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Abstract

We investigate the complexity of the protocol insecurity problem for a finite humber of sessions (fixed
number of interleaved runs). We show that this problem is NP-complete with respect to a Dolev-Yao model
of intruders. The result does not assume a limit on the size of messages and supports non-atomic symmetric
encryption keys. We also prove that in order to build an attack with a fixed number of sessions the intruder
needs only to forge messages of linear size, provided that they are represented as dags.
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Introduction

Even assuming perfect cryptography, the design of protocols for secure electronic transactions is highly error-
prone and conventional validation techniques based on informal arguments and/or testing are not sufficient for
meeting the required security level.

On the other hand, verification tools based on formal methods have been quite successful in discovering new
flaws in well-known security protocols. These methods include state exploration using model-checking as in
[19, 27, 8, 2], logic programming [20], term rewriting [10, 18], tree automata [16, 9] or a combination of these
techniques. Other approaches aim at proving the correctness of a protocol. They are based on authentication
logics or proving security properties by induction using interactive proof-assistants (see [3, 24]).

Although the general verification problem is undecidable [15] even in the restricted case where the size of
messages is bounded [14], it is interesting to investigate decidable fragments of the underlying logics and their
complexity. The success of practical verification tools indicates that there may exist interesting decidable frag-
ments that capture many concrete security problems. Dolev and Yao have proved that for simple ping-pong
protocols, insecurity can be decided in polynomial time [12]. On the other hand [14] shows that when messages
are bounded and when no nonces (i.e. new data) are created by the protocol and the intruder, then the existence

*a first version of his paper was published in Computer Security Foundations Workshop ([26]).



of a secrecy flaw is decidable and DEXPTIME-complete. The complexity for the case of finite sessions was
mentioned as open in [14].

A related decidability result is presented in [17, 1]. The authors give a procedure for checking whether an
unsafe state is reachable by the protocol. Their result holds for the case of finite sessions but with no bounds on
the intruder messages. The detailed proof in [1] does not allow general messages (hot just names) as encryption
keys. The authors do not analyze the complexity of their procetlubdter the presentation of the first version
of our paper in CSFW’'01 ([26]), another decision procedure for composed keys has been announced in [23]).
However this last paper does not give any complexity analysis of the problem.

Our result states that for a fixed number of interleaved protocol runs but with no bounds on the intruder
messages the existence of an attack is NP-complete. We allow public key encryption as well as the possibility
of symmetric encryption witltomposed keyd.e. with any message. In this paper we only consikmrecy
properties. Howeveauthenticationcan be handled in a similar way. Hence, a protocol is considered insecure if
it is possible to reach a state where the intruder possesses a secret term. Thanks to the proof technique, we have
been able to extend the result directly to various intruder models and to protocols with choice points.

Our main complexity result is rather a theoretical one. However it gives information of practical relevance
since for its proof we have shown that in order to attack a protocol an intruder needs only to forge messages of
linear size with respect to the size of the protocol. This gives a low bound for the message space to be explored
when looking for a flaw e.g. with a model-checker and this explains also why many tools are effective in protocol
analysis: to put it informally, in the Dolev-Yao model flawed protocols can be attacked with small faked messages.
A deterministic version of our algorithm has been implementethe prototype does not generate all messages
of maximal size but rather composes them in a goal-oriented way [6, 7]. It performs very well on standard bench-
marks since it has analyzed and found flaws in 30 protocols reported as insecure (out of the 50 protocols of [4])
in[13].

Layout of the paper: We first introduce in Section 1 our model of protocols and intruder and give the notion of
attackandnormal attackin Section 2. Then in Section 3 we study properties of derivations with intruder rules.
This allows us to derive polynomial bounds for normal attacks and then to show that the problem of finding a
normal attack is in NP. We show in Section 4 that the existence of an attack is NP-hard. In Section 5 we show
that the NP procedure of Section 3 can be extended to a stronger intruder model (Subsection 5.1), weaker intruder
model (Subsection 5.2) and also protocols with choice points (Subsection 5.3).

1 The Protocol Model

We consider a model of protocols in the style of [5]. The actions of any honest principal are specified as a partially
ordered list that associates to (the format of) a received message its corresponding reply. The activity of the
intruder is modeled by rewrite rules on sets of messages. We suppose that the initialization phase of distributing
keys and other information between principals is implicit. The approach is quite natural and it is simple to compile
a wide range of protocol descriptions into our formalism. For instance existing tools such as CAPSL [11] or
CASRUL [18] would perform this translation with few modifications. We present our model more formally now.

They have announced recently an NP procedure for atomic keys
2seewww.loria.fr/equipes/protheo/SOFTWARES/CASRUL/



Names and Messages

The messages exchanged during the protocol execution are built using gairingand encryption operators
{_}%, {_}?. We add a superscript to distinguish between public Kwid symmetric key*j encryptions. The
set of basic messages is finite and denoteddsyms. It contains names for principals and atomic keys from the
setKeys. Since we have a finite number of sessions we also assume any nonce is a basic message: we consider
that it has been created before the session and belongs to the initial knowledge of the principal that generates it.
Any message can be used as a key for symmetric encryption. Only element& trgsmare used for public
key encryption. Given a public key (resp. private k&yk ' denotes the associated private key (resp. public key)
and it is an element oK eys. Given a symmetric key then,k~! will denote the same key.
The messages are then generated by the following (tree) grammar:

p

msg = Atoms | (msg,msg) | {msg}ti.,s | {msg}.q,

For conciseness we denote f, mo, ... ,m, the set of messag€sn;, ms,... ,my}. Given two sets of
messaged/ and M’ we denote byM, M’ the union of their elements and given a set of messddesnd a
message, we denote byl/, t the seth U {t¢}.

Protocol Specification

We shall describe protocols by a list of actions for each principal. In order to describe the protocol steps we
introduce message terms (or terms for short). We assume that we have a finite set of VEabl€sen the set
of terms is generated by the following tree grammar:

term = Var | Atoms | (term, term) | {term}y. . | {term}y,,.,

Let Var(t) be the set of variables that occur in a tetmA substitutionassigns terms to variables. gkound
substitutionassigns messages to variables. The application of a substitutma termt is writtento. We also
write [x < u] the substitutiorr defined byr (z) = wando(y) = y for y # . The set of subterms ofis denoted
by Sub(t). These notations are extended to sets of tefhis a standard way. For instand8g = {to |t € E}.

A principal (except the initiator) reply after receiving a message matching a specified term associated to its
current state. Then from the previously received messages (and initial knowledge) he builds the next message he
will send. This concrete message is obtained by instantiating the variables in the message pattern associated to the
current step in the protocol specification.

