Crypto Engineering - verifying security protocols 2022/2023

Exercices

Exercise 1

- Solve the following syntactic unification problems. If there is no unifier, explain why

1. $f(x, y) \stackrel{?}{=} f(h(a), x)$
2. $f(x, y) \stackrel{?}{=} f(h(x), x)$
3. $f(x, a) \stackrel{?}{=} f(h(b), b)$
4. $f(x, x) \stackrel{?}{=} f(h(y), y)$

- Now solve each of the above, modulo commutativity of f, i.e. $\forall x, y \quad f(x, y)=f(y, x)$.

Exercise 2

We recall the rules of the Deduction System for Dolev Yao theory: $T_{0} \vdash s$, where $\}$ represents a symmetric encryption scheme, \{ - \}_ an asymmetric encryption scheme, and we suppose that $\operatorname{pr}(u)$ is the inverse secret key associated to $p k(u)$:
(A) $\frac{u \in T_{0}}{T_{0} \vdash u}$
(UL) $\frac{T_{0} \vdash\langle u, v\rangle}{T_{0} \vdash u}$
(P) $\quad \frac{T_{0} \vdash u \quad T_{0} \vdash v}{T_{0} \vdash\langle u, v\rangle}$
(UR) $\frac{T_{0} \vdash\langle u, v\rangle}{T_{0} \vdash v}$
(C) $\frac{T_{0} \vdash u \quad T_{0} \vdash v}{T_{0} \vdash\{u]_{v}}$
(D) $\frac{T_{0} \vdash\{u]_{v} \quad T_{0} \vdash v}{T_{0} \vdash u}$
(AD) $\frac{T_{0} \vdash\{u\}_{p k(v)} T_{0} \vdash p r(v)}{T_{0} \vdash u}$
(AC) $\frac{T_{0} \vdash u \quad T_{0} \vdash p k(v)}{T_{0} \vdash\{u\}_{p k(v)}}$

The set of Syntactic Subterms of a term t, denoted by $S(t)$, is the smallest set such that:

- $t \in S(t)$
- $\langle u, v\rangle \in S(t) \Rightarrow u, v \in S(t)$
- $\{u\}_{v} \in S(t) \Rightarrow u, v \in S(t)$

For a set T of terms, we define $S(T)=\bigcup_{t \in T} S(t)$.
The following algorithm allows to decide if $T_{0} \vdash w$ (where $T \vdash \leq 1 s$ means that s can be obtained from T using only one rule from the Deduction System):
McAllester's Algorithm
Input: T_{0}, w
$T \leftarrow T_{0} ;$
while $\left(\exists s \in S\left(T_{0} \cup\{w\}\right)\right.$ such that $T \vdash \leq 1 s$ and $\left.s \notin T\right)$
$T \leftarrow T \cup\{s\} ;$
Output $: w \in T$
Using the above algorithm, prove or disprove that a passive Dolev Yao intruder can deduce the message s with the initial knowledge T_{0}.
1.) $T_{0}=\{a, k\}$ and $s=\left\langle a,\{a\}_{k}\right\rangle$
2.) $T_{0}=\left\{a, k, n 1,\left\{\{k 2\}_{\langle n 1, n 2\rangle},\left\{\left\{n 2,\left\{\{n 1\}_{\langle n 3, n 3\rangle}\right\rangle\right\}\right\} k\right\}\right.$ and $s=k 2$
3.) $T_{0}=\left\{a, b, k 1, k 2,\left\{\{k 4\}\langle k 1, k 3\rangle,\{\{k 2, n\rangle\}_{\langle k 2, k 1\rangle},\{\{\langle k 2, k 3\rangle\}\{\langle k 4, k 1\rangle\}\right.\right.$ and $s=k 4$

Solution :

1.) It is true that $T_{0} \vdash\left\langle a\right.$, $\left.\{a\}_{k}\right\rangle$, since we can build the following proof:

$$
(P) \frac{(A) \frac{a \in T_{0}}{T_{0} \vdash a}}{} \frac{(C) \frac{(A) \frac{a \in T_{0}}{T_{0} \vdash a}}{T_{0} \vdash\{a\}_{k}} \quad(A) \frac{k \in T_{0}}{T_{0} \vdash k}}{T_{0} \vdash\left\langle a,\{a a\}_{k}\right\rangle}
$$

2.) It is true that $T_{0} \vdash k 2$, since we can build the following proof:

3.) It is not true that $T_{0} \vdash k 4$. We use the locality result of Mc Allester.

Compute the set of subterms:
$S\left(T_{0} \cup\{s\}\right)=\left\{a, b, k 1, k 2,\{k 4\}\langle k 1, k 3\rangle,\{\{k 2, n\rangle\}_{\langle k 2, k 1\rangle},\{\{k 2, k 3\rangle\}_{\langle k 4, k 1\rangle}, k 4,\langle k 1, k 3\rangle, k 3\right.$, $\langle k 2, n\rangle,\langle k 2, k 1\rangle, n,\langle k 2, k 3\rangle,\langle k 4, k 1\rangle\}$.
We have to compute the set T_{1} of all messages in $S\left(T_{0} \cup\{s\}\right)$ that can be derived from T_{0}, and then to check if $s \in T_{1}$ or not.
We put $T_{1} \Leftarrow T_{0}=\left\{a, b, k 1, k 2,\left\{\{k 4\}\left\langle\langle k 1, k 3\rangle,\left\{\{\langle k 2, n\rangle\}_{\langle k 2, k 1\rangle},\{\{\langle k 2, k 3\rangle\rangle\}\langle k 4, k 1\rangle\right\}\right.\right.\right.$.

