
Assume-Guarantee Reasoning for Hybrid I/O-Automata
by Over-Approximation of Continuous Interaction

Goran Frehse, Zhi Han, Bruce Krogh
Department of Electrical and Computer Engineering, CarnegieMellon University,

Pittsburgh, PA 15213, USA,{gfrehse,zhih,krogh}@ece.cmu.edu

Abstract— Assume-guarantee reasoning (AGR) is recog-
nized as a means to counter the state explosion problem
in the verification of safety properties. We propose a novel
assume-guarantee rule for hybrid systems based on simulation
relations. This makes it possible to perform compositional rea-
soning that is conservative in the sense of over-approximating
the composed behaviors. The framework is formally based
on hybrid input/output automata and their labeled transition
system semantics. In contrast to previous approaches that
require global receptivity conditions, the circularity is broken
in our approach by a state-based nonblocking condition that
can be checked in the course of computing the AGR simulation
relations. The proposed procedures for AGR are implemented
in a computational tool, called PHAVer, for the class of linear
hybrid I/O automata, and the approach is illustrated with a
simple example.

I. I NTRODUCTION

Hybrid automata are widely used to model and analyze
continuous-discrete behavior occurring, e.g., in digitally
controlled systems. Applications in verification are so far
limited in their scope because the computational complexity
increases exponentially with the number of variables and
components in the system, which is further worsened by
complex continuous dynamics. These problems can be
addressed by two approaches: abstraction and compositional
reasoning. Abstraction refers to the use of conservative
approximations with simpler dynamics, less variables, fewer
discrete states etc. Compositional reasoning exploits the
modular structure of a system and infers knowledge about
the composed system. To retain as much knowledge about
the interaction between systems as possible, we use an
input/output-structure for hybrid systems. This allows usto
model phenomena like open inputs.

On a formal basis, abstraction can be incorporated into
proofs and verified by establishingsimulation relations
that identify matching behavior between states of systems.
Since the continuous trajectories of two hybrid systems
are impossible to compare without a finitary representa-
tion, the behavior of a hybrid system is formally defined
with a hybrid labeled transition system, i.e., by transitions
between states, with an associated action or time. Using
this state-based approach, compositional reasoning becomes
implementable if the behavior has a finite representation,
e.g., based on polyhedra. However, the continuous path
information is lost, which leads to an over-approximation
in the behavior when the labeled transition systems are
composed rather than hybrid automata.

Assume-guarantee reasoning is a form of compositional
proof, that analyzes a subsystem using assumptions about
the rest of the system. Provided a simplified model of
each module, one original model is composed with the
rest of the simplified system and its behavior verified.
If the simplified model is a conservative abstraction, the
proof is sound. Otherwise additional conditions must ensure
that no undetected violations can occur. Applications in
literature rely on non-blocking between shared actions for
soundness. We present a sufficient condition based on sim-
ulation relations that makes no such restriction. While the
resulting over-approximation can be prohibitively extensive,
e.g., for general feed-back systems or systems with inputs
in differential equations, it can present a valuable solution
for sufficiently restricted classes of systems, e.g., feed-back
systems with bounded or sampled inputs.

The hybrid I/O automaton (HIOA) model was first in-
troduced by Lynch et al. [1] to model the input/output
behavior of hybrid systems. Our model is an extension of
the hybrid automata in [2], which in its simplicity is more
apt to our proofs. Compositional reasoning with simulation
relations has been first employed by Grumberg and Long
[3] for discrete systems. Assume-guarantee reasoning for
hybrid systems has been studied by Alur and Henzinger
et al. [4], [5], in which the condition for assume/guarantee
rules to hold is that every module must bereceptive, which
requires that the module is not blocked byany possible
input. The receptiveness condition requires more effort for
modeling physical systems in the HIOA framework. An
assume-guarantee rule using simulation relations has been
provided in [6], but it also requires receptiveness.

The following section defines hybrid I/O-automata and
their labeled transition system semantics. Section III in-
troduces the notion of simulation relations, and Sect IV
presents our proof rule for assume-guarantee reasoning.
Section V illustrates the usefulness of the approach with
experimental data. The proofs have been omitted for lack
of space. They can be found in [7].

