Exercices

Exercise 1

- Solve the following syntactic unification problems. If there is no unifier, explain why
 - 1. $f(x, y) \stackrel{?}{=} f(h(a), x)$ 2. $f(x, y) \stackrel{?}{=} f(h(x), x)$ 3. $f(x, a) \stackrel{?}{=} f(h(b), b)$ 4. $f(x, x) \stackrel{?}{=} f(h(y), y)$

• Now solve each of the above, modulo commutativity of f, i.e. $\forall x, y \ f(x, y) = f(y, x)$.

Exercise 2

We recall the rules of the Deduction System for Dolev Yao theory: $T_0 \vdash s$, where $[]_-$ represents a symmetric encryption scheme, $\{ _ \}_-$ an asymmetric encryption scheme, and we suppose that pr(u) is the inverse secret key associated to pk(u):

 $(A) \quad \frac{u \in T_{0}}{T_{0} \vdash u} \qquad (UL) \quad \frac{T_{0} \vdash \langle u, v \rangle}{T_{0} \vdash u}$ $(P) \quad \frac{T_{0} \vdash u \quad T_{0} \vdash v}{T_{0} \vdash \langle u, v \rangle} \qquad (UR) \quad \frac{T_{0} \vdash \langle u, v \rangle}{T_{0} \vdash v}$ $(C) \quad \frac{T_{0} \vdash u \quad T_{0} \vdash v}{T_{0} \vdash [u]_{v}} \qquad (D) \quad \frac{T_{0} \vdash [u]_{v} \quad T_{0} \vdash v}{T_{0} \vdash u}$ $(AD) \quad \frac{T_{0} \vdash \{u\}_{pk(v)} \quad T_{0} \vdash pr(v)}{T_{0} \vdash u} \qquad (AC) \quad \frac{T_{0} \vdash u \quad T_{0} \vdash pk(v)}{T_{0} \vdash \{u\}_{pk(v)}}$

The set of **Syntactic Subterms** of a term t, denoted by S(t), is the smallest set such that:

- $t \in S(t)$
- $\langle u, v \rangle \in S(t) \Rightarrow u, v \in S(t)$
- $[\!\![u]\!]_v \in S(t) \Rightarrow u, v \in S(t)$

For a set T of terms, we define $S(T) = \bigcup_{t \in T} S(t)$.

The following algorithm allows to decide if $T_0 \vdash w$ (where $T \vdash^{\leq 1} s$ means that s can be obtained from T using only one rule from the Deduction System):

McAllester's Algorithm

Input : T_0, w

 $\begin{array}{l} T \leftarrow T_0;\\ \text{while } (\exists s \in S(T_0 \cup \{w\}) \text{ such that } T \vdash^{\leq 1} s \text{ and } s \notin T)\\ T \leftarrow T \cup \{s\}; \end{array}$

Output : $w \in T$

Using the above algorithm, prove or disprove that a passive Dolev Yao intruder can deduce the message s with the initial knowledge T_0 .

1.)
$$T_0 = \{a, k\}$$
 and $s = \langle a, [\![a]\!]_k \rangle$
2.) $T_0 = \{a, k, n1, [\![k2]\!]_{\langle n1, n2 \rangle}, [\![\langle n2, [\![n1]\!]_{\langle n3, n3 \rangle} \rangle]\!]_k\}$ and $s = k2$
3.) $T_0 = \{a, b, k1, k2, [\![k4]\!]_{\langle k1, k3 \rangle}, [\![\langle k2, n \rangle]\!]_{\langle k2, k1 \rangle}, [\![\langle k2, k3 \rangle]\!]_{\langle k4, k1 \rangle}\}$ and $s = k4$

Exercise 3

Consider the following protocol:

1.
$$A \rightarrow B : \{ \langle A, N_a \rangle \}_{pk(B)}$$

2. $B \rightarrow A : \langle \{ \langle A, K \rangle \}_{pk(A)}, [N_a]_K \rangle$
3. $A \rightarrow B : \{ \langle \langle A, B \rangle, K \rangle \}_{pk(B)}$

Assume that $\{ _ \}_{_}$ is an asymmetric encryption scheme, pk(x) (respectively pr(x)) is the public key (respectively private key) of participant x.

- 1. Consider a session between two honest participants a and b and show that k (the instantiation of variable K in this session) remains secret in presence of a passive Dolev-Yao intruder.
- 2. We assume now that the adversary i is active (he controls the network).
 - 1.) Consider the scenario corresponding to a session of a as initiator with i, and to a session of b as responder.
 Suppose that the initial knwoledge of the intruder i is the set
 T₁ = {a, b, pk(a), pk(b), pk(i), pr(i)}, i.e. we suppose that a and b are honest.
 Suppose that at the end, b will think that he is talking and sharing a secret value k with a. Can you find an attack where the intruder i will learn k?
 - 2.) Can you correct the protocol? Justify your answer.

