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Abstract— Simulation relations can be used to verify re-
finement between a system and its specification, or between
models of different complexity. It is known that for the
verification of safety properties, simulation between hybrid
systems can be defined based on their labeled transition
system semantics. We show that for hybrid systems without
shared variables, which therefore only interact at discrete
events, this simulation preorder is compositional, and present
assume-guarantee rules that help to counter the state explosion
problem. Some experimental results for simulation checking
of linear hybrid automata are provided using a prototype tool
with exact arithmetic and unlimited digits.

I. INTRODUCTION

The complexity of verifying hybrid systems increases
exponentially with the number of system components and,
particularly, with the number of continuous variables in-
volved, which requires abstraction and divide-and-conquer,
i.e., compositional, strategies. Hybrid automata [1] have
been successfully used to model and verify hybrid systems.
To be able to apply compositional reasoning, we restrict
ourselves to hybrid automata with disjunct variables, so that
they interact only via synchronization on discrete events.
We compare hybrid automata by computing a simulation
relation between their states. A state of an automaton sim-
ulates that of another if it can exhibit the same discrete and
timed behavior. Other than trace or language containment,
simulation also captures the branching behavior. In a hybrid
setting, it provides a compact and intuitive way to specify
desired behavior and can be applied to verify refinement
and abstraction, if systems exhibit a continuous behavior
too complex to be analyzed or even modeled accurately.

We present an extension of simulation to compare au-
tomata of arbitrary alphabets that allows more compact
models and proofs, and show that it supports compositional
reasoning for hybrid systems with no shared variables.
In particular, we use simulation to establish non-circular
and circular assume-guarantee rules that do not require
non-blocking or receptiveness. Finally, we provide some
experimental data obtained with a tool prototype for linear
hybrid automata.

In our definition of simulation for hybrid automata we
follow the approach of [2], which is based on labeled
transition system semantics and takes into account a given
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equivalence relation between states. Simulation without
state equivalence was presented for modal hybrid systems
in [3]. A rule for assumme-guarantee reasoning for Moore
machines based on simulation relation has been presented
in [4]. It requires non-blocking and is a special case of
the assume-guarantee rule in Sect. IV-C. In [5], assume-
guarantee reasoning for refinement based on trace inclusion
is shown to be sound for receptive timed and hybrid mod-
ules. In contrast, we do not require receptiveness, abstract
from continuous flows with labeled transition system (LTS)
semantics and retain the branching structure of simulation.

The next section defines hybrid automata and their LTS-
semantics. Then Sect. III defines simulation relations for
hybrid automata with equivalence between states, for which
compositional proof rules are given in Sect. IV. Finally,
some implementation results are presented in Sect. V.

II. HYBRID SYSTEMS WITH DISCRETE INTERACTION

This section briefly recalls basic definitions, which
slightly differ from those in [1], [2] in that automata interact
only on discrete transitions and have no shared variables.

A. Hybrid Automata

A variable is an identifier that is associated with a real
number. This mapping is called a valuation. The continuous
change of a variable over time is defined by an activity:

Definition 2.1 (Valuation, Activity): [1] Given a set Var

of variables, a valuation is function v : Var → R. Let
V (Var) denote the set of valuations over Var. An activity is
a function f : R

≥0 → V (Var) in C∞. Let act(Var) denote
the set of activities over the variables in Var. Let f + t be
defined for t ≥ 0 by (f + t)(d) = f(d + t), d ∈ R

≥0. A
set S of activities is time-invariant if for all f ∈ S, t ∈
R

≥0 : f + t ∈ S. Given a set of variables Var ′ ⊆ Var ,
let the projection v′ = v↓Var ′ be the valuation over Var ′

defined by v′(x) = v(x) for all x ∈ Var ′. The extension to
activities is straightforward.
Hybrid automata are state-transition systems that have vari-
ables that can change continuously over time or at discrete
events via a discrete transition:

Definition 2.2 (Hybrid Automaton): [1] A hybrid au-
tomaton (HA) H = (Loc, Var, Lab, →, Act, Inv, Init) has
the following components:

• A finite set Loc of locations.
• A finite set Var of variables. A pair (l, v) of a location

and a valuation of the variables is a state of the
automaton. The state space is SH = Loc × V (Var).

