
Protocol Insecurity with a Finite Number of Sessions and Composed
Keys is NP-complete∗

Michaël Rusinowitch and Mathieu Turuani
LORIA-INRIA- Université Henri Poincaré,
54506 Vandoeuvre-les-Nancy cedex, France

email:{rusi,turuani}@loria.fr

March 12, 2002

Abstract

We investigate the complexity of the protocol insecurity problem for a finite number of sessions (fixed
number of interleaved runs). We show that this problem is NP-complete with respect to a Dolev-Yao model
of intruders. The result does not assume a limit on the size of messages and supports non-atomic symmetric
encryption keys. We also prove that in order to build an attack with a fixed number of sessions the intruder
needs only to forge messages of linear size, provided that they are represented as dags.

Keywords: Verification, Security, Protocols, Rewriting, Complexity.

Introduction

Even assuming perfect cryptography, the design of protocols for secure electronic transactions is highly error-
prone and conventional validation techniques based on informal arguments and/or testing are not sufficient for
meeting the required security level.

On the other hand, verification tools based on formal methods have been quite successful in discovering new
flaws in well-known security protocols. These methods include state exploration using model-checking as in
[19, 27, 8, 2], logic programming [20], term rewriting [10, 18], tree automata [16, 9] or a combination of these
techniques. Other approaches aim at proving the correctness of a protocol. They are based on authentication
logics or proving security properties by induction using interactive proof-assistants (see [3, 24]).

Although the general verification problem is undecidable [15] even in the restricted case where the size of
messages is bounded [14], it is interesting to investigate decidable fragments of the underlying logics and their
complexity. The success of practical verification tools indicates that there may exist interesting decidable frag-
ments that capture many concrete security problems. Dolev and Yao have proved that for simple ping-pong
protocols, insecurity can be decided in polynomial time [12]. On the other hand [14] shows that when messages
are bounded and when no nonces (i.e. new data) are created by the protocol and the intruder, then the existence

∗a first version of his paper was published in Computer Security Foundations Workshop ([26]).

of a secrecy flaw is decidable and DEXPTIME-complete. The complexity for the case of finite sessions was
mentioned as open in [14].

A related decidability result is presented in [17, 1]. The authors give a procedure for checking whether an
unsafe state is reachable by the protocol. Their result holds for the case of finite sessions but with no bounds on
the intruder messages. The detailed proof in [1] does not allow general messages (not just names) as encryption
keys. The authors do not analyze the complexity of their procedure1. After the presentation of the first version
of our paper in CSFW’01 ([26]), another decision procedure for composed keys has been announced in [23]).
However this last paper does not give any complexity analysis of the problem.

Our result states that for a fixed number of interleaved protocol runs but with no bounds on the intruder
messages the existence of an attack is NP-complete. We allow public key encryption as well as the possibility
of symmetric encryption withcomposed keysi.e. with any message. In this paper we only considersecrecy
properties. Howeverauthenticationcan be handled in a similar way. Hence, a protocol is considered insecure if
it is possible to reach a state where the intruder possesses a secret term. Thanks to the proof technique, we have
been able to extend the result directly to various intruder models and to protocols with choice points.

Our main complexity result is rather a theoretical one. However it gives information of practical relevance
since for its proof we have shown that in order to attack a protocol an intruder needs only to forge messages of
linear size with respect to the size of the protocol. This gives a low bound for the message space to be explored
when looking for a flaw e.g. with a model-checker and this explains also why many tools are effective in protocol
analysis: to put it informally, in the Dolev-Yao model flawed protocols can be attacked with small faked messages.
A deterministic version of our algorithm has been implemented2. The prototype does not generate all messages
of maximal size but rather composes them in a goal-oriented way [6, 7]. It performs very well on standard bench-
marks since it has analyzed and found flaws in 30 protocols reported as insecure (out of the 50 protocols of [4])
in [13].

Layout of the paper: We first introduce in Section 1 our model of protocols and intruder and give the notion of
attackandnormal attackin Section 2. Then in Section 3 we study properties of derivations with intruder rules.
This allows us to derive polynomial bounds for normal attacks and then to show that the problem of finding a
normal attack is in NP. We show in Section 4 that the existence of an attack is NP-hard. In Section 5 we show
that the NP procedure of Section 3 can be extended to a stronger intruder model (Subsection 5.1), weaker intruder
model (Subsection 5.2) and also protocols with choice points (Subsection 5.3).

1 The Protocol Model

We consider a model of protocols in the style of [5]. The actions of any honest principal are specified as a partially
ordered list that associates to (the format of) a received message its corresponding reply. The activity of the
intruder is modeled by rewrite rules on sets of messages. We suppose that the initialization phase of distributing
keys and other information between principals is implicit. The approach is quite natural and it is simple to compile
a wide range of protocol descriptions into our formalism. For instance existing tools such as CAPSL [11] or
CASRUL [18] would perform this translation with few modifications. We present our model more formally now.

1They have announced recently an NP procedure for atomic keys
2seewww.loria.fr/equipes/protheo/SOFTWARES/CASRUL/

Names and Messages

The messages exchanged during the protocol execution are built using pairing〈_, _〉 and encryption operators
{_}s

, {}p
_. We add a superscript to distinguish between public key (p) and symmetric key (s) encryptions. The

set of basic messages is finite and denoted byAtoms. It contains names for principals and atomic keys from the
setKeys. Since we have a finite number of sessions we also assume any nonce is a basic message: we consider
that it has been created before the session and belongs to the initial knowledge of the principal that generates it.

Any message can be used as a key for symmetric encryption. Only elements fromKeys are used for public
key encryption. Given a public key (resp. private key)k, k−1 denotes the associated private key (resp. public key)
and it is an element ofKeys. Given a symmetric keyk then,k−1 will denote the same key.

The messages are then generated by the following (tree) grammar:

msg ::= Atoms | 〈msg,msg〉 | {msg}p
Keys | {msg}s

msg

For conciseness we denote bym1,m2, . . . , mn the set of messages{m1,m2, . . . ,mn}. Given two sets of
messagesM andM ′ we denote byM, M ′ the union of their elements and given a set of messagesM and a
messaget, we denote byM, t the setM ∪ {t}.

Protocol Specification

We shall describe protocols by a list of actions for each principal. In order to describe the protocol steps we
introduce message terms (or terms for short). We assume that we have a finite set of variablesV ar. Then the set
of terms is generated by the following tree grammar:

term ::= V ar | Atoms | 〈term, term〉 | {term}p
Keys | {term}

s
term

Let V ar(t) be the set of variables that occur in a termt. A substitutionassigns terms to variables. Aground
substitutionassigns messages to variables. The application of a substitutionσ to a termt is written tσ. We also
write [x ← u] the substitutionσ defined byσ(x) = u andσ(y) = y for y 6= x. The set of subterms oft is denoted
by Sub(t). These notations are extended to sets of termsE in a standard way. For instance,Eσ = {tσ | t ∈ E}.

A principal (except the initiator) reply after receiving a message matching a specified term associated to its
current state. Then from the previously received messages (and initial knowledge) he builds the next message he
will send. This concrete message is obtained by instantiating the variables in the message pattern associated to the
current step in the protocol specification.

A protocol is given with a finite set of principal namesNames ⊆ Atoms, and a partially ordered list of steps
for each principal name. This partial order is to ensure that the actions of each principal are performed in the right
order. More formally we associate to each principalA a partially ordered finite set(WA, <WA). Each protocol
step is specified by a pair of terms denotedR ⇒ S and is intended to represent some messageR expected by a
principalA and his replyS to this message. Hence a protocol specificationP is given by:

{(ι, Rι ⇒ Sι) | ι ∈ I}

whereI = {(A, i) | A ∈ Names andi ∈ WA}. We write|I| for the size ofI. Init andEnd are fixed messages
used to initiate and close a protocol session. Anenvironment for a protocol is a set of messages. Acorrect

execution order π is a one-to-one mappingπ : I → {1, .., |I|} such that for allA ∈ Names and i <WA j
we haveπ(A, i) < π(A, j). In other wordsπ defines an execution order for the protocol steps. This order is
compatible with the partial order of each principal. Aprotocol executionis given by a ground substitutionσ, a
correct execution orderπ and a sequence of environmentsE0, .., E|I| verifying: Init ∈ E0, End ∈ E|I|, and for
all 1 ≤ k ≤ |I|, Rπ−1(k)σ ∈ Ek−1 andSπ−1(k)σ ∈ Ek.

