
A Counterexample-Guided Approach to

Parameter Synthesis

for Linear Hybrid Automata

Goran Frehse1, Sumit Kumar Jha2, and Bruce H. Krogh3

1 Verimag (UJF-CNRS-INPG), 2, av. de Vignate, 38610 Gières, France
goran.frehse@imag.fr

2 Computer Science Department, Carnegie Mellon University
3 ECE Department, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

jha@cs.cmu.edu, krogh@ece.cmu.edu

Abstract. Our goal is to find the set of parameters for which a given
linear hybrid automaton does not reach a given set of bad states. The
problem is known to be semi-solvable (if the algorithm terminates the
result is correct) by introducing the parameters as state variables and
computing the set of reachable states. This is usually too expensive, how-
ever, and in our experiments only possible for very simple systems with
few parameters. We propose an adaptation of counterexample-guided
abstraction refinement (CEGAR) with which one can obtain an under-
approximation of the set of good parameters using linear programming.
The adaptation is generic and can be applied on top of any CEGAR
method where the counterexamples correspond to paths in the concrete
system. For each counterexample, the cost incurred by underapproximat-
ing the parameters is polynomial in the number of variables, parameters,
and the length of counterexample. We identify a syntactic condition for
which the approach is complete in the sense that the underapproxima-
tion is empty only if the problem has no solution. Experimental results
are provided for two CEGAR methods, a simple discrete version and
iterative relaxation abstraction (IRA), both of which show a drastic im-
provement in performance compared to standard reachability.

1 Introduction

The admissible behaviors of linear hybrid automata (LHA) are determined by
sets of linear constraints. The parameters in these constraints represent either
physical constants or values chosen by the designer. When the LHA does not
satisfy the design specifications, the latter constraints can be adjusted to elimi-
nate the undesirable behaviors. This paper concerns this design problem in the
context of reachability specifications: Given a parameterized LHA, determine
the set of design parameters, called good parameters, for which no bad locations
can be reached.

The parameter design problem for LHA was formulated and solved by Hen-
zinger et al. [1], but the proposed solution is tractable for only very simple

systems with few parameters. This paper concerns the extension of verification
techniques to solve the LHA parameter design problem. Our approach leverages
the fact that the feasibility of a given counterexample path corresponds to the
satisfiability of a set of linear constraints over instantiations of the initial and
final values of the continuous variables in each location along the path, along
with variables representing the duration of the continuous state trajectory in
each location. Although this observation does not make the parameter design
problem tractable, because projection of these constraints into the parameter
space is computationally complex and there can be in general an infinite number
of counterexample paths, it does lead to a set of heuristics that make it possible
to efficiently compute underapproximations of the set of good parameters.

The heuristics we propose are integrated into counterexample guided abstrac-

tion refinement (CEGAR) [2]. In a standard CEGAR loop, a discrete abstraction
of the system is used to find a counterexample, which is a path from the initial
states to states considered bad. In a feasibility check, it is then verified whether
this path corresponds to a behavior of the concrete hybrid system or whether
it was a spurious product of the abstraction. If it is spurious, the abstraction is
refined and the loop repeats. If the counterexample corresponds to a concrete
behavior, the system is unsafe. Our adaptation consists of replacing the feasibil-
ity check with an operator that obtains constraints on the parameters that make

the counterexample infeasible. If all counterexamples have been eliminated, the
resulting constraints describe a set of parameters for which the system is safe.
The make-infeasible operator can be implemented approximatively using linear
programming, e.g., obtaining rectangular or octagonal underapproximations of
the good parameters. Its complexity for each counterexample is polynomial in
the number of variables, parameters and the length of the counterexample, com-
pared to exponential complexity of an exact solution. Depending on whether the
number of counterexamples or the number of parameters is the dominating cost
factor, we apply the underapproximation to each path individually or collectively
on sets of paths.

In the general case, the underapproximation may produce an empty set
even though good parameters exist. We identify a condition we call parameter-

monotonicity (intuitively, when parameters function either as lower or upper
bounds but not both), under which octagonal approximations are sufficient to
prevent this from happening.

The entire approach is generic in the sense that it can be applied to any
CEGAR loop in which the counterexamples correspond to paths in the concrete
system (as opposed to sets of paths or transitions). It suffices to replace the
feasibility check with the make-infeasible operator. We provide experimental
results for two different CEGAR implementations: a simple variant of standard
discrete CEGAR, and iterative relaxation abstraction (IRA) [3]. Compared to
the traditional way of synthesizing parameters using reachability as in [1], we
observe a dramatic improvement in speed.