• A finite set Lab of synchronization labels,



• A finite set of discrete transitions →⊆ Loc × Lab ×
2V (V ar)×V (V ar) × Loc. A transition (l, a, µ, l′) ∈→ is
also written as l

a,µ
−−→H l′.

• A mapping Act : Loc → 2act(Var) from locations to
time-invariant sets of activities.

• A mapping Inv : Loc → 2V (V ar) from locations to sets
of valuations.

• A non-empty set Init ⊆ Loc×V (V ar) of initial states
such that (l, v) ∈ Init ⇒ v ∈ Inv(l).

Of particular interest are classes of hybrid automata that can
be modeled and analyzed using polyhedra, since efficient
algorithms exist for those computations. We will refer to
them as polyhedral hybrid automata and describe polyhedra
with linear constraints of the form

∑
i aivi + b ./ 0,

where the ai and b are integers, the vi are variables and
the sign ./ is < or ≤. A linear formula is a boolean
combination of linear constraints and defines a, possibly
non-convex, polyhedron. A prominent case of polyhedral
hybrid automata are linear hybrid automata (LHA) [1], in
which the activities have a time-derivative constrained by a
linear formula over the time-derivatives of the variables, and
the continuous components of invariants, transition relation
and initial states can be described by linear formulas.

B. Labeled Transition System Semantics

The safe semantics of a hybrid automaton can defined
using an infinite labeled transition system (LTS) [2]. The
advantage is that, instead of examining the hybrid automa-
ton, we can analyze the LTS. It is substantially simpler
because it abstracts from the continuous activities with
timed transitions. We define LTSs and then attribute to each
hybrid automaton a LTS called its timed transition system.

Definition 2.3 (Labeled Transition System): [6] A la-
beled transition system (LTS) P = (SP ,ΣP ,→, SP0)
consists of a set SP of states, a set of labels ΣP , a transition
relation →⊆ SP × ΣP × SP and a set of initial states
SP0 ⊆ SP .

Definition 2.4 (Timed Transition System): [2] The timed
transition system (TTS) of a hybrid automaton H is the LTS
[[H]] = (SH , Lab ∪ R

≥0,→[[H]], Init) where

• (l, v)
α
→[[H]] (l′, v′) if and only if l

α,µ
−−→H l′, (v, v′) ∈

µ, v ∈ Inv(l), v′ ∈ Inv(l′),
• (l, v)

t
→[[H]] (l, v′) if and only if there exists f ∈

Act(l), f(0) = v, f(t) = v′, and ∀t′, 0 ≤ t′ ≤ t :
f(t′) ∈ Inv(l).

C. Discrete Interaction

Often a system can divided into several components,
each of which is then modeled by a separate automaton.
In this paper we restrict ourselves to systems that have
no shared variables and therefore only interact at discrete
events by synchronizing on transitions with common labels.
The interaction is formally defined with a composition
operator:

Definition 2.5 (Parallel Composition): [1], [7] Given hy-
brid automata Hi = (Loci, Vari, Labi, →i, Acti, Invi,

Initi), i = 1, 2 with disjunct variables, their parallel compo-
sition H1||H2 is the hybrid automaton H = (Loc1 × Loc2,
Var1 ∪Var1, Lab1 ∪ Lab2,→H , Act, Inv, Init1 × Init2) with

• f ∈ Act(l1, l2) iff f↓V ari
∈ Acti(li), i = 1, 2,

• v ∈ Inv(l1, l2) iff v↓V ari
∈ Invi(li), i = 1, 2, and

• a transition (l1, l2)
a,µ
−−→H (l′1, l

′
2) exists with µ =

{(v, v′)|(v↓V ari
, v′↓V ari

) ∈ µi} iff for i = 1, 2 holds
– a ∈ Labi: li

a,µi
−−−→i l′i.