Each stepι of the protocol extends the current environment by adding the corresponding messageSισ when
Rισ is present. One can remark that principals are not allowed to generate any new data such as nonces. But this
is not a problem when the number of sessions is finite: in this setting from the operational point it is equivalent to
assume that the new data generated by a principal during a protocol execution is part of his initial knowledge.

Example: Needham Schroeder protocol

Let us give a variant of the Needham Schroeder protocol in our setting. We assume that every nonce is included
in the initial knowledge of the principal that will create it and that a principalA who wishes to communicate with
B will send his public key (instead of his name in the standard version):

((A,1), Init ⇒ {〈NA,KA〉}KB
) ((B,1), {〈x2, x3〉}KB

⇒ {〈x2, NB〉}x3
)

((A,2), {〈NA, y1〉}KA
⇒ {y1}KB

) ((B,2), {NB}KB
⇒ End)

The orderings on steps are the ones that are expected:WA = WB = {1, 2} with 1 <WA 2, 1 <WB 2. We do
not consider that the protocol specification is a set of rules such that the scope of the variables occurring in a rule
is restricted to this rule. On the contrary, the variables are global in our case and their scope may include several
lines of the specification. Hence our modeling approach is different from the one in [14]. See for example the
Otway-Rees protocol given in Section 2.

Intruder

In the Dolev Yao model [12] the intruder has the ability to eavesdrop, to divert and memorize messages, to compose
and decompose, to encrypt and decrypt when he has the key, to generate new messages and send them to other
participants with a false identity. We assume here without loss of generality that the intruder systematically diverts
messages, possibly modifies them and forwards them to the receiver under the identity of the official sender. In
other words all communications are mediated by a hostile environment represented by the intruder. The intruder
actions for modifying the messages are simulated by rewrite rules on sets of messages. The rewrite relation is
defined byM → M ′ if there exists one of the rulel → r in the Table 1 such thatl is a subset ofM andM ′ is
obtained by replacingl by r in M . We write→∗ for the reflexive and transitive closure of→.

The set of messagesS0 represents the initial knowledge of the intruder. We assume that at least the name of
the intruderCharlie belongs to this set.

Intruder rules are divided in several groups: rules for composing or decomposing messages. These rewrite
rules are the only one we consider in this paper and any mentions of “rules” refer totheserules. In the following
a, b andc represent any message andK represents any element ofKey. For instance, the rule with labelLc(〈a, b〉)
replaces a set of messagesa, b by the following set of messagesa, b, 〈a, b〉.

See Table 1 for complete the intruder rules, and Section 5 for an extension. We denote the application of a
ruleR to a setE of messages with resultE′ by E →R E′. We writeLc = {Lc(a) | for all messagesa}, andLd

Decomposition rules Composition rules

Ld(〈a, b〉) : 〈a, b〉 → a, b, 〈a, b〉 Lc(〈a, b〉) : a, b → a, b, 〈a, b〉
Ld({a}p

K) : {a}p
K , K−1 → {a}p

K , K−1, a Lc({a}p
K) : a,K → a, K, {a}p,

K
Ld({a}s

b) : {a}s
b, b → {a}s

b, b, a Lc({a}s
b) : a, b → a, b, {a}s

b

Table 1: Intruder Rules (see Section 5 for an extension)

in the same way, anda is called theprincipal term of a ruleLc(a) or Ld(a). We callderivation a sequence of
rule applicationsE0 →R1 E1 →R2 .. →Rn En. The rulesRi for i = 1, .., n are called the rules of this derivation
D. We writeR ∈ D (abusively) to denote thatR is one of the rulesRi, for i = 1, .., n, that has been used in the
derivationD.

One can remark that if the intruder was allowed to generate new data he will not get more power. He is
already able to create infinitely many data only known to him with simple encryptions. For instance he can
construct{N}N , {{N}N}N , ... assuming thatN is only known by the intruder.

2 Attacks

Considering a protocol specification and a special termSecret (called secret term), we say that there is an attack
in N protocol sessions if the intruder can obtain the secret term in its knowledge set after completing at mostN
sessions. We consider first the case of a single session. Then we shall sketch in Subsection 3.4 how to reduce the
case of several sessions to the unique session case.

Since received messages are matched by principals with the left-hand sides of protocol steps, meaning that
some substitution unify the messages sent by the intruder and waited by the principals, the existence of an attack
can be expressed as a constraint solving problem: is there a way for the intruder to build from its initial knowledge
and already sent messages a new message (defined by a substitution for the variables of protocol steps) that will
be accepted by the recipient, and so on, until the end of the session, and such that at the end the secret term is
known by the intruder.

We introduce now a predicateforge for checking whether a message can be constructed by the intruder from
some known messages. This predicate can be viewed as the combination of predicatessynth andanalz from L.
Paulson [24].

Definition 1 (forge) Let E be a set of terms and lett be a term such that there isE′ with E →∗ E′ andt ∈ E′.
Then we say thatt is forged fromE and we denote it byt ∈ forge(E).

Let k be the cardinality ofI, i.e. the total number of steps of the protocol. An attack is a protocol execution
where the intruder can modify each intermediate environment and where the messageSecret belongs to the final
environment. In an attack the intruder is able to forge any message expected by a principal by using its initial
knowledge and already sent messages (spied in the environments). This means, formally, that a given protocol
execution, with sequence of environmentsE0, .., Ek, is an attack if for all1 ≤ i ≤ k we haveEi−1, Sπ−1(i)σ →∗

Ei andEk, Sπ−1(k)σ →∗ Ek+1 with Secret ∈ Ek+1. However by definitiont ∈ forge(E) iff there isE′ such
thatE →∗ t, E′. Hence we can reformulate the definition of an attack using the predicateForge:

Definition 2 (attack) Given a protocolP = {R′
ι ⇒ S′ι | ι ∈ I}, a secret messageSecret and assuming the

intruder has initial knowledgeS0, anattackis described by a ground substitutionσ and a correct execution order
π : I −→ 1, . . . , k such that for alli = 1, . . . , k, we haveRiσ ∈ forge(S0, S1σ, ..., Si−1σ) andSecret ∈
forge(S0, S1σ, ..., Skσ) whereRi = R′

π−1(i) andSi = S′π−1(i).

Before proceeding let us give as a detailed example an attack with Otway-Rees protocol.

Example: Otway-Rees Protocol

The participants of the protocols areA,B and the serverS. The symmetric keysKas, Kbs will be respectively
shared by the participants(A,S), (B,S). The identifiersM,Na, Nb represents nonces. In Step3, the server
S creates the new secret symmetric keyKab to be used byA andB for further safe communications. We have
added an extra step(5) in order to show howKab is applied byA to send a secret message toB. In the attack,A
will be fooled into believing that the term< M, A, B > is in fact the new key. The sequence of messages defining
Otway-Rees is:

1. A -> B : M,A,B,{Na,<M,A,B>}Kas
2. B -> S : M,A,B,{Na,<M,A,B>}Kas,

{Nb,<M,A,B>}Kbs
3. S -> B : M,{Na,Kab}Kas,{Nb,Kab}Kbs
4. B -> A : M,{Na,Kab}Kas
5. A -> B : {Secret}Kab

For simplicity we writeM, M ′,M ′′ for 〈〈M, M ′〉 ,M ′′〉. Let us write now this protocol specification with our
notation.

{
((A, 1), init ⇒ 〈M,A, B〉 , {NA, 〈M, A,B〉}KAS

)
((B, 1), 〈x2, x3, B〉 , x4 ⇒ x2, x3, B, x4, {NB, x2, x3, B}KBS

)
((S, 1), x7, xA, xB, {x8, x7, xA, xB}KAS

, {x9, x7, xA, xB}KBS
⇒ x7, {x8,Kab}KAS

, {x9,Kab}KBS
)

((B, 2), x2, x5, {NB, x6}KBS
⇒ x2, x5)

((A, 2), M, {NA, x1}KAS
⇒ {Secret}x1

)
((B, 3), {Secret}x6

⇒ end)
}

An execution can be obtained by taking the protocol steps in the given order and by applying the following
substitution:

x1 = Kab x2 = M x3 = A x5 = {x8, Kab}KAS x6 = Kab xA = A
x4 = {< NA, < M,A, B >>}KAS x7 = M x8 = NA x9 = NB xB = B

An attack can be performed on this protocol with initial intruder knowledgeS0 = {Charlie, init}, using:

Substitution Protocol steps
σ = [x1 ← 〈M, A,B〉] π(1) = (A, 1), π(2) = (A, 2)

sinceRπ(1)σ ∈ Forge(S0), Rπ(2)σ ∈ Forge(S0, Sπ(1)σ) andSecret ∈ Forge(S0, Sπ(1)σ, Sπ(2)σ).

