
Crypto Engineering - verifying security protocols

Cristian Ene
thanks Jannik Dreier for some slides!

Grenoble Alpes University, Verimag

Master 2: 1st Semester 2024-2025

1 / 256

Administrative information and contents

Administrative information:

E-mail (me): Cristian.Ene@univ-grenoble-alpes.fr

Web page: www-verimag.imag.fr/~enec/m2p/

Tamarin related small exam on Thusday, January 9, 2025

Schedule

1 Security Protocols - introduction and a simple protocol

2 Security Protocols - a few attacks and the need for proofs

3 A formal language for security protocols

4 An introduction to Tamarin

5 Formalizing security properties in Tamarin

6 Indistinguishability and Security Notions

7 Link Between Computational and Symbolic

2 / 256

www-verimag.imag.fr/~enec/m2p/

From crypto primitives to secure distributed applications

RSA, ElGamal, , AES, ChaCha20, SHA-1 . . . provide provably
correct cryptographic primitives.

How can we construct secure distributed applications with these
primitives?

E-commerce
E-banking
E-voting
Mobile communication
Digital contract signing

Even if cryptography is hard to break, this is not a trivial task

3 / 256

Example: Securing an e-banking application

A −→ B : “Send 10000 dollars to account C”
B −→ A : “I just did it!”

How does B know the message originated from A?

How does B know A just said it?

Confidentiality, integrity, accountability, non-repudiation, ...?

We need security protocols like IPsec, Kerberos, SSH, TLS, EMV, 5G
AKA ...

4 / 256

Communication Protocols

What are communication protocols?
A set of rules that governs the interaction and transmission of data
exchanged between agents or principals. In short, a distributed
algorithm whose goal is communication.
Examples

TCP and UDP govern computer interactions over an IP network
HTTP governs the exchange of data in the hypertext format.
SMTP governs the exchange of e-mail.

5 / 256

Security Protocols

What are security protocols?
Communication protocols that operate in an untrusted network or
among (some) untrusted agents (principals), and that are used to
achieve security goals against a threat model
Ingredients:

Principal: a protocol participant, typically human or computer
Security Goal: the confidentiality or integrity of data, the
authentication of a principal
Threat model: the capabilities of the attacker

They use cryptographic primitives as basic primitives
Examples: TLS, IPsec, SSH, WPA, Kerberos, Needham-Schroeder,...

6 / 256

Example - Online Banking

Cryptographic protocol: TLS (HTTPS)

Principals: Web Browser, Bank Website
Security Goal: the confidentiality and integrity of data, server
authentication
Threat model: network attacker, phishing website

Password-based authentication protocol

Principals: Bank Client, Bank Website
Security Goal: client authentication
Threat model: dishonest client

7 / 256

Credit card payment

Online Transaction Authorization

Principals: Credit Card, Terminal, Bank Website
Security Goal: transaction data integrity, card authentication
Threat model: fake card, tampered terminal

Cardholder verification (PIN Entry)

Principals: Client, Credit Card, Terminal
Security Goal: client authentication
Threat model: stolen credit card

8 / 256

Modelling security protocols

Security protocols are small (but critical) components embedded
within large distributed applications: for example, TLS within a web
browser

the security of the system depends on their correctness

small recipes, but non trivial to design and understand: a long history
of attacks on academic or real word protocols (many attacks, several
years later after deployment!)

why is it so difficult to correctly design security protocols?

cryptografic guarantees provided by primitives are often misunderstood
rich threat models are difficult to reason about and to test

9 / 256

TLS 1.3 (a small part of)

Client Sever
(skC , pkC) (skS , pkS)

ClientHello(nC , offerC [(G ,gx)])−−−−−−−−−−−−−−−−−→
es = kdf0 es = kdf0

ServerfHello(nS , modesS [(G ,gy)])←−−−−−−−−−−−−−−−−−−
hs = kdf (es, g xy) hs = kdf (es, g xy)

ms, k i
c , k

i
s = kdf (hs, log1) ms, k i

c , k
i
s = kdf (hs, log1)

enc(khs (Extensions(...))←−−−−−−−−−−−−
enc(khs (Certificate(pks))←−−−−−−−−−−−−−

enc(khs (CertVer(sign(sks (H(log2))))))←−−−−−−−−−−−−−−−−−−−−
enc(khs (Finished(mac(kms (H(log3))))))←−−−−−−−−−−−−−−−−−−−−

kc , ks , ems = kdf (log4) kc , ks = kdf (log4)
enc(khc (Finished(mac(kmc (H(log6))))))−−−−−−−−−−−−−−−−−−−−→

.

10 / 256

Building a secret establishment protocol

an attempt to design a simple good protocol

principals:

a set of users, denoted by a, b, c , . . . (not all are necessarily honest!)
an honest server denoted by s

security goal: to establish a new secret value k

secrecy: At the end of the protocol, k is known only to a and b, and
possibly s, but to no other parties
freshness: a and b know that k is freshly generated

k can be used to generate new session keys (further communication
protocols between the same principals may be based on these keys)

11 / 256

A secret establishment protocol - notations

we consider a protocol with 3 roles A, B (intended to be played by
users) and S (intended to be played by the server)

a role A describes how a participant (e.g. a, b, . . .) playing this role
should behave during a session of the protocol

we suppose that there is an intruder i (but nobody knows that i is
not honest!)

A protocol is informally specified as a sequence of messages m
exchanged between roles (principals) A and B

A −→ B : m (also called Alice-Bob notation)

12 / 256

A secret establishment protocol - first attempt

first attempt: a protocol that consists of 3 messages

1.A −→ S : A,B 1. A contacts S by sending the identities of the 2

parties who are going to share the secret

2.S −→ A : KAB 2. S sends the secret KAB to A

3.A −→ B : KAB ,A 3. A passes KAB together with its identity to B

KAB does not contain information about A and B, it is simply a
symbolic name for the bit-string representing the secret intended to
be shared by the principals playing the roles A and B

notice the significantly incomplete protocol specification

we use both M,N and ⟨M,N⟩ to denote concatenation

13 / 256

A secret establishment protocol - a naive attempt

Is the protocol correct? Recall that only the users that play the roles
A and B may learn the secret

In an ideal world, maybe... but a realistic assumption on typical
communication networks is:

Security Assumption 1: the intruder is able to steal all
messages sent in the protocol.

⇒ Use cryptography (symmetric/asymmetric encryption, signatures,
hashes ...).

14 / 256

A secret establishment protocol - using crypto

assume that the server playing the role S initially shares a secret key
sk(U, S) with each user in the system that can play the role U

1.A −→ S : A,B
2.S −→ A : {| K |}sk(A,S), {| K |}sk(B,S)

3.A −→ B : {| K |}sk(B,S),A

- where {| m |}sk denotes symmetric encryption of message m using the
key sk

Problems? No in case of a passive adversary, since:

Perfect Cryptography Assumption : an encrypted message can
be decrypted only with the appropriate key.

Is really B, sharing K (only) with A?

Security Assumption 2: the intruder is able to intercept and
send messages to anybody, under any sender name (that is, he

can impersonate any other participant in the protocol).

15 / 256

A secret establishment protocol - a simple attack

so basically, we assume two things (such an adversary is called a
Dolev-Yao adversary):

the adversary has complete control over the network

interception A −→ O(B) : m
injection O(A) −→ B : m

the adversary cannot break cryptography

we denote by m.n the nth step of the mth session

1.1 a −→ s : a, b
1.2 s −→ a : {| k |}sk(a,s), {| k |}sk(b,s)
1.3 a −→ i(b) : {| k |}sk(b,s), a
2.3 i(x) −→ b : {| k |}sk(b,s), x

The intruder i intercepts the message from a to b and replaces x for
a’s identity (x is any agent name).

→ Problem: b believes that he is sharing the key with x , whereas he is
sharing it with a.

16 / 256

A secret establishment protocol - a simple attack (II)

1.1 a −→ s : a, b
1.2 s −→ a : {| k |}sk(a,s), {| k |}sk(b,s)
1.3 a −→ i(b) : {| k |}sk(b,s), a
2.3 i(x) −→ b : {| k |}sk(b,s), x

Consequences: it depends on the context in which the protocol is
used, for example, b can give away to a information which should
have been shared only with x

Hence, even if i does not get k, the protocol is broken since it does
not satisfy the requirement that the users should know who else
knows the session key.

17 / 256

A secret establishment protocol - a clever attack

1.1 a −→ i(s) : a, b
2.1 i −→ s : i , a
2.2 s −→ i : {| k |}sk(i ,s), {| k |}sk(a,s)
1.2 i(s) −→ a : {| k |}sk(a,s), {| k |}sk(i ,s)
1.3 a −→ i(b) : {| k |}sk(i ,s), a

i intercepts the message intended to be for s, and replaces b’s
identity with its own identity, so that s generates a key (a bit-string)
k , and encrypts it with the keys of the two supposed users i and a

Since a cannot distinguish between encrypted messages (if she does
not have the good key!), she will not detect the alteration

18 / 256

A secret establishment protocol - a clever attack (II)

1.1 a −→ i(s) : a, b
2.1 i −→ s : i , a
2.2 s −→ i : {| k |}sk(i ,s), {| k |}sk(a,s)
1.2 i(s) −→ a : {| k |}sk(a,s), {| k |}sk(i ,s)
1.3 a −→ i(b) : {| k |}sk(i ,s), a

Hence, a will belive that the session has been successfully completed
with b, and that she is sharing the key k with b, whereas i knows this
key; so i can further masquerade as b and learn all information that a
intends to send to b.

We suppose that i is a legitimate user registered to s.

Security Assumption 3: the intruder can be a legitimate
protocol participant, or is able to corrupt legitimate participants
(an insider), an external party (an outsider) or a combination of

both.

19 / 256

A secret establishment protocol - a clever attempt

to prevent this kind of attacks, a good principle is to bound
cryptographically the names of the participants A and B to the key k
intended to be shared by them.

1.A −→ S : A,B
2.S −→ A : {| K ,B |}sk(A,S), {| K ,A |}sk(B,S)

3.A −→ B : {| K ,A |}sk(B,S)

Neither of the previous two attacks does work. Can you justify that
the intruder is unable to attack it by eavesdropping, altering and
injecting his own messages?

Still a problem: What about old keys...?

20 / 256

The intruder has memory

The problem is that the quality of long-term encrypting keys is much
better than that of the session keys generated during each exection of
the protocol.

Consequences: communications in different sessions should be
separated; in particular, it should be impossible to replay messages
from old sessions.

Security Assumption 4: the intruder is able to obtain the value
of any “sufficiently old” session key Ks generated in a previous

run of the protocol.

21 / 256

The intruder has memory(II)

1.1 a −→ s : a, b
1.2 s −→ a : {| kab, b |}sk(a,s), {| kab, a |}sk(b,s)
1.3 a −→ b : {| kab, a |}sk(b,s)

. . . extinction of dinosaurs . . .

3000.1 a −→ i(s) : a, b
3000.2 i(s) −→ a : {| kab, b |}sk(a,s), {| kab, a |}sk(b,s)
3000.3 a −→ b : {| kab, a |}sk(b,s)

i masquerades as s, and replays a “very old” key kab
Consequences:

By Assumption 1, i can be expected to know the older encrypted messages
{| kab, b |}sk(a,s) and {| kab, a |}sk(b,s).
By Assumption 4, i can be expected to know the value of kab (by
cryptanalysis ... or blackmail).

Thus i is able to decrypt subsequent messages encrypted with kab or even to

inject messages whose integrity must be protected by kab.

22 / 256

The intruder has memory(III)

Even if i does not obtain kab, the previous attack can be regarded as
successful

i has succeded in making a and b to accept an old session key!
i can now replay messages protected by kab in the previous session.

Imagine a further step in the context of the protocol:

4.A −→ B : {| request |}KAB

23 / 256

The intruder has memory(IV)

1.1 a −→ s : a, b
1.2 s −→ a : {| kab, b |}sk(a,s), {| a, kab |}sk(b,s)
1.3 a −→ b : {| kab, a |}sk(b,s)
1.4 a −→ b : {| transfer 10000 euro to i |}kab
. . .
3000.3 i(a) −→ b : {| kab, a |}sk(b,s)
3000.4 i(a) −→ b : {| transfer 10000 euro to i |}kab

You could say: is b memoryless (he should remember kab)?

Security Assumption 5: “The Principals don’t think”, but they only
follow the protocol.

24 / 256

A secret establishment protocol - using timestamps

To prevent replays, we could add a timestamp T to each message:

1.A −→ S : A,B
2.S −→ A : {| KAB ,B,T |}sk(A,S), {| KAB ,A,T |}sk(B,S)

3.A −→ B : {| KAB ,A,T |}sk(B,S)

B should reject messages that are older than some threshold ∆

This requires the clocks at A and B to be synchronized

It still leaves a window of opportunity for replay attacks (within ∆)

Another solution: use nonces (fresh randomly-generated values
intended to be used only once).

25 / 256

A secret establishment protocol - using nonces

1.A −→ S : A,B,NA

2.S −→ A : {| KAB ,B,NA, {| KAB ,A |}sk(B,S) |}sk(A,S)
3.A −→ B : {| KAB ,A |}sk(B,S)

4.B −→ A : {| NB |}KAB

5.A −→ B : {| NB − 1 |}KAB

A sends her nonce NA to S in order to get a new key

B, once he get the new key, challenges A with a fresh nonce NB

NA and NB do not identify who created them, are just variable names!

This is a famous protocol proposed by Needham and Schroeder. Is it
secure?

26 / 256

A secret establishment protocol - still attacks

1. a −→ s : a, b, na
2. s −→ a : {| kab, b, na, {| kab, a |}sk(b,s) |}sk(a,s)
3. a −→ b : {| kab, a |}sk(b,s)
4. b −→ a : {| nb |}kab
5. a −→ b : {| nb − 1 |}kab
. . .
3000.3 i(a) −→ b : {| kab, a |}sk(b,s)
3000.4. b −→ i(a) : {| n′b |}kab
3000.5. i(a) −→ b : {| n′b − 1 |}kab

the same attack as before: i masquerades a and can convince b to
use an old key

27 / 256

A secret establishment protocol - a good protocol?