– a /∈ Labi: li = l′i, µi = {(v, v′)|v↓Vari
= v′↓Vari

}.
• ((l1, l2), v) ∈ Init iff (li, v↓V ari

) ∈ Initi, i = 1, 2.
For the compositional analysis it will be essential to perform
the same operation on the LTS level:

Definition 2.6 (Parallel Composition of LTS): [6] Given
labeled transition systems Pi = (SPi

,ΣPi
,→Pi

, SPi0),
i=1,2, their parallel composition is the LTS P1||P2 =
(SP1

× SP2
,ΣP1

∪ ΣP2
,→, SP10 × SP20) with a transition

(p1, p2)
α
−→ (p′1, p

′
2) iff for i=1,2 holds

• α ∈ Labi: pi
a
−→Pi

p′i.
• α /∈ Labi: pi = p′i.
Example 2.1: Consider a chemical reactor with a con-

tinuous outflow, a stirrer and a level monitor controller,
for which LHA-models are shown in Fig. 1. The controller
switches a discrete inlet valve on and off, modelled by labels
in start and in stop, and is supposed to prevent overflow
in the reactor and to operate the stirrer only when there is
an inflow. It operates at a maximum sampling time of dmax

and checks for the level x in the reactor via two discrete
sensors at positions xl and xh. The sensors are modelled as
part of the reactor and trigger events via the labels x high ,
x nhigh , x low and x nlow . If the inlet valve is open, the
reactor drains at a net rate between riol and riou, and fills
at rate between rol, rou if it is closed.

III. SIMULATION RELATIONS FOR HYBRID AUTOMATA

In order to be able to compare two automata P and Q, we
define a preorder � such that P � Q if any behavior of P
finds a match in Q, formally captured by the existence of a
simulation relation between their states. A state q simulates
a state p if the system Q shows the same behavior starting
from state q as P does starting from state p. In such a
comparison, P could be, e.g., an implementation and Q a
specification, or P a refined model and Q a more abstract
model. Since for safety properties of a hybrid automaton it
is sufficient to examine the behavior of its associated LTS,
we also define simulation based on the LTSs, following the
approach in [2]. For a state q to simulate a state p, an
outgoing transition in p must be matched by a transition in
q with an identical label. From the TTS semantics it follows
that any time elapse should be matched by an identical time
elapse. Depending on the application and the meaning that
is attributed to the variables in the process of modeling or
when designing the specification, it might be desirable to
consider certain variables in the system and specification
equivalent, which will be illustrated by Example 3.1. This
is imposed by requiring that states in the simulation relation
are also in a given equivalence relation [2].
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(a) Reactor with level sensors R
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(b) Level monitoring controller C

Fig. 1. Linear hybrid automaton models

A. Simulation for arbitrary alphabets

The classic notion of simulation from [8] requires both
automata P and Q to have the same alphabet ΣP = ΣQ.
We introduce simulation between automata of arbitrary
alphabets because it enables smaller models and allows
simpler proofs1. As will be shown in Sect. IV, it is neces-
sary for compositional proofs that simulation is invariant
under composition, i.e., that P � Q implies P ||S �
Q||S for any automaton S. This necessitates two additional
conditions for simulation over arbitrary alphabets. We call
the classic simulation from [8] into effect as condition
(i), for transitions with label α ∈ ΣP ∩ ΣQ, (so that if
ΣP = ΣQ, both notions of simulation are identical) and
consider the remaining cases:
(ii) α ∈ ΣQ\ΣP : In parallel composition with another

automaton, P cannot block any transitions with label
α. Since Q is supposed to be a conservative over-
approximation, it shouldn’t block either, and therefore
must an outgoing transitions with label α in all states.

