Exercices

Exercise 1

- Solve the following syntactic unification problems. If there is no unifier, explain why
 - 1. $f(x, y) \stackrel{?}{=} f(h(a), x)$ 2. $f(x, y) \stackrel{?}{=} f(h(x), x)$ 3. $f(x, a) \stackrel{?}{=} f(h(b), b)$ 4. $f(x, x) \stackrel{?}{=} f(h(y), y)$

• Now solve each of the above, modulo commutativity of f, i.e. $\forall x, y \ f(x, y) = f(y, x)$.

Exercise 2

We recall the rules of the Deduction System for Dolev Yao theory: $T_0 \vdash s$, where $[]_-$ represents a symmetric encryption scheme, $\{ _ \}_-$ an asymmetric encryption scheme, and we suppose that pr(u) is the inverse secret key associated to pk(u):

 $(A) \quad \frac{u \in T_{0}}{T_{0} \vdash u} \qquad (UL) \quad \frac{T_{0} \vdash \langle u, v \rangle}{T_{0} \vdash u}$ $(P) \quad \frac{T_{0} \vdash u \quad T_{0} \vdash v}{T_{0} \vdash \langle u, v \rangle} \qquad (UR) \quad \frac{T_{0} \vdash \langle u, v \rangle}{T_{0} \vdash v}$ $(C) \quad \frac{T_{0} \vdash u \quad T_{0} \vdash v}{T_{0} \vdash [u]_{v}} \qquad (D) \quad \frac{T_{0} \vdash [u]_{v} \quad T_{0} \vdash v}{T_{0} \vdash u}$ $(AD) \quad \frac{T_{0} \vdash \{u\}_{pk(v)} \quad T_{0} \vdash pr(v)}{T_{0} \vdash u} \qquad (AC) \quad \frac{T_{0} \vdash u \quad T_{0} \vdash pk(v)}{T_{0} \vdash \{u\}_{pk(v)}}$

The set of **Syntactic Subterms** of a term t, denoted by S(t), is the smallest set such that:

- $t \in S(t)$
- $\langle u, v \rangle \in S(t) \Rightarrow u, v \in S(t)$
- $[\!\![u]\!]_v \in S(t) \Rightarrow u, v \in S(t)$

For a set T of terms, we define $S(T) = \bigcup_{t \in T} S(t)$.

The following algorithm allows to decide if $T_0 \vdash w$ (where $T \vdash^{\leq 1} s$ means that s can be obtained from T using only one rule from the Deduction System):

McAllester's Algorithm

Input : T_0, w

 $\begin{array}{l} T \leftarrow T_0;\\ \text{while } (\exists s \in S(T_0 \cup \{w\}) \text{ such that } T \vdash^{\leq 1} s \text{ and } s \notin T)\\ T \leftarrow T \cup \{s\}; \end{array}$

Output $: w \in T$

Using the above algorithm, prove or disprove that a passive Dolev Yao intruder can deduce the message s with the initial knowledge T_0 .

1.)
$$T_0 = \{a, k\}$$
 and $s = \langle a, [\![a]\!]_k \rangle$
2.) $T_0 = \{a, k, n1, [\![k2]\!]_{\langle n1, n2 \rangle}, [\![\langle n2, [\![n1]\!]_{\langle n3, n3 \rangle} \rangle]\!]_k\}$ and $s = k2$
3.) $T_0 = \{a, b, k1, k2, [\![k4]\!]_{\langle k1, k3 \rangle}, [\![\langle k2, n \rangle]\!]_{\langle k2, k1 \rangle}, [\![\langle k2, k3 \rangle]\!]_{\langle k4, k1 \rangle}\}$ and $s = k4$

Solution :

1.) It is true that $T_0 \vdash \langle a, [a]_k \rangle$, since we can build the following proof:

$$(P)\frac{(A)\frac{a \in T_0}{T_0 \vdash a}}{T_0 \vdash a} \qquad (C)\frac{(A)\frac{a \in T_0}{T_0 \vdash a}}{T_0 \vdash a} \qquad (A)\frac{k \in T_0}{T_0 \vdash k}}{T_0 \vdash a}$$