The only new message that is also in $S\left(T_{0} \cup\{s\}\right)$ and that can be obtained in one step from T_{1} is $\langle k 2, k 1\rangle$: we apply (P) to $k 2 \in T_{1}$ and $k 1 \in T_{1}$, and we get $\langle k 2, k 1\rangle$.
We add $\langle k 2, k 1\rangle$ to T_{1} :
$T_{2} \Leftarrow T_{1} \cup\{\langle k 2, k 1\rangle\}=\left\{a, b, k 1, k 2,\{k\}_{\}}^{\}}\langle k 1, k 3\rangle,\left\{\{\langle k 2, n\rangle\}_{\langle k 2, k 1\rangle},\{\langle k 2, k 3\rangle\}_{\langle k 4, k 1\rangle},\langle k 2, k 1\rangle\right\}\right.$.
Next, the only new message that is also in $S\left(T_{0} \cup\{s\}\right)$ and that can be obtained in one step from T_{2} is $\langle k 2, n\rangle$: we apply (D) to $\{\{k 2, n\rangle\}\langle k 2, k 1\rangle \in T_{2}$ and $\langle k 2, k 1\rangle \in T_{2}$, and we get $\langle k 2, n\rangle$.
We add $\langle k 2, n\rangle$ to T_{2} :
$T_{3} \Leftarrow T_{2} \cup\{\langle k 2, k n\rangle\}=\left\{a, b, k 1, k 2,\left\{\{k 4\}_{\langle k 1, k 3\rangle},\{\langle k 2, n\rangle\}_{\langle k 2, k 1\rangle},\{\langle k 2, k 3\rangle\}_{\langle k 4, k 1\rangle},\langle k 2, k 1\rangle,\langle k 2, n\rangle\right\}\right.$.
Next, the only new message that is also in $S\left(T_{0} \cup\{s\}\right)$ and that can be obtained in one step from T_{3} is n : we apply $(U R)$ to $\langle k 2, n\rangle \in T_{1}$, and we get n.
We add n to T_{3} :

From here we cannot apply any rules in order to get new messages in $S\left(T_{0} \cup\{s\}\right)$ from T_{4}, because:

- (UR), (UL), (P), (C) do not generate nothing new (not in T_{1}) from $S\left(T_{0} \cup\{s\}\right.$) in one step.
- (D): we alredy applied (D) to $\{\{k 2, n\rangle\}\{\langle k 2, k 1\rangle$, and we can not apply (D) neither to $\left\{\{k 4\}\langle k 1, k 3\rangle\right.$ since $\langle k 1, k 3\rangle \notin T_{4}$, nor to $\{\{k 2, k 3\rangle\}\langle k 4, k 1\rangle$ since $\langle k 4, k 1\rangle \notin T_{4}$.

And now we can see that $s=k 4 \notin T_{4}$, and hence, using the locality result of Mc Allester, we conclude that $T_{0} \nvdash k 4$.

Exercise 3

Consider the following protocol:

$$
\begin{aligned}
& \text { 1. } A \rightarrow B:\left\{\left\langle A, N_{a}\right\rangle\right\}_{p k(B)} \\
& \text { 2. } \\
& \text { 3. }
\end{aligned} \text { A } A:\left\langle\left\{\langle\langle A, K\rangle\}_{p k(A)},\left\{N_{a d}\right\}_{K}\right\rangle\right):\{\langle\langle A, B\rangle, K\rangle\}_{p k(B)}
$$

Assume that $\left\{\mathcal{L}^{-}\right\}$_ is an asymmetric encryption scheme, $p k(x)$ (respectively $\operatorname{pr}(x)$) is the public key (respectively private key) of participant x.

1. Consider a session between two honest participants a and b and show that k (the instantiation of variable K in this session) remains secret in presence of a passive Dolev-Yao intruder.
2. We assume now that the adversary i is active (he controls the network).
1.) Consider the scenario corresponding to a session of a as initiator with i, and to a session of b as responder.

Suppose that the initial knwoledge of the intruder i is the set $T_{1}=\{a, b, p k(a), p k(b), p k(i), p r(i)\}$, i.e. we suppose that a and b are honest. Suppose that at the end, b will think that he is talking and sharing a secret value k with a. Can you find an attack where the intruder i will learn k ?
2.) Can you correct the protocol? Justify your answer.