Exercise 4

Consider the following (Needham-Schroeder-Lowe) protocol:

1.
$$A \rightarrow B$$
 : { $\langle A, N_a \rangle$ }_{pk(B)}
2. $B \rightarrow A$: { $\langle N_a, \langle N_b, B \rangle \rangle$ }_{pk(A)}
3. $A \rightarrow B$: { N_b }_{pk(B)}

Assume that $\{ _ \}_{_}$ is an asymmetric encryption scheme, pk(x) (respectively pr(x)) is the public key (respectively private key) of participant x. This protocols ensures secrecy of N_b , and injective agreement from the perspective of both the initiator and the responder. Show that the following modified version of Needham-Schroeder-Lowe protocol:

1.
$$A \rightarrow B : \{ \langle A, N_a \rangle \}_{pk(B)}$$

2. $B \rightarrow A : \{ \langle N_a, N_b \oplus B \rangle \}_{pk(A)}$
3. $A \rightarrow B : \{ N_b \}_{pk(B)}$

is not correct. It allows an attack on both the secrecy of N_b and on the authentication of B. This arises because \oplus has algebraic properties that the free algebra assumption ignores: for instance, it is associative, commutative, and has the cancellation property $X \oplus X = 0$. What can you say about the following protocol?

1.
$$A \rightarrow B$$
 : { $\langle A, N_a \rangle$ }_{pk(B)}
2. $B \rightarrow A$: { $\langle N_a \oplus B, N_b \rangle$ }_{pk(A)}
3. $A \rightarrow B$: { N_b }_{pk(B)}

Exercise 5

In this exercice, $(_,_)$ represents concatenation, and $\{_\}$ represents a probabilistic symmetric encryption scheme (the randomness used is explicit now). We recall that two messages m_0 and m_1 are equivalent in the Dolev Yao model (written $m_0 \sim m_1$) if there is a renaming (a bijection) σ_K of keys of m_1 and a renaming σ_R of random coins of m_1 such that $\mathbf{pat}(m_0) = \mathbf{pat}(m_1)\sigma_K\sigma_R$.

Prove or disprove the symbolic equivalence ~ in the Dolev Yao model of the following pairs of messages $m_0 \stackrel{?}{\sim} m_1$:

 $\begin{array}{ll} 1.) & m_0 = (\{(1, \{0\}_{k_1}^{r'})\}_k^r, \{0\}_k^{r'}), & m_1 = (\{(1, 0)\}_{k_3}^{r'}, \{1\}_{k_3}^s) \\ 2.) & m_0 = ((\{(0, \{1\}_k^{r'})\}_{k_1}^r, \{1\}_k^{r'}), k_1), & m_1 = ((\{(0, \{1\}_k^{r'})\}_{k_1}^r, \{1\}_k^{r''}), k_1) \\ 3.) & m_0 = (\{(0, \{1\}_k^{r'})\}_k^r, \{0\}_{k'}^{r'}), & m_1 = (\{0\}_k^{r'}, \{0\}_k^s) \end{array}$

Exercise 6

We recall that a family of distributions \mathcal{E} is called **polynomial-time constructible**, if there is a ppt-algorithm $\Psi_{\mathcal{E}}$, such that the output of $\Psi_{\mathcal{E}}(\eta)$ is distributed identically to \mathcal{E}_{η} . Given two families of distributions \mathcal{D} and \mathcal{E} , we define $\mathcal{D} \| \mathcal{E}$ by

$$(\mathcal{D}\|\mathcal{E})_{\eta} = [x \leftarrow^{R} \mathcal{D}_{\eta}; y \leftarrow^{R} \mathcal{E}_{\eta} : (x, y)]$$

Prove or disprove the following assertions (where \approx is the computational indistinguishability relation over distributions):

- If $\mathcal{D}^0 \approx \mathcal{D}^1$ and $\mathcal{E}^0 \approx \mathcal{E}^1$ and $\mathcal{D}^0, \mathcal{D}^1, \mathcal{E}^0, \mathcal{E}^1$ are all polynomial-time constructible, then $(\mathcal{D}^0 \| \mathcal{E}^0) \approx (\mathcal{D}^1 \| \mathcal{E}^1)$.
- If $(\mathcal{D}^0 \| \mathcal{E}^0) \approx (\mathcal{D}^1 \| \mathcal{E}^1)$ then $\mathcal{D}^0 \approx \mathcal{D}^1$ and $\mathcal{E}^0 \approx \mathcal{E}^1$.

Exercise 7

We use \oplus to denote the usual bitwise xor over equal-length bitstrings, e.g. $0011 \oplus 1110 = 1101$, and $01 \oplus 00 = 01$.

Given two families of distributions \mathcal{D} and \mathcal{E} , such that for any η , both \mathcal{D}_{η} and \mathcal{E}_{η} are distributions over strings of length η , we define $\mathcal{D} \oplus \mathcal{E}$ by

$$(\mathcal{D} \oplus \mathcal{E})_{\eta} = [x \leftarrow^R \mathcal{D}_{\eta}; y \leftarrow^R \mathcal{E}_{\eta} : (x \oplus y)]$$

Prove or disprove the following assertions (where \approx is the computational indistinguishability relation over distributions):

- If $\mathcal{D}^0 \approx \mathcal{D}^1$ and \mathcal{E} is polynomial-time constructible, then $(\mathcal{D}^0 \oplus \mathcal{E}) \approx (\mathcal{D}^1 \oplus \mathcal{E})$.
- If $(\mathcal{D}^0 \oplus \mathcal{E}) \approx (\mathcal{D}^1 \oplus \mathcal{E})$ then $\mathcal{D}^0 \approx \mathcal{D}^1$.