We introduce now a measure on attacks and a notion of minimal attack among all attacks, called anormal
attack. We shall prove in the next sections that normal attacks have polynomial bounds for a suitable representation
of terms.

Thesizeof a message termt is denoted|t| and defined as:

• |t| = 1 for anyt ∈ Atoms, except forCharlie where|Charlie| = 0.

• and recursively by|〈x, y〉| = |{x}y| = |x|+ |y|+ 1

Note thatCharlie is the minimal size message. We recall that a finite multiset over natural numbers is a
functionM from IN to IN with finite domain. We shall use a more intuitive set-like notation for them:{2, 2, 2, 5}
will denote the functionM such thatM(5) = 1,M(2) = 3 andM(x) has value0 otherwise. We shall compare
finite multisets of naturals by extending the ordering onIN as follows:M >> N if i) M 6= N andii) whenever
N(x) > M(x) thenM(y) > N(y) for somey > x. Equivalently>> is the smallest ordering on multisets of
naturals such that:

M ∪ {s} >> N ∪ {t1, . . . , tn} if M = N ands > ti for all i ∈ 1, . . . , n

For instance{3, 1, 1, 1}> {2, 2, 2, 1}. We shall now define a normal attack as an attack such that the multiset
of the sizes of all messages exchanged by the principals and the intruder during the protocol session is minimal
for the multiset ordering onIN .

Definition 3 (normal attack) Given a protocolP = {R′
ι ⇒ S′ι | ι ∈ I}, an attack(σ, π) is normalif the multiset

of nonnegative integers{|R1σ| , ..., |Rkσ|} is minimal, withRi = R′
π−1(i) andSi = S′π−1(i).

Clearly if there is an attack there is a normal attack since the measure is a well-founded ordering on finite
multisets of nonnegative integers. Note also that a normal attack is not necessarily unique. We now present a NP
procedure for detecting the existence of a normal attack.

3 Existence of a Normal Attack is in NP

A key ingredient for proving membership in NP is the representation of messages asDirected Acyclic Graph
(DAG). This is motivated by the fact that we can encode easily the term unification problem as an insecurity
problem and that it is well known that the unifier of two terms may have exponential size when the terms are
represented as trees. For instance the following protocol is subject to an attack if and only if the termss andt are
unifiable. We assume thatx1, . . . , xn are the variables occurring ins, t and thatK is a key known only toA and
B.

((A, 1), 〈x1, . . . , xn〉 ⇒ {〈s, t〉}K)
((B, 1), {〈x, x〉}K ⇒ Secret)

Hence with a tree representation it would require exponential space to write the substitution associated to an
attack guessed in a non-deterministic procedure for insecurity.

We first show some basic facts on the DAG-representation of message terms. Then we shall show how to obtain
from any derivation a more compact one. We will then be able to prove that a normal attack has a polynomial size
w.r.t. the size of the protocol and intruder knowledge, when using DAG representations.

3.1 Preliminaries

TheDAG-representationof a setE of message terms is the graph(V, E) with labeled edges, where:

• the set of verticesV = Sub(E), the set of subterms ofE.

• the set of edgesE : {vs
left−→ ve | ∃b, vs = {ve}b or vs = 〈ve, b〉} ∪ {vs

right−→ ve | ∃b, vs = {b}ve or vs =
〈b, ve〉}

Remark 1 The DAG representation is unique.

If n is the number of elements inSub(t), one can remark that(V, E) has at mostn nodes and2.n edges.
Hence its size is linear inn, and for convenience we shall define the DAG-size ofE, denoted by|E|DAG, to be
the number of distinct subterms ofE, i.e the number of elements inSub(E). For a termt, we simply write|t|DAG
for |{t}|DAG.

Lemma 1 For all set of termsE, for all variablesx and for all messagest, we have:|E[x ← t]|DAG ≤ |E, t|DAG

Proof: Given a set of termsE, a variablex and a messaget, we want to show:|E[x ← t]|DAG ≤ |E, t|DAG:
Let us first remark that we have|t, t|DAG = |t|DAG. We recall thatSub(E′) denotes the set of subterms of

E′. We introduce a functionf : Sub(E[x ← t]) −→ Sub(E, t) and we show thatf is one-to-one. Let us define
f for α ∈ Sub(E[x ← t]) by:

• f(α) = α if α ∈ Sub(t) .

• f(α) = α′ if α = α′[x ← t] for some subtermα′ of E

When severalα′ are possible in the definition above then we take one arbitrarily. Let us show thatf is one-to-one.
Considerα, β ∈ Sub(E[x ← t]) with α 6= β.

• If α, β ∈ Sub(t) thenf(α) = α, f(β) = β, andf(α) 6= f(β).

• If α ∈ Sub(t) andβ = β′[x ← t], andβ′ ∈ Sub(E), thenα[x ← t] = α 6= β′[x ← t], α 6= β′ and so
f(α) 6= f(β).

• If α = α′[x ← t] andβ = β′[x ← t], with α′, β′ ∈ Sub(E), thenα′ 6= β′ andf(α) 6= f(β).

This proves the property, since the DAG-size of a set of terms is equal to number of distinct subterms they contain.
�

1. Guess a correct execution orderπ : I −→ {1, ..., k}.
Let Ri = R′

π−1(i) andSi = S′π−1(i) for i ∈ {1, ..., k}

2. Guess a ground substitution such that for allx ∈ V , σ(x) has DAG-size≤ n.

3. For eachi ∈ {1, ..., k + 1} guess an ordered listli of n rules whose principal terms have DAG-
size≤ n.

4. For eachi ∈ {1, ..., k} check thatli applied to{Sjσ | j < i} ∪ {S0} generatesRiσ

5. Check thatlk+1 applied to{Sjσ | j < k + 1} ∪ {S0} generatesSecret.

6. If each check is successful then answer YES.

Figure 1: NP Decision Procedure for the Insecurity Problem

Corollary 1 For all set of termsE, for all ground substitutionsγ, we have|Eγ|DAG ≤ |E, γ(x1), .., γ(xk)|DAG
where{x1, .., xk} is the set of variables inV ar. (recall thatV ar is finite).

Proof: We simply apply Lemma 1 above for eachxi. �

Remark 2 We only need polynomial time to check that a rulel → l, r′ can be applied toE and to compute the
resulting DAGE′, when we have already a DAG-representation ofE, l andr′. This is due to the fact that we only
need to first check that all terms inl are also inE and then to compute the DAG-representationE′ of E, r′.

We are now going to present a NP decision procedure for finding an attack, assuming an attack exists. The
procedure amounts to guess a correct execution orderπ, a possible ground substitutionσ, with a DAG-size poly-
nomially bounded, and k+1 lists of rules of lengthn2, and finally to check that when applying these lists of rules
the intruder can build all expected messages as well as the secret.

We assume that we are given a protocol specification{(ι, R′
ι ⇒ S′ι) | ι ∈ I}. Let P = {R′

ι, S
′
ι | ι ∈ I},

a secret messageSecret and a finite set of messagesS0 for initial intruder knowledge. IfP, S0 is not given in
DAG-representation, they are first converted to this format (in polynomial time). We assume that the DAG-size of
P, S0 is n, the finite set of variables inP is V , and|I| = k.

The NP procedure for checking the existence of an attack is written in Figure 1. To prove the correction of
this procedure we shall show that we can put a bound on the length of normal attacks. We will first give properties
about derivations. We will also give polynomial bounds on the substitutionσ that is used in a normal attack.

3.2 Derivations

In this section, we will give some useful definitions and properties of derivations. We shall introduce a notion of
normal derivation, denoted byDerivt(E). A related notion of normal derivation has been studied in [8]. Rather
than a natural deduction presentation in [8] we use here term rewriting.

Definition 4 Given a derivationD = E0 →R1 E1 →R2 .. →Rn En, a termt is a goal ofD if t ∈ En and
t /∈ En−1.

For instance ift ∈ forge(E) there exists a derivation with goalt: we take a derivationD = E →R1 . . . →Rn

E′ with t ∈ E′ and then we take the smallest prefix ofD containingt.

This allows us to define some normal derivation, i.e. derivation minimal in length:

Definition 5 We denoteDerivt(E) a derivation of minimal length among the derivations fromE with goal t
(chosen arbitrarily among the possible ones).