(iii) α ∈ ΣP \ΣQ: Transitions with label α are allowed
as long as they don’t eventually lead to states that
violate simulation. Therefore the target states of such
transitions must themselves be in the relation.

After giving formal definition of simulation for LTS, we
will use it to define simulation for hybrid automata:

1As far as we know, this extension is a novel approach.

Definition 3.1 (Simulation for LTS): Given an alphabet
Σ and LTSs P and Q, R ⊆ SP ×SQ is a simulation relation
iff for all (p, q) ∈ R,α ∈ ΣP ∪ ΣQ holds either:
(i) α ∈ ΣP ∩ ΣQ and p

α
→ p′ ⇒ ∃q′ ∈ SQ : (q

α
→

q′ ∧ (p′, q′) ∈ R)
(ii) α ∈ ΣQ\ΣP and ∃q′ ∈ SQ : (q

α
→ q′ ∧ (p, q′) ∈ R)

(iii) α ∈ ΣP \ΣQ and p
α
→ p′ ⇒ (p′, q) ∈ R.

Let � be the largest such relation. A state q simulates a
state p if p � q. Q simulates P , denoted as P � Q, if
for every state p0 ∈ SP0 there exists a state q0 ∈ SQ0

such that p0 � q0, i.e., if for any simulation relation R
holds SP0 ⊆ R−1(SQ0). Such a relation R is then said to
witness P � Q.

Definition 3.2 (≈-Simulation): [2] Given LTS P , Q and
an equivalence relation ≈ ⊆ (SP ∪ SQ)2, Q ≈-simulates
P , written as P �≈ Q, iff there exists a simulation relation
R ⊆ ≈ that witnesses P � Q. Given HA H1, H2, and ≈,
H1 �≈ H2, iff [[H1]] �≈ [[H2]].
The equivalence relation ≈ is usually defined implicitly,
e.g., by demanding that certain variables are identical in P
and Q. For HA with disjoint variables, the TTS and parallel
composition operator are commutative (up to structural iso-
morphism) if the equivalence relation is given in compliance
with the following proposition. This is necessary to carry
over the compositional proofs of Sect. IV from LTS to HA:

Proposition 3.1: Given HA H1 and H2 with disjoint
variables and an equivalence relation ≈ such that (l1, v1) ≈
(l2, v2), v ↓VarHi

= vi for i = 1, 2 implies ((l1, l2), v) ≈
((l1, v1), (l2, v2)), it holds that

[[H1||H2]] �≈ [[H1]]||[[H2]] �≈ [[H1||H2]]. (1)

B. Specifying Properties with Simulation Relations

Frequently, the goal of verifiaction is to establish invari-
ance, sequencing or timing properties. Simulation relations
allow to describe all three in an intuitive fashion. The
equivalence relation ≈ is used to associate variables in
the specification with those of the model. In the following
example, the tank level in the model is identical to the level
variable in the specification, while the timer variables in the
specification and the controllers are not related.

Example 3.1: Consider the tank level monitoring system
from Ex. 2.1. Figure 2 shows specification automata for the
following properties:
(a) Invariant: The level is always xmin < x < xmax.
(b) Sequencing: A command is sent to turn the stirrer off

every time before a command to close the inlet valve.
(c) Timing: The inlet valve is closed for a maximum time

of tmax.
The specification is fulfilled if R||C � Qa||Qb||Qv holds.
Sometimes a specification is expressed easily in terms of a
set of forbidden states. A reachability analysis then shows
whether the forbidden states can be reached from the initial
states of the system. The check for reachability of a set of
forbidden states F can be easily combined with checking
for simulation by a specification Q. One way is to set R :=



xmin ≤ x ≤ xmax

(a) Level invariant Qa

stir off

in stop

(b) Stirrer off before
inlet valve closed Qb

t ≤ tmax

in stop
t′ = 0

in start

(c) Inlet valve closed
at most tmax, Qc

Fig. 2. Specification models

R\(F × SQ) at the initialization stage of the simulation
relation. Alternatively, a label error can be introduced with
self-loops at the forbidden states. Adding error to the
alphabet of Q forbids the occurence of those transitions.
An advantage of modeling reachability properties with error
transitions is that the property can easily be joined with a
sequence or other property, e.g. that a fail state can only be
reached after a failure prediction system has given alarm.

