Crypto Engineering - verifying security protocols
2024 /2025

Exercises

All files needed for this session are available at:
https://www-verimag.imag.fr/~ene/m2p/examples
The Tamarin web page is
https://tamarin-prover.github.io/

Exercise 1
If you want to work on Ensimag computers, in order to launch Tamarin Docker Container
Image, you have to execute:

singularity run /matieres/ WMM9SY03/tamarin-docker _latest.sif
If you want to install Tamarin, please follow the instructions from the website of this
course:

https://www-verimag.imag.fr/~ene/m2p/read_Me.txt
or using the official website:
https://tamarin-prover.github.io/

Installation instructions for Linux (various distributions) and MacOS can be found in the
manual:

https://tamarin-prover.github.io/manual/book/002_installation.html

Exercise 2
Make your way through the tutorial file examples/tutorial.spthy to familiarize yourself
with the syntax.

Load the file in Tamarin using the interactive mode and try to prove the lemmas.

Exercise 3

In this exercise you have to load in Tamarin some ‘spthy’ files and to prove the specified
lemmas. You may modify and try to understand for each example the new feature of
Tamarin that is highlighted and how the lemmas capture interesting properties.

1. Download and load in Tamarin the file s1_1.spthy . Without the prefix ’!’, facts are
considered linear : any such linear fact can be consumed only once by a rewriting rule.
In the same time, any rule where the left side is empty can by applied undefinetely.

2. Download and load in Tamarin the file s1_2.spthy . Without the prefix '!", facts are
considered linear : any such linear fact can be consumed only once by a rewriting
rule. Moreover, the GenA rule requires now to consume each time a fresh a.

10.

7‘7

Download and load in Tamarin the file s1_3.spthy . When marked with prefix
facts are persistent. The GenA rule will always generate facts of the form !A(x) with
a new 'x’ value each time. But the ’!” mark ensures that now we dispose of an
unbounded number of ’copies’ of A(x) for a generated fact !A(x).

)

Download and load in Tamarin the file s1_4.spthy . Check that the only way to prove
the lemma ‘Bs_Ba’ is by induction. Add a lemma stating that there exists a trace
with events Bs(x) and Bs(y) such that x##y. Add a lemma stating that for any trace,
an event Bs(x) can not occure twice with the same x.

Download and load in Tamarin the file s1_5.spthy . Now the adversary is active: he
can receive and send messages to the system.

Download and load in Tamarin the file s1 _6.spthy . Now the adversary is active:
he can receive and send messages to the system. Moreover, he can apply function
symbols in the signature in order to compute new messages. Check that all lemmas
can be proven and try to understand the properties that they encode. Comment
the rules GenA and Rev and the lemmas Ba_Rev and Ca_Rev and check that all
remaining lemmas are correct. What can you conclude?

Download and load in Tamarin the file s1_7.spthy . In this example, the adversary
can send messages to the system. Moreover, he can apply function symbols in the
signature in order to compute new messages. Notice how the equations allow to an
adversary to improve his knowledge and to compute “the secret” ’a’. On the other
side, he can not learn the secret 'b’. Remark the different ways to state that a value
is secret or not.

Download and load in Tamarin the file ind1.spthy . Lemma Origin states that any
trace containing a Bigger() event must contain also a Start() event. Firstly, remark
the fact that in order to prove this lemma you need to use induction. Secondly,
enforce the assertion of lemma Origin, to state that any Bigger() event must be
preceded by a Start() event.

Download and load in Tamarin the file ind2_rest.spthy . Lemma Origin states that
any trace containing a Bigger() event must contain also a Start() event. Because of
the restriction 'once’, we limit now the set of possible traces only to traces having at
most one Bigger() event. Hence, this time yo do not need to use induction in order
to prove the lemma.

Download the file eq2.spthy and rerun Tamarin with the option '—diff”. The function
penc corresponds to probabilistic encryption. Since this function satisfies only the
equation pdec(penc(m, pk(k), r), k)=m, this means that an adversary that
obtained an encryption of 'm’, not only he is not able to learn the entire message 'm’
, but moreover, he is not able to learn anything about 'm’. Lemma ’Secret’ states
that the plaintext remains secret (weak secrecy). Lemma ’Observational equivalence’,

automatically generated by Tamarin with the option —diff / 7, corresponds to the
strong secrecy property, that is, the adversary cannot distinguish the encryption of
the known plaintext x’ (sent in clear), from the encryption of an unknown plaintext
'y’. The fact Out(diff(penc(x , pk(ltk), r), penc(y , pk(ltk), r))) in the
rule “Exemplel” allows to check the behavioural equivalence of two systems: in the
first one, x is sent to the network together with the message penc(x , pk(ltk),
r), in the second one, x is sent to the network together with the message penc(y ,
pk(ltk), r) .