Solution :

1. The set of messages T_{1} that a passive intruder get from a session between two honest participants a and b, plus the set of terms he already know initially is the set
$T_{1}=\left\{a, b, p k(a), p k(b), p k(i), p r(i),\left\{\left\langle a, n_{a}\right\rangle\right\}_{p k(b)},\left\langle\{\langle a, k\rangle\}_{p k(a)},\left\{n_{a\}}\right\}_{k}\right\rangle,\{\langle\langle a, b\rangle, k\rangle\}_{p k(b)}\right\}$.
Now we show that $T_{1} \nvdash k$ using the locality result of Mc Allester.
Compute the set of subterms:

$$
\begin{aligned}
S\left(T_{1} \cup\{k\}\right)= & \left\{a, b, p k(a), p k(b), p k(i), p r(i),\left\{\left\langle a, n_{a}\right\rangle\right\}_{p k(b)},\left\langle\{\langle a, k\rangle\}_{p k(a)},\left\{\left\{n_{a}\right\}_{k}\right\rangle,\right.\right. \\
& \left.\{\langle\langle a, b\rangle, k\rangle\}_{p k(b)},\left\langle a, n_{a}\right\rangle, n_{a},\{\langle a, k\rangle\}_{p k(a)},\left\{n_{a}\right]_{k},\langle a, k\rangle, k,\langle\langle a, b\rangle, k\rangle,\langle a, b\rangle\right\} .
\end{aligned}
$$

We have to compute the set T of all messages in $S\left(T_{1} \cup\{k\}\right)$ that can be derived from T_{1}, and then to check if $k \in T$ or not.
We put $T \Leftarrow T_{1}=\left\{a, b, p k(a), p k(b), p k(i), p r(i),\left\{\left\langle a, n_{a}\right\rangle\right\}_{p k(b)},\left\langle\{\langle a, k\rangle\}_{p k(a)},\{n a\} k\right\rangle,\{\right.$ $\left.\langle\langle a, b\rangle, k\rangle\}_{p k(b)}\right\}$.

The only new messages that are also in $S\left(T_{1} \cup\{k\}\right)$ and that can be obtained in one step from T are $\{\langle a, k\rangle\}_{p k(a),}\left\{n_{a\}}{ }^{\eta},\langle a, b\rangle\right.$:

- we apply $(U L)$ to $\left\langle\{\langle a, k\rangle\}_{p k(a),},\{n a\} k\right\rangle$ and we get $\{\langle a, k\rangle\}_{p k(a)}$.
- we apply $(U R)$ to $\left\langle\{\langle a, k\rangle\}_{p k(a)},\left\{n_{a}\right\}_{k}\right\rangle$ and we get $\left\{n_{a} \|_{k}\right.$.
- we apply (P) to a and b and we get $\langle a, b\rangle$.

We add all these new messages to T :
$T \Leftarrow T \cup\left\{\{\langle a, k\rangle\}_{p k(a)},\left\{n_{a}\right\} k,\langle a, b\rangle\right\}=\left\{a, b, p k(a), p k(b), p k(i), p r(i),\left\{\left\langle a, n_{a}\right\rangle\right\}_{p k(b)},\langle\{ \}\right.$ $\left.\left.\langle a, k\rangle\}_{p k(a)},\left\{n_{a}\right\}_{k}\right\rangle,\{\langle\langle a, b\rangle, k\rangle\}_{p k(b)},\{\langle a, k\rangle\}_{p k(a)},\left\{n_{a}{ }^{\eta}\right\}_{k},\langle a, b\rangle\right\}$.
From here we cannot apply any rules in order to get new messages in $S\left(T_{1} \cup\{k\}\right)$ from T, because:

- (UR), $(U L),(P),(C)$ do not generate nothing new (not in $T)$ from $S\left(T_{1} \cup\{k\}\right)$ in one step.
- (D): we can not apply (D) to get new messages since all $\operatorname{pr}(a), p r(b), k$ do not belong to T.

And now we can check that $k \notin T$, and hence, using the locality result of Mc Allester, we conclude that $T_{1} \nvdash k$.
2. Consider now the case of an active adversary.
1.) The attacker i can mount the following man-in-the-middle attack (and i can deduce $k)$:

$$
\begin{array}{lll}
\text { 1.1. } & a \longrightarrow i: & \left\{\left\langle a, n_{a}\right\rangle\right\}_{p k(i)} \\
\text { 2.1. } & i(a) \longrightarrow b: & \left\{\left\langle a, n_{a}\right\rangle\right\}_{p k(b)} \\
2.2 . & b \longrightarrow i(a): & \left\langle\{\langle a, k\rangle\}_{p k(a),}\left\{\left\{a_{a}\right\}_{k}\right\rangle\right. \\
1.2 . & i \longrightarrow a: & \left\langle\{\langle a, k\rangle\}_{p k(a),},\left\{a_{a}\right\}_{k}\right\rangle \\
1.3 . & a \longrightarrow i: & \{\langle\langle a, i\rangle, k\rangle\}_{p k(i)} \\
2.3 . & i(a) \longrightarrow b: & \{\langle\langle a, b\rangle, k\rangle\}_{p k(b)}
\end{array}
$$

2.) A corrected version (see the TP):

$$
\begin{aligned}
& \text { 1. } A \rightarrow B:\left\{\left\langle A, N_{a}\right\rangle\right\}_{p k(B)} \\
& \text { 2. } B \rightarrow A:\left\langle\{\langle B, K\rangle\}_{p k(A)},\left[N_{a}\right\}_{K}\right\rangle \\
& \text { 3. } A \rightarrow B:\{\langle\langle A, B\rangle, K\rangle\}_{p k(B)}
\end{aligned}
$$