The following section defines the class of LHA with parameters studied in
this paper. Section 3 describes the role of counterexamples in defining the set

2

of good parameters. Section 4 discusses the special case when the parameters
are monotonic, which means each parameter serves as either an upper or lower
bound throughout the LHA. Section 5 presents a general counterexample-guided
procedure for computing sets of good parameters and Section 6 presents experi-
mental results for two implementations of the procedure. The concluding section
discusses directions for further research.

2 Linear Hybrid Automata with Parameters

We consider linear hybrid automata (LHA) [4] with explicit parameter variables.
An LHA H = (Var , Lab, Loc, Inv, F low,Trans, ini) consists of:

– A finite set of real-valued variables Var = X ∪ P, where X = {x1, . . . , xn} are
the continuous state variables and P = {p1, . . . , pm} are the parameters, which
remain constant. We denote the values of variables with x = (x1, . . . , xn)T

and p = (p1, . . . , pm)T.
– A finite set of labels Lab.
– A finite set of locations Loc. A state (l, x, p) of the automaton consists of a

location l ∈ Loc and real values (x, p) ∈ R
n+m for each of the variables.

– For each location l, Inv(l) ⊆ R
n+m is the set of admissible values of the

variables in the location.
– Flow(l) ⊆ R

n is the set of possible time derivatives (ẋ1, . . . , ẋn)T; the deriva-
tives of the parameters are implicitly zero.

– A finite set of transitions Trans ⊆ Loc × Lab × 2R
2n+m

× Loc. A transition
indicates that the system state may jump instantaneously from the transition
source state (l, x, p) to the transition target state (l′, x′, p) if (x, p, x′) ∈ µ,
where µ ⊆ R

2n+m is the transition’s jump relation. We desire a unique
correspondence between sequences of transitions and sequences of labels, so
we require that any location l has at most one outgoing transition for each
label (the general case can be brought to this form by adding labels and
renaming).

– A location ini ∈ Loc is designated as initial location from which all behaviors
must start.

The sets Inv(l) and Flow(l) are specified by conjunctions of linear constraints

aTx + eTp ≤ b, respectively aTẋ ≤ b, (1)

where a, e are vectors of integer coefficients and b is an integer. The jump relation
µ of a transition is specified by a conjunction of linear constraints of the form

aTx + eTp + a′Tx′ ≤ b, (2)

where x denotes the values of the variables before the jump, and x′ denotes the
values after; the values of the parameters do not change. Given a conjunction
C of linear constraints over X and P, we write [[C]] to denote the set of values
of (x, p) (a polyhedron) for which all of the constraints are satisfied. We write

3

C(p′) to denote the constraints obtained by substituting p with the values in p′,
and call C(p′) infeasible if [[C(p′)]] = ∅.

We define the semantics of a LHA in terms of feasible paths for a given
parameter value p. This is consistent with the semantics in [4] but reformulated
to simplify the use of linear programming. A path π = α0α1 . . . αz−1 is a finite
sequence of labels αi such that the sequence of transitions (li, αi, µi, l

′
i) satisfies

l0 = ini and l′i = li+1 for i = 0, . . . , z − 1 (this defines lz to be the target state
of the last transition). The path is feasible for a given p if there exist vectors
xin

j , xout
j ∈ R

n and scalars δj ∈ R for j = 0, . . . , z such that

– (xin
j , p), (xout

j , p) ∈ Inv(lj),

– (xout
j − xin

j)/δj ∈ Flow(lj),

– for j < z, (xout
j , p, xin

j+1) ∈ µj .

In the above sequence, (lj , x
in
j , p) is the state in which the automaton enters

location lj , and (lj , x
out
j , p) is the state after letting time elapse for δj units. If

j < z, the automaton leaves lj via the transition identified by αj , and jumps to
the state (lj+1, x

in
j+1, p). For a given path the above constraints can be written as

linear constraints over the 2z(n+1)+m variables of xin
j , xout

j , δj and p. We call
these path constraints and denote them by PathCon(π, p). Expressed in terms of
the path constraints, a counterexample is feasible if [[PathCon(π, p)]] 6= ∅, which
can be decided using efficient linear programming techniques [5].

In this paper, we consider reachability problems for LHA. A location l is said
to be reachable if there is a feasible path π = α0α1 . . . αz−1 with lz = l. An LHA
H is said to be safe if none of the locations in a given set of bad locations LB is
reachable. We call a path to a bad location a counterexample, and write CE (H, p)
for the (possibly infinite) set of counterexamples in H for the parameter value
p. Let FCE (H, p) denote the set of feasible counterexamples in H . The system
is safe if and only if FCE (H, p) is empty, i.e., there are no counterexamples
or none of the existing counterexamples is feasible. The extension of CE (H, p)
and FCE(H, p) to sets of parameter values is straightforward. While we have
made some restrictions to our LHA (unique labels) and the reachability problem
(unsafe locations), it is straightforward to bring the general problem (unsafe
states) to this form by relabeling transitions and introducing an error location
reachable by transitions from the unsafe states. We will use the following example
throughout the paper:

Example 1. Consider a buffer tank with steady inflow and with a controllable
outlet valve resulting in a net level increase ẋ = r if the valve is closed, and a net
decrease ẋ = −r if it is open. A controller is supposed to keep the level between
xmin and xmax. The controller never waits longer than time T to check the level
x, and opens (closes) the valve when x > M (x < m).