2.) It is true that $T_0 \vdash k^2$, since we can build the following proof:

$$(D) \frac{(A) \frac{[k2]_{\langle n1,n2\rangle} \in T_0}{T_0 \vdash [k2]_{\langle n1,n2\rangle}}}{(P)} \quad (P) \frac{(A) \frac{n1 \in T_0}{T_0 \vdash n1}}{(UL)} (UL) \frac{(D) \frac{(A) \frac{[(n2, [n1]_{\langle n3,n3\rangle})]_k \in T_0}{T_0 \vdash [(n2, [n1]_{\langle n3,n3\rangle})]_k}}{T_0 \vdash [n2, [n1]_{\langle n3,n3\rangle})}}{T_0 \vdash n2} \\ (D) \frac{(D) \frac{(A) \frac{[k2]_{\langle n1,n2\rangle} \in T_0}{T_0 \vdash [n1]_{\langle n1,n2\rangle}}}{(D \vdash [n1]_{\langle n1,n2\rangle}}}{(D \vdash [n2]_{\langle n1,n2\rangle}}$$

3.) It is not true that $T_0 \vdash k4$. We use the locality result of Mc Allester.

$$\begin{split} & \text{Compute the set of subterms:} \\ & S(T_0 \cup \{s\}) = \{a, b, k1, k2, [\![k4]\!]_{\langle k1, k3 \rangle}, [\![\langle k2, n \rangle]\!]_{\langle k2, k1 \rangle}, [\![\langle k2, k3 \rangle]\!]_{\langle k4, k1 \rangle}, k4, \langle k1, k3 \rangle, k3, \\ & \langle k2, n \rangle, \langle k2, k1 \rangle, n, \langle k2, k3 \rangle, \langle k4, k1 \rangle \}. \end{split}$$

We have to compute the set T_1 of all messages in $S(T_0 \cup \{s\})$ that can be derived from T_0 , and then to check if $s \in T_1$ or not.

We put $T_1 \leftarrow T_0 = \{a, b, k1, k2, [k4]_{\langle k1, k3 \rangle}, [\langle k2, n \rangle]_{\langle k2, k1 \rangle}, [\langle k2, k3 \rangle]_{\langle k4, k1 \rangle}\}.$

The only new message that is also in $S(T_0 \cup \{s\})$ and that can be obtained in one step from T_1 is $\langle k2, k1 \rangle$: we apply (P) to $k2 \in T_1$ and $k1 \in T_1$, and we get $\langle k2, k1 \rangle$. We add $\langle k2, k1 \rangle$ to T_1 : $T_2 \leftarrow T_1 \cup \{\langle k2, k1 \rangle\} = \{a, b, k1, k2, [k4]_{\langle k1, k3 \rangle}, [\langle k2, n \rangle]_{\langle k2, k1 \rangle}, [\langle k2, k3 \rangle]_{\langle k4, k1 \rangle}, \langle k2, k1 \rangle\}.$

Next, the only new message that is also in $S(T_0 \cup \{s\})$ and that can be obtained in one step from T_2 is $\langle k2, n \rangle$: we apply (D) to $[\![\langle k2, n \rangle]\!]_{\langle k2, k1 \rangle} \in T_2$ and $\langle k2, k1 \rangle \in T_2$, and we get $\langle k2, n \rangle$. We add $\langle k2, n \rangle$ to T_2 :

 $T_{3} \leftarrow T_{2} \cup \{ \langle k2, kn \rangle \} = \{ a, b, k1, k2, [k4]_{\langle k1, k3 \rangle}, [\langle k2, n \rangle]_{\langle k2, k1 \rangle}, [\langle k2, k3 \rangle]_{\langle k4, k1 \rangle}, \langle k2, k1 \rangle, \langle k2, n \rangle \}.$

Next, the only new message that is also in $S(T_0 \cup \{s\})$ and that can be obtained in one step from T_3 is n: we apply (UR) to $\langle k2, n \rangle \in T_1$, and we get n. We add n to T_3 : $T_4 \leftarrow T_3 \cup \{n\} = \{a, b, k1, k2, [k4]_{\langle k1, k3 \rangle}, [\langle k2, n \rangle]_{\langle k2, k1 \rangle}, [\langle k2, k3 \rangle]_{\langle k4, k1 \rangle}, \langle k2, k1 \rangle, \langle k2, n \rangle, n\}.$

From here we cannot apply any rules in order to get new messages in $S(T_0 \cup \{s\})$ from T_4 , because:

- (UR), (UL), (P), (C) do not generate nothing new (not in T_1) from $S(T_0 \cup \{s\})$ in one step.
- (D): we alredy applied (D) to $[\![\langle k2, n \rangle]\!]_{\langle k2, k1 \rangle}$, and we can not apply (D) neither to $[\![\langle k4 \rangle]_{\langle k1, k3 \rangle}$ since $\langle k1, k3 \rangle \notin T_4$, nor to $[\![\langle k2, k3 \rangle]\!]_{\langle k4, k1 \rangle}$ since $\langle k4, k1 \rangle \notin T_4$.

