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Abstract

Properties of analog circuits can be verified formally by
partitioning the continuous state space and applying hybrid
system verification techniques to the resulting abstraction.
To verify properties of oscillator circuits, cyclic invariants
need to be computed. Methods based on forward reacha-
bility have proven to be inefficient and in some cases in-
adequate in constructing these invariant sets. In this pa-
per we propose a novel approach combining forward- and
backward-reachability while iteratively refining partitions
at each step. The technique can yield dramatic memory and
runtime reductions. We illustrate the effectiveness by verify-
ing, for the first time, the limit cycle oscillation behaviorof
a third-order model of a differential VCO circuit.

1. Introduction

In contrast to today’s highly automated methodologies
for digital circuit design, analog circuit design remains
expert-intensive. Extensive simulation experiments are re-
quired to evaluate analog circuit designs, such as high-
frequency RF circuits with difficult periodic steady state
responses. Unfortunately, simulation alone can never com-
pletely verify a circuit. Ideally, we would like to have for-
mal verification tools similar to those available for digital
design, which would make it possible to verify properties
of analog circuit designs for entire sets of initial states and
continuous ranges of parameters. Our aim is to develop such
tools using recently developed methods to perform model
checking for hybrid dynamic systems, that is, systems char-
acterized by both continuous and discrete state variables.

Hybrid system verification is based on the construction
of conservative abstractions that represent efficiently whole
sets of state trajectories, rather than individual simulation
traces [1]. These abstractions are typically constructed by

partitioning the continuous state space and then performing
forward reachability computations, connecting the regions
of the state space that can be reached by trajectories begin-
ning from some set of initial states. If the state-space par-
tition is too coarse, the resulting overapproximation of the
set of reachable states may be too conservative to verify the
desired properties, in which case the partition is refined to
compute a less conservative overapproximation.

To verify properties of cyclic behaviors, it is necessary
to compute a cyclic invariant of the abstraction. That is, one
must show that all behaviors starting from the set of initial
states return to some subset of the set of initial states. When
such an invariant is found, the designer can conclude that
all behaviors of the system will remain within this set in-
definitely, and critical properties such as bounds on cycle
time and jitter can be computed [7]. In this paper we intro-
duce a new abstraction refinement technique that makes it
possible to construct invariants for the cyclic behaviors of
oscillator circuits in cases where standard forward reacha-
bility fails.

Model checking of nonlinear analog circuits was first
proposed in [10], where the continuous state space is dis-
cretized, and an abstract transition relation is computed for
the finite, discrete model. Conventional model checking can
be applied to this abstraction. This approach has been ex-
tended to verify timing properties of analog circuits in [8].
In [9], analog circuits were verified using the tool Check-
Mate, which computes an abstract transition relation be-
tween user-defined regions of the state space using poly-
hedral enclosures of the continuous trajectories. The tool
named d/dt computes reachability by discrete-time integra-
tion over polyhedral sets of states, applied to analog cir-
cuits in [3]. PHAVer, a relatively recent development of our
group, is a formal verification tool that allows us to target
more complex designs while retaining guarantees of math-
ematical soundness [6].

Early attempts at sound verification of hybrid systems
were ill-fated due to implementation issues, and some of



the tools have been in relaxed correctness to gain efficiency
by accepting non-conservative approximations. While more
efficient on a basic level, such approximating methods in-
cur an overhead in dealing with numerical difficulties, ei-
ther increasing the error or the chance of wrong results. The
approach implemented in PHAVer is radically different: we
compute with exact arithmetic and unbounded data struc-
tures, and employ conservative overapproximation to limit
the complexity of the resulting objects.

The following section illustrates the use of forward
reachability computations to characterized cyclic behav-
iors of two analog oscillator circuits. We show that the de-
sired invariant set is computed successfully for the model
of a second-order tunnel diode circuit, but forward reach-
ability fails to find an invariant for a third-order VCO
circuit. Section 3 provides an overview of how hybrid sys-
tems are modeled in PHAVer, and how it partitions the state
space to overapproximate complex dyanmics and com-
pute the set of reachable states. Section 4 describes a new
method for refining the state space partition iteratively us-
ing forward- and backward reachability computations, and
Sect. 5 presents the results of applying this method to com-
pute an invariant successfully for the VCO circuit in-
troduced in Sect. 2. The concluding section summarizes
the contributions of this paper and describes other appli-
cations of the forward/backward abstraction refinement
procedure.