1.B −→ A : B,NB

2.A −→ S : A,B,NA,NB

3.S −→ A : {| KAB ,B,NA |}sk(A,S), {| KAB ,A,NB |}sk(B,S)

4.A −→ B : {| KAB ,A,NB |}sk(B,S)

Is “the good” protocol?

The protocol avoids all previous attack, as long as the encryption
provides confidentiality and integrity...

It is not a proof... it is just intuition.

But neither A nor B can deduce at the end of a session that the other
actually received the key KAB

28 / 256

A secret establishment protocol - a perfect protocol?

1.B −→ A : B,NB

2.A −→ S : A,B,NA,NB

3.S −→ A : {| KAB ,B,NA |}sk(A,S), {| KAB ,A,NB |}sk(B,S)

4.A −→ B : {| KAB ,A,NB |}sk(B,S), {| A,NB |}KAB

5.B −→ A : {| NB − 1 |}KAB

We added a final communication exchange that allows to both A and
B to check that the other received the key KAB

Is this protocol “perfect”?

29 / 256

Other attacks

All previous attacks were logical or symbolic attacks: they supposed
that cryptography is perfect!

Suppose now that KAB is a password of 8 characters, and that the
encryption algorithm is deterministic.
The protocol (recall).

. . .
1. b −→ a : b, nb
. . .
4. a −→ b : . . . , {| a, nb |}kab
. . .

i generates all strings of 8 characters pwd , and since he knows both
a, nb and the encryption algorithm, he can check for which value of
pwd , the message {| a, nb |}kab sent during the execution of the
protocol and the “computed” message {| a, nb |}pwd are equal. This is
called a “dictionary attack”.

30 / 256

Needham-Schroeder protocol

assume that each user U has a pair of public/private keys
(pk(U), sk(U)) such that everybody knows pk(U), but U is the only
one to know sk(U). Moreover, we denote by {[m]}pk the asymmetric
encryption of m using the public key pk.

NS protocol (1978)

1. A −→ B : {[A,NA]}pk(B)

2. B −→ A : {[NA,NB]}pk(A)
3. A −→ B : {[NB]}pk(B)

Is really B, sharing NA,NB (only) with A?

Gawin Lowe found an attack in 1995 (17 years later!). Can you see it?

31 / 256

Needham-Schroeder protocol - an attack

man-in-the-middle attack (1995)

1.1. a −→ i : {[a, na]}pk(i)
2.1. i(a) −→ b : {[a, na]}pk(b)
2.2. b −→ i(a) : {[na, nb]}pk(a)
1.2. i −→ a : {[na, nb]}pk(a)
1.3. a −→ i : {[nb]}pk(i)
2.3. i(a) −→ b : {[nb]}pk(b)

b “thinks” he is talking to a, while he is talking to i , and moreover,
nb (which maybe is intended to be the shared session secret) was
disclosed to i

32 / 256

Needham-Schroeder-Lowe protocol

Fixing the Lowe attack

1. A −→ B : {[A,NA]}pk(B)

2. B −→ A : {[NA,NB ,B]}pk(A)
3. A −→ B : {[NB]}pk(B)

... and a type-flaw attack

1.1. i(a) −→ b : {[a, i]}pk(b)
1.2. b −→ i(a) : {[i , nb, b]}pk(a)
2.1. i −→ a : {[i , ⟨nb, b⟩]}pk(a)
2.2. a −→ i : {[⟨nb, b⟩, na, a]}pk(i)
1.3. i(a) −→ b : {[nb]}pk(b)

To fix: change {[NA,NB ,B]}pk(A) to {[B,NA,NB]}pk(A) or encode
messages correctly (tag each field with its type)

33 / 256

The perfect cryptography and the real world

And if cryptography is not perfect?

Let us take a simple El-Gamal encryption scheme:

a cyclic group G of order q and generator g
pk(U) = g sk(u), and messages are elements of G : m = gm′

for some m′

{[m]}pk = (pk r × gm′
, g r) for some randomly sampled r (where gm′

is
the encoding of m).
let us assume that ⟨m1,m2⟩ is obtained by concatenating the

bit-strings, i.e. is mapped to gm′
1+2|m

′
1|×m′

2

then encryption is malleable: if one knows |m| and n = gn′ , then one
can transform {[m, n]}pk into {[m, p]}pk for any known p = gp′

: if
{[m, n]}pk = (bs1, bs2), then

{[m, p]}pk = (bs1 × (gn′)−2|m
′| × (gp′

)2
|m′|

, bs2).

34 / 256

A computational attack

... and we get a computational attack

1.1. a −→ i : {[a, na]}pk(i)
2.1. i(a) −→ b : {[a, na]}pk(b)
2.2. b −→ a : {[na, nb, b]}pk(a)
computation step : i computes {[na, nb, i]}pk(a)
1.2. i −→ a : {[na, nb, i]}pk(a)
1.3. a −→ i : {[nb]}pk(i)
2.3. i(a) −→ b : {[nb]}pk(b)

b is convinced that he is sharing a secret value nb and that is talking
with a

Symbolic model vs. Computational model

35 / 256

Attacks on “simple” protocols

although generally there at most 4 or 5 messages exchanged in a
legitimate run of the prootcol, there are an infinite number of
variations in which the adversary can participate

there are several sources of infinity: number of sessions, number of
messages that adversary can create, number of nonces

36 / 256

Types of protocol attacks

Man-in-the-middle attack: a↔ i ↔ b

Replay (or freshness) attack: reuse parts of previous messages

Masquerading attack: pretend to be another principal

Reflection attack: send transmitted information back to originator

Oracle attack: take advantage of normal protocol responses as
encryption and decryption “services”

Binding attack: using messages for a different purpose than originally
intended

Type flaw attack: substitute a different type of message field

These attack types are not formally defined and there may be overlaps
between them.

37 / 256

Security protocols - general goals

Confidentiality: Can the intruder i learn a secret that is meant to be
shared only by a and b?

Integrity: Can the intruder i modify a message from a and get it
accepted by b ?

Authentication: Can the intruder i convince b that he is talking to
a?

Anonymity: If a wishes to remain anonymous, can the intruder i
disclose its identity?

Non-repudiation: If a sends a message, can she later denies that she
sent the message? Or, if b receives a message, can he later denies
that he got the message?

Fairness: Can one of a or b obtain an unfair advantage before the
transaction is completed?

38 / 256

E-vote protocols - specific goals

‘

‘It’s not who votes that counts, it’s who counts the votes “
(Joseph Stalin)
“Indeed, you won the elections, but I won the count”
(Anastasio Somoza)

Eligibility: Only legitimate voter can vote, and only once.

Vote privacy: the vote of any honest voter is not revealed

Receipt-freenes: a voter cannot prove she vote in a certain way

Coercion-resistance: a voter cannot prove she vote in a certain way,
even if the intruder ineracts with the voter during the voting process

Individual verifiability: a voter can verify that her vote was counted

Universal verifiability: the result of the vote was correctly computed

Fairness: no partial results can be obtained before the end of the
process vote

39 / 256

An e-vote protocol : Belenios - Participants

The registrar:

generates and sends privately a signing key to each voter
sends the corresponding verification keys to the voting server

The voters:

select their vote, use their voting device to encrypt and sign their vote

the resulting ballot is sent on an authenticated channel to the voting server
(thanks to a login and password mechanism)
may check at any time that their ballot is present on the bulletin board (BB)
may revote, in which case only the last ballot is retained

The voting server:

maintains the bulletin board (BB), that is, the list of accepted ballots
upon receiving a ballot from a voter, it checks that the ballot is valid (e.g.
the signature is valid) and adds it to the bulleting board

Decryption trustees:
a set of m decryption trustees are selected, out of which t + 1 are needed to
decrypt the result of the election

40 / 256

Belenios protocol - Phase 1 : Setup

Setup

for each voter id , the registrar generates a signing key skid
R←− Zq

and sends it privately (in practice, by email) to the voter

the registrar transmits the corresponding list of verification keys
vkid1 . . . vkidn to the voting server, in some random order, where
vkid = g skid

the voting server publishes the list of verification keys

the voting server generates a password pwdid for each voter id and
sends it privately (in practice, again by email)

the m trustees run a “Pedersen Distributed Key Generation protocol”
in order to generate the public encryption key pk of the election and
pairs of private/public keys (dki , pk

dki
i) for each trustee i

pk is published and each trustee i sends pki to the server.

41 / 256

Belenios protocol - Phase 2 : Voting

Voting

the list of accepted ballots BB is public and is initially empty

to vote, a voter id simply encrypts her vote v yielding a ciphertext
c = enc(v , pk , r), produces a proof π = proofv(v , r , enc(v , pk , r), pk , vkid)
that the vote belongs to the set of valid votes, and signs c , yielding a
signature s = sign(c , skid). The ballot b = ((c , π, s), vkid) is sent to the
voting server over an authenticated channel thanks to the password pwdid

upon receiving a ballot from voter id , the server checks its consistency with
respect to 1) the one-to-one association of the verification key vk wrt to id
(using a log mechanism), 2) the signature, 3) the proof inside the ballot.
Then:

possibly adds (id , vk) to log
if there is a ballot of the form (b0, vk) ∈BB, then this ballot is removed
finally, the new (b, vk) ballot is added to BB

at any time, voters may check that their last submitted ballot appears in the
public board BB

42 / 256

Belenios protocol - Phase 3 : Tally

Tally

once the voting phase is over, the list BB of accepted ballots is of the
form ((c1, π1, s1), vk1), . . . , ((cp, πp, sp), vkp), where the vkj are all
distinct, the proofs πj and the signatures sj are valid

since the encryption used (ElGamal) to produce the ciphertexts ci is
homomorphic, anyone can compute the encrypted result

rese =

p∏
i=1

ci = enc (

p∑
i=1

vi , pk,

p∑
i=1

ri)

then each trustee i (needed at least t + 1 honest trustees) contributes
to the decryption by providing resdkie together with a proof pok of
correct decryption

from these contributions, it is possible to compute the decryption of
rese , that is

∑p
i=1 vi

43 / 256

Belenios protocol - Properties 1

Ballot privacy

ballot privacy requires that any coalition of at most t trustees together
with any coalition of corrupted users cannot infer information from ballots
cast by honest voters, even after the election result is announced

Belenios guarantees vote privacy provided that both the registrar and
the voting server are honest, that the voting device of the voter is honest,
and that at most t decryption trustees are corrupted

Belenios does not satisfy receipt-freeness, but variants of it
(BeleniosRF, BeleniosVS) do

44 / 256

Belenios protocol - Properties 2

Verifiability

A voting scheme is verifiable if the result corresponds to the votes of

all honest voters that have checked that their vote was cast correctly

at most n valid votes where n is the number of corrupted voters (i.e.
the attacker may only use the corrupted voters to cast valid votes);

a subset of the votes cast by honest voters that did not check their
vote was cast correctly

Subnotions:

Individual Verifiability (cast as intended / recorded as cast)

Universal Verifiability (tallied as recorded)

Eligibility Verifiability (avoid ballot stuffing)

Belenios guarantees verifiability provided that the registrar or the voting
server are honest and the voting device of the voter is honest. The
decryption trustees may all be corrupted.

45 / 256

Cryptographic primitives : symmetric encryption

Bonjour ugtrytt Bonjour
Alice kjhvlk Alice
−→ encrypting −→ decrypting −→

↑ ↑
shared key sk shared key sk

Notation {| m |}sk
Decrypting: one uses the same key for encryption and decryption:
dec({| m |}sk , sk) = m

Security property: Informally, a ciphertext cannot be decrypted
without knowing the key.

It is fast, useful to encrypt large messages

... but any pair of users should share a secret key

Examples: DES, 3DES, AES, RC4 ,...

46 / 256

Cryptographic primitives : asymmetric encryption

Bonjour ugtrytt Bonjour
Alice kjhvlk Alice
−→ encrypting −→ decrypting −→

↑ ↑
public key pk private key sk

Notation {[m]}pk
Decrypting: dec({[m]}pk , sk) = m, where pk = sk−1

Security property: Informally, a ciphertext encrypted with the public
key cannot be decrypted without knowing the inverse private key.

It is slower, but allows to communicate with an unknown participant
(by means of a public key infrastructure PKI)

Key exchange protocols use asymmetric encryption in order to
establish a secret key that can be used by a symmetric encryption
scheme

Examples: RSA, ElGamal, Cramer-Shoup, OAEP+,...

47 / 256

Cryptographic primitives : signature

Bonjour ugtrytt Bonjour
Alice kjhvlk Alice
−→ signing −→ verifying −→

↑ ↑
private key sk public key pk

Notation [[m]]sk

Verifying: ver([[m]]sk , pk) = true, where sk = pk−1

Security property: Informally,

a signature that can be verified using a public key pk , cannot be
created without knowing the inverse private key sk
a signature is associated to a unique document: it can not be used to
authenticate another document
a signed document can not be modified

Examples: RSA, DSA, ECDSA,...

48 / 256

Other cryptographic primitives

A hashing function h produces for a large message m, a small message
h(m) called hash. Informal “idealized” security properties:

If m1 ̸= m2, then h(m1) ̸= h(m2)
Given only h(m), it is impossible to find m

Nonces, denoted na, nb, ..., n1, n2, ... are randomly generated large
values. Informal “idealized” security properties:

n1 ̸= n2 for any independent generated nonces
Given only partial information about n, it is impossible to find entire n

49 / 256

From attacks to proofs

Can we be confident that a protocol given in the Alice-Bob notation
is correct?

How can we rigorously prove that the protocol achieves his security
goals?

What does A −→ B mean? How A and B parse the received messages
and what exactly they do?
How we specify formally the security goals?
How do we capture the threat model?

Using our informal notation, we can find and describe attacks.

