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Exercices

Exercise 1
• Solve the following syntactic unification problems. If there is no unifier, explain why

1. f(x, y)
?
= f(h(a), x)

2. f(x, y)
?
= f(h(x), x)

3. f(x, a)
?
= f(h(b), b)

4. f(x, x)
?
= f(h(y), y)

• Now solve each of the above, modulo commutativity of f , i.e. ∀x, y f(x, y) = f(y, x).

Exercise 2
We recall the rules of the Deduction System for Dolev Yao theory: T0 ` s, where {[ ]}
represents a symmetric encryption scheme, {| |} an asymmetric encryption scheme, and
we suppose that pr(u) is the inverse secret key associated to pk(u):

(A) u ∈ T0
T0 ` u

(UL)
T0 ` 〈u, v〉
T0 ` u

(P) T0 ` u T0 ` v
T0 ` 〈u, v〉

(UR)
T0 ` 〈u, v〉
T0 ` v

(C) T0 ` u T0 ` v
T0 ` {[u]}v

(D)
T0 ` {[u]}v T0 ` v

T0 ` u

(AD)
T0 ` {| u |}pk(v) T0 ` pr(v)

T0 ` u
(AC)

T0 ` u T0 ` pk(v)

T0 ` {| u |}pk(v)

The set of Syntactic Subterms of a term t, denoted by S(t), is the smallest set such
that:

• t ∈ S(t)

• 〈u, v〉 ∈ S(t)⇒ u, v ∈ S(t)

• {[u]}v ∈ S(t)⇒ u, v ∈ S(t)
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For a set T of terms, we define S(T ) =
⋃
t∈T S(t).

The following algorithm allows to decide if T0 ` w (where T `≤1 s means that s can be
obtained from T using only one rule from the Deduction System):
McAllester’s Algorithm
Input : T0, w

T ← T0;
while (∃s ∈ S(T0 ∪ {w}) such that T `≤1 s and s 6∈ T )

T ← T ∪ {s};
Output :w ∈ T

Using the above algorithm, prove or disprove that a passive Dolev Yao intruder can
deduce the message s with the initial knowledge T0.

1.) T0 = {a, k} and s = 〈a, {[a]}k〉

2.) T0 = {a, k, n1, {[k2]}〈n1,n2〉, {[〈n2, {[n1]}〈n3,n3〉〉]}k} and s = k2

3.) T0 = {a, b, k1, k2, {[k4]}〈k1,k3〉, {[〈k2, n〉]}〈k2,k1〉, {[〈k2, k3〉]}〈k4,k1〉} and s = k4

Solution :

1.) It is true that T0 ` 〈a, {[a]}k〉, since we can build the following proof:

(P )

(A)
a ∈ T0
T0 ` a

(C)

(A)
a ∈ T0
T0 ` a

(A)
k ∈ T0
T0 ` k

T0 ` {[a]}k
T0 ` 〈a, {[a]}k〉

2.) It is true that T0 ` k2, since we can build the following proof:

(D)

(A)
{[k2]}〈n1,n2〉 ∈ T0
T0 ` {[k2]}〈n1,n2〉

(P )

(A)
n1 ∈ T0
T0 ` n1

(UL)

(D)

(A)
{[〈n2, {[n1]}〈n3,n3〉〉]}k ∈ T0
T0 ` {[〈n2, {[n1]}〈n3,n3〉〉]}k

(A)
k ∈ T0
T0 ` k

T0 ` 〈n2, {[n1]}〈n3,n3〉〉
T0 ` n2

T0 ` 〈n1, n2〉
T0 ` k2

3.) It is not true that T0 ` k4. We use the locality result of Mc Allester.

Compute the set of subterms:
S(T0 ∪ {s}) = {a, b, k1, k2, {[k4]}〈k1,k3〉, {[〈k2, n〉]}〈k2,k1〉, {[〈k2, k3〉]}〈k4,k1〉, k4, 〈k1, k3〉, k3,

〈k2, n〉, 〈k2, k1〉, n, 〈k2, k3〉, 〈k4, k1〉}.
We have to compute the set T1 of all messages in S(T0 ∪ {s}) that can be derived from T0,
and then to check if s ∈ T1 or not.