In order to bound the length of such derivations, we can prove the two following lemmas: every intermediate
term inDerivt(E) is a subterm ofE or t.

Lemma 2 If there existst′ such thatLd(t′) ∈ Derivt(E) thent′ is a subterm ofE

Proof: Let D = Derivt(E). By minimality of D, we haveLc(t′) 6∈ D. Then eithert′ ∈ E and we have the
conclusion of the lemma. Otherwise there exists a ruleLd(t1[t′]) in D generatingt′. But any rule inD generating
t1[t′] must be inLd (if not, the decomposition would be useless and the derivation would not be minimal): we can
iterate this reasoning ont1[t′], and this ends the proof:t′ increases strictly at each iteration and the derivation only
contains a finite number of terms. �

Lemma 3 If there existst′ such thatLc(t′) ∈ Derivt(E) thent′ is a subterm of{t} ∪ E

Proof: Let D = Derivt(E). By minimality of D, we haveLd(t′) 6∈ D. Hence eithert′ ∈ {t} ∪ E and the
lemma is proved. Otherwise there is at last one rule usingt′: if not, Lc(t′) would be useless andDerivt(E) not
minimal. Then we have two cases to consider. In the first case, there existsa such thatLd({a}t′−1) ∈ D, hence
{a}t′−1 is a subterm ofE by the Lemma 2, and so ist′. In the second case, there existsb such thatLc({t′}b) ∈ D
or Lc({b}t′) ∈ D. In this case, we can iterate this reasoning ont1 = {t′}b or t1 = {b}t′ . This ends the proof,
becauset′ strictly increases at each iteration and the derivation only contain a finite number of terms. �

We show in the next proposition that there always exists derivations of a termt from a setE with a number of
rules bounded by the DAG-size of initial and final termst, E. This will be very useful to bound the length of the
derivations involved in the research of an attack.

Proposition 1 For any set of termsE and for any termt, if Derivt(E) = E →L1 E1.. →Ln En thenn ≤
|t, E|DAG and for all1 ≤ i ≤ n, |Ei|DAG ≤ |t, E|DAG.

Proof: Let us prove that the number of steps inDerivt(E) is at most|t, E|DAG by examining the terms composed
or decomposed for any ruleR that has been applied inDerivt(E). From Lemma 2 every term decomposed (with
Ld) is derived fromE by decompositions exclusively. Hence every term which is decomposed was a subterm of
E and is counted in|E|DAG. From Lemma 3 every term composed (byLc) is used as a subterm of a key or of
t. Hence it is counted in|t, E|DAG. Every ruleR either composes or decomposes a term, butR never composes
(resp. decomposes) a term which has already been composed (resp. decomposed). Hence to each subterm ofE
or t corresponds at most one rule application inDerivt(E) for composing or decomposing it. (merging identical

subterms)

Hence the number of terms composed or decomposed inDerivt(E) is bounded by the number of distinct
subterms ofE, t and the first part of the result follows. Since each intermediate term is a subterm ofE, t, the
second part of the proposition follows. �

Another kind of useful derivations is shown in the following Proposition 2: we can choose derivations such
that a given termγ is never decomposed assuming some conditions. It will allow us to prove the Lemma 4.

Proposition 2 Let t ∈ forge(E) andγ ∈ forge(E) be given withDerivγ(E) ending with an application of a
rule in Lc. Then there is a derivationD with goalt starting fromE, and verifyingLd(γ) /∈ D

Proof: Let t ∈ forge(E) andγ ∈ forge(E) be given withDerivγ(E) ending with an application of a rule in
Lc. Let D beDerivγ(E) without its last rule, i.e.Derivγ(E) is D followed byLc. Let D′ be the derivation
obtained fromDerivt(E) by replacing every decompositionLd of γ by D.

ThenD′ is a correct derivation, sinceD generatesα andβ which are the two direct subterms ofγ (γ is
obtained by a composition).D does not contain a decompositionLd of γ from the fact thatDerivγ(E) hasγ as
goal, otherwise the last composition would be useless.

HenceD′ satisfiesLd(γ) /∈ D and the lemma follows. �

3.3 Polynomial Bounds on Normal Attacks

We shall prove that when there exists an attack then a normal attack can always be constructed from subterms that
are already occurring in the problem specification. This will allow to give bounds on the messages sizes and on
the number of rewritings involved in such an attack.

Hence let us assume a protocolP = {R′
ι ⇒ S′ι | ι ∈ I}, a secret messageSecret and a set of messages

S0 as the initial intruder knowledge. We assume that there exists an attack described by a ground substitutionσ
and a correct execution orderπ : I −→ 1, . . . , k (wherek is the cardinality ofI). We defineRi = R′

π−1 and
Si = S′π−1 for i = 1, . . . , k.

We also define:SP as the set of subterms of the terms in the setP = {Rj | j = 1, . . . , k} ∪ {Sj | j =
0, . . . , k}, andSP≤i the set of subterms of the terms in{Rjσ | j = 1, . . . , i} ∪ {Sjσ | j = 0, . . . , i}.

We assume without loss of generality thatCharlie ∈ S0 i.e. the intruder initially knows its name !

Definition 6 Let t andt′ be two terms andθ a ground substitution. Thent is a θ-match oft′ if t is not a variable
andtθ = t′. This will be denoted byt vθ t′

The following lemma is a key property of this paper. It allows us to prove that every substitutionσ in a normal
attack is only built with parts of the protocol specification. In this way, we will be able to prove that all substitution
σ in a normal attack has a DAG-size bounded by a polynomial in the protocol DAG-size.

Lemma 4 Given a normal attackσ, for all variablex, there existst vσ σ(x) such thatt ∈ SP.

Proof: Let σ be a normal attack, and let us first assume that there existsx such that for allt such thatt vσ σ(x)
we havet 6∈ SP, and let us derive a contradiction. Let us defineNx = min{j | σ(x) ∈ SP≤j}.

Nx is the first step of the protocol whose message containsσ(x) as a subterm, andNx 6= 0 sinceσ(x) is not
a subterm ofS0. However since for allt such thatt vσ σ(x), t is not inSP, there exists a variabley which is
subterm ofRNx or SNx such thatσ(x) is a subterm ofσ(y). (Otherwise there would exist aσ-match ofσ(x) with
some subterm ofRNx). Then let us show now the following claim:

Claim σ(x) ∈ forge(S0σ,, SNx−1σ).
proof: Let DerivRNxσ(S0σ, .., SNx−1σ) beE0 →L1 E1.. →Ln En. Sinceσ(x) is a subterm ofRNxσ and since
RNxσ ∈ forge(S0σ,, SNx−1σ), we have:

• if there existi ≤ n such thatσ(x) ∈ Ei, then obviouslyσ(x) ∈ forge(S0σ,, SNx−1σ).

• Otherwise, we will prove by induction thatσ(x) occurs as a subterm in every intermediate setEi. We have
σ(x) subterm ofEn sinceRNxσ ∈ En, and:

– If σ(x) subterm ofs ∈ Ei and if there existsj ≤ i such thatLj = Lc(s), thens 6= σ(x) since
σ(x) 6∈ Ej . Hence,σ(x) is a subterm ofEj−1.

– If σ(x) subterm ofs ∈ Ei and if there existsj ≤ i s.t. s created byLj = Ld(r), thens andσ(x) are
subterms ofEj−1.

– If such a ruleLj does not exist, thenσ(x) is a subterm ofE0 and the iteration is finished.

This iteration implies thatσ(x) is a subterm ofE0 = S0σ, .., SNx−1σ. But it is impossible due to the choice
of Nx.

end

Hence there exists a derivationDerivσ(x)(S0σ,, SNx−1σ) and we can notice that its last step uses neces-
sarily a composition rule since otherwise Lemma 2 would imply thatσ(x) is a subterm ofS0σ,, SNx−1σ, and
therefore a contradiction.

Let us define the substitutionσ′ to be equal toσ on all variables except forx whereσ′(x) = Charlie.
We will prove thatσ′ defines an attack with the same execution order thanσ. Sinceσ is an attack, for allj,
Rjσ ∈ forge(S0σ, .., Sj−1σ).

If j < Nx then sinceσ(x) has no occurrence inRjσ, S0σ, .., Sj−1σ, we haveRjσ = Rjσ′, S0σ = S0σ′, . . . ,
Sj−1σ = Sj−1σ′. Therefore we also haveRjσ′ ∈ forge(S0σ′, .., Sj−1σ′)

If j ≥ Nx then there exists a derivation starting fromE0 = S0σ, .., Sj−1σ with goalRjσ, denotedE0 →L1

E1 →L2 →Lnj
Enj . By Proposition 2,σ(x) is never decomposed in this derivation:∀i ≤ nj , Li 6= Ld(σ(x)).