And now we can see that $s = k4 \notin T_4$, and hence, using the locality result of Mc Allester, we conclude that $T_0 \not\vdash k4$.

Exercise 3

Consider the following protocol:

1. $A \rightarrow B : \{ \langle A, N_a \rangle \}_{pk(B)}$ 2. $B \rightarrow A : \langle \{ \langle A, K \rangle \}_{pk(A)}, [N_a]_K \rangle$ 3. $A \rightarrow B : \{ \langle \langle A, B \rangle, K \rangle \}_{pk(B)}$

Assume that $\{ _ \}_{_}$ is an asymmetric encryption scheme, pk(x) (respectively pr(x)) is the public key (respectively private key) of participant x.

- 1. Consider a session between two honest participants a and b and show that k (the instantiation of variable K in this session) remains secret in presence of a passive Dolev-Yao intruder.
- 2. We assume now that the adversary i is active (he controls the network).
 - 1.) Consider the scenario corresponding to a session of a as initiator with i, and to a session of b as responder.

Suppose that the initial knowledge of the intruder i is the set $T_1 = \{a, b, pk(a), pk(b), pk(i), pr(i)\}$, i.e. we suppose that a and b are honest. Suppose that at the end, b will think that he is talking and sharing a secret value k with a. Can you find an attack where the intruder i will learn k?

2.) Can you correct the protocol? Justify your answer.

Solution :

1. The set of messages T_1 that a passive intruder get from a session between two honest participants a and b, plus the set of terms he already know initially is the set $T_1 = \{a, b, pk(a), pk(b), pk(i), pr(i), \{ \langle a, n_a \rangle \}_{pk(b)}, \langle \{ \langle a, k \rangle \}_{pk(a)}, \{ n_a \}_k \rangle, \{ \langle \langle a, b \rangle, k \rangle \}_{pk(b)} \}.$ Now we show that $T_1 \not\vdash k$ using the locality result of Mc Allester.

Compute the set of subterms:

$$\begin{split} S(T_1 \cup \{k\}) &= \{a, b, pk(a), pk(b), pk(i), pr(i), \{ \langle a, n_a \rangle \}_{pk(b)}, \langle \{ \langle a, k \rangle \}_{pk(a)}, [n_a]_k \rangle, \\ &\{ \langle \langle a, b \rangle, k \rangle \}_{pk(b)}, \langle a, n_a \rangle, n_a, \{ \langle a, k \rangle \}_{pk(a)}, [n_a]_k, \langle a, k \rangle, k, \langle \langle a, b \rangle, k \rangle, \langle a, b \rangle \}. \end{split}$$

We have to compute the set T of all messages in $S(T_1 \cup \{k\})$ that can be derived from T_1 , and then to check if $k \in T$ or not.

We put $T \leftarrow T_1 = \{a, b, pk(a), pk(b), pk(i), pr(i), \{ \langle a, n_a \rangle \}_{pk(b)}, \langle \{ \langle a, k \rangle \}_{pk(a)}, [n_a]_k \rangle, \{ \langle \langle a, b \rangle, k \rangle \}_{pk(b)} \}.$

The only new messages that are also in $S(T_1 \cup \{k\})$ and that can be obtained in one step from T are $\{\langle a, k \rangle \}_{pk(a)}, [n_a]_k, \langle a, b \rangle$:

- we apply (UL) to $\langle \{ \langle a, k \rangle \}_{pk(a)}, [n_a]_k \rangle$ and we get $\{ \langle a, k \rangle \}_{pk(a)}$.
- we apply (UR) to $\langle \{ \langle a, k \rangle \}_{pk(a)}, [n_a]_k \rangle$ and we get $[n_a]_k$.
- we apply (P) to a and b and we get $\langle a, b \rangle$.

We add all these new messages to T:

 $T \leftarrow T \cup \{\{\langle a,k \rangle \}_{pk(a)}, [n_a]_k, \langle a,b \rangle\} = \{a,b,pk(a),pk(b),pk(i),pr(i),\{\langle a,n_a \rangle \}_{pk(b)}, \langle \{\langle a,k \rangle \}_{pk(a)}, [n_a]_k \rangle, \{\langle a,b \rangle,k \rangle \}_{pk(b)}, \{\langle a,k \rangle \}_{pk(a)}, [n_a]_k, \langle a,b \rangle\}.$

From here we cannot apply any rules in order to get new messages in $S(T_1 \cup \{k\})$ from T, because:

- (UR), (UL), (P), (C) do not generate nothing new (not in T) from $S(T_1 \cup \{k\})$ in one step.
- (D): we can not apply (D) to get new messages since all pr(a), pr(b), k do not belong to T.