The LHA model Htank of the controlled system is shown in Fig. 1, where for
simplicity jump constraints of the form x′ = x have been omitted. Htank has
the parameters m, M, T, xmin, and xmax. We assume r to be a given constant
(parameters are not allowed in the flows). The forbidden location is error.

4

filling
ẋ = r

ṫ = 1
t ≤ T

draining
ẋ = −r

ṫ = 1
t ≤ T

errorini
close

x < m

open
x > M

err
x ≤ xmin

err
x ≥ xmax

start2
m ≤ x ≤ M

t := 0

start1
m ≤ x ≤ M

t := 0

wait
x ≤ M

t := 0

wait
x ≥ m

t := 0

Fig. 1. LHA Htank for the controlled tank example with parameters m, M , T , xmin,
and xmax; r is a given constant since LHA-parameters cannot bound derivatives

Htank has infinitely many counterexamples, a shortest of them being π =
start1 , err , which covers the locations ini, filling and error, and has the fol-
lowing path constraints (some irrelevant ones are omitted):

m ≤ xout
0 ≤ M, xout

0 = xin
1 , tin1 = 0, (jump relation)

xout
1 − xin

1 = rδ0, tout
1 − tin1 = δ0, (flow)

tout
1 ≤ T, (invariant)

xout
1 ≥ xmax. (jump relation)

(3)

�

3 Parameter Synthesis Using Counterexamples

We consider the following good parameters problem: Given an LHA H and a
rectangular parameter domain P0 ⊆ R

m, what is the largest set of parameter
values PG ⊆ P0 for which the hybrid automaton is safe? Recalling that for
a given parameter value p′, the set of feasible counterexamples FCE(H, p′) is
empty exactly if the system is safe, the goal is to compute

PG = {p′ ∈ P0 | FCE (H, p′) = ∅}. (4)

We refer to PG as the good parameters and to PB := P0 \ PG as the bad pa-

rameters. A straightforward solution to (4) is via reachability [1]. The set of
reachable states Reach(H) is obtained by computing successor states until a
fixpoint is reached. Denoting projection onto the parameters (existential quan-
tification over X) with ↓P, the set of good parameters is

PG = P0 \
(

Reach(H) ∩ LB × R
n+m

)

↓P . (5)

5

(a) good and bad values (b) underapproximations

Fig. 2. Parameters m and M with feasible paths (for fixed xmax and T)

If Reach(H) is obtained as a finite boolean combination of linear constraints for
each location, PG can be computed exactly using Fourier-Motzkin elimination.
In all but the most simple cases, however, this is prohibitively expensive for
three reasons. Firstly, the reachability computation taking into account all pa-
rameter values is relatively expensive, since it includes behaviors that will later
be excluded in the final solution. Secondly, the projection operation can be very
expensive if there are many variables. Thirdly, the difference operation is very
expensive if the projection operation produces a disjunction consisting of a large
number of convex sets. In this paper, we try to find good parameters by checking
individual counterexamples and removing from P0 those parameters for which
the counterexamples are feasible. Using projection (Fourier-Motzkin elimination)
onto the parameters, and recalling the definition of FCE , (4) becomes

PG = P0 \ {p
′ | ∃π ∈ CE (H, P0) : [[PathCon(π, p′)]] 6= ∅}

= P0 \
⋃

π∈CE(H,P0) [[PathCon(π, p)]]↓P .
(6)

Example 2. Recall the buffer tank from Fig. 1 and the counterexample π =
start1 , err with path constraints (3). We can eliminate xin

i , xout
i , tini , tout

i from
the path constraints to obtain m ≤ M ∧ M + rT ≥ xmax. For values of m,
M , T , and xmax that satisfy these inequalities, shown as the shaded region P ′

in Fig. 2(a), the path constraints are feasible and the path is feasible. If we
want the system to be safe, we must choose parameter values that violate these
inequalities, i.e., make the path constraints infeasible, for the above as well as all
other counterexamples (there are infinitely many). For π = start2 , err the path
constraints yield m ≤ M ∧m− rT ≤ xmin, shown as P ′′ in Fig. 2(a). We finally
obtain PG = [[m > M ∨ (M + rT < xmax ∧ m − rT > xmin)]], shown as a solid
outline in Fig. 2(a), when taking into account all counterexamples. �

The method for computing PG suggested by (6) is conceptually similar to (5),
and shares its problems: there may be lots of paths in CE (H, P0) (possibly in-
finitely many) and projection is very expensive when there are more than a few

6

variables. Recall that the dimension of the linear program as well as the number
of constraints of PathCon(π, p) increase linearly with the length of the coun-
terexample. So the projection entails a cost that is exponential in the number
of variables and the length of the counterexample. The difference operation also
incurs a cost exponential in the number of parameters.

