -2.00 -2.00

3.00 3.00 3.00 3.00 3.00 3.00

15.00 15.00 15.00 15.00 15.00

0.00
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

9.00 9.00 9.00

13.00 13.00

0.00
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

0.00
4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

0.00

3.50 3.50 3.50 3.50 3.50 3.50 3.50

-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00

0.00
2.50 2.50 2.50 2.50 2.50 2.50 2.50

-15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15.00

0.00

5.00

16.00 16.00 16.00 16.00 16.00

3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

0.00

4.00

15.00 15.00 15.00 15.00 15.00

2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

0.00
3.25 3.25 3.50 3.25 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Fig. 11. A simulation of transmission and cross failures

1

2

3

Fig. 12. The automaton driving failure latching

C. Latching the cross-channel faults

Now, recall that some serious faults must be latched (i.e.,
sustained even when their cause has disapeared), until the
occurence of some reset command. This latching is performed
by the node FailDetect, and depends on the state of an
automaton, as described by Fig. 12:

• State 1 is the normal state: everything is working prop-
erly, or there are transmission faults from time to time,
which are not latched;

• In state 2, there has been at least one serious fault in
the past, which is latched, but may be reset either by
“OnGroundReset” or by “InAirReset”;

• In state 3, there have been several serious faults in the
past, or one serious fault followed immediately by a
transmission one, and the fault is latched and reset-

Fig. 12 : The automaton driving failure latching

C. Latching the cross-channel faults

It may be noted that some serious faults must be latched
(i.e., sustained even when their cause has disappeared),
until the occurence of some reset command. This latching
is performed by the node FailDetect, and depends on the
state of an automaton, as described by Fig. 12:
 � State 1 is the normal state: everything is working

properly, or there are transmission faults from time to
time, which are not latched;

 � In state 2, there has been at least one serious fault in
the past, which is latched, but may be reset either by
“OnGroundReset” or by “InAirReset”;

 � In state 3, there have been several serious faults in
the past, or one serious fault followed immediately by
a transmission one, and the fault is latched and reset
inhibited. In this case, only the “OnGroundReset” can
restore the normal state.
The failure output is true when in state 2 or 3, and is

equal to transmit_failure when in state 1. The transitions
between these states are driven by the following conditions:
 � from state 1: if the locally computed variable involves a

cross-failure, it is considered more serious if its value is
“in the nominal range” (since it can be later considered
as correct). So, in this case, one moves to state 3. If the
erroneous value lies outside the nominal range, one
moves to state 2.

 � from state 2: any reset signal restores the normal state
(1); a cross-failure immediately followed by a foreign
failure involves a move to state 3; a transmission failure
occurring in state 2 also involves a move to state 3.
from state 3: only the “OnGroundReset” can restore the

normal state.

Lustre code

Programming such an automaton in Lustre is tedious,

CSI Journal of Computing | Vol. 1 • No. 4, 2012

7 : 80
 Specification and Validation of Embedded Systems: A Case Study of a

Fault-Tolerant Data Acquisition System with Lustre Programming environment

but rather systematic. The state is encoded by an integer
variable, ranging from 1 to 3. Notice that the order in which
the transition conditions are tested for is relevant: for
instance, it allows priority to be given to reset:

11

inhibited. In this case, only the “OnGroundReset” can
restore the normal state.

The failure output is true when in state 2 or 3, and
is equal to transmit_failure when in state 1. The
transitions between these states are driven by the following
conditions:

• from state 1: if the locally computed variable involves a
cross-failure, it is considered more serious if its value is
“in the nominal range” (since it can be later considered
as correct). So, in this case, one moves to state 3. If
the erroneous value lies outside the nominal range, one
moves to state 2.

• from state 2: any reset signal restores the normal state
(1); a cross-failure immediately followed by a foreign
failure involves a move to state 3; a transmission failure
occurring in state 2 also involves a move to state 3.

• from state 3: only the “OnGroundReset” can restore the
normal state.

Lustre code

Programming such an automaton in Lustre is tedious, but
rather systematic. The state is encoded by an integer variable,
ranging from 1 to 3. Notice that the order in which the
transition conditions are tested for is relevant: for instance,
it allows priority to be given to reset:

state = 1 ->
if pre(state)=1 then

if pre(reset) then 1
-- reset has priority

else if pre(from1to2) then 2
else if pre(from1to3) then 3 else 1

else if pre(state)=2 then
if pre(from2to1) then 1
else if pre(from2to3) then 3 else 2

else -- pre(state)=3
if pre(from3to1) then 1 else 3 ;

The definitions of transition conditions follow the specifi-
cation:

from1to2 = cross_failure and
not InNominalRange (xi) ;

from1to3 = cross_failure and
InNominalRange (xi) ;

from2to3 = (pre(cross_failure) and
foreign_failure)

or transmit_failure ;
from2to1 = inairreset or ongroundreset;
from3to1 = ongroundreset;

Fig. 13 shows the whole code for the node FailDetect.

D. Taking into account the requirement on third fault

In the real system, a special device — called “Global
Allocator” — is in charge of preventing more than two units
from becoming reset-inhibited (i.e., from entering state 3). The
node Fail-Detect must be changed as follows: whenever
the automaton should move to state 3, it sends a request, say
r, to the global allocator, and only performs the move if the

allocator sends it an authorization back, say a. The node has an
additional Boolean input a, and sends an additional Boolean
output r. The transitions are then modified as follows:
• The request is the disjunction of the condition which
involved a move from state 1 to state 3, and the one which
involved a move from state 2 to state 3.

r = false -> (pre(state) = 1 and try1to3)
or (pre(state) = 2 and try2to3);

where try1to3 and try2to3 obey the previous definitions
of from1to3 and from2to3:
try1to3 = cross_failure and InNominalRange(xi);
try2to3 = (pre(cross_failure)

and foreign_failure)
or transmit_failure ;

• The actual moves occur only when the authorization is given:

from1to3 = try1to3 and a;
from2to3 = try2to3 and a;

The global allocator is quite simple: it receives requests
ri from the units, together with the “OnGroundReset” signal,
and returns authorizations. An internal counter nb is used
to count the number of units that are “reset-inhibited”, and
authorizations are given in order to prevent this counter from
reaching 3. The “OnGroundReset” signal resets the allocator
in its initial configuration (because it causes all automata to
leave state 3)4.