II. H YBRID AUTOMATA AND HYBRID LABELED

TRANSITION SYSTEMS

Hybrid automata are a compact modeling paradigm for
continuous-discrete behavior based on state-transition sys-
tems [8], [9], [2].The I/O-automata model [1] imposes addi-
tional structure on the model by declaring certain variables
as inputs and outputs. In the following variation of this

model, an automaton has its own set of state variables,
to which other automata have access if they are declared
as output variables. Input variables can change their value
arbitrarily, in the sense of an “open” input. Since we are
interested in safety properties of the system, we use a hybrid
I/O-extension of the labeled transition system semantics
from [2].

Definition 2.1: Given a setVar of variables, a valuation
v : Var → R maps a real number to each variable. Let
V (Var) denote the set of valuations overVar. An activity is
a functionf : R≥0 → V in C∞ and describes the change of
valuations over time. Letact(Var) denote the set of activities
over Var. Let f + t be defined fort ≥ 0 by (f + t)(d) =
f(d + t), d ∈ R≥0. A setS of activities istime-invariantif
for all f ∈ S, t ∈ R≥0 : f + t ∈ S.

Definition 2.2: A hybrid input/output-automaton(HIOA)
H = (Loc, VarS , VarI , VarO, Lab, →, Act, Inv, Init)
consists of the following:

• A finite setLoc of locations.
• Finite and disjoint sets of state and input variables,

VarS and VarI , and of output variablesVarO ⊆ VarS .
Let Var = VarS ∪VarI . The state space isSH = Loc×
V (Var), and(l, v) ∈ SH a state.

• A finite setLab of labels,
• A finite set of discrete transitions→⊆ Loc× Lab×

2V (V ar)×V (V ar) × Loc. A transition(l, a, µ, l′) ∈→ is
also written asl

a,µ
−−→H l′.

• A mapping Act : Loc → 2act(Var) from locations to
time-invariant sets of activities.

• A mappingInv : Loc→ 2V (V ar) from locations to sets
of valuations.

• A set Init ⊆ Loc× V (V ar) of initial states.
Hybrid automata can be composed with a parallel com-
position operator, which enables the modular modeling of
complex systems. For HIOA, a notion of compatability is
needed:

Definition 2.3: HIOA Hi = (Loci,VarSi,VarIi,VarOi,
Labi,→i, Acti,Invi,Initi), i = 1, 2, arecompatibleif VarS1∩
VarS2 = ∅, and VarIi ∩ VarSj ⊆ VarOj for (i, j) ∈
{(1, 2), (2, 1)}.
The parallel composition operator determines how two
automata interact. Changes in the continuous variables must
be matched in both, and a discrete transition can only
change a variable if the automaton that has it as a state
variable can match the change. An input variable disappears
in the composition with an automaton that has it as an
output variable.

Definition 2.4: Given compatible HIOAHi = (Loci,
VarSi, VarIi, VarOi, Labi, →i, Acti, Invi, Initi), i = 1, 2,
their parallel compositionH1 ||H2 is the HIOA H =
(Loc1 × Loc2, VarS1 ∪ VarS2, (VarI1 ∪ VarI2) \ (VarS1 ∪
VarS2), VarO1∪VarO2, Lab1∪Lab2,→, Act, Inv, Init) with

• f ∈ Act(l1, l2) iff f↓V ari
∈ Acti(li), i = 1, 2,

• v ∈ Inv(l1, l2) iff v↓V ari
∈ Invi(li), i = 1, 2, and

• (l1, l2)
a,µ
−−→(l′1, l

′
2) with µ={(v, v′)|(v↓V ari

, v′↓V ari
)∈

µi, i = 1, 2} iff for i = 1, 2: a ∈ Labi ∧ li
a,µi
−−−→i l′i, or

a /∈ Labi ∧ li = l′i ∧ µi = {(v, v′)|v↓VarSi
= v′↓VarSi

}.
• ((l1, l2), v) ∈ Init iff (li, v↓V ari

) ∈ Initi, i = 1, 2.
We usehybrid labeled transition systemsto provide the
semantic basis for hybrid automata. They preserve most of
the structure of the hybrid automaton but abstract from the
continuous activities and invariants:

Definition 2.5: A hybrid labeled transition system
(HLTS) L = (Loc, VarS , VarI , VarO, Σ, →L, Init) consists
of a finite setLoc of locations, finite disjoint setsVarI
and VarS of variables, a setVarO ⊆ VarS of output
variables, a setΣ of labels, a transition relation→⊆ Loc×
V (V ar) × Σ × V (V ar) × Loc and a set of initial states
Init ⊆ Loc × V (V ar), whereVar = VarI ∪ VarS .
HLTSs in composition interact, similarly to HIOA, by
synchronizing on common labels:

Definition 2.6: Given HLTSs Li = (Loci,VarSi,VarIi,
VarOi,Σi,→i,Initi), i = 1, 2, VarS1 ∩ VarS2 = ∅, their
parallel compositionL1 ||L2 is the hybrid labeled transition
systemsL = (Loc1 × Loc2, VarS1 ∪ VarS2, (VarI1 ∪
VarI2) \ (VarS1 ∪ VarS2), VarO1 ∪ VarO2, Σ1 ∪ Σ2,→L,
Init) with ((l1, l2), v)

α
→L ((l′1, l

′
2), v

′) iff α ∈ Σi and
(li, v ↓V ari

)
α
→Li

(l′i, v
′ ↓V ari

) or α /∈ Σi and li = l′i,
v ↓V arSi

= v′ ↓V arSi
, for i = 1 and i = 2, and Init =

{((l1, l2), v)|(li, v↓V ari
) ∈ Initi, i = 1, 2}.

The behavior of a HIOA is defined by an associated HLTS,
called itstimed transition system:

Definition 2.7: The timed transition system(TTS) of a
HIOA H is the HLTS [[H]] = (Loc, VarS , VarI , VarO, Σ,
→LH , Init) whereΣ = Lab∪ R≥0 ∪ ε and

• (l, v)
a
→LH (l′, v′) iff l

a,µ
−−→H l′, (v, v′) ∈ µ, v ∈

Inv(l), v′ ∈ Inv(l′) (discrete transitions),
• (l, v)

t
→LH (l′, v′) iff l = l′ and there existsf ∈

Act(l), f(0) = v, f(t) = v′, and ∀t′, 0 ≤ t′ ≤ t :
f(t′) ∈ Inv(l) (timed transitions),

• (l, v)
ε
→LH (l′, v′) iff l = l′, v↓V arS

= v′↓V arS
, v, v′ ∈

Inv(l) (environment transitions).
The loss of information about the activities of the hybrid
automaton entails that the composition operator|| and the
timed transition sytem operator[[]] are not commutative.
This will be discussed in more detail in Sect. III, when
the comparison of systems is formalized by the notion of
simulation relations. The following result is important to
the discussion:

Proposition 2.1:For any hybrid automataH1, H2,
and α ∈ Lab1 ∪ Lab2 ∪ R≥0 ∪ ε a transition
((l1, l2), v)

α
−→H1 ||H2

((l′1, l
′
2), v

′) in [[H1 ||H2]] im-
plies a transition((l1, l2), v)

α
−→[[H1]] || [[H2]] ((l′1, l

′
2), v

′) in
[[H1]] || [[H2]].
A simple, but interesting, class of hybrid automata arelinear
hybrid automata[9], which can be described using linear
formulas. Their behavior can be computed exactly using
polyhedra:

Definition 2.8: A linear HIOA is a HIOA in which

• for all locationsl ∈ Loc, Act(l) is given by a linear

formula over the time derivatives of the state variables,
i.e., over ˙V arS = {dx/dt|x ∈ V arS}.

• for all locations l ∈ Loc, Inv(l) is given by a linear
formula overVar,

• for all transitions (l, a, µ, l′) ∈→, µ is given by a
linear formula overVar∪Var′, whereVar′ denotes the
variables of the second element of a pair(v, v′) ∈ µ.

We will illustrate our approach with the following simple
example:

Example 2.1:Consider a tank level monitoring system
consisting of a tank with continuous outflow, a discrete
inlet valve (modeled as part of the tank), and a controller.
The tank is modeled as a linear HIOAP1, shown in Fig.
1(a). Its inlet valve is operated by the controller via the
labelsopenand close. The levelx of the tank changes at
a rateri ≤ ẋ ≤ r̄i if the valve is open, and at a rate of
−r̄d ≤ ẋ ≤ −rd if it is closed. The location “undefined”
represents states that were excluded from the model, such
that unmodeled behavior can be detected with the transitions
with label “error”. P1 has the state and output variablex,
and no input variable. The controller, modeled by the linear
HIOA P2 in Fig. 1(b), is triggered by the timerd every δ
seconds to check the level of the tank, and instantly decides
whether to open the valve, close it or do nothing, after which
it returns to the idle state.P2 has the input variablex, the
state variabled and no output variable.