The exact solution being clearly too expensive, we use rectangular or oc-
tagonal overapproximations of the bad parameters, and carry out the difference
operation on the overapproximation. For a set S of values for the variables of
the path constraints, we write OverApprP(S) to denote one of the following
overapproximations of S↓P:

Box P(S) =
⋂

i=1,...,m

{p | min
(x,p′)∈S

p′i ≤ pi ≤ max
(x,p′′)∈S

p′′i }, (7)

OctP(S) =
⋂

i,j=1,...,m

{p | min
(x,p′)∈S

p′i−p′j ≤ pi−pj ≤ max
(x,p′′)∈S

p′′i −p′′j } ∩

⋂

i,j=1,...,m

{p | min
(x,p′)∈S

p′i+p′j ≤ pi+pj ≤ max
(x,p′′)∈S

p′′i +p′′j } (8)

These overapproximations are obtained by solving a linear program for each
constraint: in total 2m programs for rectangular, and 2m2 for octagonal overap-
proximations, where m is the number of parameters. The cost of linear program-
ming is polynomial in the number of variables of the path constraints, which is
2(|π|+1)n+m. In total, the cost for obtaining an overapproximation for a single
counterexample is still polynomial.

How these overapproximations should be applied in (6) depends on the dom-
inating cost factor: lots of counterexamples to be checked, or lots of parameters.
If we expect few counterexamples, we overapproximate the projection operation,
but carry out the difference operation faithfully. We refer to this as individual

overapproximation:

P̂G = P0 \
⋃

π∈CE(H,P0)

OverApprP([[PathCon(π, p)]]). (9)

For each counterexample, the cost of obtaining the overapproximation is poly-
nomial in the number of parameters, since one linear program needs to be solved
for each constraint in the overapproximation. The difference operation incurrs a
cost that is exponential in the number of counterexamples, although we did not
encounter such a worst case in practice. Consequently, this variant is suitable
mainly when a small number of counterexamples is checked.

If the number of counterexamples is excessive, we overapproximate the union
operation, which we refer to as collective overapproximation:

P̂G = P0 \ OverAppr P(
⋃

π∈CE(H,P0)

[[PathCon(π, p)]]). (10)

Here OverAppr P is extended to unions of convex sets as follows. For each coun-
terexample, we compute the bounds of the rectangular or octagonal overapprox-
imation and take the worst case, so there is no explicit union operation. Again,

7

we need to solve a low number of linear programs, but here the complexity of the
difference operation depends only on the number of parameters, not the number
of counterexamples.

Example 3. Applying rectangular individual overapproximation to our buffer
tank example, we obtain P̂G as shown in Fig. 2(b). For rectangular collective
overapproximation we get P̂G = ∅, i.e., we fail to find any good parameter at all.
With octagonal individual overapproximation we incidentally obtain PG exactly,
for collective overapproximation P̂ ′

G as shown in Fig. 2(b).

In the general case, neither (9) nor (10) is complete, that is, (9) or (10) may
return empty sets even though PG is not empty. This makes the chances of
finding a sufficiently good set of parameters look pretty slim. But in practice,
many systems do not have an arbitrarily complex set of good parameters, but
one with a particularly simple structure, where octagonal overapproximations
turn out to be complete. We examine this special case closer in the following
section.

4 Monotonic Parameters

It turns out that the set of parameters for which a given counterexample is
feasible has a special form if the parameters occur only with one sign (either
positive or negative) in the linear constraints defining the automaton. We show
that the good parameters have a point that is most restrictive, and that any
good point in the parameter space can be relaxed (tightened) toward that point.
As a consequence, octagonal constraints are complete when counterexamples are
overapproximated individually or collectively.