A protocol is given with a finite set of principal namagimes C Atoms, and a partially ordered list of steps
for each principal name. This partial order is to ensure that the actions of each principal are performed in the right
order. More formally we associate to each princidah partially ordered finite sé€iV 4, <w,). Each protocol
step is specified by a pair of terms denofed= S and is intended to represent some mesdagxpected by a
principal A and his replyS to this message. Hence a protocol specificatftas given by:

{(t,R,=5,)| €T}

whereZ = {(A,i) | A € Names andi € W4 }. We write|Z| for the size off. Init and End are fixed messages
used to initiate and close a protocol session. elwironment for a protocol is a set of messages. crrect



execution order 7 is a one-to-one mapping : Z — {1,..,|Z|} such that for allA € Names andi <y, j
we haver(A,i) < w(A,j). In other wordsr defines an execution order for the protocol steps. This order is
compatible with the partial order of each principal.pfotocol executionis given by a ground substitutian, a
correct execution order and a sequence of environmels, .., E|7 verifying: Init € Ey, End € Ez), and for
alll1 <k < |I|, Rﬂfl(k)O' € Ep_1 andS,rq(k)a € Ey.

Each step of the protocol extends the current environment by adding the corresponding m&ssageen
R, o is present. One can remark that principals are not allowed to generate any new data such as nonces. But this
is not a problem when the number of sessions is finite: in this setting from the operational point it is equivalent to
assume that the new data generated by a principal during a protocol execution is part of his initial knowledge.

Example: Needham Schroeder protocol

Let us give a variant of the Needham Schroeder protocol in our setting. We assume that every nonce is included
in the initial knowledge of the principal that will create it and that a principatho wishes to communicate with
B will send his public key (instead of his name in the standard version):

(A1), Init = {(Na, Ka)}g,, ) (B1), {{z2,23)}x, = {(2,NB)}y, )
(A2), {(Naytg, =A{vlk, ) ((B.2), {NB}g, = End )

The orderings on steps are the ones that are expeldted= Wp = {1,2} with 1 <y, 2,1 <y, 2. We do
not consider that the protocol specification is a set of rules such that the scope of the variables occurring in a rule
is restricted to this rule. On the contrary, the variables are global in our case and their scope may include several
lines of the specification. Hence our modeling approach is different from the one in [14]. See for example the
Otway-Rees protocol given in Section 2.

Intruder

Inthe Dolev Yao model [12] the intruder has the ability to eavesdrop, to divert and memorize messages, to compose
and decompose, to encrypt and decrypt when he has the key, to generate new messages and send them to other
participants with a false identity. We assume here without loss of generality that the intruder systematically diverts
messages, possibly modifies them and forwards them to the receiver under the identity of the official sender. In
other words all communications are mediated by a hostile environment represented by the intruder. The intruder
actions for modifying the messages are simulated by rewrite rules on sets of messages. The rewrite relation is
defined byM — M’ if there exists one of the rule— r in the Table 1 such thdtis a subset of\/ and M’ is
obtained by replacingby r in M. We write—* for the reflexive and transitive closure ©f.

The set of messages represents the initial knowledge of the intruder. We assume that at least the name of
the intruderCharlie belongs to this set.

Intruder rules are divided in several groups: rules for composing or decomposing messages. These rewrite
rules are the only one we consider in this paper and any mentions of “rules” refersules. In the following
a, b andc represent any message asidepresents any element&fey. For instance, the rule with labél.({(a, b))
replaces a set of message$ by the following set of messagesb, (a, b).

See Table 1 for complete the intruder rules, and Section 5 for an extension. We denote the application of a
rule R to a setF’ of messages with resuli’ by £ —r E’. We write L, = {L.(a) | for all messages}, andL,



] Decomposition rules | Composition rules

La((@.b) - {a:b) — a.b,(@.b) L((@.b): ab—ab (@b
Lol{a}h): ()i K"~ {a)jn K Vo | L({alh) . a.K = a K, {a]5
La({a}}) : {a}j.b — {a}j.bea L({a})): a.b—a.b{a)]

Table 1: Intruder Rules (see Section 5 for an extension)

in the same way, and is called theprincipal term of a rule L.(a) or L4(a). We callderivation a sequence of
rule applicationsy —r, E1 — g, .. —r, En. Therulesk; fori = 1,..,n are called the rules of this derivation
D. We write R € D (abusively) to denote thak is one of the rules®;, fori = 1, .., n, that has been used in the
derivationD.

One can remark that if the intruder was allowed to generate new data he will not get more power. He is
already able to create infinitely many data only known to him with simple encryptions. For instance he can
construc{ N} n, {{N}n}n, ... assuming tha¥ is only known by the intruder.

2 Attacks

Considering a protocol specification and a special t8uaret (called secret term), we say that there is an attack

in N protocol sessions if the intruder can obtain the secret term in its knowledge set after completing /&t most
sessions. We consider first the case of a single session. Then we shall sketch in Subsection 3.4 how to reduce the
case of several sessions to the unique session case.

Since received messages are matched by principals with the left-hand sides of protocol steps, meaning that
some substitution unify the messages sent by the intruder and waited by the principals, the existence of an attack
can be expressed as a constraint solving problem: is there a way for the intruder to build from its initial knowledge
and already sent messages a new message (defined by a substitution for the variables of protocol steps) that will
be accepted by the recipient, and so on, until the end of the session, and such that at the end the secret term is
known by the intruder.

We introduce now a predicaf@rge for checking whether a message can be constructed by the intruder from
some known messages. This predicate can be viewed as the combination of pregicdtemndanalz from L.

Paulson [24].

Definition 1 (forge) Let E be a set of terms and Iétbe a term such that there &’ with £ —* E’ andt € F'.
Then we say thatis forged from £ and we denote it by € forge(E).

Let £ be the cardinality of, i.e. the total number of steps of the protocol. An attack is a protocol execution
where the intruder can modify each intermediate environment and where the m&ssagebelongs to the final
environment. In an attack the intruder is able to forge any message expected by a principal by using its initial
knowledge and already sent messages (spied in the environments). This means, formally, that a given protocol
execution, with sequence of environme#is .., Ey, is an attack if for alll < ¢ < k we haveF; 1, Sﬂ.—l(z‘)a' —*

E; andEy, S;-1y0 —* Ej41 With Secret € Ey1. However by definitiont € forge(E) iff there is E' such
that P —* ¢, E’. Hence we can reformulate the definition of an attack using the preditaig:



Definition 2 (attack) Given a protocolP = {R] = S] | . € I}, a secret messagé&ecret and assuming the
intruder has initial knowledgé,, anattackis described by a ground substitutierand a correct execution order
m:Z — 1,...,ksuch that forall; = 1,... %k, we haveR;c € forge(Sop, Si0,...,S;—10) andSecret €
forge(Sp, Sio, ..., So) whereR,; = R;,l(i) ands; = S;,l(i).

Before proceeding let us give as a detailed example an attack with Otway-Rees protocol.