Exercise 4

Consider the following (Needham-Schroeder-Lowe) protocol:

$$
\left.\begin{array}{l}
\text { 1. } A \rightarrow B:\left\{\left\langle A, N_{a}\right\rangle\right\}_{p k(B)} \\
\text { 2. }
\end{array} \text { B } \rightarrow A:\left\{\left\langle N_{a},\left\langle N_{b}, B\right\rangle\right\rangle\right\}_{p k(A)}\right\} \text { 3. } A \rightarrow B:\left\{N_{b}\right\}_{p k(B)}
$$

Assume that $\left\{\mathbf{-}^{-}\right\}_{-}$is an asymmetric encryption scheme, $p k(x)$ (respectively $\operatorname{pr}(x)$) is the public key (respectively private key) of participant x. This protocols ensures secrecy of N_{b}, and injective agreement from the perspective of both the initiator and the responder. Show that the following modified version of Needham-Schroeder-Lowe protocol:

$$
\left.\begin{array}{l}
\text { 1. } A \rightarrow B:\left\{\left\langle A, N_{a}\right\rangle\right\}_{p k(B)} \\
\text { 2. }
\end{array} B \rightarrow A:\left\{\left\langle N_{a}, N_{b} \oplus B\right\rangle\right\}_{p k(A)}\right)
$$

is not correct. It allows an attack on both the secrecy of N_{b} and on the authentication of B. This arises because \oplus has algebraic properties that the free algebra assumption ignores: for instance, it is associative, commutative, and has the cancellation property $X \oplus X=0$. What can you say about the following protocol?

$$
\begin{aligned}
& \text { 1. } A \rightarrow B:\left\{\left\langle A, N_{a}\right\rangle\right\}_{p k(B)} \\
& \text { 2. } B \rightarrow A:\left\{\left\langle N_{a} \oplus B, N_{b}\right\rangle\right\}_{p k(A)} \\
& \text { 3. } A \rightarrow B:\left\{N_{b}\right\}_{p k(B)}
\end{aligned}
$$

Solution : The attacker i can mount the following man-in-the-middle attack (and i can deduce n_{b}):

$$
\begin{array}{lll}
\text { 1.1. } & a \longrightarrow i: & \left\{\left\langle a, n_{a}\right\rangle\right\}_{p k(i)} \\
\text { 2.1. } & i(a) \longrightarrow b: & \left\{\left\langle a, n_{a}\right\rangle\right\}_{p k(b)} \\
\text { 2.2. } & b \longrightarrow i(a): & \left\{\left\langle n_{a}, n_{b} \oplus b\right\rangle\right\}_{p k(a)} \\
\text { 1.2. } & i \longrightarrow a: & \left\{\left\langle n_{a}, n_{b} \oplus b\right\rangle\right\}_{p k(a)} \\
\text { 1.3. } & a \longrightarrow i: & \left\{\left(n_{b} \oplus b\right) \oplus i\right\}_{p k(i)} \\
\text { 2.3. } & i(a) \longrightarrow b: & \left\{n_{b}\right\}_{p k(b)}
\end{array}
$$

In the step 1.2 , a will interpret $n_{b} \oplus b$ as $n_{b}^{\prime} \oplus i$ with $n_{b}^{\prime}=\left(n_{b} \oplus b\right) \oplus i$.
Interestingly, the following protocol

$$
\left.\begin{array}{l}
\text { 1. } A \rightarrow B:\left\{\left\langle A, N_{a}\right\rangle\right\}_{p k(B)} \\
\text { 2. } \\
\text { 3. }
\end{array} \text { A } \rightarrow B:\left\{\left\langle N_{a} \oplus B, N_{b}\right\rangle\right\}_{p k(A)}\right)\left\{N_{b}\right\}_{p k(B)}
$$

is also flawed. The attacker i can mount the following man-in-the-middle attack (and i can deduce n_{b}):

1.1.	$a \longrightarrow i:$	$\left\{\left\langle a, n_{a}\right\rangle\right\}_{p k(i)}$
2.1.	$i(a) \longrightarrow b:$	$\left\{\left\langle a, n_{a} \oplus i \oplus b\right\rangle\right\}_{p k(b)}$
2.2.	$b \longrightarrow i(a):$	$\left\{\left\langle n_{a} \oplus i, n_{b}\right\rangle\right\}_{p k(a)}$
1.2.	$i \longrightarrow a:$	$\left\{\left\langle n_{a} \oplus i n_{b}\right\rangle\right\}_{p k(a)}$
1.3.	$a \longrightarrow i:$	$\left\{\left(n_{b}\right\}_{p k(i)}\right.$
2.3.	$i(a) \longrightarrow b:$	$\left\{n_{b}\right\}_{p k(b)}$

In the step 2.1, b will interpret $n_{a} \oplus i \oplus b$ as n_{a}^{\prime}, and for this reason, in step 2.2 he will answer $\left\{\left\langle n_{a}^{\prime} \oplus b, n_{b}\right\rangle\right\}_{p k(a)}$ which is the same as $\left\{\left\langle n_{a} \oplus i, n_{b}\right\rangle\right\}_{p k(a)}$.