C. Computing Simulation Relations

A simulation relation can be obtained with a fixed-
point computation that removes all states that violate the
conditions (i)-(iii) of Def. 3.1. A simple semi-algorithm
for computing a simulation relation R is shown in Fig. 3,
the reader is referred to [9] for a detailed discussion and
more efficient algorithms. While in general reachability
and simulation are undecidable for hybrid automata, analy-
sis algorithms terminate for many practical examples, in
particular for some polyhedral HA, and techniques are
available to force convergence by over-approximation [10],
[2]. Before the fixed-point computation of P � Q, R can be
initialized with the reachable states of P ||Q [3], written as
reachP ||Q, or even an over-approximation of those. In many
cases, this yields a tremendous speed-up, but sometimes has
the reverse effect, see Sect. V.

IV. COMPOSITIONAL PROOFS

Most systems of practical interest can be divided into
a set of subsystems. A compositional approach to mod-

procedure GetSimRel
Input: labeled transition systems P , Q,

optionally: relation R0 ⊆ SP × SQ

Output: simulation relation R

if R0 defined then R := R0 else
optionally R := SP × SQ or R := reachP ||Q fi;

R′ := ∅;
while R 6= R′ do

R′ := R
Fi := {(p, q)|∃α ∈ ΣP ∩ ΣQ, p′ ∈ SP :

p
α
→ p′ ∧ @q′ : q

α
→ q′ ∧ (p′, q′) ∈ R};

Fii := {(p, q)|∃α ∈ ΣQ\ΣP ∧ @q′ : q
α
→ q′ ∧ (p, q′) ∈ R};

Fiii := {(p, q)|∃α ∈ ΣP \ΣQ, p′ ∈ SP : p
α
→ p′ ∧ (p′, q) /∈ R};

R := R\(Fi ∪ Fii ∪ Fiii)
od.

Fig. 3. Semi-Algorithm for computing a simulation relation

eling and analysis of such a system is based only on
the descriptions of subsystems, without further information
about the composed system. Consider the system mod-
eled as P = P1|| . . . ||Pn and the specification given by
Q = Q1|| . . . ||Qn, where the Qi are considered to be less
complex than the Pi. The goal of the compositional proofs is
to show P1|| . . . ||Pn � Q1|| . . . ||Qn in several steps, which
each require the composition of fewer automata and are
so less computationally expensive. To that effect, assume-
guarantee reasoning deduces the behavior of a composed
system from analyses of parts of the system that were
made under assumptions about the rest of the system. While
the following rules are given for the case n = 2, the
generalization to arbitrary n is straightforward.

A. Decomposition of the Specification

The first compositional proof is to decompose the speci-
fication and verify that P1|| . . . ||Pn � Qi for i = 1, . . . , n.
In order to show this, the following lemmas are needed,
whose proof is straightforward and omitted due to lack of
space:

Lemma 4.1: P � Q if and only if P � P ||Q.
Lemma 4.2: For any P and Q holds P ||Q � P .
Theorem 4.1 (Decomposition of Specification):

P � Q1||Q2 if and only if P � Q1 and P � Q2.
Proof: Assume that P � Q1 and P � Q2. With

Lemma 4.1, it holds that P � P ||Q1. From P � Q2

and invariance under composition follows that P ||Q1 �
Q2||Q1. Transitivity of simulation and commutativity of
parallel composition yield P � Q1||Q2, which proves the
sufficient condition. Assume that P � Q1||Q2. According
to Lemma 4.2 it holds that Q1||Q2 � Q1 and Q1||Q2 � Q2.
The conclusion follows directly from the transitivity of
simulation.