We call a constraint of the form (1) or (2) positive in pi if ei > 0, negative in

pi if ei < 0, and independent of pi if ei = 0, where ei is the coefficient of pi from
the vector e . We call a parameter pi positive (negative) if for all π ∈ CE (H, P0)
with [[PathCon(π, p)]]↓P 6= ∅, all active constraints in PathCon(π, p) that are not
independent of the parameter are positive (negative) in the parameter.4 Intu-
itively, a parameter is negative if it is only relevant as an upper bound, and a
positive parameter only as a lower bound. Let psgn be a function over the pa-
rameters with psgn(pi) = 1 (−1) if the LHA is positive (negative) in pi. We call
the parameters monotonic and the LHA parameter-monotonic if all parameters
are positive or negative. A syntactic sufficient condition for a parameter pi be-
ing positive (negative) is that all constraints of invariants and jump relations are
positive (negative) in pi. This is easy to see since the path constraints are made
up of simple instantiations of the constraints of invariants, flows and jump rela-
tions, with the same coefficients for the parameters. Often, a parameter can be
monotonic even though the syntactic condition for monotonicity is not fulfilled
because, although the signs of the coefficients differ for some constraints, they are
the same for all of the active constraints. In general, we may assume parameter-
monotonicity and check for each counterexample whether this assumption is

4 We call a constraint active if removing the constraint leads to a strictly larger set.

8

true. If it is not, we are no longer guaranteed to find a good parameter using
overapproximations, although we may of course still try.

Example 4. In our buffer tank example, the parameters xmax, T are syntacti-
cally positive, xmin is syntactically negative, and m and M are neither. In the
counterexample π = start1 , err , whose path constraints are given in (3), m is
positive and M is negative. It turns out that this is a useful assumption, even
though m and M also occur with opposite sign on the transitions switching
between filling and draining. �

The following results formalize our discussion of parameter-monotonicity.
Let InfeasibleConeC(p′) be defined for a set of constraints C as the set of p′′

with p′′i ≥ p′i if C is positive in pi, and p′′i ≤ p′i if C is negative in pi. Let
FeasibleConeC(p′) be the set of p′′ with p′′i ≤ p′i if C is positive in pi, and
p′′i ≥ p′i if C is negative in pi.

Lemma 1. Given a set of linear constraints C monotonic in all parameters,

[[C(p′)]] = ∅ implies [[C(p′′)]] = ∅ for all p′′ ∈ InfeasibleConeC(p′). Symmetrically,

[[C(p′)]] 6= ∅ implies [[C(p′′)]] 6= ∅ for all p′′ ∈ FeasibleConeC(p′).

Proof. We give the proof for InfeasibleConeC(p′); the proof for FeasibleCone(p′)
is symmetric. Assume [[C(p′)]] = ∅, and the constraints in C are negative in pi,
i.e., of the form aTx+eTp ≤ b with ei ≤ 0. Consider any p′′ ∈ InfeasibleConeC(p′).
If [[C(p′′)]] 6= ∅, there exists some x′ such that aTx′ + eTp′′ ≤ b for all constraints
in C. We show that this contradicts the hypothesis. According to the definition
of InfeasibleConeC(p′), eTp′ ≤ eTp′′, since p′′i ≤ p′i and ei ≤ 0. Therefore aTx′ +
eTp′ ≤ aTx′ + eTp′′ ≤ b, and (x′, p′) satisfies all constraints in C, which means
[[C(p′)]] 6= ∅. ⊓⊔

Under the assumption that the LHA H is parameter-monotonic, a parameter
pi has the same sign, psgn(pi), in all path constraints that may occur in (6).
Since InfeasibleConeC(p′) is identical for all C with the same parameter sign,
we may simply define InfeasibleConeH(p′) over H using psgn(pi), and similarly
with FeasibleConeH(p′). Using the above result, we now show that if the LHA
is parameter-monotonic, there is a most restrictive and a least restrictive combi-
nation of parameters out of any rectangular domain P , defined component-wise
for parameter pi as

p∗MR,i(P) = max
p′∈P

psgn(pi)p
′
i, p∗LR,i(P) = min

p′∈P
psgn(pi)p

′
i. (11)

Example 5. Assuming that in the buffer tank example m is a positive and M a
negative parameter, we get p∗MR(P0) and p∗LR(P0) shown in Fig. 2(b). �

Proposition 1. If an LHA H is parameter-monotonic, then for any p ∈ P0

FCE(H, p∗MR(P0)) ⊆ FCE (H, p) ⊆ FCE (H, p∗LR(P0)).

9

Proof. Consider any π ∈ FCE (H, p∗MR(P0)). By definition of FCE , π is a coun-
terexample for which [[PathCon(π, p∗MR(P0))]] 6= ∅. According to the definition
of p∗MR(P0), any p ∈ P0 is in FeasibleConeH(p∗MR(P0)). With Lemma 1 we get
[[PathCon(π, p)]] 6= ∅, and consequently π ∈ FCE (H, p). The argument for p∗LR

is dual. ⊓⊔

It immediately follows from Prop. 1 that if we substitute the parameters in H
with the value p∗LR(P) to obtain H ′, an LHA without parameters, FCE (H, P) ⊆
FCE (H ′), i.e., H ′ is an overapproximation of H . Working with H ′ may be
cheaper since it has less variables than H ′.