Let us build from this derivation a new one where eachσ(x) is replaced byCharlie. We shall denote bytδ the
term obtained fromt by replacing every occurrence ofσ(x) by Charlie. For convenience we shall consider that
E → E is a derivation step justified by the identity rule∅. Then we shall prove that there exists a valid derivation:

E0δ →L′1
E1δ →L′2

.... →L′nj
Enjδ

where every ruleL′i is eitherLi or ∅. Hence we only have to take the same rules as in the initial derivation
but possibly skip some steps. More precisely let us show that fori = 1 . . . nj , if Ei−1 →Li Ei then either
Ei−1δ →Li Eiδ or Ei−1δ →∅ Eiδ.

1. If Li = Lc(〈α, β〉), then eitherσ(x) 6= 〈α, β〉 and(E′
i−1, α, β)δ →Li (E′

i, α, β, 〈α, β〉)δ is a valid step
since〈αδ, βδ〉 = 〈α, β〉 δ, or σ(x) = 〈α, β〉 and we can takeL′i = ∅ sinceCharlie ∈ Ei, for all i. The
same reasoning stand forLi = Lc({α}β).

2. If Li = Ld(〈α, β〉) then σ(x) 6= 〈α, β〉, and (E′
i−1, 〈α, β〉)δ →Li (E′

i, 〈α, β〉 , α, β)δ is valid since
〈αδ, βδ〉 = 〈α, β〉 δ. The same reasoning stand forLi = Ld({α}β).

Finally we get for allj, Rjσ′ ∈ forge(S0σ′, .., Sj−1σ′). Hence it follows thatσ′ is an attack for the same protocol
order thanσ. Sinceσ′ is obtained fromσ by simply replacing the value ofx by a strictly smaller one (w.r.t.|_|)
we have〈|R1σ′| , ..., |Rkσ′|〉 strictly smaller than〈|R1σ| , ..., |Rkσ|〉 and this is contradictory with the assumption
of normal attack forσ. �

We can now use this lemma to bound the DAG-size of everyσ(x). This is shown in the following Theorem:

Theorem 1 If σ is the substitution in a normal attack then we have for allx ∈ V ar |σ(x)|DAG ≤ |P|DAG

Proof: Given a set of variableU , we shall writeU = {σ(x) | x ∈ U}. Let us build by induction a sequence of
setsEp ⊆ SP and a sequence of setsVp of variables such that|σ(x)|DAG ≤

∣

∣Ep, Vp
∣

∣

DAG:

• Let (E0, V0) be(∅, {x}). We have|σ(x)|DAG ≤
∣

∣E0, V0
∣

∣

DAG andE0 ⊆ SP.

• Assume that we have built(Ep, Vp) such that|σ(x)|DAG ≤
∣

∣Ep, Vp
∣

∣

DAG andEp ⊆ SP, let us defineEp+1
andVp+1: If Vp 6= ∅ let us choosex′ ∈ Vp. Then there existst vσ σ(x′) such thatt ∈ SP. We define
Ep+1 = Ep ∪ {t} andVp+1 = V ar(t) ∪ Vp − {x′}. Sincet ∈ SP, we haveEp+1 ⊆ SP. Let us show
that |σ(x)|DAG ≤

∣

∣Ep+1, Vp+1
∣

∣

DAG. Let δ = {[y ← σ(y)] /y ∈ V ar(t)}. By applying the Corollary 1 on
Ep ∪ {t} ∪ Vp − x′ for the substitutionδ. (Remark:tδ = σ(x′)) We obtain:

∣

∣Epδ, Vp
∣

∣

DAG ≤
∣

∣

∣Ep, Vp − x′, t, V ar(t)
∣

∣

∣

DAG
and then

∣

∣Ep, Vp
∣

∣

DAG ≤
∣

∣Epδ, Vp
∣

∣

DAG ≤
∣

∣Ep+1, Vp+1
∣

∣

DAG

Finally, this construction terminates since
∑

y∈Vp
|σ(y)| strictly decreases. At the end we getVp = ∅ and

|σ(x)|DAG ≤ |Ep|DAG with Ep ⊆ SP: since|Ep|DAG ≤ |P|DAG this proves the theorem. �

The consequence of Theorem 1 is that the DAG-size of the messages that are sent or received during a normal
attack is bounded by a polynomial in the DAG size of the protocol. This result has crucial practical implications
since it means that when searching for an attack we can give a simplea priori bound on the dag-size of the
messages needed to be forged by the intruder:

Corollary 2 If σ is the substitution in a normal attack then for alli = 1, . . . , k, |Riσ, S0σ, .., Si−1σ|DAG ≤
|P|DAG and|Secret, S0σ, .., Skσ|DAG ≤ |P|DAG.

Proof: We can generalize Theorem 1’s proof: Starting fromE0 = {Ri, S0, .., Si−1} andV0 = V ar, we can obtain
∣

∣E0, V0
∣

∣

DAG ≤ |P|DAG. But we have|Riσ, S0σ, .., Si−1σ|DAG ≤ |E0, V0|DAG from Corollary 1, so the result is
proved forRi. And a similar proof can be derived for the inequality|Secret, S0σ, .., Skσ|DAG ≤ |P|DAG. �

3.4 Protocol Insecurity with Finite Number of Sessions is in NP

Single Session Case

We recall here the NP procedure for checking the existence of an attack and show its correctness.
We assume given a protocol specification{(ι, R′

ι ⇒ S′ι) | ι ∈ I}. Let P = {R′
ι, S

′
ι | ι ∈ I}, a secret message

Secret and a finite set of messagesS0 for initial intruder knowledge. IfP, S0 is not given in DAG-representation,
they are first converted to this format (in polynomial time). We assume that the DAG-size ofP, S0 is n, the finite
set of variables inP is V , and|I| = k. Let us first remark that the procedure written in Section 3.1 is NP:

• A correct execution order is a permutation ofI, and can be guessed in polynomial time.

• Sinceσ(x) has DAG-size≤ n, one can choose a DAG representation ofσ(x) in timeO(n) andσ in O(n2).

• Since each rule inli has DAG-size≤ n and sinceli has at mostn rules, one can choose eachli in time
O(n2), and allli in timeO(n3). Remark:each term in the rules is in DAG representation.

• Computing the resultE′ of the application of a ruleLx(t) on E, with E andt in DAG representation, can
be done in polynomial time in the DAG-size ofE by Remark 2. So, checking that allli are correctly applied
takes polynomial time ofn. To verify thatRiσ is in the last set of terms takes obviously polynomial time
too.

We can now see that this procedure is correct since it answers YES if and only if the protocol has anattack. If
an attack exists, then one of the smallest attacks on this protocol is anormal attack, defining normal derivations
which are possible guesses for theli’s (and defining as well the execution order). On the other hand if the procedure
answers YES, the checking performed on the guessed derivations proves that the protocol has an attack.

Multiple Sessions Case

We shall define the execution of several sessions of a protocolP as the execution of a single session for a more
complex protocolP ′ of size polynomial in|P |×m wherem is the number of sessions. Therefore this will reduce
immediately the security problem for several sessions to the security problem for one session and will show that
the insecurity problem is in NP for multiple sessions too.

We assume given a protocol specificationP with its associated partial order< on the set of stepsW . Letm be
the number of sessions of this protocol we want to study, letV ar be the set of variables inP and letNonces be the
set of nonces (a subset ofAtoms) in P . The nonces are given fresh values at each new session by definition. Also
variables from different sessions should be different. This is because we consider that in this model messages are
not memorized from one session to another (except maybe by the intruder). Therefore we shall definen renaming
functionsνi, for i = 1, .., m, as bijections fromW ∪Nonces ∪ V ar to n new sets (mutually disjoint and disjoint
from W ∪Nonces ∪ V ar) such that:

νi(w) = wi for all w ∈ W
νi(N) = Ni for all N ∈ Nonces
νi(x) = xi for all x ∈ V ar

We assume that each set of stepsWi for i = 1, .., m, is provided with a partial order<i such that for allw, w′ ∈ W
and for allwi, w′i ∈ Wi, w < w′ iff wi < w′i. Let Pi be the protocol obtained by applying the renamingνi to
P . We have nown copyPi, i = 1, .., m, of the protocol. We combine them now into a unique protocol denoted
m.P as follows. The set of steps is by definition the union

⋃m
i=1 Wi of the steps in all copiesPi, for i = 1, ..,m.