Example: Otway-Rees Protocol

The participants of the protocols are B and the servef. The symmetric keygas, Kbs will be respectively
shared by the participantsi, S), (B, S). The identifiersM, Na, Nb represents nonces. In St8pthe server

S creates the new secret symmetric Keyb to be used byd and B for further safe communications. We have
added an extra stej) in order to show howX< ab is applied byA to send a secret message?oln the attack A

will be fooled into believing that the terma M, A, B > is in fact the new key. The sequence of messages defining
Otway-Rees is:

1. A > B : MAB,{Na,<M,A B>}Kas

2. B -> S : MAB,{Na,<M,A,B>}Kas,
{Nb,<M,A,B>}Kbs

3. S B : M,{Na,Kab}Kas,{Nb,Kab}Kbs

4. B -> A : M,{Na,Kab}Kas

5 A B : {Secret}Kab

For simplicity we write M, M’ M" for ((M,M’) , M"). Let us write now this protocol specification with our
notation.

{

((A’l)’ init :><M’AvB>7{NA7<M’AvB>}KAS )
((B71)1 <x2,$3,B> y L4 = xz,xg,B,l‘4,{NB,ZL‘Q,xg,B}KBS )
((S,1),  xr,za,25, {28, 27,24, 2B} i, o s {29, 27,24, 2B} e = T7.{T8, Kbt e, o %9, Kab g )
((B,2), xg,x5,{NB,x6}KBS = I2,T5 )
((4,2), M {Na, @1}, = {Secret},, )
((B,3), {Secret},, = end ;

An execution can be obtained by taking the protocol steps in the given order and by applying the following
substitution:

11 =Ko m2=M x3=A 15 ={78 Kap}kss T6=Ka z4=4
x4:{<NA,<M,A,B>>}KAS xr=M x3=Ny x9=Np zxzp=2RDB

An attack can be performed on this protocol with initial intruder knowlesige- {C'harlie, init}, using:

Substitution Protocol steps
o=l = (MADB) | n(l) =(A1),7(2) = (4,2)




sinceR, 1o € Forge(So), Rr2)0 € Forge(So, Sz1)0) andSecret € Forge(So, Sz(1)0, Sx(2)7)-

We introduce now a measure on attacks and a notion of minimal attack among all attacks, caltethh
attack We shall prove in the next sections that normal attacks have polynomial bounds for a suitable representation
of terms.

Thesizeof a message terinis denotedt| and defined as:

e |t| = 1foranyt € Atoms, except forCharlie where|Charlie| = 0.
e and recursively by(z, y)| = |[{z},| = |z| + |y| + 1

Note thatCharlie is the minimal size message. We recall that a finite multiset over natural numbers is a
function M from IN to IN with finite domain. We shall use a more intuitive set-like notation for thém2, 2,5}
will denote the function\/ such thatM (5) = 1, M (2) = 3 andM (z) has value) otherwise. We shall compare
finite multisets of naturals by extending the orderingldras follows: M >> N if i) M # N andii) whenever
N(xz) > M(z) thenM(y) > N(y) for somey > z. Equivalently>> is the smallest ordering on multisets of
naturals such that:

MU{s} > NU{t;,... ,tp,}if M = Nands > t;forallie1,... ,n

For instancg3,1,1,1}> {2,2,2,1}. We shall now define a normal attack as an attack such that the multiset
of the sizes of all messages exchanged by the principals and the intruder during the protocol session is minimal
for the multiset ordering odV.

Definition 3 (normal attack) Given a protocolP = {R] = S/ | . € Z}, an attack(o, ) is normalif the multiset
of nonnegative integef§ R, 0|, ..., |Riol|} is minimal, withR; = R;,l(i) ands; = S;,l(i).

Clearly if there is an attack there is a normal attack since the measure is a well-founded ordering on finite
multisets of nonnegative integers. Note also that a normal attack is not necessarily unique. We now present a NP
procedure for detecting the existence of a normal attack.

3 Existence of a Normal Attack is in NP

A key ingredient for proving membership in NP is the representation of messad@iseated Acyclic Graph
(DAG). This is motivated by the fact that we can encode easily the term unification problem as an insecurity
problem and that it is well known that the unifier of two terms may have exponential size when the terms are
represented as trees. For instance the following protocol is subject to an attack if and only if the aednare

unifiable. We assume thati, ... , z, are the variables occurring it and thatk is a key known only tod and
B.

((Av 1)' <$17"' 7xn> :>{<57t>}K )

(B,1), {(z,x)}x = Secret )



Hence with a tree representation it would require exponential space to write the substitution associated to an
attack guessed in a non-deterministic procedure for insecurity.

We first show some basic facts on the DAG-representation of message terms. Then we shall show how to obtain
from any derivation a more compact one. We will then be able to prove that a normal attack has a polynomial size
w.r.t. the size of the protocol and intruder knowledge, when using DAG representations.

3.1 Preliminaries
The DAG-representation of a setF of message terms is the graph, £) with labeled edges, where:

e the set of vertice¥ = Sub(FE), the set of subterms df.

e the set of edges: {v; lef Ve | 3b, vs = {ve}p Orvs = (ve,b)} U {ws Tight Ve | 3b, vs = {b}y, Orvs =

(b ve) }

Remark 1 The DAG representation is unique.

If n is the number of elements ifiub(t), one can remark thg®’, £) has at mosik nodes and®.n edges.
Hence its size is linear in, and for convenience we shall define the DAG-sizéZofdenoted by E|p 4¢, to be
the number of distinct subterms 8f i.e the number of elements Bub(E). For a termt, we simply write|t| pac

for ’{t}‘DAg.

Lemma 1 For all set of termd?, for all variablesz and for all messages we have | E[z < t]| p 4 < |E, t|pac

Proof: Given a set of term#, a variabler and a message we want to show|E[z «— ]| 4 < |E, | pac:

Let us first remark that we have t|, 4 = |t|paq. We recall thatSub(E’) denotes the set of subterms of
E’. We introduce a functiorf : Sub(E[xz < t]) — Sub(E,t) and we show thaf is one-to-one. Let us define
f fora € Sub(E[x « t]) by:

o f(a)=aif a € Sub(t).
e f(a)=d if @ =d[x « t] for some subterm/ of E

When several’ are possible in the definition above then we take one arbitrarily. Let us shoy ihahe-to-one.
Considera, § € Sub(E[x < t]) with a # 3.

o If a, 3 € Sub(t) thenf(a) = «, f(B) = 5, andf(a) # f(5).

o If a € Sub(t)andps = f'[x — t], andp’ € Sub(E), thenalx — t] = a # ('[x — t], « # /" and so
fla) # f(B).

o If a =d[x«—t]ands = f'[x — t], with o/, 3’ € Sub(F), thena/ # 3" andf(«) # f(5).

This proves the property, since the DAG-size of a set of terms is equal to number of distinct subterms they contain.
O



1. Guess a correct execution orderZ — {1, ..., k}.
LetR; = R;_l(i) ands; = S;_l(i) forie {1,....k}

2. Guess a ground substitution such that for:adl V, o(x) has DAG-size< n.

3. Foreach € {1,...,k + 1} guess an ordered listof »n rules whose principal terms have DAG-
size< n.

4. Foreach € {1, ..., k} check that; applied to{ S;o | j < i} U {Sy} generateR;o
5. Check that;; applied to{S;o | j < k+ 1} U {Sp} generatesecret.