To prove mathematically that a given protocol satisfy a security goal,
we have to move to a more formal setting

50 / 256

Proofs of protocols : the symbolic model

The Dolev-Yao model was proposed in 1983:

messages are terms in a free algebra: {| m |}k , {[m]}k , [[m]]k , h(m)...
no secret value (nonce or key) can be guessed
the intruder can only apply functions in the given signature
... but has complete control of the network

One can add equations between primitives (functions), but anyway,
we assume that the only equalities are those given by these equations

Proofs in this model can be automated

51 / 256

Proofs of protocols : the computational model

The computational model was proposed in the ’80s:

the messages are bitstrings
the cryptographic primitives are operations on bitstrings
the intruder is any probabilistic polynomial-time Turing machine
has complete control of the network

The model is much closer to reality, but proofs in this model are
mostly manual

52 / 256

Proofs of protocols : (no) side channels

The computational model is still an abstraction, which does not
exactly match the reality. It ignores:

timing, power consumption, noise
tampering attacks
errors in implementation: what to answer if a message does not have
the expected form?

In this course we will ignore such kind of attacks

53 / 256

Proofs of protocols in the symbolic model

One must compute the set of terms that the attacker can obtain.

This set can be infinite for several reasons:

unbounded number of sessions executed in parallel
unbounded “size” of messages
unbounded number of fresh values (nonces)

54 / 256

Complexity

If everything is unbounded, then proving security is undecidable.

If everything is bounded, then we get a finite state transition system,
and we can apply model checking!

Bounding only the number of sessions: insecurity is typically
NP-complete

Solutions to undecidability in the general case

Uses approximations (generally preserving soundness):

abstract interpretation
typing

Allow non-termination

55 / 256

Relevance of the symbolic model

Advantages:

Numerous attacks have been found
An attack in the symbolic model can be easily translated in a practical
atttack in the computational model
Proofs are simpler and can be automated

Drawback: in general, a proof in the symbolic model, does not imply
a proof in the computational model

56 / 256

Link between the two models

Computational soundness theorems:

Proof in the Proof in the
=⇒

symbolic model computational model

modulo additional assumptions (initiated by Abadi and
Rogaway[2000]).

57 / 256

Proofs of protocols in the symbolic model

A decidability result for intruder deduction

Deduction is PTIME complete

A decidability result for secrecy for bounded number of sessions

Bounded protocol security is NP complete

A undecidability result for secrecy for unbounded number of sessions

Proof techniques that require user input or allow non-termination

58 / 256

Real-world protocol standards: ISO/IEC 9798

59 / 256

Real-world protocol specifications: IKE RFC

60 / 256

Real-world protocol specifications: IKE RFC

61 / 256

What are formal models?

A language is formal when it has a well-defined syntax and
semantics. Additionally there is often a deductive system for
determining the truth of statements.

Examples: propositional logic, first-order logic.

A model (or construction) is formal when it is specified in a formal
language.

Standard protocol notation is not formal.

We will see how to formalize such notations.

62 / 256

Formal modeling and analysis of protocols

Goal: formally model protocols and their properties and provide a
mathematically sound means for reasoning about these
models.

Basis: suitable abstraction of protocols.

Analysis: with formal methods based on mathematics and logic.

63 / 256

Formal Methods

system
specification

security
properties

proof

How does the
system operate?

What shall
be achieved?

Does the system meet
its requirements?

satisfies

64 / 256

From protocol sequence charts to protocol execution

Initiator

Protocol specification Protocol execution

Responder

Alice as
initiator

Alice as
initiator

Bob as
initiator

Bob as
responder

Charlie as
responder

request

{| m |}k

cryptographic primitives

communication model

agent model

Network

65 / 256

Tamarin - a Term Rewriting-based tool

Tamarin - a Term Rewriting-based tool

Protocols and adversaries are specified as multiset rewriting rules

Security properties are defined as trace properties, checked against
the traces of the transition system

Rewriting theory

A labelled rewriting theory is a tuple R = (Σ,E ,R,L), with:
(Σ,E) an equational theory with Σ a signature, E a set of equations

R a set of labeled rewriting rules of the general form

t −[lset]→ t ′

where lset is a set of labels in L and t, t ′ are Σ-terms

66 / 256

Signature

Definition (Signature)

An unsorted signature Σ is a set of function symbols, each having an arity
n ≥ 0. We call function symbols of arity 0 constants.

Example (Peano notation for natural numbers)

Σ = {0, s,+}, where 0 is a constant, s has arity 1 and represents the
successor function, and + has arity 2 and represents addition. Note that
for binary operators we sometimes will use infix notation.

67 / 256

Term Algebra

Definition (Term Algebra)

Let Σ be a signature, X a set of variables, and Σ∩X = ∅. We call the set
TΣ(X) the term algebra over Σ. It is the least set such that:

X ⊆ TΣ(X).
If t1, . . . , tn ∈ TΣ(X) and f ∈ Σ with arity n, then
f (t1, . . . , tn) ∈ TΣ(X).

The set of ground terms TΣ consists of terms built without variables, i.e.,
TΣ := TΣ(∅).

Remark: constants are included in TΣ and TΣ(X).

Example (Peano notation for natural numbers (ctd.))

s(0) ∈ TΣ s(s(0)) + s(X) ∈ TΣ(X) +s(0)+ /∈ TΣ(X)

68 / 256

Cryptographic Messages

We generally denote variables with upper case names X ,Y , . . ., and
function symbols (including constants) with lower case names a, b, f , g ...

Definition (Messages)

A message is a term in TΣ(X), where
Σ = A ∪ F ∪ Func ∪ {pair , pk, aenc , senc}. We call

X the set of variables A, B, X , Y , Z , ...,
A the set of agents a, b, c , ...,
F the set of fresh values na, nb, k (nonces, keys, ...),
Func the set of user-defined functions (hash, exp, ...),
pair(t1, t2) pairing, also denoted by ⟨t1, t2⟩,
pk(t) public key,
aenc(t1, t2) asymmetric encryption, also denoted by {t2}t1 ,
senc(t1, t2) symmetric encryption, also denoted by {|t1|}t2 .

69 / 256

Free Algebra

Definition (Free Algebra)

In the free algebra every term is interpreted by itself (syntactically).

t1 =free t2 iff t1 =syntactic t2

a ̸=free b for any different constants a and b

Example (But symmetric cryptography enjoys the following equation E)

Σ = A ∪ F ∪ {senc , sdec}, with senc and sdec of arity 2.
(E : sdec(senc(M,K),K) = M)

For above example: sdec(senc(X ,Y),Y) ̸=free X .

This is too coarse, as we obviously want to identify those two terms, which
means we will need to reason modulo equations.

70 / 256

Equational Theory

Definition (Equation)

An equation is a pair of terms, written: t = t ′, and a set of equations E is
called an equational theory (Σ,E). An equation can be oriented as

t → t ′ ∈
→
E or as t ← t ′ ∈

←
E .

Equations are usually oriented from left to right for use in simplification.

Example (Peano natural numbers (ctd.))

The equations E defining the Peano natural numbers are:
X + 0 = X
X + s(Y) = s(X + Y)

Using
→
E on s(s(0)) + s(0) yields the equational derivation:

s(s(0)) + s(0) = s(s(s(0)) + 0) = s(s(s(0))).

71 / 256

Algebraic Properties

Example (Equations E0)

{{M}K}(K)−1 = M ((K)−1)−1 = K

{|{|M|}K |}K = M exp(exp(B,X),Y) = exp(exp(B,Y),X)

Definition (Congruence, Equivalence, Quotient)

A set of equations E induces a congruence relation =E on terms and thus
the equivalence class [t]E of a term modulo E . The quotient algebra
TΣ(X)/=E

interprets each term by its equivalence class.

Two terms are semantically equal iff t1 =E t2.

For the above example equations (E0):

a ̸=E0 b for any distinct constants a and b
If m1 ̸=E0 m2 then h(m1) ̸=E0 h(m2) (since h does not have any equation)

{{M}(K)−1}K =E0 M (since K =E0 ((K)−1)−1)
{|{|M|}exp(exp(g ,Y),X)|}exp(exp(g ,X),Y) =E0 M

72 / 256

Substitution

Definition (Substitution)

A substitution σ is a function σ : X → TΣ(X) where σ(x) ̸= x for finitely
many x ∈ X .
We write substitutions in postfix notation and homomorphically extend
them to a mapping σ : TΣ(X)→ TΣ(X) on terms:

f (t1, . . . , tn)σ = f (t1σ, . . . , tnσ)

Example (Applying a substitution)

Given substitution σ = {X 7→ senc(M,K)} and the term t = sdec(X ,K)
we can apply the substitution and get tσ = sdec(senc(M,K),K).

73 / 256

Substitution (ctd.)

Definition (Substitution composition)

We denote with στ the composition of substitutions σ and τ , i.e., τ ◦ σ.

Example (Substitution composition)

For substitutions σ = [x 7→ f (y), y 7→ z] and τ = [y 7→ a, z 7→ g(b)] we
have στ = [x 7→ f (a), y 7→ g(b), z 7→ g(b)].

74 / 256

Position

Definition (Position)

A position p is a sequence of positive integers. The subterm t|p of a term
t at position p is obtained as follows.

If p = [] is the empty sequence, then t|p = t.

If p = [i] · p′ for a positive integer i and a sequence p′, and
t = f (t1, . . . , tn) for f ∈ Σ and 1 ≤ i ≤ n then t|p = ti |p′ , else t|p
does not exist.

Example (Position in a term)

For the term t = sdec(senc(M,K),K) we have five subterms:
t|[] = t t|[1] = senc(M,K) t|[1,1] = M
t|[1,2] = K t|[2] = K

75 / 256

Graphical representation of positions in a term

Tree of subterms of sdec(senc(M,K)) and their positions.

sdec(senc(M,K),K) []

K [2][1] senc(M,K)

K [1, 2][1, 1] M

76 / 256

Matching and Application

Definition (Matching)

A term t matches another term l if there is a subterm of t, i.e., t|p , such
that there is a substitution σ so that t|p = lσ. We call σ the matching
substitution.

Example (Matching)

The term t = A(B(a, b), c) matches with l = B(x , y) since there is
position p = [1] and substitution σ = [x 7→ a, y 7→ b] such that t|p = lσ.

77 / 256

Matching and Application

Definition (Application of a rule)

A rule (oriented equation) l → r is applicable on a term t, if t matches l .

Given a matching substitution σ, the result of such a rule application to t
is the term obtained from t by replacing the subterm lσ at position p, by
the right-hand side of the rule instantiated with the matching substitution
rσ, term denoted by t[rσ]p.

Example (Applcation of a rule)

The rule B(x , y)→ C (y , x) can be applied to term t = A(B(a, b), c)
using the matching substitution σ = [x 7→ a, y 7→ b] and it produces the
term A(C (b, a), c), obtained by replacing B(a, b) = (B(x , y))σ with
C (b, a) = (C (y , x))σ in the term t.

78 / 256

Unification

Definition (Unification)

We say that t
?
= t ′ is unifiable in (Σ,E) for t, t ′ ∈ TΣ(X), if there is a

substitution σ such that tσ =E t ′σ and we call σ a unifier.

For syntactic unification (E = ∅) there is a most general unifier for two
unifiable terms, and it is decidable whether they are unifiable.

Unification modulo theories (E ̸= ∅) is much more complicated:
undecidable in general, or potentially (infinitely) many unifiers.

This is no good for automated analysis: we need to restrict ourselves.

79 / 256

Unification modulo theories

When considering other algebras, unifiability is in general undecidable,
e.g., associativity and distributivity.

Even when decidable, there is in general no unique most general
unifier, e.g., {exp(X ,Y), exp(X ′, c)} . . .
Some unification problems are decidable but infinitary: in general,
there is an infinite set of most general unifiers, e.g., associativity.

80 / 256

Equational Proofs

Definition (Equality Relation)

Given (Σ,E), an E -equality step for u, v ∈ TΣ(X) is defined as
u →(

→
E ∪

←
E) v and denoted as u ↔E v .

The transitive-reflexive closure of ↔E is the E -equality relation =E .

Definition (Equality Proof)

A sequence of steps t0 ↔E t1 ↔E . . .↔E tn, witnessing n-step equality of
t0 ↔+

E tn is an equality proof.

81 / 256

Equality for Peano natural numbers

Example (Peano natural numbers - remind)

The equations E defining the Peano natural numbers are:
X + 0 = X
X + s(Y) = s(X + Y)

Example (Equality reasoning for Peano natural numbers)

Consider how to prove s(s(0)) + s(0) = s(0) + s(s(0)):

s(s(0)) + s(0) = s(s(s(0)) + 0) = s(s(s(0)))

= s(s(s(0) + 0)) = s(s(0) + s(0)) = s(0) + s(s(0))

Complicated! Using termination and confluence, we could have instead
computed the normal form of both sides, and simply compared them! (See
next slides.)

82 / 256

Termination of
→
E

Definition (Termination)

(Σ,
→
E) has infinite computations, if there is a function a : N→ TΣ(X)

such that

a(0)→→
E
a(1)→→

E
a(2)→→

E
. . .→→

E
a(n)→→

E
a(n + 1) . . .

We say it is terminating, when it does not have infinite computations.

Example (Termination)

For E = {a = b},
→
E is terminating.

For E = {a = b, b = a},
→
E is not terminating.

83 / 256

Confluence of
→
E

Definition (Confluence)

Confluence is the property that guarantees the order of applying equalities
is immaterial, formally:
∀t, t1, t2.t →∗ t1 ∧ t →∗ t2 ⇒ ∃s.t1 →∗ s ∧ t2 →∗ s

t

t1 t2

s

Example (Confluence)

For E = {a = b, a = c}, we have that
→
E is not confluent, as b and c are

reachable from a, but not joinable.
For E = {a = b, a = c , b = c}, then

→
E is confluent.

84 / 256

Tamarin - syntax overview

Example (Tamarin Syntax)
theory Equations

begin

functions: h/1, senc/2, sdec/2

equations: sdec(senc(m,k),k) = m

builtins: diffie-hellman, bilinear-pairing, multiset

/* Other builtins: hashing, symmetric-encryption,

asymmetric-encryption, signing, revealing-signing */

/* rules, restrictions, lemmas ... */

end

Tamarin supports

any user defined equational theory that is convergent (confluent and
terminating) and has the finite variant property

built-in theories: DH exponentiation, bilinear pairing, multisets, XOR
85 / 256

Multiset rewriting in Tamarin

A protocol defines a setup and the behavior of a set of roles. Every role
has a name R and consists of a set of rules, specifying the sending and
receiving of messages, branching and looping conditions, and the
generation of fresh constants.