B. Compositionality

A preorder � is called compositional if the following rule
always holds:2

P1 � Q1

P2 � Q2

P1||P2 � Q1||Q2
. (2)

Given that the composition operator || is commutative, it
is easy to see that a preorder � is compositional iff it is
invariant under composition, i.e., a precongruence. This is
the case for ≈-simulation and an appropriate equivalence
relation:

Proposition 4.1: ≈-simulation is a precongruence if the
equivalence relation ≈ between states is invariant under
composition.

Example 4.1: For Ex. 2.1 it holds that C � Qb. By
compositionality it follows that R||C � R||Qb, and by
decomposing the specification follows R||C � Qb.

2This property is also referred to as modularity. For a detailed discussion
and a distinction between compositionality and modularity, see [11].



Often, rule (2) does not allow the Qi to be much simpler
than the Pi, since they must simulate for every possible in-
teraction with the other automata, i.e., without any assump-
tions about the composed behavior. This motivates assume-
guarantee reasoning, of which there are two variants, non-
circular and circular.

C. Non-circular Assume-Guarantee Reasoning

In non-circular assume-guarantee reasoning, the specifi-
cation of an automaton serves as the guarantee to the others
in the form of a chain rule:

P1 � Q1

Q1||P2 � Q2

P1||P2 � Q1||Q2
. (3)

The proof is straightforward: P1 � Q1 ⇒ P1||P2 � Q1||P2

due to invariance under composition. According to Theorem
4.1, P1||P2 � Q1||P2 implies P1||P2 � Q1. By transitivity
follows from Q1||P2 � Q2 that P1||P2 � Q2. With
Theorem 4.1 follows that P1||P2 � Q1||Q2.

Example 4.2: Consider the automaton R as an abstrac-
tion of a reactor model R̂ with non-linear dynamics, and
R̂ � R as established manually. Then R||C � Qa||Qc can
be verified algorithmically, and with (3) and by decompo-
sition of the specification follows R̂||C � Qa||Qc.

D. Circular Assume-Guarantee Reasoning

In circular assume-guarantee reasoning, Q2 is taken as
an assumption about the behavior of P2 and composed with
P1, and symmetrically Q1 is composed with P2. This proof
is only sound if additional conditions ensure that Q1||Q2

does not block transitions that are enabled in P1||P2.

P1||Q2 � Q1

Q1||P2 � Q2

A/G conditions
P1||P2 � Q1||Q2

. (4)

Theorem 4.2 (A/G-simulation): Given that some simula-
tion relation R1 witnesses P1||Q2 � Q1 and some R2

witnesses Q1||P2 � Q2, the relation

R = { ((p1, p2), (q1, q2)) |

((p1, q2), q1) ∈ R1 ∧ ((q1, p2), q2) ∈ R2 } (5)

is a simulation relation for P1||P2 � Q1||Q2 if for all
((p1, p2), (q1, q2)) ∈ R and α ∈ ΣQ1

∩ ΣQ2
there exists

some q′1 with q1
α
→ q′1 or some q′2 with q2

α
→ q′2 whenever

(i) α ∈ ΣP1
\ΣP2

and p1
α
→ p′1,

(ii) α ∈ ΣP2
\ΣP1

and p2
α
→ p′2, or

(iii) α ∈ ΣP1
∩ ΣP2

and p1
α
→ p′1 and p2

α
→ p′2, or

(iv) α /∈ ΣP1
∪ ΣP2

.