node allocator(r1,r2,r3,r4,reset: bool)
returns (a1,a2,a3,a4: bool);
var nb_aut, already: int;
let

already = if (true -> reset)
then 0 else pre(nb_aut);

a1 = r1 and already <= 1;
a2 = r2 and

((not r1 and already <= 1)
or (r1 and already = 0)
);

a3 = r3 and
((not r1 and not r2 and already <= 1)
or (#(r1,r2) and already = 0)
);

a4 = r4 and
((not r1 and not r2 and not r3 and

already <= 1)
or (#(r1,r2,r3) and already = 0)
);

nb_aut = if (true -> reset) then 0
else pre(nb_aut) +

(if a1 then 1 else 0) +
(if a2 then 1 else 0) +
(if a3 then 1 else 0) +
(if a4 then 1 else 0) ;

tel

Notice that there is an “instantaneous dialogue” between the
units and the allocator: in the very same step, the unit asks
the allocator for an authorization, the allocator replies, and the
unit takes the transition or not, according to this reply.

4The “#” operator, in Lustre, is a n-ary Boolean operator, which returns
“true” if and only if at most one of its operand is true.

The definitions of transition conditions follow the
specification:

11

inhibited. In this case, only the “OnGroundReset” can
restore the normal state.

The failure output is true when in state 2 or 3, and
is equal to transmit_failure when in state 1. The
transitions between these states are driven by the following
conditions:

• from state 1: if the locally computed variable involves a
cross-failure, it is considered more serious if its value is
“in the nominal range” (since it can be later considered
as correct). So, in this case, one moves to state 3. If
the erroneous value lies outside the nominal range, one
moves to state 2.

• from state 2: any reset signal restores the normal state
(1); a cross-failure immediately followed by a foreign
failure involves a move to state 3; a transmission failure
occurring in state 2 also involves a move to state 3.

• from state 3: only the “OnGroundReset” can restore the
normal state.

Lustre code

Programming such an automaton in Lustre is tedious, but
rather systematic. The state is encoded by an integer variable,
ranging from 1 to 3. Notice that the order in which the
transition conditions are tested for is relevant: for instance,
it allows priority to be given to reset:

state = 1 ->
if pre(state)=1 then

if pre(reset) then 1
-- reset has priority

else if pre(from1to2) then 2
else if pre(from1to3) then 3 else 1

else if pre(state)=2 then
if pre(from2to1) then 1
else if pre(from2to3) then 3 else 2

else -- pre(state)=3
if pre(from3to1) then 1 else 3 ;

The definitions of transition conditions follow the specifi-
cation:

from1to2 = cross_failure and
not InNominalRange (xi) ;

from1to3 = cross_failure and
InNominalRange (xi) ;

from2to3 = (pre(cross_failure) and
foreign_failure)

or transmit_failure ;
from2to1 = inairreset or ongroundreset;
from3to1 = ongroundreset;

Fig. 13 shows the whole code for the node FailDetect.

D. Taking into account the requirement on third fault

In the real system, a special device — called “Global
Allocator” — is in charge of preventing more than two units
from becoming reset-inhibited (i.e., from entering state 3). The
node Fail-Detect must be changed as follows: whenever
the automaton should move to state 3, it sends a request, say
r, to the global allocator, and only performs the move if the

allocator sends it an authorization back, say a. The node has an
additional Boolean input a, and sends an additional Boolean
output r. The transitions are then modified as follows:
• The request is the disjunction of the condition which
involved a move from state 1 to state 3, and the one which
involved a move from state 2 to state 3.

r = false -> (pre(state) = 1 and try1to3)
or (pre(state) = 2 and try2to3);

where try1to3 and try2to3 obey the previous definitions
of from1to3 and from2to3:
try1to3 = cross_failure and InNominalRange(xi);
try2to3 = (pre(cross_failure)

and foreign_failure)
or transmit_failure ;

• The actual moves occur only when the authorization is given:

from1to3 = try1to3 and a;
from2to3 = try2to3 and a;

The global allocator is quite simple: it receives requests
ri from the units, together with the “OnGroundReset” signal,
and returns authorizations. An internal counter nb is used
to count the number of units that are “reset-inhibited”, and
authorizations are given in order to prevent this counter from
reaching 3. The “OnGroundReset” signal resets the allocator
in its initial configuration (because it causes all automata to
leave state 3)4.

node allocator(r1,r2,r3,r4,reset: bool)
returns (a1,a2,a3,a4: bool);
var nb_aut, already: int;
let

already = if (true -> reset)
then 0 else pre(nb_aut);

a1 = r1 and already <= 1;
a2 = r2 and

((not r1 and already <= 1)
or (r1 and already = 0)
);

a3 = r3 and
((not r1 and not r2 and already <= 1)
or (#(r1,r2) and already = 0)
);

a4 = r4 and
((not r1 and not r2 and not r3 and

already <= 1)
or (#(r1,r2,r3) and already = 0)
);

nb_aut = if (true -> reset) then 0
else pre(nb_aut) +

(if a1 then 1 else 0) +
(if a2 then 1 else 0) +
(if a3 then 1 else 0) +
(if a4 then 1 else 0) ;

tel

Notice that there is an “instantaneous dialogue” between the
units and the allocator: in the very same step, the unit asks
the allocator for an authorization, the allocator replies, and the
unit takes the transition or not, according to this reply.

4The “#” operator, in Lustre, is a n-ary Boolean operator, which returns
“true” if and only if at most one of its operand is true.

Fig. 13 : shows the whole code for the node FailDetect.