In Tamarin, protocols are modeled using rewrite rules operating on
multisets of facts:

l
a−→ r

where l , a, and r are multisets of facts, l is called the left hand side, r the
right hand side, and a the actions of the rule.

The left and right hand side of the rule specify which facts are consumed
or produced when executing the rule, the actions are recorded as event
labels on the trace and are used to specify properties.

86 / 256

Multiset rewriting in Tamarin: example

Example

rule 1:
Init()−−−→ A(′5′),C(′3′) (’x’ is a constant)

rule 2: A(x)
Step(x)−−−−→ B(x)

or in Tamarin syntax:

rule 1: [] --[Init()]-> [A(’5’), C(’3’)]

rule 2: [A(x)] --[Step(x)]-> [B(x)]

// A rule without action:

rule 3: [C(x)] --> [D(x)]

87 / 256

Terms

Fresh terms

Agents generate fresh terms using fresh facts, denoted by Fr. These fresh
terms represent randomness being used, are assumed unguessable and
unique, i.e., can represent nonces.
There is a countable supply of fresh terms, each as argument of a fresh
fact, usable in rules.
In Tamarin, fresh variables are prefixed with a ∼, e.g., ∼r.

Public terms

We define public terms to be terms known to all participants of a protocol.
These include all agent names and all constants.
In Tamarin, public variables are prefixed with a $, e.g., $X.

88 / 256

Facts

Facts

A fact is represented by F (t1, . . . , tk), where F is a fact symbol and
t1, . . . , tk are terms.

facts can be linear or persistent: linear facts can only be consumed
once, persistent facts infinitely often

by default, facts are linear, persistent facts are marked with a !

there are special facts:

Fr - for fresh data
In and Out - for protocol inputs and outputs
K - for attacker knowledge

Example (Key revealing and encryption)

rule key-reveal:

[!Ltk(~k)] --[Reveal(~k)]-> [Out(~k)]

rule sym-enc: [C(x), In(y)] --> [Out(senc(y,x))]

89 / 256

Fresh rule

Definition (Fresh rule)

We define a special rule for the creation of fresh values. This is the only
rule allowed to produce fresh values and has no precondition:

[] −→ [Fr(∼ N)]

Note that each created nonce N is fresh, and thus unique.

90 / 256

Well-formedness

Protocol rules have to be well-formed.

Definition (Well-formedness)

For a protocol rule l
a−→ r to be well-formed, the following conditions must

be satisfied:

1 Only In, Fr, and other protocol facts occur in l .

2 Only Out and protocol facts occur in r .

3 Every variable in r or a that is not public must occur in l .

4 All occurrences of the same fact have the same arity, and the same
persistence.

91 / 256

Outlook

We will define a trace semantics for protocols in terms of labeled transition
systems.

92 / 256

Labeled Multiset Rewriting

Definition (Multiset)

A multiset is a set of elements, each imbued with a multiplicity. Instead of
stating an explicit multiplicity, we may also simply write elements multiple
times.
We use \♯ for the multiset difference, and ∪♯ for the union.

Definition (Labeled multiset rewriting)

A labeled multiset rewriting rule is a triple, l , a, r , each of which is a
multisets of facts, and written as:

l
a−→ r

93 / 256

State

Definition (State)

A state is a multiset of facts.

Example (State)

St R 1(A, id , k1, k2),Out(k1),Out(k2),Out(k2)

94 / 256

Ground substitution

Definition (Ground substitutition)

A substitution is called ground when each variable is mapped to a ground
term.

Definition (Ground instances)

We call the ground instances of a term t all those terms tσ that are
ground for some (ground) substitution σ .
A fact F is ground if all its terms are ground. The set of all multisets of
ground facts is G♯.
For a rule, its ground instances are those where all facts are ground, and
we use

ginsts(R)

for the set of all ground instances of the set of rules R.

95 / 256

Labeled operational semantics - single step

Definition (Steps)

For a multiset rewrite system R we define the labeled transition relation
step, steps(R) ⊆ G♯ × ginsts(R)× G♯, as follows:

l
a→ r ∈ ginsts(R), l ⊆♯ S , S ′ = (S \♯ l) ∪♯ r

(S , l
a→ r , S ′) ∈ steps(R)

96 / 256

Executions

Definition (Execution)

An execution of R is an alternating sequence

S0, (l1
a1→ r1),S1, . . . ,Sk−1(lk

ak→ rk), Sk

of states and multiset rewrite rule instances with

(1) S0 = ∅
(2) ∀i : Si−1, (li ai→ ri),Si ∈ steps(R)

(3) Fresh names are unique, i.e., for n fresh, and

(li
ai→ ri) = (lj

aj→ rj) = ([]→ [Fr(n)]) it holds that i = j .
(two different applications of the ”fresh rule” produce two different
unique values!)

97 / 256

Trace

Definition (Trace)

The trace of an execution

S0, (l1
a1→ r1),S1, . . . ,Sk−1(lk

ak→ rk), Sk

is defined by the sequence of the multisets of its action labels, i.e.:

a1; a2; . . . ; ak

98 / 256

Semantics of a rule

Two parts:

State transition

Trace event

Example (Transition example)

[St I 2(A, 17, k), In(m)]
Recv(A,m)−−−−−−→ [St I 3(A, 17, k ,m)]

Effects:

Agent state changes: St I 2(A, 17, k) is removed and
St I 3(A, 17, k ,m) is added to the set of facts representing the global
state of the system

In(m) fact is consumed

Recv(A,m) action is added to the trace

99 / 256

Multiset rewriting in Tamarin: example

Example (Rules in Tamarin syntax:)

rule 1: [] --[Init()]-> [A(’3’), A(’5’), C(’3’)]

rule 2: [A(x)] --[StepA(x)]-> [!B(x)]

rule 3: [B(x), B(x)] --> [D(x)] /* silent rule */

rule 4: [A(x), C(x)] --[StepA2(x), StepC2(x)]-> [D(x)]

Example (A possible execution:)

[] --[Init()]->

[A(’3’), A(’5’), C(’3’)] --[StepA(’3’)]->

[A(’5’), C(’3’), !B(’3’)] --> /* silent step */

[A(’5’), C(’3’), !B(’3’), D(’3’)] --[Init()]->

[A(’3’), A(’5’), C(’3’), A(’5’), C(’3’), !B(’3’), D(’3’)]

--[StepA2(’3’), StepC2(’3’)]->

[A(’5’), A(’5’), C(’3’), !B(’3’), D(’3’), D(’3’)]

Example (and its associated trace:)

[Init()] ; [StepA(’3’)] ; [Init()] ; [StepA2(’3’), StepC2(’3’)]

100 / 256

Dolev-Yao adversary

Intruder controls the network and can:

intercept messages
modify messages
block messages
generate new messages
insert new messages

Perfect cryptography:

Abstraction with terms algebra
Decryption only if inverse key is known

Protocol has

Arbitrary number of principals
Arbitrary number of parallel sessions
Messages with arbitrary size

101 / 256

Dolev-Yao Deduction

Definition (Adversary Knowledge)

We represent the adversary knowing a termt by a fact K(t). The
adversary’s knowledge K contains all facts of the form K(t), all of which
are persistent.

Definition (Adversary Knowledge Derivation)

The adversary can use the following inference rules on the state:

Fr(x)

K(x)

Out(x)

K(x)

K(x)

In(x)

K(t1) . . .K(tk)

K(f (t1, ..., tk))
∀f ∈ Σ(k-ary)

Terms are used modulo the equational theory

Definition (Adversary Knowledge Derivation as rewrite rules)

[Fr(x)] −→ [K(x)]
[Out(x)] −→ [K(x)]

[K(x)]
K(x)−−−→ [In(x)]

[K(t1), . . . ,K(tk)] −→ [K(f (t1, . . . , tk))] ∀f ∈ Σ(k-ary) 102 / 256

Dolev-Yao Deduction

Example

Given K(x),K({|b, n|}k),K(k),K(m) ∈ K. Use the equational theory E
(containing decryption and pairing) to derive K({|m|}prf (n,x))

K(m)

K({|b, n|}k) K(k)

K({|{|b, n|}k |}k)
K(b, n)

E

K(snd(b, n))

K(n)
E

K(x)

K(prf (n, x))

K({|m|}prf (n,x))

103 / 256

Example protocol: NSPK

Graphical:

A

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK A

104 / 256

PKIs and longterm data

A B

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK

Generate longterm keys and public keys.

[Fr(∼ skR)] −→ [!Ltk(R,∼ skR),Out(pk(∼ skR))]

105 / 256

Initialization of protocol roles

A

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK A

For each role R there must be an initialization rule which is instantiated
with a name A and a thread identifier id :

[Fr(∼ id), !Ltk(A, skA), !Ltk(B, skB)]
Create I(A,∼id)−−−−−−−−−→

[St A 1(A,∼ id , skA, pk(skB))]

106 / 256

Protocol rules

A

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK A

[St A 1(A, tid , skA, pk(skB)), Fr(∼ NA)] −→
[St A 2(A, tid , skA, pk(skB),∼ NA), Out({∼ NA,A}pk(skB)]

[St A 2(A, tid , skA, pk(skB),NA), In({NA,NB}pk(skA))] −→
[St A 3(A, tid , skA, pk(skB),NA,NB)]

[St A 3(A, tid , skA, pk(skB),NA,NB)] −→
[St A 4(A, tid , skA, pk(skB),NA,NB), Out({NB}pk(skB))]

Be careful: pattern matching!

107 / 256

Protocol Properties and Correctness
What does it mean?

Properties

Semantics of a security protocol P is a set of traces ∥P∥ = traces(P).
(Traces may be finite or infinite, state- or event-based.)

Security goal / property ϕ also denotes a set of traces ∥ϕ∥.
Correctness

has an exact meaning

Protocol P satisfies property ϕ, written P |= ϕ, iff

∥P∥ ⊆ ∥ϕ∥

Attack traces are those in

∥P∥ − ∥ϕ∥

Every correctness statement is either true or false.

Later: how do we find attacks or prove correctness?

Ok, no attacks.

Attacks.

φP

P

φ

Ok.

108 / 256

Tamarin - the overall picture

Taken from ”Analyzing Payment Protocols with Tamarin” by David Basin
109 / 256

Protocol Goals

Goals

What the protocol should achieve, e.g.,

Authenticate messages, binding them to their originator

Ensure timeliness of messages (recent, fresh, ...)

Guarantee secrecy of certain items (e.g., generated keys)

Most common goals

secrecy

authentication (many different forms)

Other goals

anonymity, non-repudiation (of receipt, submission, delivery), fairness,
availability, sender invariance, ...

110 / 256

Specifying properties in Tamarin

Tamarin’s property specification language is a guarded fragment of a
many-sorted first-order logic with a sort for timepoints (prefixed with #).
This logic supports quantification over both messages and timepoints:

All for universal quantification (temporal variables are prefixed with
#)

Ex for existential quantification (temporal variables are prefixed with
#)

==> for implication, not for negation

| for disjunction (“or”), & for conjunction (“and”)

f @ i for action constraints (the sort prefix for the temporal variable
’i’ is optional)

i < j for temporal ordering (the sort prefix for the temporal variables
’i’ and ’j’ is optional)

#i = #j for an equality between temporal variables ’i’ and ’j’

x = y for an equality between message variables ’x’ and ’y’

111 / 256

Example

Example

The property that the argument n is distinct in all applications of a
fictitious rule generating an action fact Act1(n):

lemma distinct_nonces:

"All n #i #j. Act1(n)@i & Act1(n)@j ==> #i=#j"

or equivalently

lemma distinct_nonces:

all-traces

"All n #i #j. Act1(n)@i & Act1(n)@j ==> #i=#j"

These lemmas require that the property holds for all traces, we can also
express that there exists a trace for which the property does not hold:

lemma not_distinct_nonces:

exists-trace

"not All n #i #j. Act1(n)@i & Act1(n)@j ==> #i=#j"
112 / 256

Guardedness

All action fact symbols may be used in formulas.

All variables must be guarded.

Guardedness

For universally quantified variables:

all variables have to occur in an action constraint right after the
quantifier and

the outermost logical operator inside the quantifier has to be an
implication

For existentially quantified variables:

all variables have to occur in an action constraint right after the
quantifier and

the outermost logical operator inside the quantifier has to be a
conjunction

113 / 256

Formalizing Security Properties
Two approaches

Direct formulation

Formulate property ϕ directly in terms of actions occurring in
protocol traces, i.e., as a set of (or predicate on) traces.

Drawback: standard properties like secrecy and authentication
become highly protocol-dependent, since they need to refer to the
concrete protocol messages.

Protocol instrumentation

Idea: insert special claim events into the protocol roles:

Claim claimtype(R, t)

where R is the executing role, claimtype indicates the type of claim,
and t is a message term.

Serve as interface to express properties independently of protocol.

Example: Claim secret(A,NA) claims that NA is a secret for role A,
i.e., not known to the intruder.

114 / 256

Claim Events

Claim events are part of the protocol rules as actions.

Properties of claim events

Their only effect is to record facts or claims in the protocol trace.

They cannot be observed, modified, or generated by the intruder.

Expressing properties using claim events

Properties of traces tr are expressed in terms of claim events and
other actions (e.g., adversary knowledge K) occuring in tr .

Properties are formulated from the point of view of a given role, thus
yielding security guarantees for that role.

We concentrate on secrecy and various forms of authentication,
though the approach is not limited to these properties.

115 / 256

Role Instrumentation for Secrecy

Definition (Secrecy, informally)

The intruder cannot discover the data (e.g., key,
nonce, etc.) that is intended to be secret.

Role instrumentation

Insert the claim event Claim secret(A,M) into
role A to claim that the message M used in the
run remains secret.

Position: At the end of the role.

For instance, in NSPK, the nonces na and nb
should remain secret.

Note: In the graphs, where the executing role is clear

from the context, we abbreviate Claim claimtype(A, t) to

claimtype(t) inside a hexagon.