And now we can check that $k \notin T$, and hence, using the locality result of Mc Allester, we conclude that $T_1 \not\vdash k$.

2. Consider now the case of an active adversary.

1.) The attacker i can mount the following man-in-the-middle attack (and i can deduce k):

2.) A corrected version (see the TP):

1.
$$A \rightarrow B : \{ \langle A, N_a \rangle \}_{pk(B)}$$

2. $B \rightarrow A : \langle \{ \langle B, K \rangle \}_{pk(A)}, [N_a]_K \rangle$
3. $A \rightarrow B : \{ \langle \langle A, B \rangle, K \rangle \}_{pk(B)}$

Exercise 4

Consider the following (Needham-Schroeder-Lowe) protocol:

Assume that $\{ _ \}_{_}$ is an asymmetric encryption scheme, pk(x) (respectively pr(x)) is the public key (respectively private key) of participant x. This protocols ensures secrecy of N_b , and injective agreement from the perspective of both the initiator and the responder. Show that the following modified version of Needham-Schroeder-Lowe protocol:

1.
$$A \rightarrow B : \{ \langle A, N_a \rangle \}_{pk(B)}$$

2. $B \rightarrow A : \{ \langle N_a, N_b \oplus B \rangle \}_{pk(A)}$
3. $A \rightarrow B : \{ N_b \}_{pk(B)}$

is not correct. It allows an attack on both the secrecy of N_b and on the authentication of B. This arises because \oplus has algebraic properties that the free algebra assumption ignores: for instance, it is associative, commutative, and has the cancellation property $X \oplus X = 0$. What can you say about the following protocol?

1.
$$A \rightarrow B : \{ \langle A, N_a \rangle \}_{pk(B)}$$

2. $B \rightarrow A : \{ \langle N_a \oplus B, N_b \rangle \}_{pk(A)}$
3. $A \rightarrow B : \{ N_b \}_{pk(B)}$

Solution : The attacker i can mount the following man-in-the-middle attack (and i can deduce n_b):

1.1.
$$a \longrightarrow i$$
: { $\langle a, n_a \rangle$ }_{pk(i)}
2.1. $i(a) \longrightarrow b$: { $\langle a, n_a \rangle$ }_{pk(b)}
2.2. $b \longrightarrow i(a)$: { $\langle n_a, n_b \oplus b \rangle$ }_{pk(a)}
1.2. $i \longrightarrow a$: { $\langle n_a, n_b \oplus b \rangle$ }_{pk(a)}
1.3. $a \longrightarrow i$: { $(n_b \oplus b) \oplus i$ }_{pk(i)}
2.3. $i(a) \longrightarrow b$: { n_b }_{pk(b)}

In the step 1.2, a will interpret $n_b \oplus b$ as $n'_b \oplus i$ with $n'_b = (n_b \oplus b) \oplus i$. Interestingly, the following protocol

1.
$$A \rightarrow B : \{ \langle A, N_a \rangle \}_{pk(B)}$$

2. $B \rightarrow A : \{ \langle N_a \oplus B, N_b \rangle \}_{pk(A)}$
3. $A \rightarrow B : \{ N_b \}_{pk(B)}$

is also flawed. The attacker i can mount the following man-in-the-middle attack (and i can deduce n_b):

In the step 2.1, b will interpret $n_a \oplus i \oplus b$ as n'_a , and for this reason, in step 2.2 he will answer $\{ \langle n'_a \oplus b, n_b \rangle \}_{pk(a)}$ which is the same as $\{ \langle n_a \oplus i, n_b \rangle \}_{pk(a)}$.

Exercise 5

In this exercice, $(_,_)$ represents concatenation, and $\{_\}$ ⁻ represents a probabilistic symmetric encryption scheme (the randomness used is explicit now). We recall that two messages m_0 and m_1 are equivalent in the Dolev Yao model (written $m_0 \sim m_1$) if there is a renaming (a bijection) σ_K of keys of m_1 and a renaming σ_R of random coins of m_1 such that $\mathbf{pat}(m_0) = \mathbf{pat}(m_1)\sigma_K\sigma_R$.