D. Taking into account the requirement on third
fault
In the real system, a special device — called “Global

Allocator” — is in charge of preventing more than two units
from becoming reset-inhibited (i.e., from entering state 3). The
node Fail-Detect must be changed as follows: whenever
the automaton should move to state 3, it sends a request,
say r, to the global allocator, and only performs the move if
the allocator sends it an authorization back, say a. The node
has an additional Boolean input a, and sends an additional
Boolean output r. The transitions are then modified as follows:
 � The request is the disjunction of the condition which

involved a move from state 1 to state 3, and the one
which involved a move from state 2 to state 3.

r = false -> (pre(state) = 1 and try1to3)
 or (pre(state) = 2 and try2to3);
where try1to3 and try2to3 obey the previous definitions
of from1to3 and from2to3:
try1to3 = cross_failure and InNominalRange(xi);
try2to3 = (pre(cross_failure)
 and foreign_failure)

 or transmit_failure ;

The actual moves occur only when the authorization is
given:
from1to3 = try1to3 and a;
from2to3 = try2to3 and a;
The global allocator is quite simple: it receives requests ri
from the units, together with the “OnGroundReset” signal,
and returns authorizations. An internal counter nb is used to
count the number of units that are “reset-inhibited”, and
authorizations are given in order to prevent this counter from
reaching 3. The “OnGroundReset” signal resets the allocator
in its initial configuration (because it causes all automata to
leave state 3)4.

11

inhibited. In this case, only the “OnGroundReset” can
restore the normal state.

The failure output is true when in state 2 or 3, and
is equal to transmit_failure when in state 1. The
transitions between these states are driven by the following
conditions:

• from state 1: if the locally computed variable involves a
cross-failure, it is considered more serious if its value is
“in the nominal range” (since it can be later considered
as correct). So, in this case, one moves to state 3. If
the erroneous value lies outside the nominal range, one
moves to state 2.

• from state 2: any reset signal restores the normal state
(1); a cross-failure immediately followed by a foreign
failure involves a move to state 3; a transmission failure
occurring in state 2 also involves a move to state 3.

• from state 3: only the “OnGroundReset” can restore the
normal state.

Lustre code

Programming such an automaton in Lustre is tedious, but
rather systematic. The state is encoded by an integer variable,
ranging from 1 to 3. Notice that the order in which the
transition conditions are tested for is relevant: for instance,
it allows priority to be given to reset:

state = 1 ->
if pre(state)=1 then

if pre(reset) then 1
-- reset has priority

else if pre(from1to2) then 2
else if pre(from1to3) then 3 else 1

else if pre(state)=2 then
if pre(from2to1) then 1
else if pre(from2to3) then 3 else 2

else -- pre(state)=3
if pre(from3to1) then 1 else 3 ;

The definitions of transition conditions follow the specifi-
cation:

from1to2 = cross_failure and
not InNominalRange (xi) ;

from1to3 = cross_failure and
InNominalRange (xi) ;

from2to3 = (pre(cross_failure) and
foreign_failure)

or transmit_failure ;
from2to1 = inairreset or ongroundreset;
from3to1 = ongroundreset;

Fig. 13 shows the whole code for the node FailDetect.

D. Taking into account the requirement on third fault

In the real system, a special device — called “Global
Allocator” — is in charge of preventing more than two units
from becoming reset-inhibited (i.e., from entering state 3). The
node Fail-Detect must be changed as follows: whenever
the automaton should move to state 3, it sends a request, say
r, to the global allocator, and only performs the move if the

allocator sends it an authorization back, say a. The node has an
additional Boolean input a, and sends an additional Boolean
output r. The transitions are then modified as follows:
• The request is the disjunction of the condition which
involved a move from state 1 to state 3, and the one which
involved a move from state 2 to state 3.

r = false -> (pre(state) = 1 and try1to3)
or (pre(state) = 2 and try2to3);

where try1to3 and try2to3 obey the previous definitions
of from1to3 and from2to3:
try1to3 = cross_failure and InNominalRange(xi);
try2to3 = (pre(cross_failure)

and foreign_failure)
or transmit_failure ;

• The actual moves occur only when the authorization is given:

from1to3 = try1to3 and a;
from2to3 = try2to3 and a;

The global allocator is quite simple: it receives requests
ri from the units, together with the “OnGroundReset” signal,
and returns authorizations. An internal counter nb is used
to count the number of units that are “reset-inhibited”, and
authorizations are given in order to prevent this counter from
reaching 3. The “OnGroundReset” signal resets the allocator
in its initial configuration (because it causes all automata to
leave state 3)4.

node allocator(r1,r2,r3,r4,reset: bool)
returns (a1,a2,a3,a4: bool);
var nb_aut, already: int;
let

already = if (true -> reset)
then 0 else pre(nb_aut);

a1 = r1 and already <= 1;
a2 = r2 and

((not r1 and already <= 1)
or (r1 and already = 0)
);

a3 = r3 and
((not r1 and not r2 and already <= 1)
or (#(r1,r2) and already = 0)
);

a4 = r4 and
((not r1 and not r2 and not r3 and

already <= 1)
or (#(r1,r2,r3) and already = 0)
);

nb_aut = if (true -> reset) then 0
else pre(nb_aut) +

(if a1 then 1 else 0) +
(if a2 then 1 else 0) +
(if a3 then 1 else 0) +
(if a4 then 1 else 0) ;

tel

Notice that there is an “instantaneous dialogue” between the
units and the allocator: in the very same step, the unit asks
the allocator for an authorization, the allocator replies, and the
unit takes the transition or not, according to this reply.

4The “#” operator, in Lustre, is a n-ary Boolean operator, which returns
“true” if and only if at most one of its operand is true.

Notice that there is an “instantaneous dialogue” between
the units and the allocator: in the very same step, the unit
asks the allocator for an authorization, the allocator replies,
and the unit takes the transition or not, according to this
reply.

In Section VII-B, some properties of this allocation
mechanism will be formally verified.

VII. Some Experiences in Formal Verification
Ideally, the formal verification of such a program should

consist of comparing it with a global, abstract specification.
As it is often the case with real case-studies, this specification
is not available. The problem even more serious, here, since
the abstract specification of such a fault-tolerant system

4 The “#” operator, in Lustre, is a n-ary Boolean operator, which returns “true” if and only if at most one of its operand is true.