A

M1

M2

Mn

msc Secrecy claim

116 / 256

Instrumentation for Secrecy of Role A in NSPK

A

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK A

[St A 1(A, tid , skA, pk(skB)), Fr(NA)] −→
[St A 2(A, tid , skA, pk(skB),NA), Out({NA,A}pk(skB)]

[St A 2(A, tid , skA, pk(skB),NA), In({NA,NB}pk(skA))] −→
[St A 3(A, tid , skA, pk(skB),NA,NB)]

[St A 3(A, tid , skA, pk(skB),NA,NB)]
Claim secret(A,NB)−−−−−−−−−−→

[St A 4(A, tid , skA, pk(skB),NA,NB), Out({NB}pk(skB))]

Adding Claim secret to role A with respect to NB

117 / 256

Formalization of Secrecy

Definition (Secrecy, first attempt)

The secrecy property consists of all traces tr satisfying

∀A,M, i . Claim secret(A,M)@i ⇒ ¬(∃j .K(M)@j)

Let tr = tr1; tr2; . . . ; trk ; . . . ; trn. We write x@k as a shorthand for
x ∈ trk .

Can only require M to remain secret if A runs the protocol with
another honest agent, i.e.,

Trivially broken whenever A or B is instantiated with a compromised
agent, since then the adversary rightfully knows M.

This definition is fine for a passive adversary, who only observes
network traffic, but does not act as a protocol participant.

118 / 256

Compromised Agent

Definition (Compromised Agent)

A compromised agent is under adversary control, i.e., sharing all its
information with the adversary and participating in protocols upon its
direction. We model this by having the agent give its initial secret
information to the adversary, which can then mimic the agent’s actions.

We note the fact that an agent A is compromised by a Rev event in the
trace, attached to the rule that passes its initial secrets (here the private
key Ltk(A, skA)) to the adversary:

[!Ltk(A, skA)]
Rev(A)−−−−→ [Out(skA)]

Exercise: convince yourself that, given the agent’s secret, the adversary is
capable of performing all of the agent’s send and receive steps.

119 / 256

Formalization of Secrecy

Definition (Honesty)

An agent A is honest in a trace tr when Rev(A) /∈ tr .
When making a claim in a rule action, all parties B that are expected to
be honest need to be listed with a Honest(B) action in that rule.

Definition (Secrecy)

The secrecy property consists of all traces tr satisfying

∀A M i . (Claim secret(A,M)@i)

⇒ (¬(∃j .K(M)@j) ∨ (∃B j .Rev(B)@j ∧ Honest(B)@i))

120 / 256

Secrecy Example #1

A B

{|NA|}k(A,B)

secret(NA) secret(NA)

msc Secrecy for Symmetric Encryption

This is fine: secrecy holds for both A and B.

We omit the obvious annotations Honest(A),Honest(B) in message
sequence charts for 2-party protocols.

121 / 256

Secrecy Example #2

A B

{A,NA}pk(B)

secret(NA)

msc Secrecy for Asymmetric Encryption

Secrecy holds for A: she knows that only B can decrypt message.

122 / 256

Secrecy Example #2

A B

{A,NA}pk(B)

secret(NA) secret(NA)

msc Secrecy for Asymmetric Encryption

Secrecy fails for B: he does not know who encrypted message!

... unless one can authenticate the origin of the message

123 / 256

Authentication

Which authentication are you talking about?

No unique definition of authentication, but a variety of different
forms.

Considerable effort has been devoted to specifying and classifying,
semi-formally or formally, different forms of authentication (e.g., by
Cervesato/Syverson, Clark/Jacob, Gollmann, Lowe, Cremers et al.).

Examples

ping authentication, aliveness, weak agreement, non-injective
agreement, injective agreement, weak and strong authentication,
synchronization, and matching histories.

124 / 256

A Picture of the World

�
2

3

��
�

�����

�
2

3

��
�

�����
��

�

�

�

�

�

�
2

3

��

��

��

�

�
2

3

125 / 256

Failed Authentication

126 / 256

Successful Authentication

127 / 256

A Hierarchy of Authentication Specifications (1)
[Gavin Lowe, 1997]

Gavin Lowe has defined the following hierarchy of increasingly stronger
authentication properties1:

Aliveness A protocol guarantees to an agent a in role A aliveness of
another agent b if, whenever a completes a run of the
protocol, apparently with b in role B, then b has previously
been running the protocol.

Weak agreement A protocol guarantees to an agent a in role A weak
agreement with another agent b if, whenever agent a
completes a run of the protocol, apparently with b in role B,
then b has previously been running the protocol, apparently
with a.

1Terminology and notation slightly adapted to our setting.
128 / 256

A Hierarchy of Authentication Specifications (2)
[Gavin Lowe, 1997]

Non-injective agreement A protocol guarantees to an agent a in role A
non-injective agreement with an agent b in role B on a
message M if, whenever a completes a run of the protocol,
apparently with b in role B, then b has previously been
running the protocol, apparently with a, and b was acting in
role B in his run, and the two principals agreed on the
message M.

Injective agreement is non-injective agreement where additionally each run
of agent a in role A corresponds to a unique run of agent b.

Also versions including recentness: insist that B’s run was recent (e.g.,
within t time units).

These are quite complex properties. How can we formalize them?

129 / 256

Role Instrumentation for Authentication

We use two claims to express that role A authenticates role B on t:

In role A:

Insert a commit claim event
Claim commit(A,B, t).

Position: after A can construct
t. Typically, at end of A’s role.

In role B:

Insert a running claim event
Claim running(B,A, u).

Term u is B’s view of t.

Position: after B can construct
u and causally preceding
Claim commit(A,B, t).

A B

running(A, u)

Mi

commit(B, t)

msc Authentication claim

130 / 256

Formalizing Authentication

Definition (Non-injective agreement)

The property AgreementNI (A,B, t) consists of all traces satisfying

∀a b t i . Claim commit(a, b, ⟨A,B, t⟩)@i
⇒ (∃j .Claim running(b, a, ⟨A,B, t⟩)@j ∧ j < i)
∨(∃X r .Rev(X)@r ∧ Honest(X)@i)

Whenever a commit claim is made with honest agents a and b, then
the peer b must be running with the same parameter t, or the
adversary has compromised at least one of the two agents.

131 / 256

Example: NSL Protocol (1/2)

A B

{NA, A}pk(B)

running(A,NA, NB)

{NA, NB , B}pk(A)

commit(B,NA, NB)

{NB}pk(B)

msc NSL, instrumented for A to agree with B on NA, NB

132 / 256

Example: NSL Protocol (2/2)

A B

{NA, A}pk(B)

{NA, NB}pk(A)

running(B,NA, NB)

{NB}pk(B)

commit(A,NA, NB)

msc NSL, instrumented for B to agree with A on NA, NB

133 / 256

Role Instrumentation for Authentication (cont.)

A B C

running(A, u)

Mj

Mi

commit(C, t)

msc Multi-hop authentication claim

Event causality in multi-hop authentication claims: The running event
must causally precede the commit event and the messages t and u must
be known at the position of the claim event in the respective role.

134 / 256

Example: Yahalom Protocol (1/3)

Initiator

A

Responder

B

Server

S

A, NA

B, {|A, NA, NB |}k(B,S)

{|B, KAB , NA, NB |}k(A,S), {|A, KAB |}k(B,S)

{|A, KAB |}k(B,S), {|NB |}KAB

msc Yahalom protocol

135 / 256

Example: Yahalom Protocol (2/3)

Initiator

A

Responder

B

Server

S

A, NA

B, {|A, NA, NB |}k(B,S)

{|B,KAB , NA, NB |}k(A,S), {|A, KAB |}k(B,S)

running(B,NA, NB , KAB)

{|A, KAB |}k(B,S), {|NB |}KAB

commit(A, NA, NB , KAB)

msc Yahalom protocol (instrumented for responder authenticating initiator on NA, NB , KAB)

136 / 256

Example: Yahalom Protocol (3/3)

Initiator

A

Responder

B

Server

S

A, NA

running(A, NA, NB)

B, {|A, NA, NB |}k(B,S)

{|B,KAB , NA, NB |}k(A,S), {|A, KAB |}k(B,S)

{|A, KAB |}k(B,S), {|NB |}KAB

commit(B,NA, NB)

msc Yahalom protocol (instrumented for initiator authenticating responder on NA, NB)

Note: agreement for A on KAB is not possible, since B gets KAB after A.

137 / 256

Formalizing Authentication

Definition (Injective agreement)

The property Agreement(A,B, t) consists of all traces satisfying:

∀a b t i . Claim commit(a, b, ⟨A,B, t⟩)@i
⇒ (∃j .Claim running(b, a, ⟨A,B, t⟩)@j ∧ j < i
∧¬(∃a2b2i2.Claim commit(a2, b2, ⟨A,B, t⟩)@i2

∧¬(i2 = i)
)

)
∨(∃X r .Rev(X)@r ∧ Honest(X)@i)

Remarks

For each commit by a in role A on the trace there is a unique
matching b executing role B.

138 / 256

Failed Injective Authentication

139 / 256

Successful Injective Authentication

140 / 256

Injective vs Non-injective Agreement
Separating Example

Initiator

A

Responder

B

running(B, {A, B}sk(A))

{A, B}sk(A)

commit(A, {A, B}sk(A))

msc Injective vs non-injective agreement

Non-injective agreement holds.

Injective agreement fails, since the adversary can replay message to
several threads in responder role B.

141 / 256

Injective Agreement counter-example

Formalizing Authentication
Weaker Variants

Definition (Weak agreement)

A trace tr satisfies the property WeakAgreement(A,B) iff

∀a b i . Claim commit(a, b, ⟨⟩)@i
⇒ (∃j .Claim running(b, a, ⟨⟩)@j)
∨(∃X r .Rev(X)@r ∧ Honest(X)@i)

It is sufficient that the agents agree they are communicating, it is not
required that they play the right roles. Note also the empty list of data ⟨⟩
that is agreed upon, i.e., none.

143 / 256

Formalizing Authentication
Weaker Variants

Definition (Aliveness)

A trace tr satisfies the property Alive(A,B) iff

∀a b i . Claim commit(a, b, ⟨⟩)@i
⇒ (∃j id .Create B(b, id)@j ∨ Create A(b, id)@j)
∨(∃X r .Rev(X)@r ∧ Honest(X)@i)

It is neither required that the agent b, believed to instantiate role B by
agent a, really plays role B, nor that he believes to be talking to a.

144 / 256

Aliveness vs Weak Agreement
Separating Example

Initiator

A

Responder

B

A, {NA}pk(B)

running(A)

NA

commit(B)

msc Aliveness vs weak agreement

Aliveness holds: only B can have decrypted the fresh nonce NA.

Weak agreement fails, since adversary may modify unprotected
identity A to C in first message so that B thinks he is talking to C .

145 / 256

Weak Agreement counter-example

theory ALIVEvsWEAKAGREE

begin

builtins: asymmetric-encryption

/* Public key infrastructure */

rule Register_pk:

[Fr(~ltkA)] -->

[!Ltk($A, ~ltkA), Out(pk(~ltkA))]

rule Reveal_ltk:

[!Ltk(A, ltkA)] --[Reveal(A)]-> [Out(ltkA)]

/* We formalize the following protocol protocol

1. A -> B: A,{na}_pk(B)
2. A <- B: na

*/

146 / 256

Weak Agreement counter-example
/* new session thread creation */

rule Init_A:

[Fr(~id), !Ltk(R, ltkR)]

--[Create_A($I, ~id)]->

[St_A_1($I, ~id, pk(ltkR), R)]

rule Init_B:

[Fr(~id), !Ltk(R, ltkR)]

--[Create_B(R, ~id)]->

[St_B_1(R, ~id, ltkR)]

/* 1. A -> B: A,{na}_pk(B) */

rule A_1_send:

[St_A_1(I, ~id, pkltkR, R), Fr(~ni)]

--[Send(I, <I, aenc{~ni}pkltkR>), OUT_I_1(aenc{~ni}pkltkR)]->
[St_A_2(I, ~id, pkltkR, R, ~ni), Out(<I, aenc{~ni}pkltkR>)]

rule B_1_receive:

[St_B_1(R, ~id, ltkR), In(<I, aenc{ni}pk(ltkR)>)]

--[Recv(R, <I, aenc{ni}pk(ltkR)>), IN_R_1_ni(ni, aenc{ni}pk(ltkR))]->

[St_B_2(R, ~id, ltkR, I, ni)]

147 / 256

Weak Agreement counter-example

/* 2. A <- B: na */

rule B_2_send:

[St_B_2(R, ~id, ltkR, I, ni)]

--[Send(R, ni), Running(R, I)]->

[St_B_3(R, ~id, ltkR, I, ni), Out(ni)]

rule A_2_receive:

[St_A_2(I, ~id, pkltkR, R, ~ni), In(~ni)]

--[Recv(I, ~ni), Commit(I, R), Honest(R), Honest(I), Finish()]->

[St_A_3(I, ~id, pkltkR, R, ~ni)]

/* it helps to deal with infinite loops in applying rules */

lemma types [sources]:

"(All ni m1 #i. IN_R_1_ni(ni, m1) @ i ==>

((Ex #j. KU(ni) @ j & j < i) | (Ex #j. OUT_I_1(m1) @ j))

)"

148 / 256

Weak Agreement counter-example

/* protocol is executable */

lemma executable:

exists-trace

"Ex #i. Finish() @i & not (Ex X #j. Reveal(X) @j) "

/* succeeds */

lemma aliveness:

all-traces

"All A B #i. Commit(A,B) @ i ==>

(Ex #j id. Create_B(B,id) @j) | (Ex #j id. Create_A(B,id)@j)

| (Ex X #r. Reveal(X) @ r & Honest(X) @i)"

/* fails as expected */

lemma weakagree:

all-traces

"All A B #i. Commit(A,B) @i ==>

(Ex #j. Running(B,A) @j)| (Ex X #r. Reveal(X) @ r & Honest(X) @i)"

end

149 / 256

Weak Agreement counter-example

When Even Aliveness Fails ...

Initiator

A

Responder

B

{|NA|}k(A,B)

running(A)

{|NB |}k(A,B), NA

commit(B)

NB

msc Mutual authentication protocol

Reflection attack: A may complete run without B’s participation.

Hence, aliveness fails.