We put T1 ⇐ T0 = {a, b, k1, k2, {[k4]}〈k1,k3〉, {[〈k2, n〉]}〈k2,k1〉, {[〈k2, k3〉]}〈k4,k1〉}.
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The only new message that is also in S(T0∪{s}) and that can be obtained in one step from
T1 is 〈k2, k1〉: we apply (P ) to k2 ∈ T1 and k1 ∈ T1, and we get 〈k2, k1〉.
We add 〈k2, k1〉 to T1:
T2 ⇐ T1 ∪ {〈k2, k1〉} = {a, b, k1, k2, {[k4]}〈k1,k3〉, {[〈k2, n〉]}〈k2,k1〉, {[〈k2, k3〉]}〈k4,k1〉, 〈k2, k1〉}.

Next, the only new message that is also in S(T0 ∪ {s}) and that can be obtained in one
step from T2 is 〈k2, n〉: we apply (D) to {[〈k2, n〉]}〈k2,k1〉 ∈ T2 and 〈k2, k1〉 ∈ T2, and we get
〈k2, n〉.
We add 〈k2, n〉 to T2:
T3 ⇐ T2∪{〈k2, kn〉} = {a, b, k1, k2, {[k4]}〈k1,k3〉, {[〈k2, n〉]}〈k2,k1〉, {[〈k2, k3〉]}〈k4,k1〉, 〈k2, k1〉, 〈k2, n〉}.

Next, the only new message that is also in S(T0 ∪ {s}) and that can be obtained in one
step from T3 is n: we apply (UR) to 〈k2, n〉 ∈ T1, and we get n.
We add n to T3:
T4 ⇐ T3 ∪ {n} = {a, b, k1, k2, {[k4]}〈k1,k3〉, {[〈k2, n〉]}〈k2,k1〉, {[〈k2, k3〉]}〈k4,k1〉, 〈k2, k1〉, 〈k2, n〉, n}.

From here we cannot apply any rules in order to get new messages in S(T0 ∪ {s}) from T4,
because:

– (UR), (UL), (P ), (C) do not generate nothing new (not in T1) from S(T0 ∪ {s}) in
one step.

– (D): we alredy applied (D) to {[〈k2, n〉]}〈k2,k1〉, and we can not apply (D) neither to
{[k4]}〈k1,k3〉 since 〈k1, k3〉 6∈ T4, nor to {[〈k2, k3〉]}〈k4,k1〉 since 〈k4, k1〉 6∈ T4.

And now we can see that s = k4 6∈ T4, and hence, using the locality result of Mc Allester,
we conclude that T0 6` k4.

Exercise 3
Consider the following protocol:

1. A → B : {| 〈A,Na〉 |}pk(B)

2. B → A : 〈{| 〈A,K〉 |}pk(A), {[Na]}K〉
3. A → B : {| 〈〈A,B〉, K〉 |}pk(B)

Assume that {| |} is an asymmetric encryption scheme, pk(x) (respectively pr(x)) is the
public key (respectively private key) of participant x.

1. Consider a session between two honest participants a and b and show that k (the
instantiation of variable K in this session) remains secret in presence of a passive
Dolev-Yao intruder.

2. We assume now that the adversary i is active (he controls the network).

1.) Consider the scenario corresponding to a session of a as initiator with i, and to
a session of b as responder.
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Suppose that the initial knwoledge of the intruder i is the set
T1 = {a, b, pk(a), pk(b), pk(i), pr(i)}, i.e. we suppose that a and b are honest.
Suppose that at the end, b will think that he is talking and sharing a secret
value k with a. Can you find an attack where the intruder i will learn k?

2.) Can you correct the protocol? Justify your answer.