Proposition 2. If the parameters are monotonic and p′ ∈ PG, p′′ ∈ PB, then

InfeasibleConeH(p′) ∩ P0 ⊆ PG and FeasibleConeH(p′′) ∩ P0 ⊆ PB .

Proof. Since p′ ∈ PG, [[PathCon(π, p′)]] = ∅ for all π ∈ CE (H, P0). Accord-
ing to Lemma 1, the same holds for any p′′ ∈ InfeasibleConeH(p′). Therefore
InfeasibleConeH(p′) ∩ P0 ⊆ PG. The argument for FeasibleCone is symmetric.

⊓⊔

As a straightforward application of Prop. 2, we can use any feasible counterexam-
ples to obtain an overapproximation of PG. Similarly, we can use any infeasible
counterexamples to obtain an underapproximation of PG:

Proposition 3. Given a parameter-monotonic LHA H, a set of zfeas param-

eter valuations p1, . . . , pzfeas such that there exists a πi ∈ FCE(H, pi) for i =
1, . . . , zfeas , and a set of zinfeas parameter valuations p̄1, . . . , p̄zinfeas such that

FCE (H, p̄j) = ∅ for j = 1, . . ., zinfeas , then

P0 ∩
⋃

j

InfeasibleConeH(p̄j) ⊆ PG ⊆ P0 \
⋃

i

FeasibleConeH(pi).

We now show that for a parameter-monotonic LHA with rectangular P0 and
a finite number of counterexamples, collective (and therefore also individual)
overapproximation with octagonal constraints is complete, i.e., the overapprox-
imation is empty iff PG = ∅. This observation follows from the following:

Proposition 4. If H is parameter-monotonic, |CE (H)| is finite and P0 is rect-

angular, p∗MR(P0) ∈ OctP(
⋃

π∈CE(H,P0) [[PathCon(π, p) ∧ p ∈ P0]]) iff p∗MR(P0) ∈
PB.

Proof. (Sketch) If p∗MR(P0) ∈ PB, it follows from Lemma 1, the definition of
p∗MR and Prop. 2 that PB = P0. Since P0 is rectangular, the octagonal overap-
proximation of PB is identical to P0 and therefore to PB, and contains p∗MR(P0).
If p∗MR(P0) 6∈ PB and there is a finite number of refining counterexamples, there
exists at least one pair of parameters pi, pj such that for all π ∈ CE(H, P0)

maxp′∈[[PathCon(π,p)]]↓P∩P0
psgn(pi)p

′
i + psgn(pj)p

′
j < p∗MR,i(P0) + p∗MR,j(P0),

since otherwise p∗MR(P0) would be feasible for some path π. From (8) it follows
that p∗MR(P0) 6∈ OctP(

⋃

π∈CE(H,P0) [[PathCon(π) ∧ π ∈ CE (H, P0))]]. ⊓⊔

10

5 Counterexample-Guided Parameter Synthesis

We adapt the familiar counterexample guided abstraction refinement (CEGAR)
loop [2] to parameter synthesis based on the results in the previous section. We
define a CEGAR loop with the following operators:

– Π ′ := IniAbstr(H, P) constructs a set of paths Π ′ with FCE (H, P) ⊆ Π ′,
– π := SelectCE (Π) selects a path in Π , given Π 6= ∅,
– Π ′ := RefineWithSpuriousCE(Π, H, P, π) refines the set of paths Π using

the system H and the spurious counterexample π, i.e., it produces a set of
paths Π ′ such that Π ′ ⊆ Π \ {π}, and FCE (H, P) ⊆ Π ′ (ensuring that the
refinement never removes feasible counterexamples).

A number of CEGAR algorithms, including iterative relaxation abstraction [3],
can be brought to this form. Note in general CEGAR constructs and refines a
finite abstraction, which may take on various forms. We represent this abstrac-
tion as a set of paths Π to simplify and generalize the theoretical discussion,
but assume that implementations model this set implicitly, say with an LHA or
finite state machine. Algorithm 1 shows our adapted CEGAR loop. Its inputs
are the system H and the initial parameter domain P̂0, from which the resulting
good parameters are chosen. If it terminates, it outputs an underapproximation
of the good parameters P̂G. A conventional CEGAR loop would terminate as
soon as the feasibility test in line 6 evaluates to true, reporting πi as a feasi-
ble counterexample. In our adaptation, we instead restrict the parameters such
that the counterexample is infeasible and continue to search for other feasible
counterexamples. This is accomplished by two additional operators:

– P ′ := MakeInfeasible(C, P) returns a set P ′ ⊆ P such that [[C]]↓P ∩P ′ = ∅.
Note that the only such set might be P ′ = ∅,

– P ′ := AnalysisParameters(P) returns a set of parameter values P ′ such that
FCE (H, P) ⊆ FCE (H, P ′).