Exercise 4
Model the following protocol in Tamarin.

1. A > B: {Inal}k(A,B) //this is symmetric encryption,
2. A <- B: {|nb|}k(A,B), na //so you should use "builtins: symmetric-encryption"

1. Check that your model is executable using an exists-trace lemma.

2. Formalize the Aliveness property and show that the protocol does not satisfy this
property (A thinks that she is talking to B, but B did not necessarily executed a
session of the protocol as initiator or responder).

Exercise 5
Model the following protocol in Tamarin.

1. A > B: A,{na}pk(B) //this is asymmetric encryption,

2. A <- B: na //so you should use "builtins: asymmetric-encryption"

1. Check that your model is executable using an exists-trace lemma.

2. Formalize the Aliveness property as in the previous exercise and show that now, this
protocol satisfies this property.

3. Formalize the Weak Agreement property and show that the protocol does not satisfy
it (A thinks that she is talking to B, but this is false, B did not necessarily executed
a session of the protocol with A).

Exercise 6
Model the following protocol in Tamarin.

1. A > B: {B}sk(A) //this is signing,
1. A <- B: {A}sk(B) //so you should use "builtins: signing"

1. Check that your model is executable using an exists-trace lemma.

2. Formalize the Weak Agreement property from the perspective of the initiator as in
the previous exercise and show that now, this protocol satisfies this property.

3. Formalize the Non-Injective agreement property from the perspective of the initiator
and show that the protocol does not satisfy it (the initiator A thinks that she is
talking to the responder B, but this is false, B did not necessarily executed as a
responder, a session of the protocol with A).

Exercise 7
Model the following protocol in Tamarin.

1. A -> B: {A,B}sk(A) //this is signing,
//so you should use "builtins: signing"

1. Formalize the Non-Injective agreement property from the perspective of the responder
and show that now, this protocol satisfies this property.

2. Formalize the Injective agreement property from the perspective of the responder
and show that the protocol does not satisfy it (there may be several sessions for a
responder B talking to an initiator A that can be matched by the same session of
the initiator A).

Exercise 8
1. Model the following protocol from Ex. 3 from TD1 (from the file https://www-verimag.

imag.fr/~ene/m2p/tdl.pdf) in Tamarin.

1. A > B: {’1°, A, NA}pk(B) //this is asymmetric encryption
2. B > A: {’2°, A, K}pk(A), {’3’, NA}K
//symmetric encryption in the second message
3. A ->B: {"4’, A, B, K}pk(B)
//use "builtins: symmetric-encryption, asymmetric-encryption"

(a) Check that your model is executable using an exists-trace lemma.

(b) Formalize the Secrecy property both for NA and K and show that the protocol
does not satisfy this property.

(c) Formalize the Injective agreement from the perspective of both the initiator and
the responder and show that the protocol does not satisfy it.

2. Model the following corrected version of the previous protocol in Tamarin.

1. A > B: {’1’, A, NA}pk(B)
2. B > A: {’2’, B, K}pk(A), {’3’, NAIK
3. A ->B: {’4’, A, B, K}pk(B)

(a) Check that your model is executable using an exists-trace lemma.

(b) Formalize the Secrecy property both for NA and K and show that the protocol
satisfies this property. Before proving this property, you need a “sources lemma”
which asserts that any message “{’1’, A’ na}pk(B)” received by 'B’ either was
sent by A’ or 'na’ was known by the adversary, and a similar property for any
message “{’2’, B, K}pk(A), {’3", NA}K” received by "A’.

(c¢) Formalize the Injective agreement from the perspective of both the initiator and
the responder and show that the protocol satisfies it.

Exercise 9
Model the Yahalom protocol in Tamarin.

A— B: A, Ny

B—S:B, {1, A Ns Ng}rpe

S — A: {I2lyByKAB;NA7NB}KA57{/3/;A7KAB}KBS
A— B: {/4,7A,KAB}KBS7 {/5/7NB}KAB

1. Formalize the Secrecy property for N4, Ng and K 45 and check if the protocol satisfies
this property.

2. Formalize the Nonlnjective Agreement property from the perspective of both the
initiator and the responder and check if the protocol satisfies it.

3. Formalize the Injective Agreement property from the perspective of both the initiator
and the responder and check if the protocol satisfies it.