Solution :

1. The set of messages T1 that a passive intruder get from a session between two honest
participants a and b, plus the set of terms he already know initially is the set
T1 = {a, b, pk(a), pk(b), pk(i), pr(i), {| 〈a, na〉 |}pk(b), 〈{| 〈a, k〉 |}pk(a), {[na]}k〉, {| 〈〈a, b〉, k〉 |}pk(b)}.
Now we show that T1 6` k using the locality result of Mc Allester.

Compute the set of subterms:
S(T1 ∪ {k}) = {a, b, pk(a), pk(b), pk(i), pr(i), {| 〈a, na〉 |}pk(b), 〈{| 〈a, k〉 |}pk(a), {[na]}k〉,

{| 〈〈a, b〉, k〉 |}pk(b), 〈a, na〉, na, {| 〈a, k〉 |}pk(a), {[na]}k, 〈a, k〉, k, 〈〈a, b〉, k〉, 〈a, b〉}.
We have to compute the set T of all messages in S(T1 ∪ {k}) that can be derived from T1,
and then to check if k ∈ T or not.

We put T ⇐ T1 = {a, b, pk(a), pk(b), pk(i), pr(i), {| 〈a, na〉 |}pk(b), 〈{| 〈a, k〉 |}pk(a), {[na]}k〉, {|
〈〈a, b〉, k〉 |}pk(b)}.

The only new messages that are also in S(T1 ∪ {k}) and that can be obtained in one step
from T are {| 〈a, k〉 |}pk(a), {[na]}k, 〈a, b〉:

• we apply (UL) to 〈{| 〈a, k〉 |}pk(a), {[na]}k〉 and we get {| 〈a, k〉 |}pk(a).
• we apply (UR) to 〈{| 〈a, k〉 |}pk(a), {[na]}k〉 and we get {[na]}k.
• we apply (P ) to a and b and we get 〈a, b〉.

We add all these new messages to T :
T ⇐ T ∪ {{| 〈a, k〉 |}pk(a), {[na]}k, 〈a, b〉} = {a, b, pk(a), pk(b), pk(i), pr(i), {| 〈a, na〉 |}pk(b), 〈{|
〈a, k〉 |}pk(a), {[na]}k〉, {| 〈〈a, b〉, k〉 |}pk(b), {| 〈a, k〉 |}pk(a), {[na]}k, 〈a, b〉}.
From here we cannot apply any rules in order to get new messages in S(T1 ∪ {k}) from T ,
because:

• (UR), (UL), (P ), (C) do not generate nothing new (not in T ) from S(T1 ∪ {k}) in
one step.

• (D): we can not apply (D) to get new messages since all pr(a), pr(b), k do not belong
to T .

And now we can check that k 6∈ T , and hence, using the locality result of Mc Allester, we
conclude that T1 6` k.

2. Consider now the case of an active adversary.
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1.) The attacker i can mount the following man-in-the-middle attack (and i can deduce
k):

1.1. a −→ i : {| 〈a, na〉 |}pk(i)
2.1. i(a) −→ b : {| 〈a, na〉 |}pk(b)
2.2. b −→ i(a) : 〈{| 〈a, k〉 |}pk(a), {[aa]}k〉
1.2. i −→ a : 〈{| 〈a, k〉 |}pk(a), {[aa]}k〉
1.3. a −→ i : {| 〈〈a, i〉, k〉 |}pk(i)
2.3. i(a) −→ b : {| 〈〈a, b〉, k〉 |}pk(b)

2.) A corrected version (see the TP):

1. A → B : {| 〈A,Na〉 |}pk(B)

2. B → A : 〈{| 〈B,K〉 |}pk(A), {[Na]}K〉
3. A → B : {| 〈〈A,B〉,K〉 |}pk(B)

Exercise 4
Consider the following (Needham-Schroeder-Lowe) protocol:

1. A → B : {| 〈A,Na〉 |}pk(B)

2. B → A : {| 〈Na, 〈Nb, B〉〉 |}pk(A)
3. A → B : {| Nb |}pk(B)

Assume that {| |} is an asymmetric encryption scheme, pk(x) (respectively pr(x)) is the
public key (respectively private key) of participant x. This protocols ensures secrecy of
Nb, and injective agreement from the perspective of both the initiator and the responder.
Show that the following modified version of Needham-Schroeder-Lowe protocol:

1. A → B : {| 〈A,Na〉 |}pk(B)

2. B → A : {| 〈Na, Nb ⊕B〉 |}pk(A)
3. A → B : {| Nb |}pk(B)

is not correct. It allows an attack on both the secrecy of Nb and on the authentication of
B. This arises because ⊕ has algebraic properties that the free algebra assumption ignores:
for instance, it is associative, commutative, and has the cancellation property X ⊕X = 0.
What can you say about the following protocol?

1. A → B : {| 〈A,Na〉 |}pk(B)

2. B → A : {| 〈Na ⊕B,Nb〉 |}pk(A)
3. A → B : {| Nb |}pk(B)

Solution : The attacker i can mount the following man-in-the-middle attack (and i can deduce
nb):

1.1. a −→ i : {| 〈a, na〉 |}pk(i)
2.1. i(a) −→ b : {| 〈a, na〉 |}pk(b)
2.2. b −→ i(a) : {| 〈na, nb ⊕ b〉 |}pk(a)
1.2. i −→ a : {| 〈na, nb ⊕ b〉 |}pk(a)
1.3. a −→ i : {| (nb ⊕ b)⊕ i |}pk(i)
2.3. i(a) −→ b : {| nb |}pk(b)
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In the step 1.2, a will interpret nb ⊕ b as n′b ⊕ i with n′b = (nb ⊕ b)⊕ i.
Interestingly, the following protocol

1. A → B : {| 〈A,Na〉 |}pk(B)

2. B → A : {| 〈Na ⊕B,Nb〉 |}pk(A)
3. A → B : {| Nb |}pk(B)

is also flawed. The attacker i can mount the following man-in-the-middle attack (and i can deduce
nb):

1.1. a −→ i : {| 〈a, na〉 |}pk(i)
2.1. i(a) −→ b : {| 〈a, na ⊕ i⊕ b〉 |}pk(b)
2.2. b −→ i(a) : {| 〈na ⊕ i, nb〉 |}pk(a)
1.2. i −→ a : {| 〈na ⊕ i, nb〉 |}pk(a)
1.3. a −→ i : {| (nb |}pk(i)
2.3. i(a) −→ b : {| nb |}pk(b)

In the step 2.1, b will interpret na ⊕ i ⊕ b as n′a, and for this reason, in step 2.2 he will answer
{| 〈n′a ⊕ b, nb〉 |}pk(a) which is the same as {| 〈na ⊕ i, nb〉 |}pk(a).

Exercise 5
In this exercice, ( , ) represents concatenation, and { } represents a probabilistic symmet-
ric encryption scheme (the randomness used is explicit now). We recall that two messages
m0 and m1 are equivalent in the Dolev Yao model (written m0 ∼ m1) if there is a renam-
ing (a bijection) σK of keys of m1 and a renaming σR of random coins of m1 such that
pat(m0) = pat(m1)σKσR.

Prove or disprove the symbolic equivalence ∼ in the Dolev Yao model of the following

pairs of messages m0
?∼ m1:

1.) m0 = ({(1, {0}r′k1)}
r
k, {0}r

′

k ), m1 = ({(1, 0)}r′k3 , {1}
s
k3

)
2.) m0 = (({(0, {1}r′k )}rk1 , {1}

r′

k ), k1), m1 = (({(0, {1}r′k )}rk1 , {1}
r′′

k ), k1)
3.) m0 = ({(0, {1}r′k )}rk, {0}r

′

k′), m1 = ({0}r′k , {0}sk)

Solution :

1. We have that pat(m0) = (�r,�r′), pat(m1) = (�r′ ,�s). Hence for the bijective renaming
σR = {r′ 7→ r, s 7→ r′} we have that pat(m0) = pat(m1)σR, and hence m0 ∼ m1.