Prove or disprove the symbolic equivalence ~ in the Dolev Yao model of the following pairs of messages $m_0 \stackrel{?}{\sim} m_1$:

1.) $m_0 = (\{(1, \{0\}_{k_1}^{r'})\}_k^r, \{0\}_k^{r'}), \qquad m_1 = (\{(1, 0)\}_{k_3}^{r'}, \{1\}_{k_3}^s)$ 2.) $m_0 = ((\{(0, \{1\}_k^{r'})\}_{k_1}^r, \{1\}_k^{r'}), k_1), \qquad m_1 = ((\{(0, \{1\}_k^{r'})\}_{k_1}^r, \{1\}_k^{r''}), k_1)$ 3.) $m_0 = (\{(0, \{1\}_k^{r'})\}_k^r, \{0\}_{k'}^{r'}), \qquad m_1 = (\{0\}_k^{r'}, \{0\}_k^s)$

Solution :

- 1. We have that $\mathbf{pat}(m_0) = (\Box^r, \Box^{r'})$, $\mathbf{pat}(m_1) = (\Box^{r'}, \Box^s)$. Hence for the bijective renaming $\sigma_R = \{r' \mapsto r, s \mapsto r'\}$ we have that $\mathbf{pat}(m_0) = \mathbf{pat}(m_1)\sigma_R$, and hence $m_0 \sim m_1$.
- 2. We have that $\operatorname{pat}(m_0) = ((\{(0, \Box^{r'})\}_{k_1}^r, \Box^{r'}), k_1), \operatorname{pat}(m_1) = ((\{(0, \Box^{r'})\}_{k_1}^r, \Box^{r"}), k_1)$. Since there is no bijective renaming σ_R such that $\operatorname{pat}(m_0) = \operatorname{pat}(m_1)\sigma_R$, we conclude that $m_0 \not\sim m_1$.
- 3. We have that $\mathbf{pat}(m_0) = (\Box^r, \Box^{r'})$, $\mathbf{pat}(m_1) = (\Box^{r'}, \Box^s)$. Hence for the bijective renaming $\sigma_R = \{r' \mapsto r, s \mapsto r'\}$ we have that $\mathbf{pat}(m_0) = \mathbf{pat}(m_1)\sigma_R$, and hence $m_0 \sim m_1$.

Exercise 6

We recall that a family of distributions \mathcal{E} is called **polynomial-time constructible**, if there is a ppt-algorithm $\Psi_{\mathcal{E}}$, such that the output of $\Psi_{\mathcal{E}}(\eta)$ is distributed identically to \mathcal{E}_{η} . Given two families of distributions \mathcal{D} and \mathcal{E} , we define $\mathcal{D} \| \mathcal{E}$ by

$$(\mathcal{D}\|\mathcal{E})_{\eta} = [x \leftarrow^{R} \mathcal{D}_{\eta}; y \leftarrow^{R} \mathcal{E}_{\eta}: (x, y)]$$

Prove or disprove the following assertions (where \approx is the computational indistinguishability relation over distributions):

- If $\mathcal{D}^0 \approx \mathcal{D}^1$ and $\mathcal{E}^0 \approx \mathcal{E}^1$ and $\mathcal{D}^0, \mathcal{D}^1, \mathcal{E}^0, \mathcal{E}^1$ are all polynomial-time constructible, then $(\mathcal{D}^0 \| \mathcal{E}^0) \approx (\mathcal{D}^1 \| \mathcal{E}^1)$.
- If $(\mathcal{D}^0 \| \mathcal{E}^0) \approx (\mathcal{D}^1 \| \mathcal{E}^1)$ then $\mathcal{D}^0 \approx \mathcal{D}^1$ and $\mathcal{E}^0 \approx \mathcal{E}^1$.

Solution :

• Let $\mathcal{D}^0, \mathcal{D}^1, \mathcal{E}^0, \mathcal{E}^1$ be polynomial-time constructible families of distributions, and assume that $\mathcal{D}^0 \approx \mathcal{D}^1$ and $\mathcal{E}^0 \approx \mathcal{E}^1$. Let us prove that $(\mathcal{D}^0 || \mathcal{E}^0) \approx (\mathcal{D}^1 || \mathcal{E}^1)$.