The exact implementation of MakeInfeasible(C, P) is P \ [[C]] ↓P, but as dis-
cussed in the previous sections, underapproximations similar to (9) and (10)
may be advisable. The operator AnalysisParameters is used to simplify the
set of parameters used in the analysis of H . The condition is that this sim-
plification does not drop any feasible counterexamples. As shown in Sect. 4,
one may select a single point in P if the parameters are monotonic, i.e., use
AnalysisParameters(P) := p∗LR(P). In that case, the parameters in H can be
substituted by constants, thus reducing the number of variables in H . For the
general case, a valid implementation is simply AnalysisParameters(P) := P.

On the basis of (6) it is straightforward to show that when Alg. 1 terminates,
H(p) is safe for any p ∈ P̂G:

Proposition 5. If P̂0 ⊇ P0 and Alg. 1 terminates, P̂G ⊆ PG.

If the initial abstraction contains all counterexamples and the implementation
of MakeInfeasible(C, P) is exact, P̂G is exact as well:

11

Algorithm 1: Counterexample-Guided Parameter Synthesis

Input: LHA H with bad locations LB , parameter domain P̂0

Output: P̂G such that P̂G ⊆ PG

i := 0;1

P̃0 := AnalysisParameters(P̂0);2

Π̂0 := IniAbstr(H, P̃0);3

while Π̂i 6= ∅ ∧ P̂i 6= ∅ do4

πi := SelectCE (Π̂i);5

if [[PathCon(πi, p) ∧ p ∈ P̂i]] 6= ∅ then6

P̂i+1 := MakeInfeasible(PathCon(πi, p), P̂i);7

P̃i+1 := AnalysisParameters(P̂i+1);8

else9

P̂i+1 := P̂i; P̃i+1 := P̃i;10

end11

Π̂i+1 := RefineWithSpuriousCE (Π̂i, H, P̃i+1, πi);12

i := i + 1;13

end14

P̂G := P̂i;15

Proposition 6. If P̂0 ⊇ P0, Alg. 1 terminates, IniAbstr(H, P0) = CE(H, P0),
and MakeInfeasible(C, P) = P \ [[C]]↓P, P̂G = PG.

We now briefly present a way to check less paths for parameter-monotonic
LHA. According to Prop. 1, we may substitute the parameters with the value
p∗LR(P0) to produce an overapproximation of CE(H, P0). Usually, there is a
prohibitively large number of such paths. Instead, we wish to start with a small
set of paths, and iteratively add further paths only when necessary. We run
Alg. 1 with P̂0 = P0 and AnalysisParameters(P) := p∗MR(P), to obtain with P̂G

an initial set of parameters checking the least number of paths possible. To check
the remaining paths, we run Alg. 1 with P̂0 = P̂G and AnalysisParameters(P) :=
p∗LR(P). Note that we can skip the initialization of Π̂0 in line 3 when in running

Alg. 1 in step 2 above, and instead continue with Π̂i from step 1.
We use the following two CEGAR implementations, and show experimental

results in the next section. Simple Discrete CEGAR is a straightforward CE-
GAR algorithm based on a discrete abstraction of the hybrid system, some-
what similar to [6]. A set of paths is represented by a finite state machine
(FSM). IniAbstr(H, P) constructs a FSM A0 = (Locs, Σ,→, ini, final), where
Σ = Locs×Lab, and →= {(l, (l, α), l′) | ∃µ : (l, α, µ, l′) ∈ Trans}. SelectCE(Ai)
returns a shortest word in the language of Ai. RefineWithSpurious works as fol-
lows. First, it reduces the counterexample π = α0, . . . , αz−1 by finding the largest
k and the smallest j such that the path constraints for αk, . . . , αj are infeasible
(starting in the location lk reached by α0, . . . , αk−1). For FSM A and language
L let A − L denote removing the language L from the language of A. This is a
standard automaton operation, implemented by first coding L by an automaton.

12

Computation
time in
seconds

Number of cars

Fig. 3. Parameter synthesis for automated highway controller using standard reacha-
bility (wide dashed), simple discrete CEGAR with projection as in (6) (dotted) and
with individual octagonal overapproximations as in (9) (solid), and IRA with individual
octagonal overapproximations as in (9) (fine dashed)

Let Lpre = ε if k = 0 and Lpre = Σ∗ otherwise, and Lpost = ε if j = z − 1 and
Lpost = Σ∗ otherwise, Then Ai+1 = Ai − Lpre(lk, αk) . . . (lj , αj)Lpost.