filling
0 ≤ x ≤ xover

ri ≤ ẋ ≤ r̄i

draining
0 ≤ x ≤ xover

−r̄d ≤ ẋ ≤ −rd

undefinedcloseopen

error
x = xover

error
x = 0

open

close

(a) TankP1

idle
ḋ = 1
d ≤ δ

checking
ḋ = 1
d = 0

τ
d′ = 0

open
x ≤ xl

close
x ≥ xh

τ
xl<x<xh

(b) ControllerP2

Fig. 1. Tank level monitoring system

III. S IMULATION OF HYBRID AUTOMATA

A simulation relation between automataP andQ relates
states inP to all the states ofQ that show the same, or
more, behavior. The automatonQ is considered to contain

the behavior ofP , in the sense of an over-approximation,
if every initial state ofP finds a corresponding initial state
of Q in the relation. This is denoted asP ¹ Q. Since the
behavior of a HIOA is given by its TTS, we define first
simulation for HLTSs. In the following, letP and Q be
HLTS P = (LocP ,VarSP ,VarIP ,VarOP ,ΣP ,→P ,InitP) and
Q = (LocQ,VarSQ,VarIQ,VarOQ,ΣQ,→Q,InitQ). In order
for P to be comparable withQ, it must have a subset of the
input, and the same output variables, and the same labels,
formally:

Definition 3.1: P is comparablewith Q if ΣP = ΣQ,
V arIQ ⊆ V arIP andV arOQ = V arOP . Hybrid automata
H1 andH2 are comparable if their TTSs are comparable.

Definition 3.2: Given HTLS P,Q, P comparable with
Q, a relationR ⊆ SP × SQ is a simulation relationif and
only if R ⊆ {(k, u, l, v)|u↓V arOQ

= v↓V arOQ
∧u↓V arIQ

=
v↓V arIQ

} and for all (p, q) ∈ R,α ∈ ΣP , p′ ∈ SP holds:

p
α
→ p′ ⇒ ∃q′ ∈ SQ : (q

α
→ q′ ∧ (p′, q′) ∈ R). (1)

A state q simulatesa statep if there exists a simulation
relation R with (p, q) ∈ R, written asp ¹ q. Q simulates
P , written asP ¹ Q, if and only if for all (k, u) ∈ InitP
there exists a(l, v) ∈ InitQ such that(k, u) ¹ (l, v). For
any HIOA H1,H2, let H1 ¹ H2 if [[H1]] ¹ [[H2]].

Example 3.1:Consider the tank level monitoring system
from Ex. 2.1. The goal of the verification is to show that the
tank level stays within the limitsxm ≤ x ≤ xM and that the
model remains within the modeling bounds, i.e., produces
no “error”-transitions. This invariant can be specified with
the linear HIOAQ shown in Fig. 2. Self-loops allow the
labels τ , “open” and “close” at any time, while the label
“error” never occurs.Q has the state and output variablex,
and no input variables.

xm ≤ x ≤ xM τ

open

close

Fig. 2. SpecificationQ of the composed system

In order for the simulation concept to be applied in a
compositional analysis, it must allow inference about the
behavior of comparable automata, and hold under different
contexts, i.e., when composed with other automata. For
HLTS, this is always the case, which is formally expressed
as follows:

Proposition 3.1:Simulation of HLTSs is a precongru-
ence with respect to parallel composition, i.e., reflexive,
transitive and invariant under parallel composition:P ¹
Q ⇒ P ||S ¹ Q ||S.
Simulation for HIOA, on the other hand, is not invariant
under composition. It retains the remaining properties:

Corollary 3.1: Simulation for HIOA is a preorder.

procedure GetSimRel
Input: Hybrid Labeled Transition SystemsP , Q,

optionally initial relationR0 ⊆ SP × SQ,
Output: a simulation relationR

if R0 undefined, R0 := SP × SQ

R := R0 ∩ {(k, u, l, v)|u↓V arOQ
= v↓V arOQ

∧
u↓V arIQ

= v↓V arIQ
}

while there exist (k, l)
with R(k, l) ∩ B(k, l) 6= ∅ do

R(k, l) := R(k, l) ∩ ¬B(k, l)
end while

Fig. 3. Semi-algorithm for computing a simulation relation

Intuitively, a HLTS only carries information about which
states can transition to which, and whether by time elapse or
by a discrete transition, but not about the trajectories taken
to get there. Consequently, the composition of two timed
transition systems of hybrid automata with shared variables
is an over-approximation of the behavior of the composed
hybrid automata because non-matching trajectories in the
systems can be paired. The compositional reasoning in the
following section will make use of this over-approximation,
formally expressed by the following proposition, which
follows directly from Prop. 2.1, and the definition of TTSs:

Proposition 3.2: [[H1 ||H2]] ¹ [[H1]] || [[H2]].
A simulation relationR between HLTSsP and Q can
be obtained with a fixpoint computation, in which the
states that violate (1) are successively removed. The set of
violating states in a pair of locations(k, l) ∈ LocP ×LocQ

is given by a set of valuations:

B(k, l) = {(u, v)|(k, u)
α
→ (k′, u′) ∧ ∄(l′, v′) :

[(l, v)
α
→ (l′, v′) ∧ (k′, u′, l′, v′) ∈ R]}. (2)

ThenR is the largest fixpoint of the operator

R(k, l) := R(k, l) ∩ ¬B(k, l). (3)

The relation can be initialized with the product of the
set of reachable states. Depending on the system, this can
tremendously speed up or slow down the convergence [10].
A simple semi-algorithm to compute simulation relations
is shown in Fig. 3. For a more detailed discussion of
simulation relations for hybrid automata, see [10], and more
advanced algorithms for computing simulation relations can
be found, e.g., in [11].

IV. A SSUME-GUARANTEE REASONING

Assume-guarantee reasoning aims at deducing the be-
havior of a composed system from an analysis of parts of
the system under assumptions about the rest of the system.
Consider a system consisting of HIOAP = P1 ||P2 with
a specificationQ = Q1 ||Q2. The goal is to show that
P1 ||P2 ¹ Q1 ||Q2, which by definition is equal to showing
that [[P1 ||P2]] ¹ [[Q1 ||Q2]] for their TTSs.

Non-circular assume-guarantee reasoningoccurs if the
abstraction of one automaton serves as the guarantee to

another, yielding a triangular structure:

[[P1]] ¹ [[Q1]]
[[Q1]] || [[P2]] ¹ [[Q1 ||Q2]]

P1 ||P2 ¹ Q1 ||Q2
. (4)

The proof is straightforward using the precongruence prop-
erties of simulation:[[P1]] ¹ [[Q1]] implies [[P1]] || [[P2]] ¹
[[Q1]] || [[P2]] due to the invariance of the simulation of
HLTS under composition. With transitivity it follows from
[[Q1]] || [[P2]] ¹ [[Q1 ||Q2]] that [[P1]] || [[P2]] ¹ [[Q1 ||Q2]],
and with Prop. 3.2 follows the conclusion. While in cases
with continuous input the application of Prop. 3.2 can lead
to gross over-approximation, it does enable the proof for
some interesting examples and applications.

Circular assume-guarantee reasoningadditionally uses
Q2 to restrict the behavior ofP1 in the analysis. It is only
sound if additional conditions, in the following called A/G
conditions, ensure thatQ1 and Q2 don’t block transitions
in their composition that are enabled for the composition of
P1 andP2. The basic structure is:

[[P1]] || [[Q2]] ¹ [[Q1 ||Q2]]
[[Q1]] || [[P2]] ¹ [[Q1 ||Q2]]

A/G conditions

P1 ||P2 ¹ Q1 ||Q2

. (5)

Example 4.1:Consider the tank level monitoring system
from Ex. 2.1. To verify the global specificationQ from
Fig. 2 using assume-guarantee reasoning, specificationsQi

are created manually for each subsystem. It is then checked
that their composition guaranteesQ, i.e., thatQ1||Q2 ¹
Q. The specificationQ1 for the tank, see Fig. 4(a), is a
simplified version ofP1. The inflow and outflow rate are
over-approximated and the invariants as well as the location
“undefined” are omitted. The essential information that
guarantees the functioning of the controller within the A/G-
reasoning is that the level rises after opening of the valve,
and falls after closing. The label “error” is inLabQ1

, but is
never allowed.Q1 has the state and output variablex, and
no input variables. The specificationQ2 for the controller,
shown in Fig. 4(b), is simply that it somehow guarantees
the invariant. It differs fromQ only in that its alphabet
does not contain “error”.Q2 has no state variable, and
the input variablex. Note thatQ2 represents the function
of the controller, and has virtually nothing to do with the
controller implementationP2. This allows to abstract from
implementation details such as the timerd. It also means
that the specification doesn’t have to be reinvented if the
implementation changes. Note that neitherQ1 nor Q2 are
conservative over-approximations ofP1 andP2.
The A/G-condition is given by the following theorem:

Theorem 4.1 (A/G-simulation):Consider HIOAP1, P2,
Q1, Q2, Pi comparable toQi, for which