CSI Journal of Computing | Vol. 1 • No. 4, 2012

F. Maraninchi, et. al. 7 : 81
12

node FailDetect (
transmit_failure : bool ;
xi : real ;
ongroundreset, inairreset : bool ;
choffi : bool ;
pxother1, pxother2, pxother3 : real ; -- other values (pre)
pfother1, pfother2, pfother3 : bool ; -- other failures (pre)

)
returns (

failure : bool ; -- failure detected by this channel
)
var

cross_failure : bool ;
state : int ; -- only 1, 2, 3 are relevant
from1to2, from1to3, from2to3, from2to1, from3to1 : bool ;
reset, foreign_failure : bool ;

let
-- the state ---
state = 1 ->

if pre(state)=1 then
if pre(reset) then 1 -- reset has priority
else if pre(from1to2) then 2
else if pre(from1to3) then 3
else 1

else if pre(state)=2 then
if pre(from2to1) then 1
else if pre(from2to3) then 3
else 2

else -- pre(state)=3
if pre(from3to1) then 1
else 3 ;

reset = ongroundreset or (inairreset and not cross_failure) ;
foreign_failure = pfother1 or pfother2 or pfother3 ;
-- The output --
failure = (state = 2) or (state = 3) or (state = 1 and transmit_failure) ;
-- All the transitions ---
from1to2 = cross_failure and not InNominalRange (xi) ;
from1to3 = cross_failure and InNominalRange (xi) ;
from2to3 = (pre(cross_failure) and foreign_failure) or transmit_failure ;
from2to1 = reset ;
from3to1 = ongroundreset ;
-- Cross channel comparisons ---------------------------------------
cross_failure = values_nok (pfother1, pfother2, pfother3,

xi, pxother1, pxother2, pxother3) ;
tel

Fig. 13. Latching Failures

In Section VII-B, some properties of this allocation mechanism
will be formally verified.

VII. SOME EXPERIENCES IN FORMAL VERIFICATION

Ideally, the formal verification of such a program should
consist of comparing it with a global, abstract specification.
As it is often the case with real case-studies, this specification
is not available. The problem even more serious, here, since
the abstract specification of such a fault-tolerant system should
probably involve probabilistic properties, which are stated
nowhere, and which could not be handled by usual verification
tools.

So, we don’t know “what to verify” on the complete
program. However, there are two common cases where ver-
ification tools can be applied “locally”:

• When there are two ways of writing a node, one can write
both and try to show that they are equivalent. If they are
not, a bug is detected, at least, in one of them. If they
are, this increases the confidence one can have in any
of them. We will illustrate this situation on two versions

of the node values_nok, which detects cross-channel
faults.

• When some consistency properties are clearly expressed
in the requirements: for instance, we will try to prove that
at most two channels can become “reset-inhibited”.

A. Cross-channel fault detection

In the version of the node values_nok given
in Section VI-B, the output fault is defined as
maintain(TIME_CROSS_ROLL, cond), where cond
is a Boolean expression carefully detailing all the possible
combinations of failures. One could look for a more compact
and symmetrical condition, say cond1, expressing that all
the significant other measures are too different from the local
measure:

cond1 = ∀i ∈ [1..3], (¬pfotheri) ⇒ diffi
or

fault = maintain(TIME_CROSS_ROLL,
(pfother1 or diff1)

and (pfother2 or diff2)

Fig. 13 : Latching Failures

should probably involve probabilistic properties, which are
stated nowhere, and which could not be handled by usual
verification tools.

So, we don’t know “what to verify” on the complete
program. However, there are two common cases where
verification tools can be applied “locally”:

 � When there are two ways of writing a node, one can write
both and try to show that they are equivalent. If they are
not, a bug is detected, at least, in one of them. If they
are, this increases the confidence one can have in any of
them. We will illustrate this situation on two versions
of the node values_nok, which detects cross-channel
faults.

 � When some consistency properties are clearly expressed
in the requirements: for instance, we will try to prove
that at most two channels can become “reset-inhibited”.

A. Cross-channel fault detection

In the version of the node values_nok given in Section
VI-B, the output fault is defined as maintain(TIME_
CROSS_ROLL, cond), where cond is a Boolean expression
carefully detailing all the possible combinations of failures.
One could look for a more compact and symmetrical condition,
say cond1, expressing that all the significant other measures
are too different from the local measure:

cond1 = "i Î [1...3]; (Øpfotheri)) diffi

or
fault = maintain(TIME_CROSS_ROLL,
 pfother1 or diff1)
 and (pfother2 or diff2)
 and (pfother3 or diff3));

So, we can write two complete versions of the node
values_nok, with the same definition for the diffi and a

CSI Journal of Computing | Vol. 1 • No. 4, 2012

7 : 82
 Specification and Validation of Embedded Systems: A Case Study of a

Fault-Tolerant Data Acquisition System with Lustre Programming environment

different definition for r. Then, we try, using our verification
tools, to show that, whatever be the input sequences, they
provide the same output sequence:
 � with the verification tool Lesar, the verification fails.

The diagnosis returned by Lesar shows that it is due
to the weakness of the tool: Lesar considers only the
Boolean aspects of the program, and abstracts away all
the numerical expressions. As a consequence, it produces
a counter-example where the Boolean variables diff1,
diff2, and diff3 (which are defined by numerical
expressions) appearing in the two versions of the node
have distinct values. It is a case of false negative.

 � the prototype NBac is able, to some extend, to take into
account numerical aspects in the verification. It also fails
in proving the equivalence of the two nodes, but indicates
that the output may differ when all the inputs pfotheri
are true. This is an actual discrepancy: in this case, the
first version outputs fault = false (since none of
other values is significant, the local one is assumed to be
good), while the second version outputs fault = true.
It is probably a bug in the second version, which can be
fixed as follows:
fault = maintain(TIME_CROSS_ROLL,
 pfother1 or diff1)
 and (pfother2 or diff2)
 and (pfother3 or diff3)
 and not(pfother1 and pfother2
 and pfother3));

Now, NBac shows that this fixed version is equivalent to
the first one.

B. Allocation of “reset-inhibition”

In section VI-D we designed the “Global Allocator”,
the role of which is to prevent more than two channels to
become “reset-inhibited. We can try to verify the behavior
of the allocator alone: we know that nb_aut, the number
of authorizations, should stay smaller than 2. Of course,
because of numerical variables, Lesar is not able to prove this
property (the range of the counter being small, the node could
be rewritten only with Boolean variables, but it is neither
very natural, nor efficient). NBac proves the property very
easily (in about 0.5 sec.).

A more ambitious verification consists in proving, on
the integrated system, that at most two units can become
resetinhibited, i.e., that not only are the authorizations
correctly delivered, but also that they are correctly obeyed by
the units.