Iterative Relaxation Abstraction[3] is similar to Simple Discrete CEGAR,
with Ai+1 = RefineWithSpurious(Ai, H, P, π) constructed as follows: First, find
an irreducible infeasible subset (IIS) of PathCon(π, p), say C. Let V be the vari-
ables (including parameters) with nonzero coefficients in C. Let localize(H, V) be
the automaton obtained from H by removing all constraints involving variables
not in V . Let A′ be the language of localize(H, V), which is semi-computable
using reachability techniques. Then Ai+1 = Ai ∩ A′ \ π.

6 Experimental Results

We consider the model of a central arbiter for an automated highway, roughly
similar to the one in [7], and verify that no two vehicles on the automated
highway collide with each other. The arbiter provides an allowed range [a, b] for
the velocity for each vehicle. When two vehicles come within a distance dstd of
each other, the arbiter asks the faster car and all behind it to reduce the speed to
a′ and the slower car and all in front of it to increase the speed to b′. When the
distance between the two vehicles involved exceeds dnormal , the arbiter goes back
to normal. The cars are considered to have crashed if their distance is below c.
The LHA model for n cars has n continuous state variables and the parameters
dstd and dnormal . The number of counterexamples is infinite, since the controller
can cycle infinitely between normal and recovery mode before a crash occurs.

We consider the constants a = 40, b = 60, a′ = 41, b′ = 80, c = 0.002.
Using CEGAR and octagonal overapproximations, we synthesize the solution
dstd ≤ dnormal ≤ 10∧ dstd > 0.002. The plot of the log of the time taken vs. the
number of cars in Fig. 3 shows that the cost of standard reachability is double-
exponential, while using CEGAR (simple discrete or IRA) it is exponential with

13

a low factor (actually due to the time it takes to compose the system, not the
analysis itself). For illustration, we also include the time it takes to obtain the ex-
act solution as in (6) using CEGAR and Fourier-Motzkin elimination – it is also
double exponential. These results were obtained on a 1.8 GHz AMD Opteron
processor with 16 GB RAM running 32 bit code under Linux. For linear pro-
gramming we use GLPK [8] with exact arithmetic for simple discrete CEGAR,
and CPLEX [9] with floating point arithmetic for IRA.

7 Conclusions

This paper proposes a method for using counterexamples to guide the construc-
tion of a set of good parameters for parameterized LHA. The proposed procedure
extends the philosophy of CEGAR for verification to a class of design problems.
The method is complete when the parameters are monotonic. The effectiveness
of the approach is illustrated for an example of an automatic highway controller.

The implications of parameter-monotonicity merit further investigation. If
an LHA is not monotonic in the parameters, it can be brought to monotonic
form by replacing each parameter pi that occurs with both signs with p

+
i where

it occurs with positive sign and p
−
i where it occurs with negative sign. If P ′

G is
the set of good parameters for the modified LHA, the set of good parameters for
the original system is given by PG = P ′

G ∩ [[p+
i = p−i]]. Further research is needed

to determine whether or not this leads to any computational advantage for LHA
that are not parameter-monotonic.

References

1. Thomas A. Henzinger and Howard Wong-Toi. Using HyTech to synthesize con-
trol parameters for a steam boiler. In Formal Methods for Industrial Applications,
number 1165 in LNCS, pages 265–282. Springer Verlag, 1996.

2. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV’00, pages 154–169, London, UK, 2000. Springer.

3. S.K. Jha, B.H. Krogh, J.E. Weimer, and E.M. Clarke. Reachability for linear hybrid
automata using iterative relaxation abstraction. In A. Bemporad, A. Bicchi, and
G.C. Buttazzo, editors, HSCC, volume 4416 of LNCS. Springer, 2007.

4. Thomas A. Henzinger. The theory of hybrid automata. In Proc. 11th Annual IEEE

Symposium on Logic in Computer Science, LICS’96, New Brunswick, New Jersey,

27-30 July 1996, pages 278–292. IEEE Computer Society Press, 1996.
5. X. Li, S. K. Jha, and L. Bu. Towards an Efficient Path-Oriented Tool for Bounded

Reachability analysis of Linear Hybrid Systems using Linear Programming. In
BMC’06: Proceedings of the Workshop on Bounded Model Checking, 2006.

6. Marc Segelken. Abstraction and counterexample-guided construction of ω-automata
for model checking of step-discrete linear hybrid models. In W. Damm and H. Her-
manns, editors, CAV, volume 4590 of LNCS, pages 433–448. Springer, 2007.

7. R. Horowitz and P. Varaiya. Control design of an automated highway system. Proc.

IEEE, 88:913–925, July 2000.
8. GNU Linear Programming Kit, v.4.17, 2007. http://www.gnu.org/software/glpk.
9. ILOG. http://www.ilog.com/products/cplex/product/simplex.cfm, 2007.

14

