
Verifying C Cryptographic Protocol

Implementations by Symbolic Execution

Supervisors: Cristian Ene∗ Laurent Mounier†

October 2015

1 Context

Many applications rely on complex cryptographic protocols for communicat-
ing over the insecure Internet (e.g., online banking, electronic commerce, social
networks, etc). The C programming language is largely used in writing crypto-
graphic software. Both the design of protocols and their C implementation are
error prone. Recent years have seen a real progress in the formal verification of
cryptographic protocols as illustrated by the development of several tools both
in the symbolic model (Proverif [Bla01], AVISPA [ABB+05], Hermes [BEJ+05])
and in the computational model (CryptoVerif [Bla08], CertiCrypt [BGZB09],
EasyCrypt [BGHB11]). There remains however a large gap between what we
verify (the protocol usually described in a process algebra, as pi calculus for
example) and what we rely on (the implementation which is usually done in a
«real» language, like C).

The need to verify the code is now well recognized, but only a few recent
works try to propose solutions.

One of the first attempts at cryptographic verification of C code is the CSur
([GLP05]): one extracts from a C program a set of Horn clauses that are then
solved using a theorem prover. Some limits of this approach: 1) it can be
used to prove secrecy, but it is not clear how one can apply the tool to handle
authentication properties (the order of instructions is completely ignored); 2)
the results that are obtained are sound only in the symbolic (Dolev-Yao) model
of cryptography.

A second line of research, based on symbolic execution ([Kin76]), is that of
[CM11], [CM12]: [CM11] extends the KLEE test-generation tool ([CDE08]) by
treating certain concrete functions, like cryptographic primitives, as symbolic
functions, that is, their execution is avoided, and their behaviour is modelled
via rewriting rules. However, their work does not extend the class of proper-
ties supported by KLEE, in particular they do not take into account how the
inputs provided by an adversary depend on the knowledge learnt by the same
adversary. [CM12] extends the previous work with a tainting mechanism that
tracks information flows of data, but this work suffers from several limitations:

∗Cristian.Ene@imag.fr
†Laurent.Mounier@imag.fr

1



it cannot handle authentication properties, and it is done only in the Dolev-Yao
model.

Another work based on symbolic execution is that of [AGJ11]. The au-
thors first use the CIL ([NMRW02]) tool to compile the C program down to
CVM (a simple stack-based instruction language). Then, they symbolically ex-
ecute the CVM program in order to eliminate memory accesses and destructive
updates, and get an equivalent program in an intermediate model language
(IML), actually a version of applied pi calculus enriched with bitstring manip-
ulation operations. Then, they abstract the bitstring operations, and get a
process in the fragment of applied pi calculus supported by ProVerif (Proverif
[Bla01]), and hence they are able to use ProVerif for checking some security
properties in the symbolic model. In a subsequent work [AGJ12], the authors
changed the last part of their approach: they translate the extracted IML pro-
gram to a CryptoVerif protocol description, such that a successful verification
with CryptoVerif implies the security of the original C implementation in the
computational model. One limitation of this work is that their current method
and prototype can analyze only a single execution path, so it is limited to pro-
grams/protocols with no significant branching.

2 Goals

The goal of this thesis is to develop a method and a prototype tool in order
to verify security properties of C code that uses cryptographic primitives. The
objective is to overcome the limitations of the existing methods. More specifi-
cally, the aim is to develop a method that starting with a C program (possibly
with branching and loops), first extracts an equivalent program in a higher level
model, and then use an existing tool in order to verify for security properties.

The work can be organized as follows:

• compile the C program down to a simpler language (CVM or LLVM [LA04]
for example)

• define an appropriate intermediate language (denoted here by IL) and
give an automatic method based on symbolic execution that allows to
extract an equivalent IL program from the compiled version of the initial
C program

• give an automatic method to extract an equivalent model EM from the
above obtained IL program, such that EM can be used as input for an
existing tool (if possibly, EasyCrypt or CryptoVerif in order to get com-
putational soundness)

• implement the method in a prototype tool.

3 Bibliography

References

[ABB+05] Alessandro Armando, David Basin, Yohan Boichut, Yannick Cheva-
lier, Luca Compagna, Jorge Cuéllar, P Hankes Drielsma, Pierre-

2



Cyrille Héam, Olga Kouchnarenko, Jacopo Mantovani, et al. The
avispa tool for the automated validation of internet security proto-
cols and applications. In Computer Aided Verification, pages 281–
285. Springer, 2005.

[AGJ11] Mihhail Aizatulin, Andrew D Gordon, and Jan Jürjens. Extract-
ing and verifying cryptographic models from c protocol code by
symbolic execution. In Proceedings of the 18th ACM conference

on Computer and communications security, pages 331–340. ACM,
2011.

[AGJ12] Mihhail Aizatulin, Andrew D Gordon, and Jan Jürjens. Computa-
tional verification of c protocol implementations by symbolic exe-
cution. In Proceedings of the 2012 ACM conference on Computer

and communications security, pages 712–723. ACM, 2012.

[BEJ+05] Liana Bozga, Cristian Ene, Romain Janvier, Yassine Lakhnech,
Laurent Mazaré, and Michaël Périn. Automatic verification of secu-
rity properties based on abstractions. In Proceedings of the NATO

Advanced Research Workshop Verification of Infinite State Systems

with Applications to Security VISS, volume 1 of NATO Security

through Science Series D: Information and Communication Secu-

rity, pages 23–53. IOS Press, 2005.

[BGHB11] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santi-
ago Zanella Béguelin. Computer-aided security proofs for the work-
ing cryptographer. In Advances in Cryptology–CRYPTO 2011,
pages 71–90. Springer, 2011.

[BGZB09] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin.
Formal certification of code-based cryptographic proofs. ACM SIG-

PLAN Notices, 44(1):90–101, 2009.

[Bla01] Bruno Blanchet. An efficient cryptographic protocol verifier based
on prolog rules. In csfw, page 0082. IEEE, 2001.

[Bla08] Bruno Blanchet. A computationally sound mechanized prover for
security protocols. Dependable and Secure Computing, IEEE Trans-

actions on, 5(4):193–207, 2008.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R Engler. Klee: Unas-
sisted and automatic generation of high-coverage tests for complex
systems programs. In OSDI, volume 8, pages 209–224, 2008.

[CM11] Ricardo Corin and Felipe Andrés Manzano. Efficient symbolic ex-
ecution for analysing cryptographic protocol implementations. In
Engineering Secure Software and Systems, pages 58–72. Springer,
2011.

[CM12] Ricardo Corin and Felipe Andrés Manzano. Taint analysis of secu-
rity code in the klee symbolic execution engine. In Information and

Communications Security, pages 264–275. Springer, 2012.

3



[GLP05] Jean Goubault-Larrecq and Fabrice Parrennes. Cryptographic pro-
tocol analysis on real c code. In Verification, Model Checking, and

Abstract Interpretation, pages 363–379. Springer, 2005.

[Kin76] James C King. Symbolic execution and program testing. Commu-

nications of the ACM, 19(7):385–394, 1976.

[LA04] Chris Lattner and Vikram Adve. Llvm: A compilation framework
for lifelong program analysis & transformation. In Code Generation

and Optimization, 2004. CGO 2004. International Symposium on,
pages 75–86. IEEE, 2004.

[NMRW02] George C Necula, Scott McPeak, Shree P Rahul, and Westley
Weimer. Cil: Intermediate language and tools for analysis and
transformation of c programs. In Compiler Construction, pages
213–228. Springer, 2002.

4