2. Verification of oscillator circuits

Special techniques have been developed to simulate the
periodic steady state behaviors of analog oscillator circuits,
such as shooting methods and harmonic balance methods
[11]. The aim of verification of oscillators is to evaluate
properties of circuit behaviors in a neighborhood of the pe-
riodic steady state, starting from a set of initial conditions
rather than from a single initial state. To accomplish veri-
fication using time-domain reachability computations, it is
necessary to compute a set of state trajectories that returns
to the set of initial states so that the reachability computa-
tion over one cycle characterizes the circuit behavior for all
future time.

To illustrate the computation of a cyclic invariant set us-
ing forward reachability computations, we first consider the
tunnel-diode oscillator (TDO) circuit shown in Fig. 1(a).
With the inductor currentIL and diode voltage dropVd as
state variables, the second-order state equations for thiscir-
cuit are given by

V̇d = 1/C(−Id(Vd) + IL), (1)
İL = 1/L(−Vd − R · IL + Vin), (2)

whereC = 1 pF , L = 1 µH , R = 200 Ω, Vin = 0.3 V ,
and the diode current is given by a characteristic shown

(a) Circuit schematic. (b) Diode characteristic.

Figure 1. Tunnel diode oscillator circuit.

Figure 2. Reachable states of the TDO.

in Fig. 1(b). To model this circuit in PHAVer, a piece-
wise affine envelope is constructed for the tunnel diode
characteristicId(V ). We choose 64 intervals for the range
Vd ∈ [−0.1, 0.6] to yield sufficient accuracy and so obtain
a piecewise affine model for (1).

Figure 2 shows the states reachable from a set of ini-
tial states given byVd ∈ [0.42V, 0.52V ], IL = 0.6mA.
The vertical lines correspond to the 64 intervals of the affine
diode characteristic, and the rest of the partitioning was gen-
erated during the analysis. It can be seen in Fig. 2 that the
states reachable at the end of one cycle are contained in the
set of initial states. The entire set of reachable states is there-
fore an invariant of the circuit, and, with some additional
checks to exclude equilibria and local cycles, we can use
this invariance to deduce properties of the oscillations. This
circuit is simple and well-behaved enough to be analyzed
with forward reachability. Reachability results for this cir-
cuit have also been obtained by Hartong et al. [10].

Next we consider a standard voltage controlled oscilla-
tor (VCO) circuit [4]. The circuit model shown in Fig. 3
was obtained under the following assumptions: an ideal cur-
rent sourceIb is biasing the VCO; the diodes function as
capacitors; the substrate capacity is neglegible; the circuit
is perfectly symmetric; and the control voltage is constant.
We use the Schichman-Hodges PMOS model [5], where the
currentIDS(VGS , VDS) is given piecewise as follows:



Vtp = −0.69V
K ′

p = 86µA/V 2

W/L = 240µm/.25µm
λ = −0.07V −1

VDD = 1.8V
Ib = 18mA
C = 3.43pF

Vctrl = 0...1.8V
L = 2.857nH
R = 3.7Ω

Figure 3. Differential VCO circuit.

Figure 4. Reachable states in VCO

• VGS > Vtp (off): IDS = 0

• VGS ≤ Vtp ∧ VDS − VGS > −Vtp (triode region):
IDS =K ′
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Using the algebraic constraintIL2 = Ib − IL1 we obtain
three state equations:

V̇D1=−
1

C
(IDS(VD2−VDD, VD1−VDD)+IL1), (3)

V̇D2=−
1

C
(IDS(VD1−VDD, VD2−VDD)+Ib−IL1), (4)

İL1=
1

2L
(VD1−VD2−R(2IL1−Ib)). (5)

Figure 4 shows the set of reachable states for the
VCO circuit computed for initial states given by
VD1 ∈ [−1.4,−1.0], VD2 ∈ [1.6, 1.9], and IL1 = 0.
The limit cycle of the VCO is significantly less contrac-
tive than the TDO, so that the overapproximation intro-
duced by our forward reachability algorithm is too large

to show that the states at the end of a cycle are con-
tained in the initial states. In Sect. 4 we present a new
alternative to forward reachability that successfully com-
putes a cyclic invariant for this circuit.