Exercise 5

In this exercice, $\left.(-,)_{-}\right)$represents concatenation, and $\left\{_{-}\right\}_{-}$- represents a probabilistic symmetric encryption scheme (the randomness used is explicit now). We recall that two messages m_{0} and m_{1} are equivalent in the Dolev Yao model (written $m_{0} \sim m_{1}$) if there is a renaming (a bijection) σ_{K} of keys of m_{1} and a renaming σ_{R} of random coins of m_{1} such that $\operatorname{pat}\left(m_{0}\right)=\operatorname{pat}\left(m_{1}\right) \sigma_{K} \sigma_{R}$.

Prove or disprove the symbolic equivalence \sim in the Dolev Yao model of the following pairs of messages $m_{0} \stackrel{?}{\sim} m_{1}$:

$$
\begin{array}{ll}
\text { 1.) } m_{0}=\left(\left\{\left(1,\{0\}_{k_{1}}^{r_{1}^{\prime}}\right)\right\}_{k}^{r},\{0\}_{k}^{r^{\prime}}\right), & m_{1}=\left(\{(1,0)\}_{k_{3}}^{r^{\prime}},\{1\}_{k_{3}}^{s}\right) \\
\text { 2. }) m_{0}=\left(\left(\left\{\left(0,\{1\}_{k}^{r^{\prime}}\right)\right\}_{k_{1}}^{r},\{1\}_{k}^{r^{\prime}}\right), k_{1}\right), & m_{1}=\left(\left(\left\{\left(0,\{1\}_{k}^{r^{\prime}}\right)\right\}_{k_{1}}^{r},\{1\}_{k}^{r^{\prime \prime}}\right), k_{1}\right) \\
\text { 3. }) & m_{0}=\left(\left\{\left(0,\{1\}_{k}^{r^{\prime}}\right)\right\}_{k}^{r},\{0\}_{k^{\prime}}^{r^{\prime}}\right),
\end{array}
$$

Solution :

1. We have that $\boldsymbol{\operatorname { p a t }}\left(m_{0}\right)=\left(\square^{r}, \square^{r^{\prime}}\right)$, $\boldsymbol{p a t}\left(m_{1}\right)=\left(\square^{r^{\prime}}, \square^{s}\right)$. Hence for the bijective renaming $\sigma_{R}=\left\{r^{\prime} \mapsto r, s \mapsto r^{\prime}\right\}$ we have that $\mathbf{p a t}\left(m_{0}\right)=\boldsymbol{p a t}\left(m_{1}\right) \sigma_{R}$, and hence $m_{0} \sim m_{1}$.
2. We have that pat $\left(m_{0}\right)=\left(\left(\left\{\left(0, \square^{r^{\prime}}\right)\right\}_{k_{1}}^{r}, \square^{r^{\prime}}\right), k_{1}\right)$, pat $\left(m_{1}\right)=\left(\left(\left\{\left(0, \square^{r^{\prime}}\right)\right\}_{k_{1}}^{r}, \square^{r "}\right), k_{1}\right)$. Since there is no bijective renaming σ_{R} such that $\boldsymbol{p a t}\left(m_{0}\right)=\boldsymbol{p a t}\left(m_{1}\right) \sigma_{R}$, we conclude that $m_{0} \nsim m_{1}$.
3. We have that $\boldsymbol{p a t}\left(m_{0}\right)=\left(\square^{r}, \square^{r^{\prime}}\right)$, pat $\left(m_{1}\right)=\left(\square^{r^{\prime}}, \square^{s}\right)$. Hence for the bijective renaming $\sigma_{R}=\left\{r^{\prime} \mapsto r, s \mapsto r^{\prime}\right\}$ we have that pat $\left(m_{0}\right)=\boldsymbol{p a t}\left(m_{1}\right) \sigma_{R}$, and hence $m_{0} \sim m_{1}$.

Exercise 6

We recall that a family of distributions \mathcal{E} is called polynomial-time constructible, if there is a ppt-algorithm $\Psi_{\mathcal{E}}$, such that the output of $\Psi_{\mathcal{E}}(\eta)$ is distributed identically to \mathcal{E}_{η}. Given two families of distributions \mathcal{D} and \mathcal{E}, we define $\mathcal{D} \| \mathcal{E}$ by

$$
(\mathcal{D} \| \mathcal{E})_{\eta}=\left[x \leftarrow^{R} \mathcal{D}_{\eta} ; y \leftarrow^{R} \mathcal{E}_{\eta}:(x, y)\right]
$$

Prove or disprove the following assertions (where \approx is the computational indistingushability relation over distributions):

- If $\mathcal{D}^{0} \approx \mathcal{D}^{1}$ and $\mathcal{E}^{0} \approx \mathcal{E}^{1}$ and $\mathcal{D}^{0}, \mathcal{D}^{1}, \mathcal{E}^{0}, \mathcal{E}^{1}$ are all polynomial-time constructible, then $\left(\mathcal{D}^{0} \| \mathcal{E}^{0}\right) \approx\left(\mathcal{D}^{1} \| \mathcal{E}^{1}\right)$.
- If $\left(\mathcal{D}^{0} \| \mathcal{E}^{0}\right) \approx\left(\mathcal{D}^{1} \| \mathcal{E}^{1}\right)$ then $\mathcal{D}^{0} \approx \mathcal{D}^{1}$ and $\mathcal{E}^{0} \approx \mathcal{E}^{1}$.