6. If each check is successful then answer YES.

Figure 1: NP Decision Procedure for the Insecurity Problem

Corollary 1 For all set of termsl, for all ground substitutions, we havelE|p 4 < |E,v(21), - Y(2k) | pac
where{z, .., x; } is the set of variables i ar. (recall thatV ar is finite).

Proof: We simply apply Lemma 1 above for each O

Remark 2 We only need polynomial time to check that a rule> 1, ' can be applied t&Z and to compute the
resulting DAGE’, when we have already a DAG-representatiopf ands’. This is due to the fact that we only
need to first check that all terms irare also inE and then to compute the DAG-representatidiof £, r'.

We are now going to present a NP decision procedure for finding an attack, assuming an attack exists. The
procedure amounts to guess a correct execution ardepossible ground substitutien with a DAG-size poly-
nomially bounded, and k+1 lists of rules of length, and finally to check that when applying these lists of rules
the intruder can build all expected messages as well as the secret.

We assume that we are given a protocol specificafionk, = S)) | . € Z}. LetP = {R], S| | . € T},

a secret messageecret and a finite set of messag#s for initial intruder knowledge. IfP, S, is not given in
DAG-representation, they are first converted to this format (in polynomial time). We assume that the DAG-size of
P, Sy is n, the finite set of variables iR is V', and|Z| = k.

The NP procedure for checking the existence of an attack is written in Figure 1. To prove the correction of
this procedure we shall show that we can put a bound on the length of normal attacks. We will first give properties
about derivations. We will also give polynomial bounds on the substitudtithrat is used in a normal attack.

3.2 Derivations

In this section, we will give some useful definitions and properties of derivations. We shall introduce a notion of
normal derivation, denoted beriv,(E). A related notion of normal derivation has been studied in [8]. Rather
than a natural deduction presentation in [8] we use here term rewriting.



Definition 4 Given a derivationD = Ey —gr, F1 —r, .. —r, En, atermtis agoal ofD if t € E,, and
te¢ E,q.

Forinstance it € forge(FE) there exists a derivation with goalwe take a derivatiod = F —pg, ... —r
E' with t € E’ and then we take the smallest prefixi@fcontainingt.

This allows us to define some normal derivation, i.e. derivation minimal in length:

n

Definition 5 We denoteDeriv,(E) a derivation of minimal length among the derivations fréwith goal ¢
(chosen arbitrarily among the possible ones).

In order to bound the length of such derivations, we can prove the two following lemmas: every intermediate
term in Deriv,(E) is a subterm of or t.

Lemma 2 If there exists’ such thatZ,(¢') € Derivi(E) thent' is a subterm o

Proof: Let D = Deriv(FE). By minimality of D, we haveL.(t') ¢ D. Then eithert’ € E and we have the
conclusion of the lemma. Otherwise there exists a fyl¢+ [¢']) in D generating’. But any rule inD generating

t1[t'] must be inL, (if not, the decomposition would be useless and the derivation would not be minimal): we can
iterate this reasoning an[t'], and this ends the proof: increases strictly at each iteration and the derivation only
contains a finite number of terms. O

Lemma 3 If there exists’ such thatL.(t') € Deriv,(E) thent’ is a subterm oft} U E

Proof: Let D = Deriv,(FE). By minimality of D, we haveL,(t') ¢ D. Hence eithet’ € {¢t} U E and the
lemma is proved. Otherwise there is at last one rule uging not, L.(¢') would be useless anBeriv:(E) not
minimal. Then we have two cases to consider. In the first case, there @sisth thatL,({a},-1) € D, hence
{a}, -1 is a subterm of by the Lemma 2, and so i& In the second case, there exiswuch thatL.({t'};) € D
or L.({b}#) € D. In this case, we can iterate this reasoning.pr= {t'}, ort; = {b}y. This ends the proof,
becauseé’ strictly increases at each iteration and the derivation only contain a finite number of terms. [

We show in the next proposition that there always exists derivations of & teom a setE’ with a number of
rules bounded by the DAG-size of initial and final term&'. This will be very useful to bound the length of the
derivations involved in the research of an attack.

Proposition 1 For any set of terms2 and for any term, if Deriv,(E) = E —, Ey.. —1, E,thenn <
t, E|pacandforalll <i <n, |Ei|psa < It Elpac-

Proof: Let us prove that the number of stepgiariv,(E) is at mostt, E|, o~ by examining the terms composed

or decomposed for any rule that has been applied Deriv,(E). From Lemma 2 every term decomposed (with

L) is derived fromE by decompositions exclusively. Hence every term which is decomposed was a subterm of
E and is counted ink|, 4, From Lemma 3 every term composed (by) is used as a subterm of a key or of

t. Hence it is counted ift, E|, ,~. Every ruleR either composes or decomposes a term,/baever composes

(resp. decomposes) a term which has already been composed (resp. decomposed). Hence to each Bubterm of
or ¢t corresponds at most one rule applicatioiariv (E) for composing or decomposing it. (merging identical



subterms)

Hence the number of terms composed or decomposédekiniv,(E) is bounded by the number of distinct
subterms off/, ¢t and the first part of the result follows. Since each intermediate term is a subteiihyt,ofhe
second part of the proposition follows. O

Another kind of useful derivations is shown in the following Proposition 2: we can choose derivations such
that a given termy is never decomposed assuming some conditions. It will allow us to prove the Lemma 4.

Proposition 2 Lett € forge(E) andy € forge(E) be given withDeriv, (F) ending with an application of a
rule in L.. Then there is a derivatio® with goalt starting fromFE, and verifyingL,(~) ¢ D

Proof: Lett € forge(E) andy € forge(E) be given withDeriv, (E) ending with an application of a rule in
L.. Let D be Derivy(E) without its last rule, i.e.Deriv,(E) is D followed by L.. Let D’ be the derivation
obtained fromDeriv.(E) by replacing every decompositidyy, of v by D.

Then D’ is a correct derivation, sinc® generatesy and 3 which are the two direct subterms of(~ is
obtained by a composition)) does not contain a decompositidp of v from the fact thatDeriv, (E) hasy as
goal, otherwise the last composition would be useless.

HenceD’ satisfiesLy(v) ¢ D and the lemma follows. O

3.3 Polynomial Bounds on Normal Attacks

We shall prove that when there exists an attack then a normal attack can always be constructed from subterms that
are already occurring in the problem specification. This will allow to give bounds on the messages sizes and on
the number of rewritings involved in such an attack.

Hence let us assume a protoddl= {R, = S/ | . € I}, a secret messagSecret and a set of messages
So as the initial intruder knowledge. We assume that there exists an attack described by a ground sulstitution
and a correct execution order: Z — 1,... , k (wherek is the cardinality ofZ). We defineR; = R _, and
S;i=8_fori=1,... k.

We also defineSP as the set of subterms of the terms in theBet {R; | j = 1,... .k} U{S;|j =
0,...,k}, andSP<; the set of subterms of the terms{i®;0 | j =1,... ,i} U{S;o | j =0,...,i}.

We assume without loss of generality tli&tarlie € Sy i.e. the intruder initially knows its name !