3. Reachability analysis using PHAVer

In its core, PHAVer analyzeslinear hybrid automata,
which are characterized by linear inequalities defining tran-
sitions and all state sets, and conjuncts of constraints

aT
i ẋ ./i bi, ai ∈ Z

n, bi ∈ Z, ./i∈ {<,≤} (6)

defining the dynamics. For this class of hybrid systems,
the computation is exact algorithmically and, being purely
state-based, ranges over infinite time. PHAVer uses polyhe-
dra to represent sets of states, and exact arithmetic based on
the Parma Polyhedra Library [2], which uses unbounded in-
teger representations. If one is not careful in using exact
arithmetic, the complexity of the linear predicates repre-
senting states typically increases prohibitively in the course
of the analysis. This complexity is managed by enforc-
ing user-controllable limits on the number of bits and con-
straints used per polyhedron. Polyhedra that exceed these
limits are overapproximated conservatively. If the invari-
ants of the automaton are bounded, limiting the number of
bits forces the reachability analysis to terminate eventually,
since only a finite number of predicates are possible.

PHAVer can compute an overapproximation of the set
of reachable states for hybrid systems with affine dynam-
ics that are specified in a relaxed form, i.e., as a conjunction
of constraints of the form

aT
i ẋ + âT

i x ./i bi, ai, âi ∈ Z
n, bi ∈ Z, ./i∈ {<,≤}. (7)

Using inequalities to describe the dynamics allows one
to conservatively bound nonlinear dynamics, or to model
bounded nondeterminism. The overapproximation of affine
dynamics in PHAVer introduces a loss of accuracy that de-
pends on the size of the location and the curvature of the
vector field. To improve accuracy during reachability com-
putations, locations are recursively split in two along a hy-
perplane, which is chosen for each split according to a set
of criteria that aims at minimizing the number of partitions.
The partitioning can be adapted to the dynamics by choos-
ing the hyperplane that minimizes the angle spanned by the
derivatives in the location, and stopping the splitting once a
lower threshold∆ in the partition size is reached.

To illustrate the application of PHAVer, the results pre-
sented in Fig. 2 were generated as follows. The param-
eters of the algorithm were the direction of the splitting
planes, a minimum and maximum size for the partitions,
here1/256th and1/16th of the visible region. We stop
the partitioning when the degree of widening of the vec-
tor falls below a certain threshold, which adapts the parti-
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Figure 5. Forward reachability results in
small, costly partitions in the entire reach-
able space for LIN1.

tions to the dynamics. To manage the complexity, the coef-
ficients of polyhedra are limited to 24 bits, and the polyhe-
dra to 32 constraints. The reachability analysis takes72.8 s
and126.7 MB RAM (on a 2.8GHz Xeon with 4GB RAM
under 32-bit Linux). The computation of the set of reach-
able states for the VCO shown in Fig. 4 was obtained with
a minimum partition size of1/128th and takes 1567s and
941MB RAM. To obtain invariance the partition size needs
to be1/512th, which could result in 64 times as many par-
titions, and thus is prohibitively expensive.

4. Forward/backward refinement

The verification of safety properties can be formulated
as the question whether a particular set of undesired states,
calledfinal states, is reachable. In principle, a simple for-
ward analysis can answer this question, but it may be un-
necessarily costly. Even when the partitioning in a forward
reachability analysis is efficient with respect to the flow of
the vector field, it is obtained without regard to what part
of the initial states actually leads to the final states. Here
we introduce a way to use coarse partitions to quickly iden-
tify the regions where more refined partitions are required,
and then create smaller partitions only in these regions. This
new refinement procedure iterates between the computation
of forward reachability from the initial states and backward
reachability from the final states.