Solution :

- Let $\mathcal{D}^{0}, \mathcal{D}^{1}, \mathcal{E}^{0}, \mathcal{E}^{1}$ be polynomial-time constructible families of distributions, and assume that $\mathcal{D}^{0} \approx \mathcal{D}^{1}$ and $\mathcal{E}^{0} \approx \mathcal{E}^{1}$. Let us prove that $\left(\mathcal{D}^{0} \| \mathcal{E}^{0}\right) \approx\left(\mathcal{D}^{1} \| \mathcal{E}^{1}\right)$.
We shall prove that $\left(\mathcal{D}^{0} \| \mathcal{E}^{0}\right) \approx\left(\mathcal{D}^{1} \| \mathcal{E}^{0}\right)$ and $\left(\mathcal{D}^{1} \| \mathcal{E}^{0}\right) \approx\left(\mathcal{D}^{1} \| \mathcal{E}^{1}\right)$. The equivalence $\left(\mathcal{D}^{0} \| \mathcal{E}^{0}\right) \approx$ $\left(\mathcal{D}^{1} \| \mathcal{E}^{1}\right)$ will follow then by transitivity of \approx.
The first assertion $\left(\mathcal{D}^{0} \| \mathcal{E}^{0}\right) \approx\left(\mathcal{D}^{1} \| \mathcal{E}^{0}\right)$ was already proven during the lectures. Let us prove $\left(\mathcal{D}^{1} \| \mathcal{E}^{0}\right) \approx\left(\mathcal{D}^{1} \| \mathcal{E}^{1}\right)$.
Suppose that $\left(\mathcal{D}^{1} \| \mathcal{E}^{0}\right) \not \approx\left(\mathcal{D}^{1} \| \mathcal{E}^{1}\right)$, and let \mathcal{A} be a ppt-adversary that can distinguish $\left(\mathcal{D}^{1} \| \mathcal{E}^{0}\right)$ and $\left(\mathcal{D}^{1} \| \mathcal{E}^{1}\right)$ with non-negligible advantage.
Define an adversary \mathcal{B} by

$$
\mathcal{B}(\eta, y)=\left[x \leftarrow^{R} \Psi_{\mathcal{D}^{1}}(\eta) ; b^{\prime} \leftarrow^{R} \mathcal{A}(\eta,(x, y)): b^{\prime}\right]
$$

We can see that if y is distributed according to \mathcal{E}_{η}^{i}, then the argument of \mathcal{A} is distributed according to $\left(\mathcal{D}^{1} \| \mathcal{E}^{i}\right)_{\eta}$. Then

$$
\begin{aligned}
& A d v^{\mathcal{E}^{0}, \mathcal{E}^{1}}(\mathcal{B})=\operatorname{Pr}\left[b^{\prime}=1 \mid y \leftarrow^{R} \mathcal{E}_{\eta}^{0} ; b^{\prime} \leftarrow^{R} \mathcal{B}(\eta, y)\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid y \leftarrow^{R} \mathcal{E}_{\eta}^{1} ; b^{\prime} \leftarrow^{R} \mathcal{B}(\eta, y)\right] \\
& =\operatorname{Pr}\left[b^{\prime}=1 \mid y \leftarrow^{R} \mathcal{E}_{\eta}^{0} ; x \leftarrow^{R} \Psi_{\mathcal{D}^{1}}(\eta) ; b^{\prime} \leftarrow^{R} \mathcal{A}(\eta,(x, y))\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid y \leftarrow^{R} \mathcal{E}_{\eta}^{1} ; x \leftarrow^{R}\right. \\
& \left.\Psi_{\mathcal{D}^{1}}(\eta) ; b^{\prime} \leftarrow^{R} \mathcal{A}(\eta,(x, y))\right] \\
& =\operatorname{Pr}\left[b^{\prime}=1 \mid y \leftarrow^{R} \mathcal{E}_{\eta}^{0} ; x \leftarrow^{R} \mathcal{D}_{\eta}^{1} ; b^{\prime} \leftarrow^{R} \mathcal{A}(\eta,(x, y))\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid y \leftarrow^{R} \mathcal{E}_{\eta}^{1} ; x \leftarrow^{R}\right. \\
& \left.\mathcal{D}_{\eta}^{1} ; b^{\prime} \leftarrow{ }^{R} \mathcal{A}(\eta,(x, y))\right] \\
& =\operatorname{Pr}\left[b^{\prime}=1 \mid x \leftarrow^{R} \mathcal{D}_{\eta}^{1} ; y \leftarrow^{R} \mathcal{E}_{\eta}^{0} ; b^{\prime} \leftarrow^{R} \mathcal{A}(\eta,(x, y))\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid x \leftarrow^{R} \mathcal{D}_{\eta}^{1} ; y \leftarrow^{R}\right. \\
& \left.\mathcal{E}_{\eta}^{1} ; b^{\prime} \leftarrow^{R} \mathcal{A}(\eta,(x, y))\right] \\
& =A d v^{\mathcal{D}^{1}\left\|\mathcal{E}^{0}, \mathcal{D}^{1}\right\| \mathcal{E}^{1}}(\mathcal{A})
\end{aligned}
$$

Hence the advantage of \mathcal{B} in distinguishing \mathcal{E}^{0} and \mathcal{E}^{1} is equal to the advantage of \mathcal{A} in distinguishing $\left(\mathcal{D}^{0} \| \mathcal{E}^{0}\right)$ and $\left(\mathcal{D}^{1} \| \mathcal{E}^{1}\right)$.