Definition 6 Lett andt’ be two terms and a ground substitution. Thenis a #-match oft’ if ¢ is not a variable
andtf = t’. This will be denoted by Cy ¢/

The following lemma is a key property of this paper. It allows us to prove that every substituticamnormal
attack is only built with parts of the protocol specification. In this way, we will be able to prove that all substitution
o in a normal attack has a DAG-size bounded by a polynomial in the protocol DAG-size.

Lemma 4 Given a normal attack, for all variable x, there exists C, o(z) such that € SP.

Proof: Let o be a normal attack, and let us first assume that there exmish that for alk such that C, o(z)
we havet ¢ SP, and let us derive a contradiction. Let us defMg= min{j | o(z) € SP<;}.



N, is the first step of the protocol whose message contain$ as a subterm, anty,, # 0 sinceo(z) is not
a subterm ofSy,. However since for alt such that T, o(x), ¢ is not inSP, there exists a variablg which is
subterm ofR;, or Sy, such that (z) is a subterm o (y). (Otherwise there would existamatch ofo (x) with
some subterm oRy, ). Then let us show now the following claim:

Claim o(z) € forge(Soo, ..., Sn,—10).
proof: Let Derivgy -(So00, .., Sn,—10) be By — 1, Er.. —1, E,. Sinces(z) is a subterm of?y, o and since
Ry, o € forge(Soo, ..., Sn,—10), we have:

e if there existi < n such thav(x) € E;, then obviously (z) € forge(Syo, ..., Sn,—10).

e Otherwise, we will prove by induction thatx) occurs as a subterm in every intermediatefsetWe have
o(x) subterm ofE,, sinceRy, o € E,, and:

— If o(x) subterm ofs € E; and if there existg < ¢ such thatL; = L.(s), thens # o(x) since
o(z) ¢ E;. Henceg(z) is a subterm of;_;.

— If o(x) subterm ofs € E; and if there existg < i s.t. s created byL; = L4(r), thens ando(x) are
subterms of;_;.

— If such aruleL; does not exist, thea(x) is a subterm of7, and the iteration is finished.

This iteration implies that (x) is a subterm ofy = Syo, .., Sy, —10. Butitis impossible due to the choice
of N,.

end

Hence there exists a derivatidberiv,,)(Soo, ..., Sn,—10) and we can notice that its last step uses neces-
sarily a composition rule since otherwise Lemma 2 would imply #H{a) is a subterm of5yo, ...., Sy,—10, and
therefore a contradiction.

Let us define the substitutiosf to be equal tor on all variables except for whereo’(x) = Charlie.

We will prove thato’ defines an attack with the same execution order tharSinceo is an attack, for allj,
Rjo € forge(Soo,..,Sj—10).

If < N, then sincer(x) has no occurrence iR;o, Soo, .., Sj—10, we haveR;o = Rjo’, Spo = Spo’, ...,
Sj_10 = Sj_10’. Therefore we also havk;o’ € forge(Syo’, .., Sj—10")

If j > N, then there exists a derivation starting frdtp = Soo, .., S;_10 with goal R;0, denotedEy — 1,

Ey —py .. =L, En;. BY Proposition 2¢(z) is never decomposed in this derivatiofi:< n;, L; # Lq(o(x)).
Let us build from this derivation a new one where ea¢h) is replaced byC'harlie. We shall denote bys the
term obtained front by replacing every occurrence ofx) by Charlie. For convenience we shall consider that
E — FEis aderivation step justified by the identity r@leThen we shall prove that there exists a valid derivation:

E05 —>L/1 E15 —>L/2 —>ng Enjé

where every rulel is eitherL; or (). Hence we only have to take the same rules as in the initial derivation
but possibly skip some steps. More precisely let us show that fer1...n,, if E;_y —, E; then either
FE;_16 —L; E;dorE;_16 —p E;é.



1. If L; = L.({, 3)), then eithero (z) # (o, ) and(E!_,, o, 3)0 —1, (El, o, (3, (a,[))d is a valid step
since(ad, 80) = {(«, 3) 9, oro( ) = (a,ﬁ) and we can takd, = @smce(]harlze € E;, foralli. The
same reasoning stand fof = L.({a}g).

2. If Ly = Lg({a, B)) theno(z) # (o, ), and (El_y, (o, 3))0 —r, (El {(a,fB),a,3)d is valid since
(a0, B6) = (a, 8) §. The same reasoning stand for= L;({a}g).

Finally we getfor allj, R0’ € forge(Soo’, .., Sj—10"). Hence it follows that’ is an attack for the same protocol
order tharw. Sinceo’ is obtained fromr by simply replacing the value aof by a strictly smaller one (w.r.4. |)
we have(|R10'|, ..., |Rio’|) strictly smaller thar{(| R, 0], ..., | Rio|) and this is contradictory with the assumption
of normal attack fow. U
We can now use this lemma to bound the DAG-size of ewémy). This is shown in the following Theorem:

Theorem 1 If ¢ is the substitution in a normal attack then we have foradt Var |o(z)| 540 < |Plpac

Proof: Given a set of variablé/, we shall writeU' = {o(x) | x € U}. Let us build by induction a sequence of
setsE, C SP and a sequence of sats of variables such that (z)|p 4 < | Ep, Vo | p e’

o Let(Ey, V) be(D,{x}). We havélo(z)|p 4 < |Eo, Vol 4 @NAE C SP.

e Assume that we have buil,,, V) such thato ()[4 < | Ep, Vp| 4 @NDE, C SP, letus define,,
andVpy1: If V,, # 0 let us choose’ € V;. Then there exists T, o(z') such that € SP. We define
E,.1 = E,U{t} andV,y1 = Var(t) UV, — {z'}. Sincet € SP, we haveE,,; C SP. Let us show
that|o(z )|DAG \EPH, Vo1l pac Let5 = {ly < o(y)] /y € Var(t)}. By applying the Corollary 1 on
E, U {t} UV, — z’ for the substitutior. (Remark:tj = o(z’)) We obtain:

B0, Vp

lpac < |Bn Vo=@ t.Var@| | andthen|E,, Vol u < | Vol pag < [Boits Vit pag

Finally, this construction terminates sin@yevp |o(y)| strictly decreases. At the end we gét = () and
lo(@)| pac < |Epl pac With £, € SP: since|Ep| 4 < |P|pac this proves the theorem. O

The consequence of Theorem 1 is that the DAG-size of the messages that are sent or received during a normal
attack is bounded by a polynomial in the DAG size of the protocol. This result has crucial practical implications
since it means that when searching for an attack we can give a san@li®ri bound on the dag-size of the
messages needed to be forged by the intruder:

Corollary 2 If o is the substitution in a normal attack then for all= 1, ... |k, |R;o, Soo, .., Si—10| paa <

Proof: We can generalize Theorem 1's proof: Starting frBpn= { R;, So, .., Si—1} andV, = Var, we can obtain
]EO,VO}DAG < |P|pac- Butwe havgR;o, Soo, .., Si—10|pac < |Eo, Vol pac from Corollary 1, so the result is
proved forR;. And a similar proof can be derived for the inequaliiecret, Soo, .., Sko| pac < IPlpac- O



3.4 Protocol Insecurity with Finite Number of Sessions is in NP
Single Session Case

We recall here the NP procedure for checking the existence of an attack and show its correctness.