We say that a hybrid automatonH is safeif the set of
reachable statesReach(H) is disjoint from the final states
SF . Before we can introduce the algorithm, we need two
operators: Thereverseof H is the automatonH−1 obtained
by reversing the transition relations, reversing the sign of the
derivatives in all flow predicates, and swapping initial and
final states. Therestriction of H to a set of statesR is the
automatonH |R obtained by intersecting invariants and fi-
nal states withR. The operators preserve safety as follows:

Proposition 4.1 H−1 is safe if and only ifH is safe. Given
thatReach(H) ⊆ R, H |R is safe if and only ifH is safe.

We useReach∆(H) to denote the conservative overapprox-
imation of Reach(H) that is computed by PHAVer using
the partition size∆. The forward/backward refinement (f/b-
refinement) procedure is described by the following simple
algorithm, which takes as input the automaton H and the pa-
rameters∆min and∆max, which represent the minimum
and maximum level of overapproximation:

1. Initialize∆ = ∆max.

2. ComputeR = Reach∆(H).

3. If R∩SF = ∅ returnsafe; else if∆ > ∆min, decrease
∆, setH := (H |R)−1, and go to 2; otherwise return
inconclusive.

To illustrate the f/b-refinement algorithm, consider a sys-
tem LIN1 with variablesx1, x2, a flow determined by

(

ẋ1

ẋ2

)

=

(

−4 2
6 −4

) (

x1

x2

)

,

initial states0.7 ≤ x1 ≤ 1 ∧ 0.2 ≤ x2 ≤ 0.25, and fi-
nal statesx2 ≥ 0.81. To show safety using forward reacha-
bility, a maximum partition size of∆ = 1/128 in the direc-
tions of both axes is required, see Fig. 5.

We now show that LIN1 is safe using f/b-refinement.
With an initial choice of∆max = ∆1 = 1/32 we ob-
tain the reachable set of statesR1 = Reach∆1

(H) of the
first iteration shown in Fig. 6(a). The intersection ofR1

and the final states is not empty. As mandated by the al-
gorithm we restrictH to R1, which avoids adding irrele-
vant states in the backward reachability computation that
follows. The backward computation is done by reversing
the causality and time in the automaton, i.e., computing
reachability forH2 = (H |R1

)−1, with a decreased parti-
tion size of∆2 = 1/64. Figure 6(b) shows that the reach-
able statesR2 = Reach∆2

(H) cover a substantially smaller
space thanR1, or even the actualReach(H). The intersec-
tion of R2 and the final states ofH2, which were the initial
states ofH , is still not empty, but only a fraction of the ini-
tial states we started out with. Again, we restrict the automa-
ton to the reachable states, reverse it and compute the reach-
able states ofH3 = (H2|R2

)−1, now with a partition size
of ∆3 = 1/128. The resulting statesR3 = Reach∆3

(H2),
shown in Fig. 6(c), do not intersect with the final states, and
thereforeH3 is safe. Recalling that safety with an over-
approximation of the reachable states implies the safety
of the actual automaton, we conclude thatH is safe. F/b-
refinement takes 5s and 11MB RAM compared to 28s and
45MB RAM for simple forward reachability (on a 1.9GHz
P4m with 768MB RAM), thus awarding gains in speed and
memory of more than a factor 4.

To be sound, f/b-refinement requires that a guaranteed
overapproximation of the reachable states is computed,
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Figure 6. F/b-refinement of system LIN1.

which also implies that it must range over infinite time (un-
less time is inherently limited by the system). Both require-
ments are core characteristics of PHAVer that set it apart
from most other tools currently available for hybrid sys-
tems. The algorithm has the useful property that overap-
proximation errors do not accumulate with more iterations.
Also, overapproximations that are not invariant with respect
to the forward- and backward-reachability computations are
successively erased by the algorithm. This can be witnessed
in practice, as “bumps” and edges that can arise through
PHAVer’s complexity reduction are smoothed away within
a few iterations.

The scalability and benefit of f/b-refinement are subject
of ongoing research. As the experimental results suggest,
results vary. In the worst case, the partitioning is the same
as for forward reachability, and since it is obtained in sev-
eral iterations it is costlier in such a case.