We shall prove that $(\mathcal{D}^0 \| \mathcal{E}^0) \approx (\mathcal{D}^1 \| \mathcal{E}^0)$ and $(\mathcal{D}^1 \| \mathcal{E}^0) \approx (\mathcal{D}^1 \| \mathcal{E}^1)$. The equivalence $(\mathcal{D}^0 \| \mathcal{E}^0) \approx (\mathcal{D}^1 \| \mathcal{E}^1)$ will follow then by transitivity of \approx .

The first assertion $(\mathcal{D}^0 \| \mathcal{E}^0) \approx (\mathcal{D}^1 \| \mathcal{E}^0)$ was already proven during the lectures. Let us prove $(\mathcal{D}^1 \| \mathcal{E}^0) \approx (\mathcal{D}^1 \| \mathcal{E}^1)$.

Suppose that $(\mathcal{D}^1 \| \mathcal{E}^0) \not\approx (\mathcal{D}^1 \| \mathcal{E}^1)$, and let \mathcal{A} be a ppt-adversary that can distinguish $(\mathcal{D}^1 \| \mathcal{E}^0)$ and $(\mathcal{D}^1 \| \mathcal{E}^1)$ with non-negligible advantage.

Define an adversary \mathcal{B} by

$$\mathcal{B}(\eta, y) = [x \leftarrow^R \Psi_{\mathcal{D}^1}(\eta); b' \leftarrow^R \mathcal{A}(\eta, (x, y)): b']$$

We can see that if y is distributed according to \mathcal{E}^i_{η} , then the argument of \mathcal{A} is distributed according to $(\mathcal{D}^1 || \mathcal{E}^i)_{\eta}$. Then

$$\begin{split} Adv^{\mathcal{E}^{0},\mathcal{E}^{1}}(\mathcal{B}) &= Pr[b' = 1|y \leftarrow^{R} \mathcal{E}_{\eta}^{0}; b' \leftarrow^{R} \mathcal{B}(\eta, y)] - Pr[b' = 1|y \leftarrow^{R} \mathcal{E}_{\eta}^{1}; b' \leftarrow^{R} \mathcal{B}(\eta, y)] \\ &= Pr[b' = 1|y \leftarrow^{R} \mathcal{E}_{\eta}^{0}; x \leftarrow^{R} \Psi_{\mathcal{D}^{1}}(\eta); b' \leftarrow^{R} \mathcal{A}(\eta, (x, y))] - Pr[b' = 1|y \leftarrow^{R} \mathcal{E}_{\eta}^{1}; x \leftarrow^{R} \Psi_{\mathcal{D}^{1}}(\eta); b' \leftarrow^{R} \mathcal{A}(\eta, (x, y))] \\ &= Pr[b' = 1|y \leftarrow^{R} \mathcal{E}_{\eta}^{0}; x \leftarrow^{R} \mathcal{D}_{\eta}^{1}; b' \leftarrow^{R} \mathcal{A}(\eta, (x, y))] - Pr[b' = 1|y \leftarrow^{R} \mathcal{E}_{\eta}^{1}; x \leftarrow^{R} \mathcal{D}_{\eta}^{1}; b' \leftarrow^{R} \mathcal{A}(\eta, (x, y))] \\ &= Pr[b' = 1|x \leftarrow^{R} \mathcal{D}_{\eta}^{1}; y \leftarrow^{R} \mathcal{E}_{\eta}^{0}; b' \leftarrow^{R} \mathcal{A}(\eta, (x, y))] - Pr[b' = 1|x \leftarrow^{R} \mathcal{D}_{\eta}^{1}; y \leftarrow^{R} \mathcal{E}_{\eta}^{1}; b' \leftarrow^{R} \mathcal{A}(\eta, (x, y))] \\ &= Adv^{\mathcal{D}^{1}} ||\mathcal{E}^{0}, \mathcal{D}^{1}||\mathcal{E}^{1}}(\mathcal{A}) \end{split}$$

Hence the advantage of \mathcal{B} in distinguishing \mathcal{E}^0 and \mathcal{E}^1 is equal to the advantage of \mathcal{A} in distinguishing $(\mathcal{D}^0 || \mathcal{E}^0)$ and $(\mathcal{D}^1 || \mathcal{E}^1)$.

• Assume that $(\mathcal{D}^0 \| \mathcal{E}^0) \approx (\mathcal{D}^1 \| \mathcal{E}^1)$. We must prove $\mathcal{D}^0 \approx \mathcal{D}^1$ and $\mathcal{E}^0 \approx \mathcal{E}^1$. We prove the second assertion, $\mathcal{E}^0 \approx \mathcal{E}^1$. The first one is similar.