[[P1]] || [[Q2]] ¹ [[Q1 ||Q2]] and (6)

[[Q1]] || [[P2]] ¹ [[Q1 ||Q2]]. (7)

filling
0 ≤ ẋ ≤ r̄i

draining
−r̄d ≤ ẋ ≤ 0

closeopen

open

close

(a) Tank spec.Q1

xm ≤ x ≤ xM τ

open

close

(b) Controller spec.Q2

Fig. 4. Modular specifications for A/G-reasoning

If there exist simulation relationsR1 for (6) and R2 for
(7) such that for all((k1, k2, x), (l1, l2, z)) for which there
exist (l̂1, ẑ1), (l̂2, ẑ2) with ((ki, lj , yi), (li, l̂j , ẑi)) ∈ Ri, and
all α ∈ ΣP1

∩ ΣP2
holds

(k1, k2, x)
α
→P1||P2

(k′
1, k

′
2, x

′) ⇒ [∃i, l′i, z
′ :

(li, z↓Qi
)

α
→Qi

(l′i, z
′↓Qi

) ∧ z′↓Pj∩Qi
= x′↓Pj∩Qi

] (8)

a simulation relation forP1 ||P2 ¹ Q1 ||Q2 is given by

R = {((k1, k2, x), (l1, l2, z))|∃yi, l̂j , ẑj : ((ki, lj , yi),

(li, l̂j , ẑi)) ∈ Ri, yi↓Pi
= x↓Pi

, yi↓Qj
= z↓Qj

, ẑi↓Qi
= z↓Qi

}.

Note thatR not necessarily contains the initial states. The
A/G-condition is trivially fulfilled if for every label in
LabQ1 ∩ LabQ2 eitherQ1 or Q2 is non-blocking, and that
in each location ofQ1||Q2 either always allows an arbitrary
time elapse.

The A/G-condition (8) looks similar to the requirement of
simulation (1) for the composed automata, but differs in two
important points: Firstly, the target states are not required to
lie within the relation, so there is no fixpoint computation
necessary. Secondly, it is only required that either one of
Q1 or Q2 has a corresponding transition.

Checking for A/G-simulation consists of the construction
of simulation relationsR1 and R2 for which the A/G-
condition holds. A simple procedure is to remove potentially
violating states from candidate relationsR0

1 andR0
2. The re-

sulting trimmed relationsR′
1 andR′

2 must (again) be turned
into simulation relationsR1 and R2 by a fixpoint compu-
tation. As the trimming is done as on over-approximation,
the candidate relations should be as small as possible, and
are therefore initialized as simulation relations.

The sets of critical labels and states inRi that could vio-
late the A/G-conditions are given for(i, j) ∈ {(1, 2), (2, 1)}
by:

DRi
= {(qi, qj , α)|α ∈ ΣP1

∩ ΣP2
∧

∃pi, p
′
i : ((pi, qj), (q1, q2)) ∈ Ri∧

pi
α
→ p′i ∧ ∄q′1 : q1

α
→ q′1 ∧ ∄q′2 : q2

α
→ q′2} (9)

It is a sufficient condition for A/G-simulation thatDR1
∩

DR2
= ∅. If there are such violating states, an ele-

procedure CheckAGSimulation
Input: hybrid automataP1, P2, Q1, Q2

Output: A/G-simulation relationsR1, R2

R0

1 := GetSimRel([[P1]] || [[Q2]], [[Q1 ||Q2]])
R0

2 := GetSimRel([[P2]] || [[Q1]], [[Q1 ||Q2]])
for (i, j) ∈ {(1, 2), (2, 1)}:

DRi = {(qi, qj , α)|α∈ΣP1
∩ ΣP2

∧ ∃pi, p
′

i :
((pi, qj), (q1, q2)) ∈ R0

i ∧ pi
α
→ p′

i

∧∄q′1 : q1

α
→ q′1 ∧ ∄q′2 : q2

α
→ q′2}.

if DR1
∩ DR2

6= ∅
for (i, j) ∈ {(1, 2), (2, 1)}:

R′

i := R0

i \{((pi, qj), (q1, q2))|∃p′

i : pi
α
→ p′

i∧
(q1, q2, α) ∈ DRj}

R1 := GetSimRel([[P1]] || [[Q2]], [[Q1 ||Q2]], R
′

1)
R2 := GetSimRel([[P2]] || [[Q1]], [[Q1 ||Q2]], R

′

2)
else

for i = 1, 2: Ri := R0

i

end if

Fig. 5. Algorithm for checking assume-guarantee simulation of labeled
transition systems with composite checking ofR1 andR2.

ment ((pi, qj), (q1, q2)) of Ri is removed if pi
α
→ p′i ∧

(q1, q2, α) ∈ DRj
. An algorithm is shown in Fig. 5.