2. We have that pat(m0) = (({(0,�r′)}rk1 ,�
r′), k1), pat(m1) = (({(0,�r′)}rk1 ,�

r”), k1). Since
there is no bijective renaming σR such that pat(m0) = pat(m1)σR, we conclude that
m0 6∼ m1.

3. We have that pat(m0) = (�r,�r′), pat(m1) = (�r′ ,�s). Hence for the bijective renaming
σR = {r′ 7→ r, s 7→ r′} we have that pat(m0) = pat(m1)σR, and hence m0 ∼ m1.

6



Exercise 6
We recall that a family of distributions E is called polynomial-time constructible, if
there is a ppt-algorithm ΨE , such that the output of ΨE(η) is distributed identically to Eη.
Given two families of distributions D and E , we define D‖E by

(D‖E)η = [x←R Dη; y ←R Eη : (x, y)]

Prove or disprove the following assertions (where≈ is the computational indistingushability
relation over distributions):

• If D0 ≈ D1 and E0 ≈ E1 and D0,D1, E0, E1 are all polynomial-time constructible,
then (D0‖E0) ≈ (D1‖E1).

• If (D0‖E0) ≈ (D1‖E1) then D0 ≈ D1 and E0 ≈ E1.

Solution :

• Let D0,D1, E0, E1 be polynomial-time constructible families of distributions, and assume
that D0 ≈ D1 and E0 ≈ E1. Let us prove that (D0‖E0) ≈ (D1‖E1).
We shall prove that (D0‖E0) ≈ (D1‖E0) and (D1‖E0) ≈ (D1‖E1). The equivalence (D0‖E0) ≈
(D1‖E1) will follow then by transitivity of ≈.

The first assertion (D0‖E0) ≈ (D1‖E0) was already proven during the lectures. Let us prove
(D1‖E0) ≈ (D1‖E1).
Suppose that (D1‖E0) 6≈ (D1‖E1), and let A be a ppt-adversary that can distinguish
(D1‖E0) and (D1‖E1) with non-negligible advantage.

Define an adversary B by

B(η, y) = [x←R ΨD1(η); b′ ←R A(η, (x, y)) : b′]

We can see that if y is distributed according to E iη, then the argument of A is distributed
according to (D1‖E i)η. Then

AdvE
0,E1(B) = Pr[b′ = 1|y ←R E0η ; b′ ←R B(η, y)]− Pr[b′ = 1|y ←R E1η ; b′ ←R B(η, y)]

= Pr[b′ = 1|y ←R E0η ;x ←R ΨD1(η); b′ ←R A(η, (x, y))] − Pr[b′ = 1|y ←R E1η ;x ←R

ΨD1(η); b′ ←R A(η, (x, y))]

= Pr[b′ = 1|y ←R E0η ;x ←R D1
η; b
′ ←R A(η, (x, y))] − Pr[b′ = 1|y ←R E1η ;x ←R

D1
η; b
′ ←R A(η, (x, y))]

= Pr[b′ = 1|x ←R D1
η; y ←R E0η ; b′ ←R A(η, (x, y))] − Pr[b′ = 1|x ←R D1

η; y ←R

E1η ; b′ ←R A(η, (x, y))]

= AdvD
1‖E0,D1‖E1(A)

Hence the advantage of B in distinguishing E0 and E1is equal to the advantage of A in
distinguishing (D0‖E0) and (D1‖E1).
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• Assume that (D0‖E0) ≈ (D1‖E1). We must prove D0 ≈ D1 and E0 ≈ E1. We prove the
second assertion, E0 ≈ E1. The first one is similar.

Suppose that E0 6≈ E1, and let A be a ppt-adversary that can distinguish E0 and E1 with
non-negligible advantage.

