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Exercices

Exercise 1
• Solve the following syntactic unification problems. If there is no unifier, explain why

1. f(x, y)
?
= f(h(a), x)

2. f(x, y)
?
= f(h(x), x)

3. f(x, a)
?
= f(h(b), b)

4. f(x, x)
?
= f(h(y), y)

• Now solve each of the above, modulo commutativity of f , i.e. ∀x, y f(x, y) = f(y, x).

Exercise 2
We recall the rules of the Deduction System for Dolev Yao theory: T0 ⊢ s, where {[ ]}
represents a symmetric encryption scheme, {| |} an asymmetric encryption scheme, and
we suppose that pr(u) is the inverse secret key associated to pk(u):

(A) u ∈ T0

T0 ⊢ u
(UL)

T0 ⊢ ⟨u, v⟩
T0 ⊢ u

(P) T0 ⊢ u T0 ⊢ v
T0 ⊢ ⟨u, v⟩

(UR)
T0 ⊢ ⟨u, v⟩
T0 ⊢ v

(C) T0 ⊢ u T0 ⊢ v
T0 ⊢ {[u]}v

(D)
T0 ⊢ {[u]}v T0 ⊢ v

T0 ⊢ u

(AD)
T0 ⊢ {| u |}pk(v) T0 ⊢ pr(v)

T0 ⊢ u
(AC)

T0 ⊢ u T0 ⊢ pk(v)

T0 ⊢ {| u |}pk(v)

The set of Syntactic Subterms of a term t, denoted by S(t), is the smallest set such
that:

• t ∈ S(t)

• ⟨u, v⟩ ∈ S(t)⇒ u, v ∈ S(t)

• {[u]}v ∈ S(t)⇒ u, v ∈ S(t)
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For a set T of terms, we define S(T ) =
⋃

t∈T S(t).
The following algorithm allows to decide if T0 ⊢ w (where T ⊢≤1 s means that s can be

obtained from T using only one rule from the Deduction System):
McAllester’s Algorithm
Input : T0, w

T ← T0;
while (∃s ∈ S(T0 ∪ {w}) such that T ⊢≤1 s and s ̸∈ T )

T ← T ∪ {s};
Output :w ∈ T

Using the above algorithm, prove or disprove that a passive Dolev Yao intruder can
deduce the message s with the initial knowledge T0.

1.) T0 = {a, k} and s = ⟨a, {[a]}k⟩

2.) T0 = {a, k, n1, {[k2]}⟨n1,n2⟩, {[⟨n2, {[n1]}⟨n3,n3⟩⟩]}k} and s = k2

3.) T0 = {a, b, k1, k2, {[k4]}⟨k1,k3⟩, {[⟨k2, n⟩]}⟨k2,k1⟩, {[⟨k2, k3⟩]}⟨k4,k1⟩} and s = k4

Exercise 3
Consider the following protocol:

1. A → B : {| ⟨A,Na⟩ |}pk(B)

2. B → A : ⟨{| ⟨A,K⟩ |}pk(A), {[Na]}K⟩
3. A → B : {| ⟨⟨A,B⟩, K⟩ |}pk(B)

Assume that {| |} is an asymmetric encryption scheme, pk(x) (respectively pr(x)) is the
public key (respectively private key) of participant x.

1. Consider a session between two honest participants a and b and show that k (the
instantiation of variable K in this session) remains secret in presence of a passive
Dolev-Yao intruder.

2. We assume now that the adversary i is active (he controls the network).

1.) Consider the scenario corresponding to a session of a as initiator with i, and to
a session of b as responder.

Suppose that the initial knwoledge of the intruder i is the set
T1 = {a, b, pk(a), pk(b), pk(i), pr(i)}, i.e. we suppose that a and b are honest.
Suppose that at the end, b will think that he is talking and sharing a secret
value k with a. Can you find an attack where the intruder i will learn k?

2.) Can you correct the protocol? Justify your answer.

Exercise 4
Consider the following (Needham-Schroeder-Lowe) protocol:

1. A → B : {| ⟨A,Na⟩ |}pk(B)

2. B → A : {| ⟨Na, ⟨Nb, B⟩⟩ |}pk(A)

3. A → B : {| Nb |}pk(B)
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Assume that {| |} is an asymmetric encryption scheme, pk(x) (respectively pr(x)) is the
public key (respectively private key) of participant x. This protocols ensures secrecy of
Nb, and injective agreement from the perspective of both the initiator and the responder.
Show that the following modified version of Needham-Schroeder-Lowe protocol:

1. A → B : {| ⟨A,Na⟩ |}pk(B)

2. B → A : {| ⟨Na, Nb ⊕B⟩ |}pk(A)

3. A → B : {| Nb |}pk(B)

is not correct. It allows an attack on both the secrecy of Nb and on the authentication of
B. This arises because ⊕ has algebraic properties that the free algebra assumption ignores:
for instance, it is associative, commutative, and has the cancellation property X ⊕X = 0.
What can you say about the following protocol?

1. A → B : {| ⟨A,Na⟩ |}pk(B)

2. B → A : {| ⟨Na ⊕B,Nb⟩ |}pk(A)

3. A → B : {| Nb |}pk(B)

Exercise 5
In this exercice, ( , ) represents concatenation, and { } represents a probabilistic symmet-
ric encryption scheme (the randomness used is explicit now). We recall that two messages
m0 and m1 are equivalent in the Dolev Yao model (written m0 ∼ m1) if there is a renam-
ing (a bijection) σK of keys of m1 and a renaming σR of random coins of m1 such that
pat(m0) = pat(m1)σKσR.

Prove or disprove the symbolic equivalence ∼ in the Dolev Yao model of the following

pairs of messages m0
?∼ m1:

1.) m0 = ({(1, {0}r′k1)}
r
k, {0}r

′

k ), m1 = ({(1, 0)}r′k3 , {1}
s
k3
)

2.) m0 = (({(0, {1}r′k )}rk1 , {1}
r′

k ), k1), m1 = (({(0, {1}r′k )}rk1 , {1}
r′′

k ), k1)
3.) m0 = ({(0, {1}r′k )}rk, {0}r

′

k′), m1 = ({0}r′k , {0}sk)

Exercise 6
We recall that a family of distributions E is called polynomial-time constructible, if
there is a ppt-algorithm ΨE , such that the output of ΨE(η) is distributed identically to Eη.
Given two families of distributions D and E , we define D∥E by

(D∥E)η = [x←R Dη; y ←R Eη : (x, y)]

Prove or disprove the following assertions (where≈ is the computational indistingushability
relation over distributions):

• If D0 ≈ D1 and E0 ≈ E1 and D0,D1, E0, E1 are all polynomial-time constructible,
then (D0∥E0) ≈ (D1∥E1).

• If (D0∥E0) ≈ (D1∥E1) then D0 ≈ D1 and E0 ≈ E1.
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Exercise 7
We use ⊕ to denote the usual bitwise xor over equal-length bitstrings, e.g. 0011⊕ 1110 =
1101, and 01⊕ 00 = 01.
Given two families of distributions D and E , such that for any η, both Dη and Eη are
distributions over strings of length η, we define D ⊕ E by

(D ⊕ E)η = [x←R Dη; y ←R Eη : (x⊕ y)]

.
Prove or disprove the following assertions (where ≈ is the computational indistingusha-

bility relation over distributions):

• If D0 ≈ D1 and E is polynomial-time constructible, then (D0 ⊕ E) ≈ (D1 ⊕ E).

• If (D0 ⊕ E) ≈ (D1 ⊕ E) then D0 ≈ D1.
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