The current version of NBac is not able to perform this
verification, for two reasons:
 � on one hand, there are too many numerical variables,

which makes the symbolic computations very complex. An
interesting remark is that the variables corresponding to
“roll” measures, while being used to determine failures,
have no real influence on the property; the tool is not able
to detect this fact, and to “slice” these variables away.

 � on the other hand, the determination of the suitable

control structure is quite complex. Obviously, the
automata involved in “FailDetect” should be taken into
account, but the tool takes a very long time to find it.
These limitations suggest some improvements to the

tool, which will be discussed in the conclusion.
So, we decided to use Lesar for this verification. For that,

we have to modify the program, so that the property involves
only Boolean computations. Since it only uses counters up to
4, it is quite easy:
 � “FailDetect” must be changed to work only with Boolean

variables: instead of encoding states by integers, we use
pairs of Booleans, and we define a node to compare such
pairs for equality:
const state1 = [false, true];
 state2 = [true, false];
 state3 = [true, true];
node EQState (s1, s2: [bool,bool])
 returns (eq: bool);
let
 eq =(s1[0]=s2[0]) and (s1[1]=s2[1]);
tel

Then, we change the definition of the state as follows:

13

and (pfother3 or diff3));

So, we can write two complete versions of the node
values_nok, with the same definition for the diffi and a
different definition for r. Then, we try, using our verification
tools, to show that, whatever be the input sequences, they
provide the same output sequence:

• with the verification tool Lesar, the verification fails.
The diagnosis returned by Lesar shows that it is due
to the weakness of the tool: Lesar considers only the
Boolean aspects of the program, and abstracts away all
the numerical expressions. As a consequence, it produces
a counter-example where the Boolean variables diff1,
diff2, and diff3 (which are defined by numerical
expressions) appearing in the two versions of the node
have distinct values. It is a case of false negative.

• the prototype NBac is able, to some extend, to take into
account numerical aspects in the verification. It also
fails in proving the equivalence of the two nodes, but
indicates that the output may differ when all the inputs
pfotheri are true. This is an actual discrepancy: in
this case, the first version outputs fault = false
(since none of other values is significant, the local one is
assumed to be good), while the second version outputs
fault = true. It is probably a bug in the second
version, which can be fixed as follows:

fault = maintain(TIME_CROSS_ROLL,
pfother1 or diff1)

and (pfother2 or diff2)
and (pfother3 or diff3)
and not(pfother1 and pfother2

and pfother3));

Now, NBac shows that this fixed version is equivalent to
the first one.

B. Allocation of “reset-inhibition”

In section VI-D we designed the “Global Allocator”, the
role of which is to prevent more than two channels to
become “reset-inhibited. We can try to verify the behavior
of the allocator alone: we know that nb_aut, the number of
authorizations, should stay smaller than 2. Of course, because
of numerical variables, Lesar is not able to prove this property
(the range of the counter being small, the node could be
rewritten only with Boolean variables, but it is neither very
natural, nor efficient). NBac proves the property very easily
(in about 0.5 sec.).

A more ambitious verification consists in proving, on the
integrated system, that at most two units can become reset-
inhibited, i.e., that not only are the authorizations correctly
delivered, but also that they are correctly obeyed by the units.

The current version of NBac is not able to perform this
verification, for two reasons:

• on one hand, there are too many numerical variables,
which makes the symbolic computations very complex.
An interesting remark is that the variables corresponding
to “roll” measures, while being used to determine failures,
have no real influence on the property; the tool is not able
to detect this fact, and to “slice” these variables away.

• on the other hand, the determination of the suitable con-
trol structure is quite complex. Obviously, the automata
involved in “FailDetect” should be taken into account,
but the tool takes a very long time to find it.

These limitations suggest some improvements to the tool,
which will be discussed in the conclusion.

So, we decided to use Lesar for this verification. For that,
we have to modify the program, so that the property involves
only Boolean computations. Since it only uses counters up to
4, it is quite easy:

• “FailDetect” must be changed to work only with Boolean
variables: instead of encoding states by integers, we use
pairs of Booleans, and we define a node to compare such
pairs for equality:

const state1 = [false, true];
state2 = [true, false];
state3 = [true, true];

node EQState (s1, s2: [bool,bool])
returns (eq: bool);

let
eq =(s1[0]=s2[0]) and (s1[1]=s2[1]);

tel

Then, we change the definition of the state as follows:

state= state1 ->
if EQState(ps,state1) then

if pre(reset) then state1
else if pre(from1to2) then state2
else if pre(from1to3) then state3
else state1

else if EQState(ps,state2) then
if pre(from2to1) then state1
else if pre(from2to3) then state3
else state2

else
if pre(from3to1) then state1
else state3 ;

• The property must be expressed only with Boolean vari-
ables: the observer receives the states of the channels,
and returns a single Boolean which is false when at least
three of them are in state 3.

node verif(st1, st2, st3, st4:[bool,bool])
returns (ok: bool);

var three: bool;
inhib1, inhib2, inhib3, inhib4: bool;

let
-- at most 2 channels reset inhibited
ok = not three;

-- counting the number of inhibited units
three =(inhib1 and inhib2 and inhib3) or

(inhib1 and inhib2 and inhib4) or
(inhib1 and inhib3 and inhib4) or
(inhib2 and inhib3 and inhib4);

inhib1 = EQState(st1,state3);
inhib2 = EQState(st2,state3);
inhib3 = EQState(st3,state3);
inhib4 = EQState(st4,state3);

tel

Lesar proves this property in 69 sec.

 � The property must be expressed only with Boolean
variables: the observer receives the states of the channels,
and returns a single Boolean which is false when at least
three of them are in state 3.

13

and (pfother3 or diff3));

So, we can write two complete versions of the node
values_nok, with the same definition for the diffi and a
different definition for r. Then, we try, using our verification
tools, to show that, whatever be the input sequences, they
provide the same output sequence:

• with the verification tool Lesar, the verification fails.
The diagnosis returned by Lesar shows that it is due
to the weakness of the tool: Lesar considers only the
Boolean aspects of the program, and abstracts away all
the numerical expressions. As a consequence, it produces
a counter-example where the Boolean variables diff1,
diff2, and diff3 (which are defined by numerical
expressions) appearing in the two versions of the node
have distinct values. It is a case of false negative.