Define an adversary B by

B(η, (x, y)) = [b′ ←R A(η, y) : b′]

Then AdvD
0‖E0,D1‖E1(B) = Pr[b′ = 1|(x, y) ←R (D0‖E0)η; b′ ←R B(η, (x, y))] − Pr[b′ =

1|(x, y)←R (D1‖E1)η; b′ ←R B(η, (x, y))]

= Pr[b′ = 1|x←R D0
η; y ←R E0η ; b′ ←R A(η, y)]− Pr[b′ = 1|x←R D1

η; y ←R E1η ; b′ ←R

A(η, y)]

= Pr[b′ = 1|y ←R E0η ; b′ ←R A(η, y)]− Pr[b′ = 1|y ←R E1η ; b′ ←R A(η, y)]

= AdvE
0,E1(A)

Hence the advantage of B in distinguishing (D0‖E0) and (D1‖E1) is equal to the advantage
of A in distinguishing E0 and E1.

Exercise 7
We use ⊕ to denote the usual bitwise xor over equal-length bitstrings, e.g. 0011⊕ 1110 =
1101, and 01⊕ 00 = 01.
Given two families of distributions D and E , such that for any η, both Dη and Eη are
distributions over strings of length η, we define D ⊕ E by

(D ⊕ E)η = [x←R Dη; y ←R Eη : (x⊕ y)]

.
Prove or disprove the following assertions (where ≈ is the computational indistingusha-

bility relation over distributions):

• If D0 ≈ D1 and E is polynomial-time constructible, then (D0 ⊕ E) ≈ (D1 ⊕ E).

• If (D0 ⊕ E) ≈ (D1 ⊕ E) then D0 ≈ D1.

Solution :

• Let E be a polynomial-time constructible family of distributions, and assume that D0 ≈ D1.
Let us prove that (D0 ⊕ E) ≈ (D1 ⊕ E).

Suppose that (D0 ⊕ E) 6≈ (D1 ⊕ E), and let A be a ppt-adversary that can distinguish
(D0 ⊕ E) and D1 ⊕ E with non-negligible advantage.

Define an adversary B by

B(η, x) = [y ←R ΨE(η); b′ ←R A(η, x⊕ y) : b′]
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We can see that if x is distributed according to Diη, then the argument of A is distributed
according to (Di ⊕ E)η. Then

AdvD
0,D1

(B) = Pr[b′ = 1|x←R D0
η; b
′ ←R B(η, x)]− Pr[b′ = 1|y ←R D1

η; b
′ ←R B(η, x)]

= Pr[b′ = 1|x ←R D0
η; y ←R ΨE(η); b′ ←R A(η, x ⊕ y)] − Pr[b′ = 1|x ←R D1

η; y ←R

ΨE(η); b′ ←R A(η, x⊕ y)]

= Pr[b′ = 1|x ←R D0
η; y ←R Eη; b′ ←R A(η, x ⊕ y)] − Pr[b′ = 1|x ←R D1

η; y ←R

Eη; b′ ←R A(η, x⊕ y)]

= AdvD
0⊕E,D1⊕E(A)

Hence the advantage of B in distinguishing D0 and D1is equal to the advantage of A in
distinguishing (D0 ⊕ E) and (D1 ⊕ E).

• The assertion is false.

Let D0
η be the distribution that return the string 0η with probability 1, and all other strings

of length η with probability 0, that is,

Pr[d = 0η|d←R D0
η] = 1

and for any string w ∈ {0, 1}η, such that w 6= 0η, Pr[d = w|d←R D0
η] = 0.

Let D1
η be the distribution that return the string 1η with probability 1, and all other strings

of length η with probability 0, that is,

Pr[d = 1η|d←R D1
η] = 1

and for any string w ∈ {0, 1}η, such that w 6= 1η, Pr[d = w|d←R D1
η] = 0.

Let Eη be the uniform distribution over the strings of length η, that is, for any string
w ∈ {0, 1}η,
Pr[d = w|d←R D1

η] = 1/2η.

Then (D0⊕E) = (D1⊕E), since both are the uniform distribution over the strings of length
η, and hence (D0 ⊕ E) ≈ (D1 ⊕ E). But obviously, D0 6≈ D1.

Consider for example the adversary A defined by:

A(η, x) = if x = 0η then return 1 else return 0.
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