Note that there is a choice whether to remove a state
from R1 or R2. Therefore the order of determiningDRi

and trimming matters, and other solutions than the one in
Fig. 5 are possible. To finalize the A/G-proof, it must be
shown that all the initial states ofP1||P2 have a matching
initial state ofQ1||Q2 in R. Let R′

i be defined for(i, j) ∈
{(1, 2), (2, 1)} as

R′
i = {((ki, uj), (l1, l2, z))|∃l̂j , ẑi : ((ki, lj , yi),

(li, l̂j , ẑi)) ∈ R1, z↓Q1
= ẑ1↓Q1

, z↓Q2
= y1↓Q2

}.

It must be shown that for all(k1, k2, x), (k1, x ↓P1
) ∈

InitP1
, (k2, x↓P2

) ∈ InitP2
there existslj , yi, l̂j , ẑj such

that:

• ((ki, lj , yi), (li, l̂j , ẑi)) ∈ Ri,
• yi↓Pi

= x↓Pi
,

• yi↓Qj
= ẑj↓Qj

, yi↓Qj
∈ InitQj

,
• ẑi↓Qi

∈ InitQi
.

In a formulation usingR′
1 and R′

2 this means that for all
(k1, k2, x), (k1, x↓P1

) ∈ InitP1
, (k2, x↓P2

) ∈ InitP2
there

exists (l1, l2, z), (l1, z↓Q1
) ∈ InitQ1

, (l2, z↓Q2
) ∈ InitQ2

such that((ki, x↓Pi
), (l1, l2, z)) ∈ R′

i for i = 1, 2.
Circular A/G-reasoning is only a sufficient condition with

respect to the containment of the initial states. There are
cases in whichR1 andR2 exist, but no simulation relation
can be constructed fromR1 andR2 that contains the initial
states appropriately, even though a globalR′ exists and
P1||P2 ¹ Q1||Q2 holds.

A sufficient condition for the containment is that for all
(k1, l2, y1) with (k1, y1↓P1

) ∈ InitP1
, (l2, y1↓Q2

) ∈ InitQ2

and (l1, v1) ∈ InitQ1
there exists(l̂2, ẑ1) with ẑ1 ↓Q1

=
v1 such that((k1, l2, y1), (l1, l̂2, ẑ1)) ∈ R1. A symmetric
argument is also valid forR2.

Example 4.2:Consider the level monitoring system and
its specifications given in Ex. 4.1. Let the parameters be
xover = 200, xm = 20, xM = 180, xl = 30, xh = 176,
ri = 2, r̄i = 5, rd = 1, r̄d = 3, δ = 1. For an initial set of
states40 ≤ x ≤ 160, d = 0, the verification is successful.
The sets of critical statesDR1

andDR2
are empty, and every

initial state inP1||P2 finds a match in the initial states of
Q1||Q2.

V. EXPERIMENTAL RESULTS

The semi-algorithms for checking simulation and A/G-
simulation were implemented in C++ as part of a tool for
verifying linear hybrid automata called PHAVer, of which
an earlier version was presented in [10]. For operations
on convex polyhedra it uses theParma Polyhedra Library
(PPL) by Roberto Bagnara et al. [12], which employs exact
arithmetic with unlimited digits.

An extended version of the level monitoring system was
used as a benchmark. The tank model was parameterized
by introducing nT intermediate locations for filling and
draining with varying dynamics. The controller was ex-
tended bynC intermediate idle locations, and a min. and
max. sampling time. Table I show the results for an Intel
Pentium 4M with 1.9GHz, 768MB RAM. With increasing
n = nT = nC (note that the other parameters change also)
the A/G-reasoning (A/G-Sim.) shows a clear advantage over
simulation checking of the composed system (Sim.), and
even over a convex-hull reachability analysis (Reach.). This
correlates with the size of the simulation relations,|R| for
the composed analysis and

∑
|Ri| = |R1|+ |R2| for A/G-

reasoning, each measured in the number of locations. Note
that most of the time in the non-compositional analysis
is spent in the composition of the system. However, for
n = 80, the entire A/G-analysis takes less time than even
the net analysis time of the reachability algorithm.