We assume given a protocol specificatidn, R, = S]) |« € Z}. LetP = {R],S] | . € T}, a secret message
Secret and a finite set of messag#g for initial intruder knowledge. IfP, Sy is not given in DAG-representation,
they are first converted to this format (in polynomial time). We assume that the DAG-sR&pfis n, the finite
set of variables irP is V, and|Z| = k. Let us first remark that the procedure written in Section 3.1 is NP:

e A correct execution order is a permutationZgfand can be guessed in polynomial time.
e Sinces(z) has DAG-size< n, one can choose a DAG representation of) in time O(n) ando in O(n?).

e Since each rule i, has DAG-size< n and sinced; has at most: rules, one can choose eaghn time
O(n?), and alll; in time O(n3). Remark:each term in the rules is in DAG representation.

e Computing the result’ of the application of a rulé.,.(¢) on E, with E andt in DAG representation, can
be done in polynomial time in the DAG-size 8fby Remark 2. So, checking that gllare correctly applied
takes polynomial time of. To verify thatR;o is in the last set of terms takes obviously polynomial time
too.

We can now see that this procedure is correct since it answers YES if and only if the protocoldiasckanf

an attack exists, then one of the smallest attacks on this protocoldeaal attack defining normal derivations
which are possible guesses for ttie (and defining as well the execution order). On the other hand if the procedure
answers YES, the checking performed on the guessed derivations proves that the protocol has an attack.

Multiple Sessions Case

We shall define the execution of several sessions of a proféad the execution of a single session for a more
complex protocolP’ of size polynomial if P| x m wherem is the number of sessions. Therefore this will reduce
immediately the security problem for several sessions to the security problem for one session and will show that
the insecurity problem is in NP for multiple sessions too.

We assume given a protocol specificati®nvith its associated partial orderon the set of stepd’. Letm be
the number of sessions of this protocol we want to study; tet be the set of variables iR and let/Nonces be the
set of nonces (a subset 8toms) in P. The nonces are given fresh values at each new session by definition. Also
variables from different sessions should be different. This is because we consider that in this model messages are
not memorized from one session to another (except maybe by the intruder). Therefore we shaill aefaraing
functionsy;, fori = 1, .., m, as bijections froni/ U Nonces U Var to n new sets (mutually disjoint and disjoint
from W U Nonces U Var) such that:

vi(w) =w; forallweW
vi(N)=N; forall N € Nonces
vi(x) =z; forallz € Var



We assume that each set of stépsfor i = 1, .., m, is provided with a partial ordet; such that for altv, w’ € W

and for allw;, w, € W;, w < v’ iff w; < w]. Let P; be the protocol obtained by applying the renamingo

P. We have now: copy P, i = 1,..,m, of the protocol. We combine them now into a unique protocol denoted
m.P as follows. The set of steps is by definition the unigdfi , I; of the steps in all copie®;, fori = 1,..,m.

The partial order oy J;" , W; is defined a$ /" | <;. Itis easy to see that the execution of one session of the new
protocol is equivalent to the executionsafinterleaved sessions of the initial protocol.

Lemma5 Let Sy be the initial intruder knowledge. The DAG-size(oi.P, Sp) is O(n x m) wheren is the
DAG-size ofP, Sp.

Therefore a normal attack af. P can be bounded polynomially:

Corollary 3 If o is the substitution in a normal attack of. P assuming that the initial intruder knowledgeSs
and the DAG-size aP, S is n, theno can be represented i0((n x m)?).

Then applying the NP procedure for one session we derive immediately:

Theorem 2 Protocol insecurity for a finite number of sessions is decidable and in NP.

Remark 3 If we want to modeh sequential sessions of the protocol instead pfarallel sessions, we only need

to use a different order on the union of protocol stégs , I;, more precisely we takeJ! ; <; U {w <

w'| 34,k s.tw e Wy, w' € Wy, j < k}. Hence this order forces one session to be finished before another one
starts.

4 NP-hardness

We show now that the existence of an attack when the input are a protocol specification and initial knowledge of
the intruder is NP-hard by reduction from 3-SAT. The proof is similar to the one given by [1] for their model, but
does not need any conditional branching in the protocol specification. The propositional variahles .asg,,

and an instance of 3-SAT i§(7") = A;(z;5" V25 v 2;%*) wheree; ; € {0,1} and2® (respz!) meanse
(resp—z). Let us define: 7 7 ’

e 9(0,7;5) = x;j andg(1,z; ;) = {zi;} k-
e Vicl, fi(T) = (g(ei1, wi1), (9(ciz2; i2), 9(ci3, i 3)))

The idea here is to use the intruder power to generate a first meésage, , z, 3), representing a (possible)
solution for this 3-SAT problem. From this initial messagjereates a term representifigpplied to this solution.
It will then be up to principals3 to D’ to verify that it can really be reduced To-ue, with the help of the intruder
for choosing the correct derivation. If this is the case, thagive theSecret term to the intruder, and the protocol
has an attack. The description of this protocol follows :

Let us introduce now the following protocol (where variables, z occurring in the description of stép, ;)
should be considered as indexed(by j); the index is omitted for readability). Note also that the number of steps
for each principalB . .. D' is equal to the number of conjunctions in the 3-SAT instance.



Principal A: (A, 1), (211, 2n3) = {{/1(T), (fo(T), (... (fu(T), end)))) y p-

Principal B:  (B,i), {{(T,(z,1)),2)}r = {z}p, for i € I.
Principal B (B,4), {{(({L}x, (1)), 2)}p = {z}p, for i€ I.
Principal C:  (C.i),  {{(z, (T, 1)), 2)}p = {z}p, for i€ I.
Principal C: (C",4),  {{(z, ({1}, 1)), 2)}p = {2}, for i e I.
Principal D:  (D,i), {{(z, (. T)),2)}p = {z}p, for i € I.
Principal D”:  (D',i), {{(z, (. {L}k)).2)}p = {z}p, for i € 1.

Principal E: (E,1): {end}p = Secret

We takeSy, = {T,L} as the initial intruder knowledge. Hence there is an attack on this protocol iff the
message sent by principal A can be reduceddd}p i.e. for alli € I, there existg € {1,2,3} such that
g(gij,xij) € {T,{L}k}. Butthis means that the intruder has givermita term representing a solution of 3-SAT,
sinceg(e; j, ;) isx; ;5. ({L} K isinterpreted as’). Hence the protocol admits an attack iff the corresponding
3-SAT problem has a solution. Moreover this reduction is obviously polynomial. Hence the problem of finding
an attack with bounded sessions is NP-hard.

The example above shows that the insecurity problem is NP-hard for protocols with pairs, but without com-
posed keys and without variables in key position. But we can obtain hardness for a class of protocols with different
restrictions. The next protocol shows thia¢ insecurity problem remains NP-hard even without pairs, with-
out composed keys and with a unique honest principal whose steps are linearly ordere®n the other hand
we need to use variables at key positions.