- Assume that $\left(\mathcal{D}^{0} \| \mathcal{E}^{0}\right) \approx\left(\mathcal{D}^{1} \| \mathcal{E}^{1}\right)$. We must prove $\mathcal{D}^{0} \approx \mathcal{D}^{1}$ and $\mathcal{E}^{0} \approx \mathcal{E}^{1}$. We prove the second assertion, $\mathcal{E}^{0} \approx \mathcal{E}^{1}$. The first one is similar.
Suppose that $\mathcal{E}^{0} \not \approx \mathcal{E}^{1}$, and let \mathcal{A} be a ppt-adversary that can distinguish \mathcal{E}^{0} and \mathcal{E}^{1} with non-negligible advantage.

Define an adversary \mathcal{B} by

$$
\mathcal{B}(\eta,(x, y))=\left[b^{\prime} \leftarrow^{R} \mathcal{A}(\eta, y): b^{\prime}\right]
$$

Then $\operatorname{Adv} v^{\mathcal{D}^{0}\left\|\mathcal{E}^{0}, \mathcal{D}^{1}\right\| \mathcal{E}^{1}}(\mathcal{B})=\operatorname{Pr}\left[b^{\prime}=1 \mid(x, y) \leftarrow^{R}\left(\mathcal{D}^{0} \| \mathcal{E}^{0}\right)_{\eta} ; b^{\prime} \leftarrow^{R} \mathcal{B}(\eta,(x, y))\right]-\operatorname{Pr}\left[b^{\prime}=\right.$ $\left.1 \mid(x, y) \leftarrow^{R}\left(\mathcal{D}^{1} \| \mathcal{E}^{1}\right)_{\eta} ; b^{\prime} \leftarrow^{R} \mathcal{B}(\eta,(x, y))\right]$

$$
=\operatorname{Pr}\left[b^{\prime}=1 \mid x \leftarrow^{R} \mathcal{D}_{\eta}^{0} ; y \leftarrow^{R} \mathcal{E}_{\eta}^{0} ; b^{\prime} \leftarrow^{R} \mathcal{A}(\eta, y)\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid x \leftarrow^{R} \mathcal{D}_{\eta}^{1} ; y \leftarrow^{R} \mathcal{E}_{\eta}^{1} ; b^{\prime} \leftarrow^{R}\right.
$$ $\mathcal{A}(\eta, y)]$

$$
=\operatorname{Pr}\left[b^{\prime}=1 \mid y \leftarrow^{R} \mathcal{E}_{\eta}^{0} ; b^{\prime} \leftarrow^{R} \mathcal{A}(\eta, y)\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid y \leftarrow^{R} \mathcal{E}_{\eta}^{1} ; b^{\prime} \leftarrow^{R} \mathcal{A}(\eta, y)\right]
$$

$$
=A d v^{\mathcal{E}^{0}, \mathcal{E}^{1}}(\mathcal{A})
$$

Hence the advantage of \mathcal{B} in distinguishing $\left(\mathcal{D}^{0} \| \mathcal{E}^{0}\right)$ and $\left(\mathcal{D}^{1} \| \mathcal{E}^{1}\right)$ is equal to the advantage of \mathcal{A} in distinguishing \mathcal{E}^{0} and \mathcal{E}^{1}.

Exercise 7

We use \oplus to denote the usual bitwise xor over equal-length bitstrings, e.g. $0011 \oplus 1110=$ 1101 , and $01 \oplus 00=01$.
Given two families of distributions \mathcal{D} and \mathcal{E}, such that for any η, both \mathcal{D}_{η} and \mathcal{E}_{η} are distributions over strings of length η, we define $\mathcal{D} \oplus \mathcal{E}$ by

$$
(\mathcal{D} \oplus \mathcal{E})_{\eta}=\left[x \leftarrow^{R} \mathcal{D}_{\eta} ; y \leftarrow^{R} \mathcal{E}_{\eta}:(x \oplus y)\right]
$$

Prove or disprove the following assertions (where \approx is the computational indistingushability relation over distributions):

- If $\mathcal{D}^{0} \approx \mathcal{D}^{1}$ and \mathcal{E} is polynomial-time constructible, then $\left(\mathcal{D}^{0} \oplus \mathcal{E}\right) \approx\left(\mathcal{D}^{1} \oplus \mathcal{E}\right)$.
- If $\left(\mathcal{D}^{0} \oplus \mathcal{E}\right) \approx\left(\mathcal{D}^{1} \oplus \mathcal{E}\right)$ then $\mathcal{D}^{0} \approx \mathcal{D}^{1}$.