5. Application of f/b-refinement

We show using f/b-refinement that the initial states of
the VCO are mapped back onto themselves after one cy-
cle, and compute an invariant for this cycle. We define a
cross-section of the cycle atIL1 = 0, VD1 ≤ 0, and de-

fine the final states to be the complement of the initial states
on the cross-section. If the final states are not reachable,
we can conclude that any cycle through the initial states
passes the cross-section only at the initial states. The analy-
sis shows this after 15 refinement iterations. Figure 7 shows
the superimposed reachable states for the forward iterations,
plus the states of the last backward iteration, which van-
ish halfway through the cycle. While the computation takes
11.5h and 1.7GB RAM, it can be carried out in parallel for
different sets of states. E.g., showing that all states with
VD1 < −1.4 are not reachable separately from showing
it for VD1 > −1.0 succeeds in 5.7h on two processors us-
ing 1.2GB RAM each. This computation establishes a for-
mal proof that the initial states contain a limit cycle, but it
does not compute the limit cycle itself.

We compute the limit cycle by again applying f/b-
refinement, this time defining the final states to be the ini-
tial states at the end of the cycle, i.e., after passing through a
cross-sectionIL1 = 0, VD1 > 0. The states before and after
passing through the cross section are distinguished by intro-
ducing different locations in the hybrid automaton, which
are connected with transitions accordingly. At each itera-
tion of the f/b-refinement, we intersect the states at the be-
ginning and end of the cycle to further shrink the invariant
towards the limit cycle. The refinement algorithm termi-
nates when the minimum partition size is reached, and re-
turns an efficiently partitioned set of reachable states that
is guaranteed to be an invariant. Since the system is sym-
metric, we can alternatively use the initial states withVD1

and VD2 interchanged. Figure 8 shows an invariant com-
puted with using both sets of initial states, which would
have been by far too costly to compute just using for-
ward reachability. The computation was performed with the
same parameters (partition size, number of bits and con-
straints, derivative spread, etc.) as the forward reachability
in Fig. 4 and took 2825s and 736MB RAM. For com-
parison, a rough estimate of the cost of a forward anal-
ysis can be obtained by extrapolating from the partition
size necessary. The f/b-refinement terminated with a par-
tition size of 1/512th for each of the 3 dimensions, i.e.,
43 = 64 times more partitions than the forward analy-
sis in Sect. 3, which uses a size of 1/128th. Assuming that
time and memory grow linear with the number of parti-
tions, establishing invariance and computing the limit cycle
using f/b-refinement consumes less than 44% of the es-
timated time and 2.8% of the memory of the forward
analysis, not accounting for possible parallelization.

As another example, we analyzed the TDO circuit from
Sect. 2 in parallel with a monitor automaton with a timer,
thus being a 3-dimensional system [7]. We considered an
uncertainty in the input voltage, bounded in amplitude by
±0.1 V . Using forward reachability we obtain bounds on
the cycle time of12.6 to 15.3µs in 999s with 1.5GB RAM.



Verifying the same bounds using f/b-refinement takes 1260s
and 500MB RAM, i.e., it uses less than a third of the mem-
ory at a cost of 25% in speed. Since memory is usually the
limiting factor in our experiments, this enables us to move
on to more complex circuits and properties.

6. Conclusions

This paper presents a new method for verifying proper-
ties of analog oscillator circuits by computing overapprox-
imations of the sets of possible state-space trajectories.In
contrast to methods that use only forward reachability, re-
finement of the state space partitioning is carried out on it-
erations between forward and backward reachability. By fo-
cusing exclusively on the regions of the state space that need
to be refined in each iteration, behavioral invariants are ob-
tained more quickly and, in some cases, forward/backward
iteration obtains invariants that are too costly to be com-
puted by only forward reachability. The resulting set, which
contains all periodic and quasi-periodic behaviors of the
circuit, can be used to verify critical properties such as
bounds on voltages, currents, cycle time (frequency), and
jitter. These techniques can be extended to include paramet-
ric variations and can be used to analyze properties of time-
bounded, non-cyclic behaviors.
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