• the prototype NBac is able, to some extend, to take into
account numerical aspects in the verification. It also
fails in proving the equivalence of the two nodes, but
indicates that the output may differ when all the inputs
pfotheri are true. This is an actual discrepancy: in
this case, the first version outputs fault = false
(since none of other values is significant, the local one is
assumed to be good), while the second version outputs
fault = true. It is probably a bug in the second
version, which can be fixed as follows:

fault = maintain(TIME_CROSS_ROLL,
pfother1 or diff1)

and (pfother2 or diff2)
and (pfother3 or diff3)
and not(pfother1 and pfother2

and pfother3));

Now, NBac shows that this fixed version is equivalent to
the first one.

B. Allocation of “reset-inhibition”

In section VI-D we designed the “Global Allocator”, the
role of which is to prevent more than two channels to
become “reset-inhibited. We can try to verify the behavior
of the allocator alone: we know that nb_aut, the number of
authorizations, should stay smaller than 2. Of course, because
of numerical variables, Lesar is not able to prove this property
(the range of the counter being small, the node could be
rewritten only with Boolean variables, but it is neither very
natural, nor efficient). NBac proves the property very easily
(in about 0.5 sec.).

A more ambitious verification consists in proving, on the
integrated system, that at most two units can become reset-
inhibited, i.e., that not only are the authorizations correctly
delivered, but also that they are correctly obeyed by the units.

The current version of NBac is not able to perform this
verification, for two reasons:

• on one hand, there are too many numerical variables,
which makes the symbolic computations very complex.
An interesting remark is that the variables corresponding
to “roll” measures, while being used to determine failures,
have no real influence on the property; the tool is not able
to detect this fact, and to “slice” these variables away.

• on the other hand, the determination of the suitable con-
trol structure is quite complex. Obviously, the automata
involved in “FailDetect” should be taken into account,
but the tool takes a very long time to find it.

These limitations suggest some improvements to the tool,
which will be discussed in the conclusion.

So, we decided to use Lesar for this verification. For that,
we have to modify the program, so that the property involves
only Boolean computations. Since it only uses counters up to
4, it is quite easy:

• “FailDetect” must be changed to work only with Boolean
variables: instead of encoding states by integers, we use
pairs of Booleans, and we define a node to compare such
pairs for equality:

const state1 = [false, true];
state2 = [true, false];
state3 = [true, true];

node EQState (s1, s2: [bool,bool])
returns (eq: bool);

let
eq =(s1[0]=s2[0]) and (s1[1]=s2[1]);

tel

Then, we change the definition of the state as follows:

state= state1 ->
if EQState(ps,state1) then

if pre(reset) then state1
else if pre(from1to2) then state2
else if pre(from1to3) then state3
else state1

else if EQState(ps,state2) then
if pre(from2to1) then state1
else if pre(from2to3) then state3
else state2

else
if pre(from3to1) then state1
else state3 ;

• The property must be expressed only with Boolean vari-
ables: the observer receives the states of the channels,
and returns a single Boolean which is false when at least
three of them are in state 3.

node verif(st1, st2, st3, st4:[bool,bool])
returns (ok: bool);

var three: bool;
inhib1, inhib2, inhib3, inhib4: bool;

let
-- at most 2 channels reset inhibited
ok = not three;

-- counting the number of inhibited units
three =(inhib1 and inhib2 and inhib3) or

(inhib1 and inhib2 and inhib4) or
(inhib1 and inhib3 and inhib4) or
(inhib2 and inhib3 and inhib4);

inhib1 = EQState(st1,state3);
inhib2 = EQState(st2,state3);
inhib3 = EQState(st3,state3);
inhib4 = EQState(st4,state3);

tel

Lesar proves this property in 69 sec.Lesar proves this property in 69 sec.

CSI Journal of Computing | Vol. 1 • No. 4, 2012

F. Maraninchi, et. al. 7 : 83

An other interesting property is that the allocator allows
a maximum number of channels to become reset-inhibited. In
other words, we want that, whenever at least two channels
have requested to become reset-inhibited since the last “On-
GroundReset”, then at least two of them (in fact, exactly two,
because of the previous property) are actually reset-inhibited.
This property can be expressed by the following observer: it
receives the requests from channels to become reset-inhibited,
the OnGroundReset” signal, and the state of the channels.
The requests are memorized from each reset signal. Then the
output is true iff whenever there is at least two memorized
requests, at least two channels are in state 3 (remember that,
in Lustre, #(x1,x2,...,xn) is a Boolean expression which
is true iff at most 1 of its Boolean arguments xi is true; so, its
negation expresses that at least two of them are true):

14

An other interesting property is that the allocator allows a
maximum number of channels to become reset-inhibited. In
other words, we want that, whenever at least two channels
have requested to become reset-inhibited since the last “On-
GroundReset”, then at least two of them (in fact, exactly two,
because of the previous property) are actually reset-inhibited.
This property can be expressed by the following observer: it
receives the requests from channels to become reset-inhibited,
the OnGroundReset” signal, and the state of the channels.
The requests are memorized from each reset signal. Then the
output is true iff whenever there is at least two memorized
requests, at least two channels are in state 3 (remember that, in
Lustre, #(x1,x2,...,xn) is a Boolean expression which
is true iff at most 1 of its Boolean arguments xi is true; so,
its negation expresses that at least two of them are true):

node verif(ask1, ask2, ask3, ask4, reset: bool;
st1, st2, st3, st4: [bool, bool])

returns (ok: bool);
var morethantwoasks : bool;

req1, req2, req3, req4: bool;
inhib1, inhib2, inhib3, inhib4: bool;

let
-- if more than 2 requests, then
-- at least 2 channels in state 3
ok = (morethantworeqs =>

not #(inhib1, inhib2, inhib3, inhib4));

inhib1 = EQState(st1,state3);
inhib2 = EQState(st2,state3);
inhib3 = EQState(st3,state3);
inhib4 = EQState(st4,state3);

req1 = if (true -> reset) then false
else pre(req1) or ask1;

req2 = if (true -> reset) then false
else pre(req2) or ask2;

req3 = if (true -> reset) then false
else pre(req3) or ask3;

req4 = if (true -> reset) then false
else pre(req4) or ask4;

morethantworeqs =
not #(req1, req2, req3, req4);

tel

Lesar finds that this property is false. This is due to the fact
that requests only produce state changes at the next step. The
correct property must be written:

ok = true ->
(pre(morethantworeqs) =>
not #(inhib1, inhib2, inhib3, inhib4));

Now, Lesar finds, in 130 sec., that the property is satisfied.

