Crypto Engineering - verifying security protocols 2023/2024

Exercices

Exercise 1

- Solve the following syntactic unification problems. If there is no unifier, explain why

1. $f(x, y) \stackrel{?}{=} f(h(a), x)$
2. $f(x, y) \stackrel{?}{=} f(h(x), x)$
3. $f(x, a) \stackrel{?}{=} f(h(b), b)$
4. $f(x, x) \stackrel{?}{=} f(h(y), y)$

- Now solve each of the above, modulo commutativity of f, i.e. $\forall x, y f(x, y)=f(y, x)$.

Exercise 2

We recall the rules of the Deduction System for Dolev Yao theory: $T_{0} \vdash s$, where $\}$ represents a symmetric encryption scheme, \{ - \}_ an asymmetric encryption scheme, and we suppose that $\operatorname{pr}(u)$ is the inverse secret key associated to $p k(u)$:
(A) $\frac{u \in T_{0}}{T_{0} \vdash u}$
(UL) $\frac{T_{0} \vdash\langle u, v\rangle}{T_{0} \vdash u}$
(P) $\quad \frac{T_{0} \vdash u \quad T_{0} \vdash v}{T_{0} \vdash\langle u, v\rangle}$
(UR) $\frac{T_{0} \vdash\langle u, v\rangle}{T_{0} \vdash v}$
(C) $\frac{T_{0} \vdash u \quad T_{0} \vdash v}{T_{0} \vdash\{u]_{v}}$
(D) $\frac{T_{0} \vdash\{u]_{v} \quad T_{0} \vdash v}{T_{0} \vdash u}$
(AD) $\frac{T_{0} \vdash\{u\}_{p k(v)} T_{0} \vdash p r(v)}{T_{0} \vdash u}$
(AC) $\frac{T_{0} \vdash u \quad T_{0} \vdash p k(v)}{T_{0} \vdash\{u\}_{p k(v)}}$

The set of Syntactic Subterms of a term t, denoted by $S(t)$, is the smallest set such that:

- $t \in S(t)$
- $\langle u, v\rangle \in S(t) \Rightarrow u, v \in S(t)$
- $\{u\}_{v} \in S(t) \Rightarrow u, v \in S(t)$

For a set T of terms, we define $S(T)=\bigcup_{t \in T} S(t)$.
The following algorithm allows to decide if $T_{0} \vdash w$ (where $T \vdash \leq 1 s$ means that s can be obtained from T using only one rule from the Deduction System):
McAllester's Algorithm
Input: T_{0}, w
$T \leftarrow T_{0} ;$
while $\left(\exists s \in S\left(T_{0} \cup\{w\}\right)\right.$ such that $T \vdash \leq 1 s$ and $\left.s \notin T\right)$
$T \leftarrow T \cup\{s\} ;$
Output : $w \in T$
Using the above algorithm, prove or disprove that a passive Dolev Yao intruder can deduce the message s with the initial knowledge T_{0}.
1.) $T_{0}=\{a, k\}$ and $s=\left\langle a,\{a\}_{k}\right\rangle$
2.) $T_{0}=\left\{a, k, n 1,\{k 2\}_{\langle n 1, n 2\rangle},\left\{\{n 2,\{\{n 1\}\{n 3, n 3\rangle\rangle\}_{k}\right\}\right.$ and $s=k 2$
3.) $T_{0}=\left\{a, b, k 1, k 2,\left\{\{k 4\}_{\langle k 1, k 3\rangle},\{\{k 2, n\rangle\}_{\langle k 2, k 1\rangle},\left\{\{\langle k 2, k 3\rangle\}_{\langle k 4, k 1\rangle}\right\}\right.\right.$ and $s=k 4$

Exercise 3

Consider the following protocol:

$$
\left.\begin{array}{l}
\text { 1. } A \rightarrow B:\left\{\left\langle A, N_{a}\right\rangle\right\}_{p k(B)} \\
\text { 2. } \\
\text { 3. }
\end{array} \text { A } \rightarrow B:\left\langle\{\langle A, K\rangle\}_{p k(A)},\left\{N_{a\}}\right\}_{K}\right\rangle\right):\{\langle\langle A, B\rangle, K\rangle\}_{p k(B)}
$$

Assume that $\left\{\mathbf{-}^{-}\right\}_{-}$is an asymmetric encryption scheme, $p k(x)$ (respectively $p r(x)$) is the public key (respectively private key) of participant x.