151 / 256

Attack found by Tamarin

152 / 256

Key-related Properties

Basic key-oriented goals

key freshness

(implicit) key authentication: a key is only known to the
communicating agents A and B and mutually trusted parties

key confirmation of A to B is provided if B has assurance that agent
A has possession of key K

explicit key authentication = key authentication + key confirmation
⇒ expressible in terms of secrecy and agreement

Goals concerning compromised keys

(perfect) forward secrecy: compromise of long-term keys of a set of
principals does not compromise the session keys established in
previous protocol runs involving those principals

resistance to key-compromise impersonation: compromise of
long-term key of an agent A does not allow the adversary to
masquerade to A as a different principal.

153 / 256

Forward Secrecy: Example 1

A B

exp(g,X)

exp(g, Y), {exp(g, Y), exp(g,X), A}sk(B)

{exp(g,X), exp(g, Y), B}sk(A)

msc Modified Station-to-Station Protocol

Signatures are used to authenticate the Diffie-Hellman public keys
exp(g ,X) and exp(g ,Y).

Protocol provides forward secrecy: The adversary cannot derive
session key KAB = exp(exp(g ,X),Y) by compromise of signing keys.

154 / 256

Forward Secrecy: Example 2

knows A,B,U, gU , gV

A

knows A,B, V, gV , gU

B

generate X generate Y

exp(g,X)

exp(g, Y)

KAB = (gY)U · (gV)X KAB = (gX)V · (gU)Y

msc Matsumoto-Takashima-Imai (MTI) A(0) Protocol

Message exchange as in basic DH; protocol combines long-term and
ephemeral DH keys to authenticate exchanged DH public keys.

Protocol does not provide forward secrecy: The adversary can
construct the session key KAB = gVX+UY as (gX)V · (gY)U from
observed messages and long-term private keys U and V .

155 / 256

Forward Secrecy: Example 3

A B

(pk(KT), sk(KT))

A,NA, {pk(KT), B}sk(A)

KAB

{KAB}pk(KT), {h(KAB), A,NA}sk(B)

msc Key transport protocol providing forward secrecy

A generates an ephemeral asymmetric key pair (pk(KT), sk(KT)).

Protocol provides forward secrecy without using Diffie-Hellman keys:
Adversary cannot learn session key by compromise of signing keys.

156 / 256

Built-in message theories 1

hashing

Functions: h/1
Equations: No equations

asymmetric-encryption

Functions: aenc/2, adec/2, pk/1
Equations: adec(aenc(m, pk(sk)), sk) = m

signing

Functions: sign/2, verify/3, pk/1, true/0
Equations: verify(sign(m,sk),m,pk(sk)) = true

symmetric-encryption

Functions: senc/2, sdec/2
Equations: sdec(senc(m,k),k) = m

157 / 256

Built-in message theories 2

diffie-hellman

Functions: inv/1, 1/0, ˆ/2, */2

Equations:
(xˆy)ˆz = xˆ(y*z) xˆ1 = x x*y = y*x
(x*y)*z = x*(y*z) x*1 = x x*inv(x) = 1

xor

Functions: XOR/2, zero/0
Equations:
x XOR y = y XOR x (x XOR y) XOR z = x XOR (y XOR z)
x XOR zero = x x XOR x = zero

multiset

Functions: +/2
Equations: x + y = y + x (x + y) + z = x + (y + z)

Then you can define a “Smaller” predicate by
predicates: Smaller(x,y) ⇔ Ex z. x + z = y

158 / 256

Restrictions

Restrictions can be used exclude undesired traces: Tamarin will ignore all
traces that violate a restriction

Take care not to exclude attacks!

Many standard applications:

Equality
Inequality
LessThan
GreaterThan
OnlyOnce

Essentially same syntax as lemmas

159 / 256

Restriction Example: Only Once

restriction once:

"All #i #j. OnlyOnce()@#i & OnlyOnce()@#j

==> #i=#j"

Given the following rules:

rule 1: [] --[OnlyOnce()]-> [A(’5’)]

rule 2: [A(x)] --[Step(x)]-> [B(x)]

The restriction forbids e.g. the following execution (valid without
restriction):

[] --[OnlyOnce()]--> [A(’5’)]

--[OnlyOnce()]-> [A(’5’), A(’5’)]

--[Step(’5’)]-> [A(’5’), B(’5’)]

But the following is still allowed:

[] --[OnlyOnce()]-> [A(’5’)]

--[Step(’5’)]-> [B(’5’)]

160 / 256

Restriction Example: Inequality

restriction InEq:

"All x #i. Neq(x,x)@#i ==> F"

Given the following rules:

rule 1: [] --[A1()]-> [A(’1’)]

rule 2: [] --[A2()]-> [A(’2’)]

rule 3: [A(x), A(y)] --[Neq(x,y)]-> [B(x,y)]

The restriction forbids e.g. the following execution (valid without
restriction):

[] --[A1()]-> [A(’1’)]

--[A1()]-> [A(’1’), A(’1’)]

--[Neq(’1’,’1’)]-> [B(’1’,’1’)]

But the following is still allowed:

[] --[A1()]-> [A(’1’)]

--[A2()]-> [A(’1’), A(’2’)]

--[Neq(’1’,’2’)]-> [B(’1’,’2’)]
161 / 256

Command line parameters

tamarin-prover --help or manual to see all parameters.
Most important options:

--prove Attempt to prove the lemmas

--stop-on-trace[=DFS|BFS|NONE] How to search for traces
(default DFS)

-b --bound[=INT] Bound the depth of the proofs

--heuristic[=(s|S|o|O|p|P|l|c|C|i|I)+] Sequence of goal
rankings to use (default ’s’)

--diff Turn on observational equivalence mode using diff terms.

--quit-on-warning Strict mode that quits on any warning that is
emitted. (Good for debugging!)

--parse-only Just parse the input file and pretty print it as-is (to
find syntax errors)

-V --version Print version information (for bug reports)

162 / 256

Exporting and importing proofs and attacks

“Download” allows to export proofs. Gives a valid .spthy containing spec
and proof, which is again verified on loading. 163 / 256

GUI configuration

Allows to choose the level of details in graph visualization.

164 / 256

Keyboard shortcuts

Makes proof inspection quicker.

165 / 256

Syntactic sugar: let statements

rule Serv_1:

[!Ltk($S, ~ltkS)

, In(request)

]

--[Eq(fst(adec(request, ~ltkS)), ’1’)

]->

[Out(h(snd(adec(request, ~ltkS))))]

can be written aus

rule Serv_1:

let d = adec(request, ~ltkS) in

[!Ltk($S, ~ltkS)

, In(request)

]

--[Eq(fst(d), ’1’)

]->

[Out(h(snd(d)))]

166 / 256

Syntactic sugar: formal comments

Normal comments are lost when exporting a proof.

section{* This comment is kept even

when exporting proofs. *}

167 / 256

Debugging your model

Problem: How to be convinced that your model is correct?

Check for warnings and errors

Inspect message theory and case distinctions

Use sanity lemmas, e.g., to verify that the normal protocol execution
is possible

Change details and check whether the expected happens

168 / 256

Observational Equivalence - Motivation

Two types of properties:

Trace properties:
(Weak) secrecy as reachability
Authentication as correspondence

.

.

Observational equivalence ≈

169 / 256

Why observational equivalence?

Consider classic Dolev-Yao intruder for deterministic public-key
encryption:

enc(x , pk(k)) k

x

Intruder can only decrypt if he knows the secret key

Now consider a simple voting system:

Voter chooses v =“Yes” or v =“No”

Encrypt v using server’s public key pk(k): c = enc(v , pk(k))

Send c to server

Is the vote secret?

Dolev-Yao: Yes, intruder does not know server’s secret key

Reality: No, encryption is deterministic and there are only two
choices

Attack: encrypt “Yes”, and compare to c
170 / 256

Observational Equivalence vs Reachability

Reachability-based (weak) secrecy is insufficient

Stronger notion: intruder cannot distinguish
a system where the voter votes “Yes” from
a system where the voter votes “No”

Observational equivalence between two systems

Can be used to express:

Strong secrecy
Privacy notions
Game-based notions, e.g., ciphertext indistinguishability

171 / 256

Running Example

Auction system

Property: strong secrecy of bids

Property violated: Shout-out auction
Broadcast bid (e.g., A or B)
Send “A” in first system
Send “B” in second system
Observer knows if he is observing first or second system

Property holds: using shared symmetric key
Shared symmetric key k between bidder and auctioneer
Send “{A}k” in first system
Send “{B}k” in second system
Observer has no access to k , does not know which system he is
observing

172 / 256

System and environment

We separate environment and
system

System: agents running according
to protocol
Environment: adversary acting
according to its capabilities

Environment can observe:

Output of the system
If system reacts at all

System Sys

Environment Env

InSys OutSys

Interface

OutEnv InEnv

173 / 256

Defining observational equivalence

Two system specifications given as set of rules

One rule per role action (send/receive)
Running example shout-out auction:

X

OutSys(A)
System 1:

X

OutSys(B)
System 2:

Interface and environment/adversary rule(s):

OutSys(X)

InEnv (X)

OutEnv (X)

InSys(X)

InEnv (X) K (X)

OutEnv (true)

K (X) represents that environment knows term X
last rule models comparisons by the adversary

Each specification yields a labeled transition system

Observational equivalence is a kind of bisimulation accounting for
the adversaries’ viewpoint and capabilities

Our definition can be instantiated for various adversaries
174 / 256

Diff terms

General definition difficult to verify: requires inventing simulation
relation
Idea: specialize for cryptographic protocols

Consider strong bid secrecy:
both systems differ in secret bid only, i.e.
both specifications contain same rule(s) which differ only in some
terms

Exploit this similarity in description and proof

Approach: two systems described by one specification – using
diff-terms

Running example

X

OutSys(A)

X

OutSys(B)

Is equivalent to one rule with a diff-term

X

OutSys(diff(A,B))

175 / 256

Approximating observational equivalence using mirroring

Both systems contain the same rules modulo diff-terms

Idea: assume that each rule simulates itself

Mirrors each execution into the other system

If the mirrors are valid executions, we have observational
equivalence (sound approximation)

We represent executions using dependency graphs

Computed via backwards constraint solving

176 / 256

Dependency graphs and mirrors

Bidder picks A, observer compares to public value A

OutSys(A)

OutSys(A)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

Dependency graph mirror for bidder choice B is invalid
Adversary choices stay fixed, comparison is with A

177 / 256

Invalid mirrors and attacks

Bidder picks A/B, observer compares to public value A

OutSys(A)

OutSys(A)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (A)

K (A)

InEnv (B) K (A)

OutEnv (true)

Counter example to observational equivalence of the given systems

178 / 256

Valid mirror

Observer compares system output to itself

OutSys(A)

OutSys(A)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (B)

K (B)

InEnv (B) K (B)

OutEnv (true)

All mirrors need to be valid for observational equivalence

179 / 256

Dependency graph equivalence

A diff-system is dependency graph equivalent if mirrors of all dependency
graphs rooted in any rule on both sides are valid.

Sound but incomplete approximation

Efficient and sufficient in practice

Input:

Protocol specification

Property: equivalence given two choices for some term(s)

Example: random value vs expected value

Output:

Yes, observational equivalent

No, dependency graph with invalid mirror

Non-termination possible

180 / 256

Probabilistic encryption

Given equational theory for decryption

pdec(penc(m, pk(k), r), k) ≃ m .

1 Agent knows k , published pk(k) previously

2 Adversary provides value x , agent selects random r1, r2
Agent sends either one of

r1
penc(x , pk(k), r2)

Can adversary distinguish random value from encryption?

No!

Tamarin verifies this automatically in 0.2 seconds

Iterates over all rules

Simple, illustrative toy example to show approach

181 / 256

Weak Secrecy
theory probenc

begin

functions: penc/3, pdec/2, pk/1

equations: pdec(penc(m, pk(k), r), k)=m

rule R_pk:

[Fr(~k)] --> [!Ltk($A,~k), !Pk($A, pk(~k))]

rule Out_pk:

[!Pk($A, pubk)] --> [Out(pubk)]

rule Send_:

[!Ltk($A, k), Fr(~x), Fr(~r2)]

--[WSecret(~x)]->

[Out(penc(~x , pk(k), ~r2))]

//Weak secrecy

lemma Secret:

"

All B #i. WSecret(B)@i ==> not(Ex #j. K(B)@j)

"

end
182 / 256

Strong Secrecy

theory probenc

begin

functions: penc/3, pdec/2, pk/1

equations: pdec(penc(m, pk(k), r), k)=m

rule R_pk:

[Fr(~k)] --> [!Ltk($A,~k), !Pk($A, pk(~k))]

rule Out_pk:

[!Pk($A, pubk)] --> [Out(pubk)]

rule Send_:

[!Ltk($A, k), In(x), Fr(~r1), Fr(~r2)]

--[SSecret(x)]->

[Out(diff(~r1, penc(x , pk(k), ~r2)))]

//Strong secrecy implicitely encoded by the equivalence of two systems

183 / 256

Probabilistic encryption - reasoning

Setup rule (1) that picks long-term key and sends public key:

No choice in the rule

Easy to complete dependency graph

Trivially mirrors itself

Fr
kkkk

k k

k

OutSys(pk(k))

184 / 256

Probabilistic encryption - reasoning

Rule (2) sending out random or real encryption, taking value x as input
and having a stored key k:

R2
k r1 r2 x

OutSys(r1)

Fr
kkkk

r1
Fr

kkkk

r2

kkkk

x

R2
k r1 r2 x

OutSys(penc(x , pk(k), r2))

Fr
kkkk

r1
Fr

kkkk

r2

kkkk

x

Same premise in both cases

Outputs do not matter in root

Considered in equality check

Identical shape of dependency graphs in both cases:

Input and key are independent

Mirror each other

185 / 256

Probabilistic encryption - reasoning

Equality rule: considers two derivations to get some value x

Both x adversary-generated: trivially mirrors

x as result of (1)

key k is fresh, never known to adversary
only derive same x from same source
mirrors itself

x as result of (2)

k, r1, r2 fresh, not known to adversary
only derive same x from same source
mirrored - next slide

186 / 256

Probabilistic encryption - reasoning

Truncated graphs shown:

R2
...