VIII. CONCLUSION

We presented a real case study5 described in Lustre, and
validated with associated tools. The study throws light on

5For concision and confidentiality reasons, the case study was slightly
simplified in the paper, but it is still representative of the complexity of actual
system.

several aspects: the language itself, the design methodology,
and the validation tools.

The study demonstrates that case study is quite well-
suited for Lustre. A similar experiment performed with Esterel
[RS00], [SS03] showed that a data-flow language is much
more natural for most features of the system. Now, we
restricted ourselves to using only the kernel of Lustre which is
compatible with the industrial tool Scade. In the full academic
version of Lustre, we also have a powerful notion of arrays,
the use of which would have significantly reduced the size
of the description: all data symmetrically processed in each
channel should be structured in arrays. This usefulness of
arrays, both concerning the structure of the source program,
and the quality of the generated code, was confirmed by other
case studies. The most imperative part of the system is the
automata used in FailDetect for defining reset-inhibition.
While the description of such small automata is not difficult in
Lustre, it would be obviously easier with an extension based
on automata [MR03].

Concerning programming methodology, we have tried to
promote a progressive approach: the whole architecture is
designed first, and its components are progressively detailed
in turn. The interest is that an integrated — yet still in-
complete —, version of the program is always available for
simulation and validation. This approach completely differs
from the “progressive refinement” generally advocated (e.g.,
in B [Abr95]), where a non-deterministic specification is
progressively refined (i.e., made more deterministic) into a
program. Here, since we use a programming language, all
our descriptions are deterministic. So the design proceeds in
the reverse direction: an initial, very simplified description, is
progressively enriched until it matches the whole specification.
Of course, this pragmatic approach is less “formal”, but we
believe that it is more realistic, since it better meets engineers
uses. Also, because of the weaknesses of formal validation
tools, in their present state, early error detection by early
simulation — which is allowed by our approach — seems
to be more practical than early proof.

Finally, it was an interesting challenge for our validation
tools. We showed, first, that the Luciole simulator is extremely
useful, at each stage of the development, to quickly check
either the whole program or a single node. Concerning veri-
fication, we faced the usual problems due to lack of global
specification. However, some properties were available. A
first remark is that proving properties directly on the source
program requires, in most cases, a verification tool with
some numerical capabilities. Such capabilities are provided
by NBac, but the size of problems that it can handle must
be increased. The case study suggests some ways in which
the user can help NBac: as mentioned already, there should
be a way of abstracting away some Boolean variables whose
dependences on numerical values obviously don’t influence
the validity of the property; it was the case, in our example,
of the failure detections. On the other hand, the user should
be able to suggest an initial control structure; for instance the
automata used to determine the reset-inhibition were obviously
relevant to the verification. We were not able to apply our auto-
matic testing tool to this example, mainly because of missing

Lesar finds that this property is false. This is due to the
fact that requests only produce state changes at the next step.
The correct property must be written:
ok = true ->
 (pre(morethantworeqs) =>
 not #(inhib1, inhib2, inhib3, inhib4));

Now, Lesar finds, in 130 sec., that the property is
satisfied.

VIII. Conclusion
 We presented a real case study5 described in Lustre,

and validated with associated tools. The study throws light on
several aspects: the language itself, the design methodology,
and the validation tools.

The study demonstrates that case study is quite
wellsuited for Lustre. A similar experiment performed with
Esterel [RS00], [SS03] showed that a data-flow language is
much more natural for most features of the system. Now, we
restricted ourselves to using only the kernel of Lustre which is
compatible with the industrial tool Scade. In the full academic
version of Lustre, we also have a powerful notion of arrays,
the use of which would have significantly reduced the size
of the description: all data symmetrically processed in each
channel should be structured in arrays. This usefulness of
arrays, both concerning the structure of the source program,
and the quality of the generated code, was confirmed by other
case studies. The most imperative part of the system is the
automata used in FailDetect for defining reset-inhibition.
While the description of such small automata is not difficult
in Lustre, it would be obviously easier with an extension
based on automata [MR03].

Concerning programming methodology, we have tried
to promote a progressive approach: the whole architecture
is designed first, and its components are progressively
detailed in turn. The interest is that an integrated — yet still
incomplete —, version of the program is always available
for simulation and validation. This approach completely
differs from the “progressive refinement” generally advocated
(e.g., in B [Abr95]), where a non-deterministic specification
is progressively refined (i.e., made more deterministic) into
a program. Here, since we use a programming language,
all our descriptions are deterministic. So the design
proceeds in the reverse direction: an initial, very simplified
description, is progressively enriched until it matches the
whole specification. Of course, this pragmatic approach is
less “formal”, but we believe that it is more realistic, since it
better meets engineers uses. Also, because of the weaknesses
of formal validation tools, in their present state, early error
detection by early simulation — which is allowed by our
approach — seems to be more practical than early proof.

Finally, it was an interesting challenge for our validation
tools. We showed, first, that the Luciole simulator is
extremely useful, at each stage of the development, to quickly
check either the whole program or a single node. Concerning
verification, we faced the usual problems due to lack of global
specification. However, some properties were available. A
first remark is that proving properties directly on the source
program requires, in most cases, a verification tool with
some numerical capabilities. Such capabilities are provided
by NBac, but the size of problems that it can handle must
be increased. The case study suggests some ways in which
the user can help NBac: as mentioned already, there should
be a way of abstracting away some Boolean variables whose
dependences on numerical values obviously don’t influence
the validity of the property; it was the case, in our example,
of the failure detections. On the other hand, the user should

5 For concision and confidentiality reasons, the case study was slightly simplified in the paper, but it is still representative of the
complexity of actual system.