We refer to the above criteria as the A/G-conditions.
Note that R doesn’t necessarily contain the initial states.
Theorem 4.2 implies that A/G-reasoning is sound if the
automata are non-blocking on their common labels. An
automaton P is non-blocking for a label α if for all states
p there exists an outgoing transition with label α.

procedure CheckAGSimulation
Input: labeled transition systems P1, P2, Q1, Q2

Output: A/G-simulation relations R1, R2

for (i,j)=(1,2),(2,1) do
optionally Ri := SPi

×SQj
×SQi

or Ri := reachPi||Qj ||Qi
;

Ri := Ri \ { (pi, qj , qi)|
• ∃α ∈ ΣPi

∩ ΣQi
∩ ΣQj

\ΣPj
:

pi
α
→ p′i ∧ @q′j : (qj

α
→ q′j) ∧ @q′i : (qi

α
→ q′i) or

• ∃α ∈ (ΣQi
∩ ΣQj

)\(ΣPi
∪ ΣPj

) :

@q′j : qj
α
→ q′j };

Ri := GetSimRelPi||Qj ,Qi
(Ri);

DPi
= {(q1, q2, α)|α ∈ ΣP1

∩ ΣP2
∩ ΣQ1

∩ ΣQ2
∧ ∃pi :

(pi, qj , qi) ∈ Ri ∧ pi
α
→ p′i ∧ @q′i : q1

α
→ q′

1
∧ @q′

2
: q2

α
→ q′

2
}

od;
if DP1

∩ DP2
6= ∅

for i=1,2 do
Ri := Ri\{(pi, qj , qi)|∃p′i : pi

α
→ p′i ∧ (q1, q2, α) ∈ DPj

};
Ri := GetSimRelPi||Qj ,Qi

(Ri)
od;

fi.

Fig. 4. Algorithm for checking assume-guarantee simulation

Corollary 4.1: Circular A/G-reasoning is sound if Q1 is
non-blocking over Σ1 and Q2 is non-blocking over Σ2 with
Σ1 ∪ Σ2 = ΣQ1

∩ ΣQ2
.

Checking for A/G-simulation involves the construction
of simulation relations R1 and R2, and either explicitly
constructing R or ensuring that the states in R1 and R2 that
constitute R fulfill the A/G-conditions. While conditions (i),
(ii) and (iv) can be decided strictly from R1, respectively
R2, (iii) involves both relations. The algorithm shown in
Fig. 4 avoids to construct R explicitly by trimming states
from R1 and R2 that could potentially violate condition
(iii). A state pi in Pi is potentially violating if for some
α ∈ ΣP1

∩ ΣP2
there is a transition p1

α
→ p′1, but

no corresponding transition in Q1 or Q2. Let the set of
dangerous states and labels be DPi

with (q1, q2, α) ∈ DPi

if there exists a pi in Pi that is potentially violating for
α and for which (pi, qj , qi) ∈ Ri. The A/G-conditions
are fulfilled if for all states and labels for which P1 has
potentially violating states it holds that P2 does not, i.e.,
DP1

∩DP2
= ∅. The algorithm in Fig. 4 first removes states

that violate conditions (i), (ii) and (iv) from R1 and R2, then
computes dangerous states and labels and removes states
from Ri that are dangerous in DPj

. After another fixed-
point computation the Ri are simulation relations that fulfill
the A/G-conditions. Note that the outcome may depend on
whether states are first removed from R1 or from R2.

To finalize the A/G-proof, it must be shown that for all
(p1, p2) ∈ P01 ×P02 there exist (q1, q2) ∈ InitQ1

× InitQ2

such that (pi, qj , qi) ∈ Ri for (i, j) ∈ {(1, 2), (2, 1)}. It
follows from Pi||Qj � Q1||Q2 that for any pi there exists
some pair (q1i, q2i) ∈ InitQ1

× InitQ2
, but this must be the

same pair for both p1 and p2. 3 A sufficient condition for
the containment is that for all (p1, q2) ∈ InitP1

× InitQ2

3There are cases in which R1 and R2 exist, but no simulation relation
can be constructed from R1 and R2 that contains the initial states
appropriately, even though some R′ witnesses P1||P2 � Q1||Q2.



and q1 ∈ InitQ1
holds (p1, q2, q1) ∈ R1. Alternatively, a

symmetric argument is valid for R′
2.