The partial order on
⋃m

i=1 Wi is defined as
⋃m

i=1 <i. It is easy to see that the execution of one session of the new
protocol is equivalent to the execution ofm interleaved sessions of the initial protocol.

Lemma 5 Let S0 be the initial intruder knowledge. The DAG-size of(m.P, S0) is O(n × m) wheren is the
DAG-size ofP, S0.

Therefore a normal attack ofm.P can be bounded polynomially:

Corollary 3 If σ is the substitution in a normal attack ofm.P assuming that the initial intruder knowledge isS0
and the DAG-size ofP, S0 is n, thenσ can be represented inO((n×m)2).

Then applying the NP procedure for one session we derive immediately:

Theorem 2 Protocol insecurity for a finite number of sessions is decidable and in NP.

Remark 3 If we want to modeln sequential sessions of the protocol instead ofn parallel sessions, we only need
to use a different order on the union of protocol steps

⋃n
i=1 Wi, more precisely we take

⋃n
i=1 <i ∪ {w <

w′ | ∃j, k s.t.w ∈ Wj , w′ ∈ Wk, j < k}. Hence this order forces one session to be finished before another one
starts.

4 NP-hardness

We show now that the existence of an attack when the input are a protocol specification and initial knowledge of
the intruder is NP-hard by reduction from 3-SAT. The proof is similar to the one given by [1] for their model, but
does not need any conditional branching in the protocol specification. The propositional variables arex1, .., xn,
and an instance of 3-SAT isf(−→x) =

∧

I(x
εi,1
i,1 ∨ xεi,2

i,2 ∨ xεi,3
i,3) whereεi,j ∈ {0, 1} andx0 (resp.x1) meansx

(resp.¬x). Let us define:

• g(0, xi,j) = xi,j andg(1, xi,j) = {xi,j}K .

• ∀i ∈ I, fi(−→x) = 〈g(εi,1, xi,1), 〈g(εi,2, xi,2), g(εi,3, xi,3)〉〉

The idea here is to use the intruder power to generate a first message,〈x1,1, .., xn,3〉, representing a (possible)
solution for this 3-SAT problem. From this initial messageA creates a term representingf applied to this solution.
It will then be up to principalsB to D′ to verify that it can really be reduced toTrue, with the help of the intruder
for choosing the correct derivation. If this is the case, thenE give theSecret term to the intruder, and the protocol
has an attack. The description of this protocol follows :

Let us introduce now the following protocol (where variablesx, y, z occurring in the description of step(U, j)
should be considered as indexed by(U, j); the index is omitted for readability). Note also that the number of steps
for each principalB . . .D′ is equal to the number of conjunctions in the 3-SAT instance.

Principal A: (A, 1), 〈x1,1, .., xn,3〉 ⇒ {〈f1(−→x), 〈f2(−→x), 〈..., 〈fn(−→x), end〉〉〉〉}P .

Principal B: (B, i), {〈〈>, 〈x, y〉〉 , z〉}P ⇒ {z}P , for i ∈ I.

Principal B’: (B′, i), {〈〈{⊥}K , 〈x, y〉〉 , z〉}P ⇒ {z}P , for i ∈ I.

Principal C: (C, i), {〈〈x, 〈>, y〉〉 , z〉}P ⇒ {z}P , for i ∈ I.

Principal C’: (C ′, i), {〈〈x, 〈{⊥}K , y〉〉 , z〉}P ⇒ {z}P , for i ∈ I.

Principal D: (D, i), {〈〈x, 〈y,>〉〉 , z〉}P ⇒ {z}P , for i ∈ I.

Principal D’: (D′, i), {〈〈x, 〈y, {⊥}K〉〉 , z〉}P ⇒ {z}P , for i ∈ I.

Principal E: (E, 1) : {end}P ⇒ Secret

We takeS0 = {>,⊥} as the initial intruder knowledge. Hence there is an attack on this protocol iff the
message sent by principal A can be reduced to{end}P i.e. for all i ∈ I, there existsj ∈ {1, 2, 3} such that
g(εi,j , xi,j) ∈ {>, {⊥}K}. But this means that the intruder has given toA a term representing a solution of 3-SAT,
sinceg(εi,j , xi,j) is xi,j

εi,j . ({⊥}K is interpreted as>). Hence the protocol admits an attack iff the corresponding
3-SAT problem has a solution. Moreover this reduction is obviously polynomial. Hence the problem of finding
an attack with bounded sessions is NP-hard.

The example above shows that the insecurity problem is NP-hard for protocols with pairs, but without com-
posed keys and without variables in key position. But we can obtain hardness for a class of protocols with different
restrictions. The next protocol shows thatthe insecurity problem remains NP-hard even without pairs, with-
out composed keys and with a unique honest principal whose steps are linearly ordered. On the other hand
we need to use variables at key positions.

Hence our next result will show that finding an attack to a single session of a determinist protocol is already
an NP-hard problem. Therefore the non-determinism of the intruder is sufficient for the insecurity problem to be
NP-hard.

Let f(−→x) =
∧

j∈I Dj be an instance of 3-SAT following the same definition as above (for the first protocol),
and letn be the number of propositional variables of−→x . Let |I| be the number of conjunctsDj in f . In the
following, x and y are protocol variables and we suppose that their occurrences represent different variables
(i.e. they should be implicitly renamed) in different steps of the protocols. To each propositional variablexi we
associate an atomVi, for i = 1, . . . , n. The initial intruder knowledge includes:

1. {{P}⊥}K , {{P}>}K , andP . The intruder will assign values to−→x by using{P}⊥ or {P}>.

2. {{K}⊥}Vi and{{K}>}Vi , for i = 1..n. These are fake values for−→x allowing the intruder to “skip” some
protocol steps when needed. But doing that, he will not gain any useful knowledge.

We use only one honest principalA, and then protocol steps ofA are linearly ordered by:(A, i) < (A, i′) iff
i < i′ for i, i′ = 1, . . . , n:

• (A, i) : {x}K ⇒ {x}Vi

In these steps, the intruder selects values for−→x . Since there is one and only one step for each valueVi, the
instantiation of−→x is complete and non redundant. Since the intruder does not knowK, these values can
only be{P}⊥ or {P}>.

• For each conjunct indicej in I, and for eachi = 1..n such thatxi is a variable in the conjunctDj , let us
define the step(A, j, i) as :

(A, j, i) : {{y}>}Vi ⇒ {Secretj}y if Vi occurs positively inDj or
(A, j, i) : {{y}⊥}Vi ⇒ {Secretj}y if Vi occurs negatively inDj

The goal of the intruder is to know all termsSecretj : this would prove that every conjunctDj is evaluated
to>. To do this, he must use fory a value he knows in order to decrypt at least one message{Secretj}y for
eachj. However the intruder has only two possible actions: either he send toA {{K}>}Vi or {{K}⊥}Vi

but then he will receive back{Secretj}K which is useless (this step can be considered as blank for the
intruder), or he has assigned toVi the correct value{{P}>}Vi or {{P}⊥}Vi , and by sending it at the right
step he will get back{Secretj}P that he can decrypt withP to Secretj .

• The last protocol step is to ensure that the intruder knows eachSecretj . For this purpose let us introduce
an atomBigSecret that will be revealed to the intruder iff he knows every atomSecretj . The last protocol
step is:
(A, end) : P ⇒ {..{BigSecret}Secret1 ..}Secret|I| .

Therefore, the intruder knowsBigSecret if and only if each conjunctDj is evaluated to>, and this protocol
has an attack onBigSecret if and only if the 3-SAT problem admits a solution.

This proves the correctness of this reduction, which is obviously polynomial.

It is interesting to see that the class of protocols considered in the previous reduction is very close to the
simple class of ping-pong protocols [12]: the only difference is the use of a variable as a key (but only with atomic
values).

From the results above we finally conclude with the main result:

Theorem 3 Finding an attack for a protocol with a fixed number of sessions is a NP-complete problem.

5 Alternative models

5.1 Extending the intruder model

If we assume that the rules in Table 2 are added to the intruder model, then new attacks can now be performed
as shown in the following example (we have omittedinit andend messages). The Intruder initial knowledge is
{Secret}P and the protocol rules are:

((A, 1), {x}K−1 ⇒ x)
((A, 2), {{y}P }K ⇒ y)

Decomposition rules Composition rules

Ls({{a}s
b}s

b) : {{a}s
b}s

b → a, {{a}s
b}s

b, Lr({{a}s
b}s

b) : a → a, {{a}s
b}s

b
Ls({{a}p

K}
p
K−1) : {{a}p

K}
p
K−1 → a, {{a}p

K}
p
K−1 Lr({{a}p

K}
p
K−1) : a → a, {{a}p

K}
p
K−1

Table 2: Extension of the Intruder Model.