OutSys(r1)

R2
OutSys(r1)

InEnv (r1)

cmpr
InEnv (r1) InEnv (r1)

OutEnv (true)

R2
...

OutSys(penc(x , pk(k), r2))

R2
OutSys(penc(x , pk(k), r2))

InEnv (penc(x , pk(k), r2))

cmpr
InEnv ([...]) InEnv ([...])

OutEnv (true)

187 / 256

Equivalence Intruder Deduction

Added new message deduction rule:

IEquality : K↓(x),K↑(x)--[]-->[] .

Allows to test whether an equality holds.

If a side can construct the same value twice this rule is applicable

Ensures that the same equalities hold on both sides

188 / 256

Algorithm

1: function Verify(S)
2: RU ← L(S) ∪ R(S) ∪ IF ∪ Env
3: while RU ̸= ∅ do
4: choose r ∈ RU, RU ← (RU \ {r})
5: compute DG←dgraphs(r) by constraint solving
6: if ∃dg∈DG s.t.mirrors(dg) lacks ground instances
7: then return “potential attack found: ”, dg

8: return “verification successful”

189 / 256

Induction Example

Proof goal: ∀x #i . Loop(x)@i ⇒ ∃#j . Start(x)@j

Such properties are needed:

looping constructs (counters etc.)
“Sources” lemmas

Normal constraint solving does not work

190 / 256

Why standard constraint solving fails

191 / 256

Induction on time points

Intuitively, induction could help

Formally, for IH ϕ:

Check if ϕ holds for empty trace
Consider special last rule index on trace
Assume ϕ holds at all non-last indices, and prove for last

Added constraint reduction rules for last atoms

Allows proof of previous example

192 / 256

Inductive proof

193 / 256

Induction on time points

Required for all ”sources” lemmas

Helps for all looping constructs, used in e.g.:

YubiKey
TPM
PKCS11
Group protocols
Counters

Can be activated using lemma annotations or in the interactive mode:
lemma counter [use induction]: ...

194 / 256

Message Deduction

MDΣ =



Out(x)

K(x)

K(x)

In(x)
[K(x)]

Fr(x : fr)

K(x : fr) K(x : pub)

K(x1) . . . K(xk)

K(f (x1, . . . , xk))
for all f ∈ Σ


Nice in theory, but not in practice. . .

195 / 256

Problems with Message Deduction

K(⟨a, b⟩)
K(a)1:

K(a) K(c)

K(⟨a, c⟩)2:

K(⟨a, c⟩)
K(a)3:

K(a) K(d)

K(⟨a, d⟩)4:

K↑(a) K↑(c)

K↑(⟨a, c⟩)1:

K↓(⟨a, c⟩)
K↓(a)2:

K↓(⟨a, b⟩)
K↓(a)1:

K↓(a)

K↑(a)2:

K↑(a) K↑(d)

K↑(⟨a, d⟩)3:

Idea: Avoid loops using ↑ and ↓ by converting only ↓ to ↑, but not the
other way round

196 / 256

Normal Message Deduction

NDΣ =



Out(x)

K↓(x)

K↑(x)

In(x)
[K(x)] Coerce :

K↓(x)

K↑(x)

Fr(x : fr)

K↑(x : fr) K↑(x : pub)

K↓(⟨x , y⟩)
K↓(x)

K↓(⟨x , y⟩)
K↓(y)

plus other deconstruction rules
depending on the equations

K↑(x1) . . . K↑(xk)

K↑(f (x1, . . . , xk))
for all f ∈ Σ


197 / 256

Automated Verification and Decidability

We would like to have a program V with . . .

Input:

some description of a program P
some description of a functional specification S

Output: Yes if P satisfies S , and No otherwise.

Optional extra: in the No case, give a counter-example, i.e. an input
on which P violates the specification.

Forget it:

Theorem (Rice)

Let S be any non-empty, proper subset of the computable functions. Then
the verification problem for S (the set of programs P that compute a
function in S) is undecidable.

198 / 256

The Sources of Infinity

For security protocols, the state space can be infinite for (at least) the
following reasons:

Messages The intruder can compose arbitrarily complex messages from
his knowledge, e.g., i , h(i), h(h(i)),

Sessions Any number of sessions (or threads) may be executed.

Nonces Unbounded number of fresh nonces generated.

199 / 256

(Un)decidability: Complete picture

Sessions

Nonces

Bounded

Bounded

Unbounded

Messages

Sessions

Nonces

Bounded

Bounded

Unbounded

Messages

Sessions

Nonces

Bounded

Bounded

Bounded

Messages

Sessions

Nonces

Unbounded

Unbounded

Unbounded

Messages

Sessions

Nonces Bounded

Unbounded

Unbounded

Unbounded

Messages

Messages

Sessions

Nonces

Bounded

Unbounded

Bottom line: need at least two bounded parameters for decidability.

200 / 256

Tamarin overview

Use multiset rewriting to represent protocol

Adversary message deduction rules given as multiset rewriting rules

Properties specified in first-order logic

Allows quantification over messages and timepoints

Verification algorithm is proven sound and complete

Backwards reachability analysis – searching for insecure states

Negate security property, search for solutions

Constraint solving

Uses dependency graphs
Normal dependency graphs for state-space reduction – efficiency
despite undecidability

201 / 256

Dependency graph example

202 / 256

Bibliography

David Basin, Sebastian Mödersheim, and Luca Viganò. OFMC: A symbolic
model checker for security protocols. International Journal of Information
Security, 4(3), 2005.

Hubert Comon, Véronique Cortier, John Mitchell. Tree automata with one
memory, set constraints, and ping-pong protocols. ICALP 2001.

Shimon Even and Oded Goldreich. On the security of multi-party ping-pong
protocols, Symposium on Foundations of Computer Science, IEEE Computer
Society, 1983.

N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of
bounded security protocols. In Workshop on Formal Methods and Security
Protocols (FMSP ’99), 1999.

J. Millen and V. Shmatikov. Constraint Solving for Bounded-Process
Cryptographic Protocol Analysis. CCS 2001.

Michaël Rusinowitch and Mathieu Turuani. Protocol Insecurity with Finite
Number of Sessions is NP-complete. CSFW, 2001.

203 / 256

Precomputation

Idea: for all facts in rule premises precompute their possible sources
(improves efficiency)

Sources are (combinations of) rules yielding that fact as (part of the)
result

Initial precomputations are called raw sources

Sometimes these precomputations are incomplete, and give partial
deconstructions

GUI shows both raw and refined sources:

204 / 256

Examples of sources

205 / 256

Partial deconstructions: example protocol

1: I → R: {ni , I}pk(R)

2: R → I : {ni}pk(I)
rule I_1:

let m1 = aenc{~ni, $I}pkR

in

[Fr(~ni) , !Pk($R, pkR)]

--[OUT_I_1(m1)]->

[Out(m1)]

rule R_1:

let m1 = aenc{ni, I}pk(ltkR)

m2 = aenc{ni}pkI

in

[!Ltk($R, ltkR) , In(m1), !Pk(I, pkI)]

--[IN_R_1_ni(ni, m1)]->

[Out(m2)]

(This looks like a decryption oracle for values ni .)
206 / 256

Partial deconstruction: example

207 / 256

Partial deconstructions - issues

Source for “everything”

Complicates proofs and can easily cause non-termination

Need to resolve such partial deconstructions

Realization: result not “everything”, but only values actually sent by
legitimate party or adversary-generated terms

Claim (and then prove) this using sources lemma

Example:

lemma types [sources]:

"(All ni m1 #i.

IN_R_1_ni(ni, m1) @ i

==>

((Ex #j. K(ni) @ j & j < i)

| (Ex #j. OUT_I_1(m1) @ j))) "

208 / 256

Sources lemmas

Explain where terms can come from or what their form must be.

How Tamarin proceeds:

1. Determine possible sources (raw)

2. Apply sources lemma to raw sources to get refined sources

3. Prove sources lemma with respect to raw sources

4. Prove other lemmas with respect to refined sources

209 / 256

Termination issues

Problem: What to do if Tamarin does not terminate?

Use interactive mode to inspect the proof (use bounded autoprover!)

If you find a loop, try to avoid it:

Find an intermediate helping lemma:
lemma help [reuse]: ...

Tweak your model: add or remove details, . . .

To find a known attack: use BFS

210 / 256

Conclusions

Getting security protocols is not easy

Symbolic analysis can help

Tamarin has an interesting set of features and applications, many of
whom I did not talk about (Human interaction security protocols,
user-defined heuristics, parallelization, preprocessors, SAPIC, . . .)

. . . but is still under development!

(-: Happy Proving :-)

211 / 256

Proofs of protocols : the symbolic model

The Dolev-Yao model was proposed in 1983:

messages are terms in a free algebra: (m1,m2), {m}k , [[m]]k , h(m)...
no secret value (nonce or key) can be guessed
the intruder can only apply functions in the given signature
... but has complete control of the network
choice in semantics : non - deterministic

One can add equations between primitives (functions), but anyway,
we assume that the only equalities are those given by these equations.

Proofs in this model are simpler and can be automated.

212 / 256

Proofs of protocols : the computational model

The computational model was proposed in the ’80s:

the messages are bitstrings
the cryptographic primitives (encryption, decryption, key-generation,
signing..) are probabilistic polynomial-time algorithms on bitstrings
secrets can be guessed ... with very small probability
the intruder is any interactive probabilistic polynomial-time algorithme
has complete control of the network

The model is much closer to reality, but proofs in this model are
mostly manual.

213 / 256

Proofs

Computational world:
Done by hand, long and often complex and hard to understand.
(Sometime proofs are error-prone). Often based on reduction to
cryptographic assumptions.

Symbolic world:
Based on constraint solving, First-order Logic, Tree automata etc ...
these proofs are automatic.

214 / 256

Exemple: asymmetric encryption

In the symbolic world:

(AD)
T0 ⊢ {u}pk(v) T0 ⊢ sk(v)

T0 ⊢ u
(AC)

T0 ⊢ u T0 ⊢ pk(v)

T0 ⊢ {u}pk(v)

In the real world: ElGamal Encryption:

a cyclic group G of order q and generator g (g and q deppend on
some integer η - the security parameter)

Kη() = x ←R
Zq; sk ← x ; pk ← g x ; return(sk , pk)

{m}pk = r ←R
Zq; return(pk

r × gm, g r).

But what can we assume about this primitive?

215 / 256

IND-CPA encryption

After having chosen two plaintexts m0 and m1, upon receiving the
encryption of mb (for a random bit b), it shoud be hard to guess which
message has been encrypted:

Adv IND−CPA
η (A) = Pr [b′ = 1|(sk, pk)←R Kη(); (m0,m1)←R A(pk);

c = {m1}pk ; b′ ←R A(c)]

− Pr [b′ = 1|(sk, pk)←R Kη(); (m0,m1)←R A(pk);

c = {m0}pk ; b′ ←R A(c)]

The encryption is IND-CPA, if the advantage Adv IND−CPAη (A) is negligible
for any ppt-adversary A.
Let us take it slowly...

216 / 256

Security parameter

In practice, we use keys, nonces, messages... they all have some length.
Also, the algorithms we use, take some time to execute. So, the security
parameter, denoted η, is an integer such that:

the key/plaintext length in asymmetric encryption and signing can be
η

the key/block length in block ciphers/symmetric encryption can be η

the key/tag length in MACs or output length in hash functions can be
η

the execution time of honest participants and of the intruder is
polynomial in η

217 / 256

Computational indistinguishability - definition

Let D0 = {D0
η}η∈N and D1 = {D1

η}η∈N be two (families of)

distributions over bit-strings. The advantage AdvD0,D1(A) of an
adversary A is defined by

AdvD
0,D1

(A) = Pr [b′ = 1|d ←R D0
η ; b
′ ←R A(η, d)]

− Pr [b′ = 1|d ←R D1
η ; b
′ ←R A(η, d)]

The distributions D0 and D1 are computationally indistinguishable
(denoted D0 ≈ D1), if the advantage AdvD0,D1(A) is negligible for
any ppt-algorithm A.
f : N→ R is negligible if ∀n.∃Nn.∀η ≥ Nn.f (η) ≤ 1

ηn

(for all polynomials p, limη→∞f (η)× p(η) = 0)

218 / 256

Computational indistinguishability - exemples

statistical indistinguishability implies computational
indistinguishability

[d ←R {0, 1}η : d] ≈ [d ←R {0, 1}η; if d = 0η then d = 1η : d]

Decisional Diffie Hellman Problem is (assumed) difficult.
Let G a cyclic group of order q and generator g (g and q deppend on
η). Then

[x , y ←R
Zq : (g x , g y , g x×y)] ≈ [x , y , z ←R

Zq : (g x , g y , g z)]

We can prove that ElGamal encryption is IND-CPA secure, assuming
that the Decisional Diffie Hellman Problem is hard.

219 / 256

Computational indistinguishability : transitivity

Theorem

If D0 ≈ D1 and D1 ≈ D2 then D0 ≈ D2.

Proof.

Suppose that D0 ̸≈ D2, and let A be a ppt-adversary that can distinguish D0 and
D2 with non-negligible advantage.

For i ∈ {0, 1, 2}, let pi
η = Pr [b′ = 1|d ←R Di

η; b
′ ←R A(η, d)].

There is a polynomial q, such that for infinitely many η, p0
η − p2

η ≥ 1/q(η).

Then, either p0
η − p1

η ≥ 1/(q(η)/2) or p1
η − p2

η ≥ 1/(q(η)/2) for infinitely many η.

Hence A distinguishes either D0 and D1, or D1 and D2 with non-negligible
advantage.

220 / 256

Computational indistinguishability : proof by reduction

Definition

A family of distributions E is polynomial-time constructible, if there is a
ppt-algorithm ΨE , such that the output of ΨE(η) is distributed identically
to Eη.

Definition

Given two families of distributions D and E , we define D∥E by

(D∥E)η = [x ←R Dη; y ←R Eη : (x , y)]

Theorem

If D0 ≈ D1 and E is polynomial-time constructible, then
(D0∥E) ≈ (D1∥E).

221 / 256

Computational indistinguishability : proof by reduction

Theorem. If D0 ≈ D1 and E is polynomial-time constructible, then
(D0∥E) ≈ (D1∥E).