V. EXPERIMENTAL RESULTS

Algorithms for checking simulation and reachability
analysis were implemented in C++ in a prototype tool
called PHAVer (Polyhedral Hybrid Automaton Verifier). For
computations with convex polyhedra it uses the Parma
Polyhedra Library (PPL) [12], which provides support for
closed and non-closed convex polyhedra and employs exact
arithmetic with unlimited digits. The following results were
obtained on a 1.9GHz Pentium 4m with 768MB RAM.

A. Performance of Reachability Analysis

The performance of the reachability analysis was com-
pared to HyTech, a powerful model checker for LHA [13].
To ensure balanced comparison, both tools were set to ex-
plore the entire reachable state space and check afterwards
for intersection with a set of forbidden states. The analysis
of Fischer’s Mutual Exclusion Protocol from [10], with 5
processes, exact clocks and parameters tR = 1 (waiting time
before reserving) and tE = 1 (before entering the critical
section) took HyTech 25.8 s (48 MB RAM) and PHAVer
26.2 s (128 MB). For parameters tR = 1, tE = 0 HyTech
took 106.9 s (164 MB), and PHAVer 48.4 s (341 MB).

B. Performance of Simulation Checking

For comparing reachability analysis against simulation,
Fischer’s protocol was analyzed with for clocks with vary-
ing min. and max. speed m, respectively M , and the
results are shown in Table I. If the parameters fulfill the
specification, the reachability analysis using convex hull (3.)
is the fastest. The simulation is comparatively close if the
relation is initialized with the convex hull of the reachable
state space (6.). Note that here the analysis is slower if the
relation is initialized with the exact reachable state space
(5.) than if it is not (4.). If the parameters lead to a violation
of the specification, the reachability analysis is significantly
accelerated by checking at each iteration if forbidden states
were encountered (2).

VI. CONCLUSIONS

The state explosion problem is particularly drastic for
hybrid systems because of the complexity arising through
continuous variables. We have shown that the established
notion of simulation, based on labeled transition system
semantics, is compositional for hybrid systems without
shared variables. We defined simulation between hybrid au-
tomata of arbitrary alphabets, and presented a constructive
assume-guarantee rule and an algorithm to ensure sound-
ness without requiring receptiveness. Experimental results
using a prototype tool indicate that simulation checking is
drastically more expensive than verifying the same property
using reachability. However, the compositional application
is expected to make up for this deficiency, and we are
currently working on an implementation and case studies.

TABLE I
FISCHER’S MUTUAL EXCLUSION PROTOCOL FOR 4 PROCESSES

Algorithm Time Memory

(a) m = 0.99, M = 1.01, tR = 0.99, tE = 1.01 (spec. fulfilled)

1. PHAVer reach. 49.28 s 106 MB
3. PHAVer reach. conv. hull 8.99 s 62 MB
4. PHAVer sim. w/o reach. init. 161.59 s 62 MB
5. PHAVer sim. w. reach. init. 2573.04 s 179 MB
6. PHAVer sim. w. conv. hull reach. init. 15.61 s 63 MB

(b) m = 0.99, M = 1.01, tR = 1, tE = 1 (spec. failed)

1. PHAVer reach. (full space) 109.40 s 244 MB
2. PHAVer reach. w. stop at forb. states 5.86 s 62 MB
3. PHAVer reach. conv. hull (not sound) 13.76 s 62 MB
4. PHAVer sim. w/o reach. init. 115.54 s 62 MB
5. PHAVer sim. w. reach. init. > 10, 000 s > 300 MB
6. PHAVer sim. w. conv. hull reach. init. 78.25 s 63 MB

Future work includes the extension of the framework to
hybrid automata with shared variables by abstracting from
the continuous interaction.
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