CSI Journal of Computing | Vol. 1 • No. 4, 2012

7 : 84
 Specification and Validation of Embedded Systems: A Case Study of a

Fault-Tolerant Data Acquisition System with Lustre Programming environment

be able to suggest an initial control structure; for instance
the automata used to determine the reset-inhibition were
obviously relevant to the verification. We were not able to
apply our automatic testing tool to this example, mainly
because of missing knowledge, both about the assumptions
on the environment and about the global properties to be
checked on the whole system. This is a challenging area of
pursuit.

References
[Abr95] J.-R. Abrial. The B-Book. Cambridge University Press,

[BB91] 1995. A. Benveniste and G. Berry. Another look at real-
time programming. Special Section of the Proceedings of
the IEEE, 79(9), September 1991.

[BCE+03] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs,
P. Le Guernic, and R. de Simone. The synchronous
languages 12 years later. Proceedings of the IEEE, 91(1),
January 2003.

[BCM+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and
J. Hwang. Symbolic model checking: 1020 states and
beyond. In Fifth IEEE Symposium on Logic in Computer
Science, Philadelphia, pages 428–439, June 1990.

[BS91] F. Boussinot and R. de Simone. The Esterel language.
Proceedings of the IEEE, 79(9):1293–1304, September
1991.

[Cas01] P. Caspi. Embedded control: From asynchrony to
synchrony and back. In 1st International Workshop
on Embedded Software, EMSOFT2001, Lake Tahoe,
October 2001. LNCS 2211.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In 4th ACM
Symposium on Principles of Programming Languages,
POPL’77, Los Angeles, January 1977.

[CGP99] P. Caspi, A. Girault, and D. Pilaud. Automatic
distribution of reactive systems for asynchronous
networks of processors. IEEE Transactions on Software
Engineering, 25(3):416–427, 1999. Research report
INRIA 3491.

[CHPP87] P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice.
LUSTRE, a declarative language for programming
synchronous systems. In 14th Symposium on Principles
of Programming Languages, Munich, January 1987.

[CMSW99] P. Caspi, C. Mazuet, R. Salem, and D. Weber. Formal
design of distributed control systems with Lustre. In
Proc. Safecomp’99, volume 1698 of Lecture Notes in
Computer Science. Springer Verlag, September 1999.

[CPP05] Jean-Louis Colac¸o, Bruno Pagano, and Marc Pouzet. A
Conservative Extension of Synchronous Data-flow with
State Machines. In ACM International Conference on
Embedded Software (EMSOFT’ 05), Jersey city, New
Jersey, USA, September 2005.

[HB02] N. Halbwachs and S. Baghdadi. Synchronous modeling
of asynchronous systems. In EMSOFT’02. LNCS 2491,

Springer Verlag, October 2002.

[HLR93] N. Halbwachs, F. Lagnier, and P. Raymond.
Synchronous observers and the verification of reactive
systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo,
editors, Third Int. Conf. on Algebraic Methodology and
Software Technology, AMAST’93, Twente, June 1993.
Workshops in Computing, Springer Verlag.

[HPR97] N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification
of realtime systems using linear relation analysis.
Formal Methods in System Design, 11(2):157–185,
August 1997.

[JHR99] B. Jeannet, N. Halbwachs, and P. Raymond. Dynamic
partitioning in analyses of numerical properties. In A.
Cortesi and G. Fil´e, editors, Static Analysis Symposium,
SAS’99, Venice (Italy), September 1999. LNCS 1694,
Springer Verlag.

[JHR+07] E. Jahier, N. Halbwachs, P. Raymond, X. Nicollin,
and D. Lesens. Virtual execution of AADL models via
a translation into synchronous programs. In EMSOFT
2007, Salzburg, Austria, 2007.

[JRB04] E. Jahier, P. Raymond, and P. Baufreton. Case studies
with Lurette V2. In First International Symposium on
Leveraging Applications of Formal Method, ISoLa 2004,
Paphos, Cyprus, October 2004.

[MG00] F. Maraninchi and F. Gaucher. Step-wise + algorithmic
debugging for reactive programs: Ludic, a debugger
for lustre. In AADEBUG’2000 – Fourth International
Workshop on Automated Debugging, Munich, aug 2000.

[MR03] F. Maraninchi and Y. R´emond. Mode-automata: a new
domainspecific construct for the development of safe
critical systems. Science of Computer Programming,
46(3):219–254, 2003.

[RHR91] C. Ratel, N. Halbwachs, and P. Raymond. Programming
and verifying critical systems by means of the
synchronous dataflow programming language LUSTRE.
In ACM-SIGSOFT’91 Conference on Software for
Critical Systems, New Orleans, December 1991.

[RS00] B. Rajan and R. K. Shyamasundar. A fault tolerant
distributed system in Multiclock Esterel. In FORTE/
PSTV, pages 301–316. North Holland, October 2000.

[RWNH98] P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs.
Automatic testing of reactive systems. In 19th IEEE
Real-Time Systems Symposium, Madrid, Spain,
December 1998.

[SBT96] T. R. Shiple, G. Berry, and H. Touati. Constructive
analysis of cyclic circuits. In International Design and
Testing Conference IDTC’96, Paris, France, 1996.

[SC04] N. Scaife and P. Caspi. Integrating model-based design
and preemptive scheduling in mixed time- and event-
triggered systems. In Euromicro conference on Real-
Time Systems (ECRTS’04), Catania, Italy, June 2004.

[SS03] A.D. Shabbir and R. K. Shyamasundar. Specification
of fault tolerant Gyroscopic controller in Esterel.
In Internal Report of External Funded Project. TIFR,
2003.

CSI Journal of Computing | Vol. 1 • No. 4, 2012

F. Maraninchi, et. al. 7 : 85

About the Authors

Florence Maranichi, is a Professor, Grenoble INP / ENSIMAG (Director of International
Relations and is in charge of the “Embedded Software and Systems” master curriculum) at
VERIMAG laboratory (Head of the group Synchronous Languages and Reactive Systems)

Dr. Nicolas Halbwachsis Directeur de Recherche at CNRS, and Director of Verimag
Laboratory

Dr. Pascal Raymond is Chargé de Recherche au CNRS.

Dr. Catherine Parent-Vigouroux is an Associate Professor at University Joseph Fourier,
Grenoble

Prof. R. K. Shyamasundar, Fellow IEEE, Fellow ACM is a Senior Professor and JC Bose
National Fellow at TIFR.