TABLE I

ANALYSIS OF AN EXTENDED TANK LEVEL MONITOR

n Sim. Reach. A/G-Sim. |R|
∑

|Ri|

1 0.46 s 0.30 s 1.21 s 4 6
10 10.67 s 3.67 s 5.28 s 183 42
20 33.70 s 14.49 s 9.76 s 490 82
40 197.53 s 109.07 s 19.44 s 2030 162
80 1826.59 s 1217.35 s 43.13 s 9312 318

VI. CONCLUSION

This paper presents a method for performing composi-
tional reasoning to verify properties of hybrid systems with
continuous interactions and proposes a novel, constructive,
assume/guarantee rule for hybrid I/O-automata based on
simulation relations. The use of labeled transition system
semantics leads to semi-algorithms that can be implemented
for interesting classes of systems. The importance of as-
sume/guarantee reasoning for hybrid systems is underlined

by the fact that shared variables make it often impossible to
deduct properties or validate an abstraction of a subsystem
on its own, without any assumptions about its inputs. The
proposed approach provides a way to include such assump-
tions at the cost of neglecting the interacting continuous
dynamics. While it usually results in an over-approximation,
it is in many applications sufficient for showing relevant
properties. Experimental results from an implementation
of A/G-reasoning for linear hybrid automata show a clear
advantage over non-compositional methods when large sub-
systems are combined. Compositional simulation check-
ing was integrated in the verification tool PHAVer, which
is available for download athttp://www.cs.ru.nl/
∼goranf/. We are currently evaluating the effectiveness
of this approach for examples of increasing complexity. On
the theoretical side, we are investigating classes of I/O-
automata for which timed transition systems are an exact
compositional representation with respect to simulation.

REFERENCES

[1] N. A. Lynch, R. Segala, and F. Vaandrager, “Hybrid I/O automata,”
Information and Computation, vol. 185, no. 1, pp. 105–157, 2003.

[2] T. Henzinger, “The theory of hybrid automata,” inProc. of the 11th
Annual IEEE Symposium on Logic in Computer Science (LICS ’96),
New Brunswick, New Jersey, 1996, pp. 278–292.

[3] O. Grumberg and D. E. Long, “Model checking and modular
verification,” in CONCUR, ser. Lecture Notes in Computer Science,
J. C. M. Baeten and J. F. Groote, Eds., vol. 527. Springer, 1991.

[4] R. Alur and T. A. Henzinger, “Modularity for timed and hybrid
systems,” inProceedings of the Eighth International Conference on
Concurrency Theory (CONCUR), ser. LNCS, vol. 1243. Springer,
1997, pp. 74–88.

[5] T. A. Henzinger, M. Minea, and V. Prabhu, “Assume-guarantee
reasoning for hierarchical hybrid systems,” inHSCC ’01: 4th In-
ternational Workshop on Hybrid Systems: Computation and Control,
ser. Lecture Notes in Computer Science, vol. 2034. Springer,2001,
pp. 275–290.

[6] T. A. Henzinger, S. Qadeer, S. K. Rajamani, and S. Tasiran,“An
assume-guarantee rule for checking simulation,”ACM Trans. Pro-
gram. Lang. Syst., vol. 24, no. 1, pp. 51–64, 2002.

[7] G. Frehse, “Compositional verification of hybrid systems using sim-
ulation relations,” Ph.D. dissertation, Radbout Universiteit Nijmegen,
Dec. 2004.

[8] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, “Hybrid
automata: An algorithmic approach to the specification and verifica-
tion of hybrid systems,” inWorkshop on Theory of Hybrid Systems,
ser. LNCS, R. L. Grossman, A. Nerose, A. Ravn, and H. Rischel,
Eds., vol. 736. Springer-Verlag, 1993, pp. 209–229.

[9] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger,P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,”Theoretical Computer Science, vol. 138,
no. 1, pp. 3–34, 1995.

[10] G. Frehse, “Compositional verification of hybrid systemswith dis-
crete interaction using simulation relations,” inProc. CACSD’04,
Taipei, 2004.

[11] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke, “Computing
simulations on finite and infinite graphs,” inIEEE Symposium on
Foundations of Computer Science, 1995, pp. 453–462.

[12] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill, “Possibly
not closed convex polyhedra and the Parma Polyhedra Library,” in
Static Analysis: Proc. of the 9th Int. Symposium, ser. LNCS, M. V.
Hermenegildo and G. Puebla, Eds., vol. 2477. Madrid, Spain:
Springer-Verlag, 2002, pp. 213–229.