This protocol admits the following attack when the initial knowledge of intruder is{Charlie, {Secret}P }:

{Secret}P → {{{Secret}P }K}K−1 → {{Secret}P }K → Secret

We can remark that such an attack cannot be performed if theLr rules are not included in the intruder rewrite sys-
tem. Since simple cryptographic systems verify the property that encryption is idempotent it might be interesting
to add these newLr rules. However it is easy to prove that the insecurity problem remains NP-complete when
theseLr andLs rules are included. These new rules behave exactly in the same way asLc andLd, and we can
restrict ourselves to consider again some special derivations.

Definition 7 A derivationD fromE verifyCondition 1when for all messagesa, b :

1. if Ld({{a}b}b−1) ∈ D thenLr({{a}b}b−1) /∈ D

2. if Lc({a}b) ∈ D thenLs({{a}b}b−1) /∈ D

3. if Ls({{a}b}b−1) ∈ D thenLc({{a}b}b−1) /∈ D

4. if Lr({{a}b}b−1) ∈ D thenLd({a}b) /∈ D

Lemma 6 If t ∈ forge(E), then there exists a derivationD fromE with goalt verifyingCondition 1.

Proof: Let D be one of the minimal derivations in length fromE with goal t. Then let us buildD′ another
derivation with the same initial and final set thanD, verifying moreoverCondition 1, and minimal in length
among the derivations with these initial and final sets and verifyingCondition 1. We reason by induction on the
length ofD. If D = ∅ we takeD′ = ∅. OtherwiseD = (E0 →L1 .. →Ln En) and by induction hypothesis there
existsD′

1 = (E′
0 →L′1

.. →L′n−1
E′

n−1) with E0 = E′
0, En−1 = E′

n−1, verifying Condition 1, and minimal in
length. We show how to extend this to a derivationD′ according to the last step ofD:

1. if Ln = Ld({{α}β}}β−1) and there existsi < n such thatL′i = Lr({{α}β}β−1) ∈ D′
1, then letL′n =

Lc({α}β). L′n can be applied sinceα ∈ E′
i−1 andβ ∈ Ei−1, and we haveLs({{α}β}β−1) 6∈ D′

1 since
otherwiseD′

1 would not be minimal in length.

2. if Ln = Lc({α}β) and there existsi < n such thatL′i = Ls({{α}β}β−1) ∈ D′
1, then letL′n =

Ld({{α}β}β−1). L′n can be applied since{{α}β}β−1 ∈ E′
i−1 andβ ∈ E′

i−1, and by minimality ofD′
1

we haveLr({{α}β}β−1) 6∈ D′
1.

3. if Ln = Ls({{α}β}β−1) and there existi < n such thatL′i = Lc({{α}β}β−1) ∈ D′
1, then:

• If Lr({α}β) 6∈ D′
1, we takeL′n = Ld({α}β) since{α}β andβ are inEi−1.

• If Lr({α}β) ∈ D′
1, then{α}β = {{α′}β−1}β and we takeL′n = Lc({α′}β−1) sinceα′ andβ−1 are

in En−1.

4. if Ln = Lr({{α}β}β−1) and there existsi < n such thatL′i = Ld({α}β) ∈ D′
1, then:

• If Ls({{{α}β}β−1}β) 6∈ D′
1, we takeL′n = Lc({{α}β}β−1), since{α}β andβ are inEi−1.

• If Ls({{{α}β}β−1}β) ∈ D′
1, we takeL′n = Ld({{{α}β}β−1}β).

5. otherwise in all remaining cases we takeR′ = R.

Then we can notice thatE′
n = En for E′

n−1 →L′n E′
n andD′ = (E0 →L0 .. →Ln E′

n) verify Condition 1.
Hence, the set of derivations with the same initial and final sets thanD and verifyingCondition 1 is not empty,
and we can choose one of its elements minimal in length.

Hence from a derivation proving thatt ∈ forge(E) we can build another one verifying moreoverCondition 1.
The minimal prefix of this derivation that containst is a derivation of goalt satisfyingCondition 1, and this proves
the lemma. �

Now, we only need to update theDerivt(E) definition:

Definition 8 We denoteDerivt(E) a derivation of minimal length among the derivations fromE with goalt and
satisfyingCondition 1 (chosen arbitrarily among the possible ones).

The rest of the proof is almost identical except thatLc is replaced byLc andLr, andLd is replaced byLd and
Ls.
Note that this model can still be improved since here theLs andLr rules are only applied at the top of messages:
we could also consider cases where they are applied everywhere in terms.

5.2 Limiting the intruder

In this section we show how to reduce to our model other models where the intruder is unable (for some messages)
to eavesdrop, divert and modify, or impersonate.

To prevent the intruder from eavesdropping between two steps(A, i) : ... ⇒ M1 and(A, j) : M2 ⇒ ..., we
introduce a new symmetric keyP only known byA andB and never published: With the steps(A, i) : ... ⇒
{〈A,M1〉}s

P and(A, j) : {〈A,M2〉}s
P ⇒ ..., the intruder will never be able to intercept the messageM1 and send

something else toB instead, even with theLr rules.
To prevent the intruder from diverting and modifying the message between the two steps above, we can use a

new private keyKA,i instead ofP , and the steps(A, i) : ... ⇒ {〈A,M1〉}p
KA,i

and(A, j) : {〈A, M2〉}p
KA,i

⇒

This way, if the intruder knowK−1
A,i then he knowsM1, but he cannot modify it, even with theLr rules. And since

KA,i is only used for this step, the intruder can’t use any other stored message.
To prevent the intruder from impersonating a messageM sent by the principalA to B, we assume that there

exists a private keyK only known by the principals and never published (it never appears in the content of a
message), and we assume thatK−1 is known by everybody. Hence this amounts to replaceM by {〈A,M〉}p

K in
A andB’s steps: The intruder and the principals can readM , but the intruder will never be able to build a message
in the name ofA, even with theLr rules. (But he can use oldA’s messages if we used the same keyK)

The new protocol has a linear size in the initial one, even in a dag representation.

5.3 Adding choice points

We extend the protocol model in order to allow for choice points. Typically the field of a message may contain
information about the type of cryptography negotiated for the rest of the session. Hence the subsequent message
exchanges may depend from the content of this field.

We shall consider protocol descriptions where some steps(A, i) may be composed by priority blocks:

(A, (i, 0)): R0
i ⇒ S0

i
(A, (i, 1)): R1

i ⇒ S1
i

...
(A, (i, k)): Rk

i ⇒ Sk
i

Two steps in the same priority block cannot be applied in the same execution, and∀j, j′, (A, (i, j)) <wA (A, (i +
1, j′)). This block construction is similar to a case structure in programming languages. A protocol execution
with substitutionσ must now also satisfy: For every priority block (indexed byi), we apply step(A, (i, j)) if ∀j,
∀δ, Rj

i σ 6= R0
i δ and ... andRj

i σ 6= Rj−1
i δ.

For technical reasons, we introduce for each variablex, a termCharliex that does not appear anywhere in the
protocol description, that is initially known only by the intruder and such that|Charliex| = 0. Then, an attack is
now given by an order which is compatible with the given partial order and a substitutionσ verifying the above
steps conditions, the usualRiσ ∈ forge(S0σ, .., Si−1σ) andSecret ∈ forge(S0σ, .., Snσ) conditions, and for
all variablesx, Charliex may only appear inσ(x). This last condition does not restrict the intruder since he is
not forced to useCharliex.

First we can remark that all properties, lemmas, and proofs about derivations remain valid since we did not
change the intruder rules. Therefore, the only proof to be adapted is the one of Lemma 4: We build a new
substitutionσ′ from σ , and we must prove that it still satisfies the requirements for an attack. To do that, we
assume first thatCharliex is used instead ofCharlie for σ(x) in the proof of the lemma.