Hence our next result will show that finding an attack to a single session of a determinist protocol is already
an NP-hard problem. Therefore the non-determinism of the intruder is sufficient for the insecurity problem to be
NP-hard.

Let f(T) = /\jg D; be an instance of 3-SAT following the same definition as above (for the first protocol),
and letn be the number of propositional variables @f. Let |/| be the number of conjunct®; in f. In the
following, x andy are protocol variables and we suppose that their occurrences represent different variables
(i.e. they should be implicitly renamed) in different steps of the protocols. To each propositional vayiage
associate an atow, for: = 1, ... ,n. The initial intruder knowledge includes:

1. {{P}.}k,{{P}v}k,andP. The intruder will assign values t@ by using{P}, or{P}.

2. {{K},}v, and{{K}~}v;, fori = 1..n. These are fake values far allowing the intruder to “skip” some
protocol steps when needed. But doing that, he will not gain any useful knowledge.

We use only one honest principdl and then protocol steps ofd are linearly ordered by(A,i) < (A,7) iff
1<id forii =1,...,n:



o (Ai) Az} = {z}v;
In these steps, the intruder selects valuesiorSince there is one and only one step for each vajuthe
instantiation of 7" is complete and non redundant. Since the intruder does not knotliese values can
only be{P}, or {P}.

e For each conjunct indicgin I, and for eachi = 1..n such thatz; is a variable in the conjundd;, let us
define the stepA, j,i) as :
(A,7,%) : {y}T}v, = {Secret;}, if V; occurs positively inD; or
(A,7,1) - {{y} L }v; = {Secret;}, if V; occurs negatively itD;
The goal of the intruder is to know all tern$&cret;: this would prove that every conjungl; is evaluated
to T. To do this, he must use fgra value he knows in order to decrypt at least one mesgsige-et; },, for
eachj. However the intruder has only two possible actions: either he seAd{t }+}y, or {{K} . }v;
but then he will receive backSecret;}x which is useless (this step can be considered as blank for the
intruder), or he has assigneditpthe correct valug{ P} }y. or {{P} }v,, and by sending it at the right
step he will get bacKSecret; } p that he can decrypt with to Secret;.

e The last protocol step is to ensure that the intruder knows Sacket;. For this purpose let us introduce
an atomBigSecret that will be revealed to the intruder iff he knows every atémaret;. The last protocol
step is:

(A,end) : P = {.{BigSecret}seccret, -} Secret,, -
Therefore, the intruder knowsigSecret if and only if each conjuncD; is evaluated td”, and this protocol
has an attack oBigSecret if and only if the 3-SAT problem admits a solution.

This proves the correctness of this reduction, which is obviously polynomial.

It is interesting to see that the class of protocols considered in the previous reduction is very close to the
simple class of ping-pong protocols [12]: the only difference is the use of a variable as a key (but only with atomic
values).

From the results above we finally conclude with the main result:

Theorem 3 Finding an attack for a protocol with a fixed number of sessions is a NP-complete problem.

5 Alternative models

5.1 Extending the intruder model

If we assume that the rules in Table 2 are added to the intruder model, then new attacks can now be performed
as shown in the following example (we have omitiedt andend messages). The Intruder initial knowledge is
{Secret}p and the protocol rules are:

(A4, 1), {z} g1 = )
((4,2), {{y}r}x =)



] Decomposition rules | Composition rules \
Ls({{a}p}p) = {{akp}p — a. {{a}i}s, Lr({{a}p}p) : a—a {{al}}
Ls({{a}i i) 0 Hatidper — o Hati e | Le({ati}yi-)t a—a {{a}itre

Table 2: Extension of the Intruder Model.

This protocol admits the following attack when the initial knowledge of intrud¢Cigarlie, { Secret}p}:

{Secret}p — {{{Secret}p}i} -1 — {{Secret}p}x — Secret

We can remark that such an attack cannot be performed fi tmales are not included in the intruder rewrite sys-
tem. Since simple cryptographic systems verify the property that encryption is idempotent it might be interesting
to add these neul, rules. However it is easy to prove that the insecurity problem remains NP-complete when
theseL, and L, rules are included. These new rules behave exactly in the same wayaasl L;, and we can
restrict ourselves to consider again some special derivations.

Definition 7 A derivationD from E verify Condition 1when for all messages b :

i Ly {{a}b}b_1) eD thenLr({{a}b}bﬂ) ¢ D

(
. ifL.({a}y) € DthenLs({{a}p}p-1) ¢ D
fLs({{a}p}p-1) € DthenL.({{a}p}p-1) ¢ D
4, if L, ({{a}b}bﬂ) eD thenLd({a}b) Qé D

Lemma6 If t € forge(E), then there exists a derivatiab from E with goalt verifying Condition 1

Proof: Let D be one of the minimal derivations in length fromwith goalt. Then let us buildD’ another
derivation with the same initial and final set thah verifying moreoverCondition 1 and minimal in length
among the derivations with these initial and final sets and verif@ogdition 1 We reason by induction on the
length of D. If D = () we takeD’ = (). OtherwiseD = (Ey —, .. —, E,) and by induction hypothesis there
existsD = (Ey —p .. = E,_y) with Ey = Ej, E,_1 = Ej_,, verifying Condition 1, and minimal in
length. We show how to extend this to a derivatidhaccording to the last step @f:

1. if L, = Lq({{a}g}}s-1) and there exists < n such thatl; = L.({{a}s}s-1) € D, then letL; =
Lc({a}p). L;, can be applied since € E;_; and € E;_1, and we havel,({{a}s}g-1) & D] since
otherwiseD) would not be minimal in Iength

2. if L, = L.({a}p) and there exists < n such thatL; = ({{a}g}ﬁ 1) € Dj, then letL! =
La({{a}p}p-1). Ly, can be applied sincé{a}s}s-1 € E _,andg € E/_,, and by minimality ofD’
we haveL, ({{a}s}s-1) & Dj.

3. if L, = Ly({{a}3}-1) and there exist < n such thatl; = L.({{a}s}s-1) € D1, then:

o If L.({a}p) & D}, wetakeL, = Ls({a}s) since{a}s andg are inE;_;.



o If L.({a}g) € D}, then{a}z = {{o/}5-1}3 and we takel;, = L.({a'}5-1) sinced’ andp~! are
in E,_1.

4. if L, = L,({{a}s}3-1) and there exists < n such thatl.; = Ly({a} ) € D1, then:

o If Ly({{{a}p}s-1}p) & D}, wetakeL, = L.({{a}3}5-1), since{a}s ands are inE;_;.
o If Ly({{{a}s}s-1}p) € D}, wetakeL; = Lq({{{a}s}s-1}p)

5. otherwise in all remaining cases we tdke= R.

Then we can notice thdf;, = £, for £}, | —, E} andD’ = (Ey —r, .. —r, Ej,) verify Condition 1
Hence, the set of derivations with the same initial and final sets thand verifyingCondition 1 is not empty,
and we can choose one of its elements minimal in length.