Suppose that $\mathcal{E}^0 \not\approx \mathcal{E}^1$, and let \mathcal{A} be a ppt-adversary that can distinguish \mathcal{E}^0 and \mathcal{E}^1 with non-negligible advantage.

Define an adversary \mathcal{B} by

$$\mathcal{B}(\eta, (x, y)) = [b' \leftarrow^R \mathcal{A}(\eta, y) : b']$$

$$\begin{split} & \text{Then } Adv^{\mathcal{D}^{0} \parallel \mathcal{E}^{0}, \mathcal{D}^{1} \parallel \mathcal{E}^{1}}(\mathcal{B}) = Pr[b' = 1 \mid (x, y) \leftarrow^{R} (\mathcal{D}^{0} \parallel \mathcal{E}^{0})_{\eta}; b' \leftarrow^{R} \mathcal{B}(\eta, (x, y))] - Pr[b' = 1 \mid (x, y) \leftarrow^{R} (\mathcal{D}^{1} \parallel \mathcal{E}^{1})_{\eta}; b' \leftarrow^{R} \mathcal{B}(\eta, (x, y))] \\ & = Pr[b' = 1 \mid x \leftarrow^{R} \mathcal{D}_{\eta}^{0}; y \leftarrow^{R} \mathcal{E}_{\eta}^{0}; b' \leftarrow^{R} \mathcal{A}(\eta, y)] - Pr[b' = 1 \mid x \leftarrow^{R} \mathcal{D}_{\eta}^{1}; y \leftarrow^{R} \mathcal{E}_{\eta}^{1}; b' \leftarrow^{R} \mathcal{A}(\eta, y)] \\ & = Pr[b' = 1 \mid y \leftarrow^{R} \mathcal{E}_{\eta}^{0}; b' \leftarrow^{R} \mathcal{A}(\eta, y)] - Pr[b' = 1 \mid y \leftarrow^{R} \mathcal{E}_{\eta}^{1}; b' \leftarrow^{R} \mathcal{A}(\eta, y)] \\ & = Adv^{\mathcal{E}^{0}, \mathcal{E}^{1}}(\mathcal{A}) \end{split}$$

Hence the advantage of \mathcal{B} in distinguishing $(\mathcal{D}^0 || \mathcal{E}^0)$ and $(\mathcal{D}^1 || \mathcal{E}^1)$ is equal to the advantage of \mathcal{A} in distinguishing \mathcal{E}^0 and \mathcal{E}^1 .

Exercise 7

We use \oplus to denote the usual bitwise xor over equal-length bitstrings, e.g. $0011 \oplus 1110 = 1101$, and $01 \oplus 00 = 01$.

Given two families of distributions \mathcal{D} and \mathcal{E} , such that for any η , both \mathcal{D}_{η} and \mathcal{E}_{η} are distributions over strings of length η , we define $\mathcal{D} \oplus \mathcal{E}$ by

$$(\mathcal{D} \oplus \mathcal{E})_{\eta} = [x \leftarrow^R \mathcal{D}_{\eta}; y \leftarrow^R \mathcal{E}_{\eta} : (x \oplus y)]$$

Prove or disprove the following assertions (where \approx is the computational indistinguishability relation over distributions):

- If $\mathcal{D}^0 \approx \mathcal{D}^1$ and \mathcal{E} is polynomial-time constructible, then $(\mathcal{D}^0 \oplus \mathcal{E}) \approx (\mathcal{D}^1 \oplus \mathcal{E})$.
- If $(\mathcal{D}^0 \oplus \mathcal{E}) \approx (\mathcal{D}^1 \oplus \mathcal{E})$ then $\mathcal{D}^0 \approx \mathcal{D}^1$.

Solution :

• Let \mathcal{E} be a polynomial-time constructible family of distributions, and assume that $\mathcal{D}^0 \approx \mathcal{D}^1$. Let us prove that $(\mathcal{D}^0 \oplus \mathcal{E}) \approx (\mathcal{D}^1 \oplus \mathcal{E})$.

Suppose that $(\mathcal{D}^0 \oplus \mathcal{E}) \not\approx (\mathcal{D}^1 \oplus \mathcal{E})$, and let \mathcal{A} be a ppt-adversary that can distinguish $(\mathcal{D}^0 \oplus \mathcal{E})$ and $\mathcal{D}^1 \oplus \mathcal{E}$ with non-negligible advantage.