1. Consider a session between two honest participants a and b and show that k (the instantiation of variable K in this session) remains secret in presence of a passive Dolev-Yao intruder.
2. We assume now that the adversary i is active (he controls the network).
1.) Consider the scenario corresponding to a session of a as initiator with i, and to a session of b as responder.
Suppose that the initial knwoledge of the intruder i is the set
$T_{1}=\{a, b, p k(a), p k(b), p k(i), p r(i)\}$, i.e. we suppose that a and b are honest. Suppose that at the end, b will think that he is talking and sharing a secret value k with a. Can you find an attack where the intruder i will learn k ?
2.) Can you correct the protocol? Justify your answer.

Exercise 4

Consider the following (Needham-Schroeder-Lowe) protocol:

$$
\begin{aligned}
& \text { 1. } A \rightarrow B:\left\{\left\langle A, N_{a}\right\rangle\right\}_{p k(B)} \\
& \text { 2. } B \rightarrow A:\left\{\left\langle N_{a},\left\langle N_{b}, B\right\rangle\right\rangle\right\}_{p k(A)} \\
& \text { 3. } A \rightarrow B:\left\{N_{b}\right\}_{p k(B)}
\end{aligned}
$$

Assume that $\left\{\mathcal{K}^{-}\right\}$_ is an asymmetric encryption scheme, $\operatorname{pk}(x)$ (respectively $\operatorname{pr}(x)$) is the public key (respectively private key) of participant x. This protocols ensures secrecy of N_{b}, and injective agreement from the perspective of both the initiator and the responder. Show that the following modified version of Needham-Schroeder-Lowe protocol:

$$
\begin{aligned}
& \text { 1. } A \rightarrow B:\left\{\left\langle A, N_{a}\right\rangle\right\}_{p k(B)} \\
& \text { 2. } B \rightarrow A:\left\{\left\langle N_{a}, N_{b} \oplus B\right\rangle\right\}_{p k(A)} \\
& \text { 3. } A \rightarrow B:\left\{N_{b}\right\}_{p k(B)}
\end{aligned}
$$

is not correct. It allows an attack on both the secrecy of N_{b} and on the authentication of B. This arises because \oplus has algebraic properties that the free algebra assumption ignores: for instance, it is associative, commutative, and has the cancellation property $X \oplus X=0$. What can you say about the following protocol?

$$
\begin{aligned}
& \text { 1. } A \rightarrow B:\left\{\left\langle A, N_{a}\right\rangle\right\}_{p k(B)} \\
& \text { 2. } \\
& \text { 3. } \\
& \text { 3. }
\end{aligned} \text { A }:\left\{\begin{array}{l}
\text { : }
\end{array}\left\{\left\{N_{a} \oplus B, N_{b}\right\rangle\right\}_{p k(A)}\right\}
$$

Exercise 5

In this exercice, (,$_{-}$) represents concatenation, and $\left\{_{-}\right\}_{-}^{-}$represents a probabilistic symmetric encryption scheme (the randomness used is explicit now). We recall that two messages m_{0} and m_{1} are equivalent in the Dolev Yao model (written $m_{0} \sim m_{1}$) if there is a renaming (a bijection) σ_{K} of keys of m_{1} and a renaming σ_{R} of random coins of m_{1} such that $\operatorname{pat}\left(m_{0}\right)=\operatorname{pat}\left(m_{1}\right) \sigma_{K} \sigma_{R}$.