Hence from a derivation proving that forge(E) we can build another one verifying moreo¥&ondition 1
The minimal prefix of this derivation that contaihis a derivation of goal satisfyingCondition 1, and this proves
the lemma. O

Now, we only need to update theeriv;(E) definition:

Definition 8 We denoteeriv(E) a derivation of minimal length among the derivations frémwith goalt and
satisfyingCondition 1 (chosen arbitrarily among the possible ones).

The rest of the proof is almost identical except thais replaced by.. andL,, andL, is replaced by ; and
L.
Note that this model can still be improved since herefih@and L, rules are only applied at the top of messages:
we could also consider cases where they are applied everywhere in terms.

5.2 Limiting the intruder

In this section we show how to reduce to our model other models where the intruder is unable (for some messages)
to eavesdrop, divert and modify, or impersonate.

To prevent the intruder from eavesdropping between two §tépg : ... = M; and(A4,j) : My = ..., we
introduce a new symmetric kely only known by A and B and never published: With the stef4,:) : ... =
{(A, My)}p and(A, j) - {(A, M)} = ..., the intruder will never be able to intercept the messageand send
something else t® instead, even with thé,. rules.

To prevent the intruder from diverting and modifying the message between the two steps above, we can use a
new private keyK 4 ; instead ofP, and the step&4, i) : ... = {(A4, M) %Aﬂ_ and(A4,j): {(A, M) ’;(Aﬂ_ = ...

This way, if the intruder knovsiqli then he knows\/1, but he cannot modify it, even with the. rules. And since
K 4 is only used for this step, the intruder can't use any other stored message.

To prevent the intruder from impersonating a messagsent by the principal to B, we assume that there
exists a private key< only known by the principals and never published (it never appears in the content of a
message), and we assume that! is known by everybody. Hence this amounts to replatey {(A, M) b in
A andB’s steps: The intruder and the principals can réadout the intruder will never be able to build a message
in the name of4, even with thel,. rules. (But he can use old's messages if we used the same kéy

The new protocol has a linear size in the initial one, even in a dag representation.



5.3 Adding choice points

We extend the protocol model in order to allow for choice points. Typically the field of a message may contain
information about the type of cryptography negotiated for the rest of the session. Hence the subsequent message
exchanges may depend from the content of this field.

We shall consider protocol descriptions where some stéps) may be composed by priority blocks:

(4, (i,0)): R} = S}
(4, (i, 1)): Bf = S}

(A, (i,k)): RF = SF

Two steps in the same priority block cannot be applied in the same executiovj,ghd A, (i, j)) <w, (A, (i +

1,7")). This block construction is similar to a case structure in programming languages. A protocol execution
with substitutions must now also satisfy: For every priority block (indexedilywe apply sted A, (i, j)) if Vj,

V8, Rlo # RV and ... andR}o # RI™'6.

For technical reasons, we introduce for each variabketermCharlie, that does not appear anywhere in the
protocol description, that is initially known only by the intruder and such [fiauriie,| = 0. Then, an attack is
now given by an order which is compatible with the given partial order and a substitutierifying the above
steps conditions, the usuBio € forge(Syo, .., S;—10) andSecret € forge(Syo, .., S,o) conditions, and for
all variablesz, Charlie,, may only appear i (x). This last condition does not restrict the intruder since he is
not forced to us€'harlie,.

First we can remark that all properties, lemmas, and proofs about derivations remain valid since we did not
change the intruder rules. Therefore, the only proof to be adapted is the one of Lemma 4: We build a new
substitutions’ from o , and we must prove that it still satisfies the requirements for an attack. To do that, we
assume first that'harlie, is used instead af'harlie for o(x) in the proof of the lemma.

We haveR;o’ € forge(Soo’,..,S;—10') and Secret € forge(Soo’,..,Spc’). And for each attack step
7 1(k) = (A, (i,5)), we haveR)s # R% and ... andR/oc # RJ™'§ by definition ofo. Let us show by
contradiction that there is nbsuch thatR{o’ = R{/S for somej’ < j. Two cases are possible: dfappears in
R’, thenCharlie, appears irRl¢’ and inR! 5. Therefore, we hav&!o = R’ & for §' equal tos with Charlie,
replaced by (). But this is impossible by definition ef. If 2 does not appear i/, thenR/c = Rlo’ = RI'§
and we also have a contradiction. This way, we have provedsthadefines an attack with the same execution
order and which is smaller than(since|Charlie;| = 0. The lemma follows.

Since all bounds on derivations and attacks remain valid we only need to add to our insecurity detection
procedure, an extra guessing step for the branches to be taken at choice points in order to derive a NP procedure
for the more general case of protocols with choice.

Conclusion

By representing messages as dags we have been able to prove that when the number of sessions of a protocol is
fixed, an intruder needs only to forge messages of linear size in order to find an attack. This result admits obvious
practical implications since it gives an a priori bound on the space of messages to be explored for finding flaws in
the protocol (with a model-checker, for instance).



H Without Nonces \With Nonces\

No bounds [15] Undecidable Undecidable

Infinite number of sessions, and bounded messages|[BEXPTIME-complete| Undecidable

Finite number of sessions, choice points, and unbounded messagesNP-complete NP-complete
Finite number of sessions, and unbounded messages NP-complete NP-complete

Table 3: Complexity of known fragments

We have then derived the first NP-procedure for finding an attack with a fixed number of sessions and com-
posed keys (also the first published decision procedure for this problem). This result matches the lower bound of
the problem. Some related implementations have taken advantage of the thorough analysis in the NP membership
proof and have been able to analyze in a fairly fast way the standard examples of the literature.

Several interesting variants of our model can be easily reduced to it. These variants are also quite easy to
implement.

For instance we could consider that a principal is unable to recognize that a message supposed to be encrypted
by some keyK has really been constructed by an encryption Viith(see extension in Subsection 5.1). To obtain
a protocol model where principals may recognize whether a real encryption has been performed one simply extend
any cipher with a special fixed field.

We have considered that the intruder can eavesdrop, divert messages, and impersonate other principals. How-
ever we can model a more passive intruder, as described in Subsection 5.2, by ensuring that some messages cannot
be modified (for instance when a safe channel conveys them).

We have considered secrecy properties. Since correspondence attacks can also be expressed by an execution
order and a polynomial number ¢brge constraints they can be detected in NP too.

Our procedure can also be adapted to protocols admitting choice points, such as SSL, where a different subpro-
tocol can be executed by a user according to some received message. The modification of our model is described
in Subsection 5.3. The detection of an attack remains in NP. We can summarize the known results in the Table 3.

Finally let us notice that our model remains valid when the intruder is allowed to generate any number of new
data. We simply replace in an attack all data that is freshly generated by the intruder by it€'hanié=. This
implies that in the finite session case, the intruder does not gain any power by creating nonces.

Directions for future work include broadening the scope of our approach to some cases where the number of
sessions is unbounded or to commutativity of encryption operators.
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