Define an adversary ${\mathcal B}$ by

$$\mathcal{B}(\eta, x) = [y \leftarrow^R \Psi_{\mathcal{E}}(\eta); b' \leftarrow^R \mathcal{A}(\eta, x \oplus y) : b']$$

We can see that if x is distributed according to \mathcal{D}^i_{η} , then the argument of \mathcal{A} is distributed according to $(\mathcal{D}^i \oplus \mathcal{E})_{\eta}$. Then

$$\begin{aligned} Adv^{\mathcal{D}^{0},\mathcal{D}^{1}}(\mathcal{B}) &= Pr[b' = 1|x \leftarrow^{R} \mathcal{D}_{\eta}^{0}; b' \leftarrow^{R} \mathcal{B}(\eta, x)] - Pr[b' = 1|y \leftarrow^{R} \mathcal{D}_{\eta}^{1}; b' \leftarrow^{R} \mathcal{B}(\eta, x)] \\ &= Pr[b' = 1|x \leftarrow^{R} \mathcal{D}_{\eta}^{0}; y \leftarrow^{R} \Psi_{\mathcal{E}}(\eta); b' \leftarrow^{R} \mathcal{A}(\eta, x \oplus y)] - Pr[b' = 1|x \leftarrow^{R} \mathcal{D}_{\eta}^{1}; y \leftarrow^{R} \Psi_{\mathcal{E}}(\eta); b' \leftarrow^{R} \mathcal{A}(\eta, x \oplus y)] \\ &= Pr[b' = 1|x \leftarrow^{R} \mathcal{D}_{\eta}^{0}; y \leftarrow^{R} \mathcal{E}_{\eta}; b' \leftarrow^{R} \mathcal{A}(\eta, x \oplus y)] - Pr[b' = 1|x \leftarrow^{R} \mathcal{D}_{\eta}^{1}; y \leftarrow^{R} \mathcal{E}_{\eta}; b' \leftarrow^{R} \mathcal{A}(\eta, x \oplus y)] - Pr[b' = 1|x \leftarrow^{R} \mathcal{D}_{\eta}^{1}; y \leftarrow^{R} \mathcal{E}_{\eta}; b' \leftarrow^{R} \mathcal{A}(\eta, x \oplus y)] \\ &= Adv^{\mathcal{D}^{0} \oplus \mathcal{E}, \mathcal{D}^{1} \oplus \mathcal{E}}(\mathcal{A}) \end{aligned}$$

Hence the advantage of \mathcal{B} in distinguishing \mathcal{D}^0 and \mathcal{D}^1 is equal to the advantage of \mathcal{A} in distinguishing $(\mathcal{D}^0 \oplus \mathcal{E})$ and $(\mathcal{D}^1 \oplus \mathcal{E})$.

• The assertion is false.

Let \mathcal{D}^0_{η} be the distribution that return the string 0^{η} with probability 1, and all other strings of length η with probability 0, that is,

$$Pr[d = 0^{\eta}|d \leftarrow^R \mathcal{D}_n^0] = 1$$

and for any string $w \in \{0,1\}^{\eta}$, such that $w \neq 0^{\eta}$, $Pr[d = w|d \leftarrow^R \mathcal{D}_{\eta}^0] = 0$.

Let \mathcal{D}^1_{η} be the distribution that return the string 1^{η} with probability 1, and all other strings of length η with probability 0, that is,

$$Pr[d = 1^{\eta} | d \leftarrow^R \mathcal{D}^1_{\eta}] = 1$$

and for any string $w \in \{0,1\}^{\eta}$, such that $w \neq 1^{\eta}$, $Pr[d = w|d \leftarrow^{R} \mathcal{D}_{\eta}^{1}] = 0$.

Let \mathcal{E}_{η} be the uniform distribution over the strings of length η , that is, for any string $w \in \{0,1\}^{\eta}$,

$$Pr[d = w|d \leftarrow^R \mathcal{D}_n^1] = 1/2^\eta.$$

Then $(\mathcal{D}^0 \oplus \mathcal{E}) = (\mathcal{D}^1 \oplus \mathcal{E})$, since both are the uniform distribution over the strings of length η , and hence $(\mathcal{D}^0 \oplus \mathcal{E}) \approx (\mathcal{D}^1 \oplus \mathcal{E})$. But obviously, $\mathcal{D}^0 \not\approx \mathcal{D}^1$.

Consider for example the adversary \mathcal{A} defined by:

 $\mathcal{A}(\eta, x) = if \ x = 0^{\eta} \ then \ return \ 1 \ else \ return \ 0.$