Solution :

- Let \mathcal{E} be a polynomial-time constructible family of distributions, and assume that $\mathcal{D}^{0} \approx \mathcal{D}^{1}$. Let us prove that $\left(\mathcal{D}^{0} \oplus \mathcal{E}\right) \approx\left(\mathcal{D}^{1} \oplus \mathcal{E}\right)$.
Suppose that $\left(\mathcal{D}^{0} \oplus \mathcal{E}\right) \not \approx\left(\mathcal{D}^{1} \oplus \mathcal{E}\right)$, and let \mathcal{A} be a ppt-adversary that can distinguish ($\mathcal{D}^{0} \oplus \mathcal{E}$) and $\mathcal{D}^{1} \oplus \mathcal{E}$ with non-negligible advantage.
Define an adversary \mathcal{B} by

$$
\mathcal{B}(\eta, x)=\left[y \leftarrow^{R} \Psi_{\mathcal{E}}(\eta) ; b^{\prime} \leftarrow^{R} \mathcal{A}(\eta, x \oplus y): b^{\prime}\right]
$$

We can see that if x is distributed according to \mathcal{D}_{η}^{i}, then the argument of \mathcal{A} is distributed according to $\left(\mathcal{D}^{i} \oplus \mathcal{E}\right)_{\eta}$. Then

$$
\begin{aligned}
& A d v^{\mathcal{D}^{0}, \mathcal{D}^{1}(\mathcal{B})=\operatorname{Pr}\left[b^{\prime}=1 \mid x \leftarrow^{R} \mathcal{D}_{\eta}^{0} ; b^{\prime} \leftarrow^{R} \mathcal{B}(\eta, x)\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid y \leftarrow^{R} \mathcal{D}_{\eta}^{1} ; b^{\prime} \leftarrow^{R} \mathcal{B}(\eta, x)\right]} \begin{array}{l}
\quad=\operatorname{Pr}\left[b^{\prime}=1 \mid x \leftarrow^{R} \mathcal{D}_{\eta}^{0} ; y \leftarrow^{R} \Psi \mathcal{E}(\eta) ; b^{\prime} \leftarrow^{R} \mathcal{A}(\eta, x \oplus y)\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid x \leftarrow^{R} \mathcal{D}_{\eta}^{1} ; y \leftarrow^{R}\right. \\
\left.\Psi_{\mathcal{E}}(\eta) ; b^{\prime} \leftarrow^{R} \mathcal{A}(\eta, x \oplus y)\right] \\
\quad=\operatorname{Pr}\left[b^{\prime}=1 \mid x \leftarrow^{R} \mathcal{D}_{\eta}^{0} ; y \leftarrow^{R} \mathcal{E}_{\eta} ; b^{\prime} \leftarrow^{R} \mathcal{A}(\eta, x \oplus y)\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid x \leftarrow^{R} \mathcal{D}_{\eta}^{1} ; y \leftarrow^{R}\right. \\
\left.\mathcal{E}_{\eta} ; b^{\prime} \leftarrow^{R} \mathcal{A}(\eta, x \oplus y)\right] \\
=A d v^{\mathcal{D}^{0} \oplus \mathcal{E}, \mathcal{D}^{1} \oplus \mathcal{E}}(\mathcal{A})
\end{array}
\end{aligned}
$$

Hence the advantage of \mathcal{B} in distinguishing \mathcal{D}^{0} and \mathcal{D}^{1} is equal to the advantage of \mathcal{A} in distinguishing ($\mathcal{D}^{0} \oplus \mathcal{E}$) and ($\mathcal{D}^{1} \oplus \mathcal{E}$).

- The assertion is false.

Let \mathcal{D}_{η}^{0} be the distribution that return the string 0^{η} with probability 1 , and all other strings of length η with probability 0 , that is,
$\operatorname{Pr}\left[d=0^{\eta} \mid d \leftarrow^{R} \mathcal{D}_{\eta}^{0}\right]=1$
and for any string $w \in\{0,1\}^{\eta}$, such that $w \neq 0^{\eta}$, $\operatorname{Pr}\left[d=w \mid d \leftarrow^{R} \mathcal{D}_{\eta}^{0}\right]=0$.
Let \mathcal{D}_{η}^{1} be the distribution that return the string 1^{η} with probability 1 , and all other strings of length η with probability 0 , that is,
$\operatorname{Pr}\left[d=1^{\eta} \mid d \leftarrow^{R} \mathcal{D}_{\eta}^{1}\right]=1$
and for any string $w \in\{0,1\}^{\eta}$, such that $w \neq 1^{\eta}, \operatorname{Pr}\left[d=w \mid d \leftarrow^{R} \mathcal{D}_{\eta}^{1}\right]=0$.
Let \mathcal{E}_{η} be the uniform distribution over the strings of length η, that is, for any string $w \in\{0,1\}^{\eta}$,
$\operatorname{Pr}\left[d=w \mid d \leftarrow^{R} \mathcal{D}_{\eta}^{1}\right]=1 / 2^{\eta}$.
Then $\left(\mathcal{D}^{0} \oplus \mathcal{E}\right)=\left(\mathcal{D}^{1} \oplus \mathcal{E}\right)$, since both are the uniform distribution over the strings of length η, and hence $\left(\mathcal{D}^{0} \oplus \mathcal{E}\right) \approx\left(\mathcal{D}^{1} \oplus \mathcal{E}\right)$. But obviously, $\mathcal{D}^{0} \not \approx \mathcal{D}^{1}$.
Consider for example the adversary \mathcal{A} defined by:

$$
\mathcal{A}(\eta, x)=\text { if } x=0^{\eta} \text { then return } 1 \text { else return } 0 .
$$