We haveRiσ′ ∈ forge(S0σ′, .., Si−1σ′) and Secret ∈ forge(S0σ′, .., Snσ′). And for each attack step
π−1(k) = (A, (i, j)), we haveRj

i σ 6= R0
i δ and ... andRj

i σ 6= Rj−1
i δ by definition ofσ. Let us show by

contradiction that there is noδ such thatRj
i σ
′ = Rj′

i δ for somej′ < j. Two cases are possible: Ifx appears in

Rj
i , thenCharliex appears inRj

i σ
′ and inRj′

i δ. Therefore, we haveRj
i σ = Rj′

i δ′ for δ′ equal toδ with Charliex

replaced byσ(x). But this is impossible by definition ofσ. If x does not appear inRj
i , thenRj

i σ = Rj
i σ
′ = Rj′

i δ
and we also have a contradiction. This way, we have proved thatσ′ defines an attack with the same execution
order and which is smaller thanσ (since|Charliex| = 0. The lemma follows.

Since all bounds on derivations and attacks remain valid we only need to add to our insecurity detection
procedure, an extra guessing step for the branches to be taken at choice points in order to derive a NP procedure
for the more general case of protocols with choice.

Conclusion

By representing messages as dags we have been able to prove that when the number of sessions of a protocol is
fixed, an intruder needs only to forge messages of linear size in order to find an attack. This result admits obvious
practical implications since it gives an a priori bound on the space of messages to be explored for finding flaws in
the protocol (with a model-checker, for instance).

Without Nonces With Nonces

No bounds [15] Undecidable Undecidable
Infinite number of sessions, and bounded messages [14]DEXPTIME-complete Undecidable

Finite number of sessions, choice points, and unbounded messagesNP-complete NP-complete
Finite number of sessions, and unbounded messages NP-complete NP-complete

Table 3: Complexity of known fragments

We have then derived the first NP-procedure for finding an attack with a fixed number of sessions and com-
posed keys (also the first published decision procedure for this problem). This result matches the lower bound of
the problem. Some related implementations have taken advantage of the thorough analysis in the NP membership
proof and have been able to analyze in a fairly fast way the standard examples of the literature.

Several interesting variants of our model can be easily reduced to it. These variants are also quite easy to
implement.

For instance we could consider that a principal is unable to recognize that a message supposed to be encrypted
by some keyK has really been constructed by an encryption withK, (see extension in Subsection 5.1). To obtain
a protocol model where principals may recognize whether a real encryption has been performed one simply extend
any cipher with a special fixed field.

We have considered that the intruder can eavesdrop, divert messages, and impersonate other principals. How-
ever we can model a more passive intruder, as described in Subsection 5.2, by ensuring that some messages cannot
be modified (for instance when a safe channel conveys them).

We have considered secrecy properties. Since correspondence attacks can also be expressed by an execution
order and a polynomial number offorge constraints they can be detected in NP too.

Our procedure can also be adapted to protocols admitting choice points, such as SSL, where a different subpro-
tocol can be executed by a user according to some received message. The modification of our model is described
in Subsection 5.3. The detection of an attack remains in NP. We can summarize the known results in the Table 3.

Finally let us notice that our model remains valid when the intruder is allowed to generate any number of new
data. We simply replace in an attack all data that is freshly generated by the intruder by its nameCharlie. This
implies that in the finite session case, the intruder does not gain any power by creating nonces.

Directions for future work include broadening the scope of our approach to some cases where the number of
sessions is unbounded or to commutativity of encryption operators.
Acknowledgements: We thank Roberto Amadio for discussions and Adam Cichon for comments.

References

[1] R. Amadio and D. Lugiez. On the reachability problem in cryptographic protocols, InProc. CONCUR 2000,
Springer Lecture Notes in Computer Science 1877.

[2] D. Basin. Lazy infinite-state analysis of security protocols. InSecure Networking — CQRE [Secure] ’99,
LNCS 1740, pages 30–42. Springer-Verlag, Berlin, 1999.

[3] D. Bolignano. Towards the formal verification of electronic commerce protocols. InIEEE Computer Security
Foundations Workshop, pages 133–146. IEEE Computer Society, 1997.

[4] J. Clark and J. Jacob. A Survey of Authentication Protocol Literature: Version 1.0, 17. Nov. 1997. URL
http://www.cs.york.ac.uk/~jac/papers/drareview.ps.gz .

[5] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, A. Scedrov. A meta-notation for protocol analysis. In P.
Syverson, editor12th IEEE Computer Security Foundations WorkshopIEEE Computer Society Press, 1999.

[6] Y. Chevalier and L. Vigneron. Towards Efficient Automated Verification of Security Protocols. InVerification
Workshop (VERIFY’01) (in connection with IJCAR’01), Siena, Italy, June 2001.

[7] Y. Chevalier and L. Vigneron. A Tool for Lazy Verification of Security Protocols. In16th IEEE International
Conference Automated Software Engineering, November 26-29, 2001 Loews Coronado Bay San Diego,
USA.

[8] E.M. Clarke, and S. Jha, W. Marrero. Using state space exploration and a natural deduction style message
derivation engine to verify security protocols. In Proceedings of the IFIP Working Conference on Program-
ming Concepts and Methods (PROCOMET), 1998.

[9] H. Comon, V. Cortier, and J.C. Mitchell. Tree Automata with one Memory, Set Constraints and Ping-Pong
Protocols, ICALP 2001, Crete, Greece, July 8-12, 2001.

[10] G. Denker, J. Meseguer, and C. Talcott. Protocol specification and analysis in Maude. In Heintze, N. and
Wing, J., editors, Proc. of Workshop on Formal Methods and Security Protocols, 25 June 1998, Indianapolis,
Indiana,

[11] G. Denker and J. Millen. CAPSL Integrated Protocol Environment. In DARPA Information and Survivability
Conference and Exposition (DISCEX’00), Hilton Head, South Carolina, January 25-27, 2000, pp. 207-221,
IEEE Computer Society Press

[12] D. Dolev and A. Yao. On the security of public key protocols.IEEE Transactions on Information Theory,
IT-29:198–208, 1983. Also STAN-CS-81-854, May 1981, Stanford U.

[13] B. Donovan, P. Norris, and G. Lowe, Analyzing a library of protocols using Casper and FDR. InProc. of
FMSP’99, http://web.comlab.ox.ac.uk/oucl/work/gavin.lowe/

[14] N. Durgin, P. Lincoln, J. Mitchell, A. Scedrov. Undecidability of Bounded Security Protocols Workshop on
Formal Methods and Security Protocols July 5, 1999, Trento, Italy (part of FLOC’99)

[15] S. Even, O. Goldreich. On the security of multi-party ping pong protocols. Technical Report 285, Israel
Institute of Technology, 1983.

[16] J. Goubault-Larrecq A Method for Automatic Cryptographic Protocol Verification (Extended Abstract). In
Proc. Workshop on Formal Methods in Parallel Programming, Theory and Applications (FMPPTA’2000),
LNCS 1800, pages 977–984, Springer, 2000.

[17] A. Huima. Efficient infinite-state analysis of security protocols. LICS’99, Workshop on Formal Methods
and Security Protocols, 1999.

[18] F. Jacquemard, M. Rusinowitch and L. Vigneron. Compiling and Verifying Security Protocols. Logic for
Programming and Automated Reasoning. St Gilles, Reunion Island. Springer Verlag, 2000. LNCS. vol 1955.
30 p. M. Parigot and A. Voronkov editors.

[19] G. Lowe. Casper: a compiler for the analysis of security protocols.Journal of Computer Security, 6(1):53–
84, 1998.

[20] C. Meadows. The NRL protocol analyzer: an overview.Journal of Logic Programming, 26(2):113–131,
1996.

[21] F. Martinelli Languages for the description and the analysis of authentication protocols. In Proc. of
ICTCS’98. World Scientific Press.

[22] J. Millen. CAPSL: Common Authentication Protocol Specification Language. Technical Report MP 97B48,
The MITRE Corporation, 1997.

[23] J. Millen and V. Shmatikov. Bounded-Process Cryptographic Protocol Analysis to appear in ACM Confer-
ence on Computer and Communication Security, nov. 2001.

[24] L. Paulson. The inductive approach to verifying cryptographic protocols.Journal of Computer Security,
6(1):85–128, 1998.

[25] A. W. Roscoe. Modeling and verifying key exchange protocols using CSP and FDR. In8th IEEE Computer
Security Foundations Workshop, pages 98–107. IEEE Computer Society, 1995.

[26] M. Rusinowitch, M. Turuani. Protocol Insecurity with Finite Number of Sessions is NP-complete. In14th
IEEE Computer Security Foundations Workshop, pages 174–187. IEEE Computer Society, 2001.

[27] S Schneider Verifying Authentication Protocols with CSP. 10th IEEE Computer Security Foundations
Workshop, 1997.