Prove or disprove the symbolic equivalence \sim in the Dolev Yao model of the following pairs of messages $m_{0} \stackrel{?}{\sim} m_{1}$:

$$
\begin{array}{ll}
\text { 1.) } m_{0}=\left(\left\{\left(1,\{0\}_{k_{1}}^{r^{\prime}}\right)\right)_{k}^{r},\{0\}_{k}^{r^{\prime}}\right), & m_{1}=\left(\{(1,0)\}_{k_{3}}^{r^{\prime}},\{1\}_{k_{3}}^{s}\right) \\
\text { 2.) } m_{0}=\left(\left(\left\{\left(0,\{1\}_{k}^{r^{\prime}}\right)\right\}_{k_{1}}^{r},\{1\}_{k}^{r^{\prime}}\right), k_{1}\right), & m_{1}=\left(\left(\left\{\left(0,\{1\}_{k}^{r^{\prime}}\right)\right\}_{k_{1}}^{r},\{1\}_{k}^{r^{\prime \prime}}\right), k_{1}\right) \\
\text { 3.) } m_{0}=\left(\left\{\left(0,\{1\}_{k}^{r^{\prime}}\right)\right\}_{k}^{r},\{0\}_{k^{\prime}}^{r^{\prime}}\right), & m_{1}=\left(\{0\}_{k}^{r^{\prime}},\{0\}_{k}^{s}\right)
\end{array}
$$

Exercise 6

We recall that a family of distributions \mathcal{E} is called polynomial-time constructible, if there is a ppt-algorithm $\Psi_{\mathcal{E}}$, such that the output of $\Psi_{\mathcal{E}}(\eta)$ is distributed identically to \mathcal{E}_{η}. Given two families of distributions \mathcal{D} and \mathcal{E}, we define $\mathcal{D} \| \mathcal{E}$ by

$$
(\mathcal{D} \| \mathcal{E})_{\eta}=\left[x \leftarrow^{R} \mathcal{D}_{\eta} ; y \leftarrow^{R} \mathcal{E}_{\eta}:(x, y)\right]
$$

Prove or disprove the following assertions (where \approx is the computational indistingushability relation over distributions):

- If $\mathcal{D}^{0} \approx \mathcal{D}^{1}$ and $\mathcal{E}^{0} \approx \mathcal{E}^{1}$ and $\mathcal{D}^{0}, \mathcal{D}^{1}, \mathcal{E}^{0}, \mathcal{E}^{1}$ are all polynomial-time constructible, then $\left(\mathcal{D}^{0} \| \mathcal{E}^{0}\right) \approx\left(\mathcal{D}^{1} \| \mathcal{E}^{1}\right)$.
- If $\left(\mathcal{D}^{0} \| \mathcal{E}^{0}\right) \approx\left(\mathcal{D}^{1} \| \mathcal{E}^{1}\right)$ then $\mathcal{D}^{0} \approx \mathcal{D}^{1}$ and $\mathcal{E}^{0} \approx \mathcal{E}^{1}$.

Exercise 7

We use \oplus to denote the usual bitwise xor over equal-length bitstrings, e.g. $0011 \oplus 1110=$ 1101 , and $01 \oplus 00=01$.
Given two families of distributions \mathcal{D} and \mathcal{E}, such that for any η, both \mathcal{D}_{η} and \mathcal{E}_{η} are distributions over strings of length η, we define $\mathcal{D} \oplus \mathcal{E}$ by

$$
(\mathcal{D} \oplus \mathcal{E})_{\eta}=\left[x \leftarrow^{R} \mathcal{D}_{\eta} ; y \leftarrow^{R} \mathcal{E}_{\eta}:(x \oplus y)\right]
$$

Prove or disprove the following assertions (where \approx is the computational indistingushability relation over distributions):

- If $\mathcal{D}^{0} \approx \mathcal{D}^{1}$ and \mathcal{E} is polynomial-time constructible, then $\left(\mathcal{D}^{0} \oplus \mathcal{E}\right) \approx\left(\mathcal{D}^{1} \oplus \mathcal{E}\right)$.
- If $\left(\mathcal{D}^{0} \oplus \mathcal{E}\right) \approx\left(\mathcal{D}^{1} \oplus \mathcal{E}\right)$ then $\mathcal{D}^{0} \approx \mathcal{D}^{1}$.