Proof.

Suppose that (D0∥E) ̸≈ (D1∥E), and let A be a ppt-adversary that can distinguish
(D0∥E) and (D1∥E) with non-negligible advantage.

Define an adversary B by

B(η, x) = [y ←R ΨE(η); b
′ ←R A(η, (x , y)) : b′]

We can see that if x is distributed according to Di
η, then the argument of A is

distributed according to (Di∥E)η.
Hence the advantage of B is equal to the advantage of A.

222 / 256

Computational indistinguishability : hybrid argument

Definition

Let D be a family of distributions, and p be a positive polynomial. We

define the family of distributions
−→D by

−→D η = [x1 ←R Dη; . . . ; xp(η) ←R Dη : (x1, . . . , xp(η))]

To sample
−→D η, sample Dη p(η) times, and construct the tuple of sampled

values.

Theorem

If
−→
D0 ≈

−→
D1 then D0 ≈ D1.

Theorem

If D0 ≈ D1 and Di are polynomial-time constructible, then
−→
D0 ≈

−→
D1.

223 / 256

Computational indistinguishability : hybrid argument 1

If
−→
D0 ≈

−→
D1 then D0 ≈ D1.

Theorem.

Proof.

Suppose that D0 ̸≈ D1, and let A be a ppt-adversary that can distinguish D0 and
D1 with non-negligible advantage.

Define an adversary B by

B(η, (x1, . . . , xp(η))) = [b′ ←R A(η, x1) : b′]

We can see that if (x1, . . . , xp(η)) is distributed according to
−→
Di

η, then the
argument x1 of A is distributed according to Di

η.

Hence the advantage of B is equal to the advantage of A.

224 / 256

Computational indistinguishability : hybrid argument 2

Theorem. If D0 ≈ D1 and Di are polynomial-time constructible, then−→
D0 ≈

−→
D1.

Proof.

Suppose that
−→
D0 ̸≈

−→
D1, and let A be a ppt-adversary that can distinguish

−→
D0 and−→

D1 with non-negligible advantage.

Hence for some polynomial q, and for infinitely many η,

Pr [A(η, x) = 1|x ←R
−→
D0

η]− Pr [A(η, x) = 1|x ←R
−→
D1

η] ≥ 1/q(η).

Assume for now that p is a constant.

For k ∈ {0, . . . , p}, define
−→
Ekη by

−→
Ekη = [x1 ←R D0

η; . . . ; xk ←R D0
η; xk+1 ←R D1

η; . . . ; xp ←R D1
η : (x1, . . . , xp)]

Thus
−→
E0η =

−→
D1 and

−→
Epη =

−→
D0. Define Pk

η = Pr [A(η, x) = 1|x ←R
−→
Ekη].

Then for infinitely many η, 1/q(η) ≤ Pp
η − P0

η =
∑p

i=1(P
i
η − P i−1

η).

Then for some j and infinitely many η, (P j
η − P j−1

η)] ≥ 1/(p × q(η)).

Then for some j ,
−−→
E j−1

η ̸≈
−→
E j η, and A can distinguish them.

225 / 256

Computational indistinguishability : hybrid argument 3

Proof.

(Continuation 1)

There is some j , such that
−−→
E j−1

η ̸≈
−→
E j η, and A can distinguish them.

Now if A can distinguish
−−→
E j−1

η and
−→
E j η, how can we construct B that can

distinguish
−→
D0 =

−→
Epη and

−→
D1 =

−→
E0η.

Define B as follows. On input (η, x):

1. Let x1 ←R D0
η; . . . ; xj−1 ←R D0

η.
2. Let xj := x .
3. Let xj ←R D1

η; . . . ; xp ←R D1
η.

4. Call b′ ←R A(η, (x1, . . . , xp)) and return b′.

The advantage of this distinguisher is at least 1/(p × q(η)).

Remark: the above prove was not constructive.

226 / 256

Computational indistinguishability : being constructive

Proof.

(Continuation 2)

Suppose that
−→
D0 ̸≈

−→
D1, and let A be a ppt-adversary that can distinguish

−→
D0 and−→

D1 with non-negligible advantage.

Hence for some polynomial q, and for infinitely many η,

Pr [A(η, x) = 1|x ←R
−→
D0

η]− Pr [A(η, x) = 1|x ←R
−→
D1

η] ≥ 1/q(η).

Define B as follows. On input (η, x):

0. Let j ←R {1, . . . , p}.
1. Let x1 ←R D0

η; . . . ; xj−1 ←R D0
η.

2. Let xj := x .
3. Let xj ←R D1

η; . . . ; xp ←R D1
η.

4. Call b′ ←R A(η, (x1, . . . , xp)) and return b′.

The advantage of this distinguisher is at least 1/(p × q(η)).

227 / 256

Computational indistinguishability : p depends on η

Proof.

(Continuation 3)

Suppose that
−→
D0 ̸≈

−→
D1, and let A be a ppt-adversary that can distinguish

−→
D0 and−→

D1 with non-negligible advantage.

Hence for some polynomial q, and for infinitely many η,

Pr [A(η, x) = 1|x ←R
−→
D0

η]− Pr [A(η, x) = 1|x ←R
−→
D1

η] ≥ 1/q(η).

Define B as follows. On input (η, x):

0. Let j ←R {1, . . . , p(η)}.
1. Let x1 ←R D0

η; . . . ; xj−1 ←R D0
η.

2. Let xj := x .
3. Let xj ←R D1

η; . . . ; xp(η) ←R D1
η.

4. Call b′ ←R A(η, (x1, . . . , xp(η))) and return b′.

The advantage of this distinguisher is at least 1/(p(η)× q(η)).

228 / 256

Back to the symbolic world

Messages are defined by the following grammar

Keys = {k , k1, k2, . . . , }
Coins = {r , s, r1, r2, . . . , }
Bits = {0, 1}
e ::= k ∈ Keys

| b ∈ Bits

| (e1, e2)
| {e}rk

If {e}rk and {e ′}rk ′ both occur in the same context, then e = e ′ and
k = k ′.

229 / 256

Recall: Dolev-Yao Deduction System

We denote T0 ⊢ e for “message e is deducible from the set of messages
T0”.

Deduction System for Dolev Yao theory: T0 ⊢? s
(C0)

T0 ⊢ 0
(C1)

T0 ⊢ 1

(A)
u ∈ T0

T0 ⊢ u
(UL)

T0 ⊢ (u, v)

T0 ⊢ u

(P)
T0 ⊢ u T0 ⊢ v

T0 ⊢ (u, v)
(UR)

T0 ⊢ (u, v)

T0 ⊢ v

(C)
T0 ⊢ u T0 ⊢ v

T0 ⊢ {u}
r
v

(D)
T0 ⊢ {u}

r
v T0 ⊢ v

T0 ⊢ u

230 / 256

Symbolic world: meaning of a message

Now we want do define an equivalence ∼ between messages, such
that e1 ∼ e2 when e1 and e2 “look the same”. Intuitevely, by doing
any permitted operation, we cannot distinguish e1 and e2.

Examples:

{0}rv ∼ {1}r
′

v .
({0}rv , v) ̸∼ ({1}r ′v , v).
({0}rv , ({1}sv) ∼ ({1}r ′v , {1}s

′

u).

How can we define formally ∼?

231 / 256

Key Recovery rec function

We define rec(E) as being the set of keys that can be recovered from
E using information available in E only: rec(E) = {k ∈ Keys|E ⊢ k}.
Example:

rec((({{k2}rk1}
r ′
k1 , {(k3, 0)}

r”
k2), k1)) = {k1, k2, k3}

But we want a constructive definition of rec(E)!

232 / 256

Key Recovery Function in one pass Fkr(E ,K)

Following the approach of [Micciancio,Warinschi], for an expression E and a set K
of keys, we define Key Recovery Function Fkr (E ,K) as follows:

Fkr (b,K) = K

Fkr (k,K) = {k} ∪ K

Fkr ((E1,E2),K) = Fkr (E1,K) ∪ Fkr (E2,K)

Fkr ({E}k ,K) =

{
K if k /∈ K
Fkr (E ,K) otherwise.

Example

E = (({{k2}rk1}
r ′
k1
, {(k3, 0)}r”k2), k1)

1 Fkr (E , ∅) = {k1}
2 Fkr (E , {k1}) = {k1, k2}
3 Fkr (E , {k1, k2}) = {k1, k2, k3}
4 Fkr (E , {k1, k2, k3}) = {k1, k2, k3}

233 / 256

Inductive Definition of Key Recovery rec

Let E be an expression, then we define rec by
rec(E) =

⋃
i Gi (E) = G|E |(E) where

G0(E) = ∅
Gi (E) = Fkr (E ,Gi−1(E)).

Example

E = (({{k2}rk1}
r ′
k1
, {(k3, 0)}r”k2), k1)

1 G1(E) = Fkr (E , ∅) = {k1}
2 G2(E) = Fkr (E , {k1}) = {k1, k2}
3 G3(E) = Fkr (E , {k1, k2}) = {k1, k2, k3}
4 G4(E) = Fkr (E , {k1, k2, k3}) = {k1, k2, k3} = G3(E) = rec(E)

234 / 256

Patterns

Patterns are defined by the following grammar

Keys = {k , k1, k2, . . . , }
Coins = {r , s, r1, r2, . . . , }
Bits = {0, 1}
P ::= k ∈ Keys

| b ∈ Bits

| (P1,P2)

| {P}rk
| □r

Remark: a message is a pattern with no occurrence of □

e.g., {({□r}sk2 , 1)}
s′
k1

is a pattern

235 / 256

The pattern of an expression

We denote by keys(E) the set of all keys occurring in E , and let
hidden(E) = keys(E)− rec(E). Define Pat(E ,K) as follows:

Pat(b,K) = b

Pat(k,K) = k

Pat((E1,E2),K) = (Pat(E1,K),Pat(E2,K))

Pat({E}rk ,K) =

{
{Pat(E ,K)}rk if k ∈ K
□r otherwise

Finally, we define pat by pat(E) = Pat(E , rec(E)). Intuitively,
pat(E) is the pattern corresponding to E , given the knowledge of
any keys that may be recovered from E .

236 / 256

Examples

pat(E) = Pat(E , rec(E))

E = (({{k2}rk1}
r ′
k1
, {k3}r ′′k2), k1)

rec(E) = {k1, k2, k3}

pat(E) = E

E = (({{k2}rk1}
r ′
k1
, {k3}r ′′k2), k2)

rec(E) = {k2, k3}

pat(E) = (□r ′ , {k3}r
′′
k2 , k2)

237 / 256

Pattern - exercise

Example (Exercise)

pat((0, 1)) = ?

pat(({0}rK1
, ({1}r ′K2

,K1))) = ?

pat(({{K1}r ′K2
}r ′′K3

,K3)) = ?

238 / 256

Pattern Equivalence

We define E to be symbolically equivalent to F (and we write
E ∼ F) if there is a renaming (a bijection) σK of keys of F and a
renaming σR of random coins of F such that pat(E) = pat(FσKσR)

Examples:

k ′ ∼ k

(k1, k2) ̸∼ (k3, k3) (no bijection !)

but (k1, k2) ∼ (k4, k1)

({0}rk , {0}r
′
k) ∼ ({0}r ′k , {1}sk)

but ({0}rk , {0}rk) ̸∼ ({0}r ′k , {1}sk)
{((1, 1), (1, 1))}rk ∼ {1}rk
({0}r ′k , {0}sk) ∼ ({0}r ′k ′ , {0}sk ′′)

239 / 256

Terms and the computational world

What is the meaning of a term in the computational world?

0, 1 ? ... are constants, hence deterministic

((0, 1), 1) ... using some deterministic concatenation

k ... keys are randomly sampled

r ... coins are randomly sampled

{0}rk ... in general, encryption is probabilistic

Hence to a term, we will associate a distribution.

240 / 256

Implementation - primitives

Let ⟨u, v⟩ : {0, 1}∗ × {0, 1}∗ 7→ {0, 1}∗ be an easily computable and
invertible injective function.

Let Π = (K, E ,D) be a symmetric encryption scheme:

K(1η) : generates random key.
E r (1η, k, x) : encrypts x with k using random coins r .
D(1η, k , y) : decrypts y with k .
Correctness:

∀η,∀x ,∀r
k := K(1η); y := E r (1η, k , x); x ′ := D(1η, k, y) :

(x = x ′)?

241 / 256

Implementation of formal terms

Let Π = (K, E ,D) be a symmetric encryption scheme and η ∈ N be the security
parameter. We associate to the formal term M a distribution [[M]]η and by
consequence a family of distributions [[M]].

For each k ∈ Keys(M) do τK (k)
R←− Kη().

For each r ∈ Coins(M) do τR(r)
R←− {0, 1}ω.

[[k]]η = τK (k).

For b ∈ {0, 1}, [[b]]η = b.

[[(e1, e2)]]η = ⟨[[e1]]η, [[e2]]η⟩.

[[{e}rk]]η = EτR (r)(1η, τK (k), [[e]]η).

242 / 256

Computational equivalence of terms

We say that two terms E and F are computationally equivalent, and we
write E ≈ F , when the associated distributions are computationally
indistinguishable

[[E]] ≈ [[F]]

243 / 256

Corectness

Do we have that E ∼ F implies that E ≈ F ?
YES, if we avoid key cycle in terms, and if encryption is type-0-secure.

Encryption Cycles - examples:

{k}rk
{k2}rk1 , {k1}

r ′
k2

{k2}rk1 , {k3}
r ′
k2
, {k1}r”k3

etc ...

244 / 256

Definition

Definition (Key Cycles)

Let k , k ′ ∈ Keys. We say that k encrypts k ′ in the term M, denoted by
k ≻M k ′, if {N}rk ∈ st(M) and k ′ ∈ st(N).
A term M is acyclic iff the relation ≻M is acyclic.

Example
.

Let M = ({{k1}r1k2}
r2
k3
, 0). ≻M is defined by k3 ≻M k2 ≻M k1. M is

acyclic.

Let M = {k}rk . We get k ≻M k . M has a cycle of size 1.

Let M = ({k1}r1k2 , {k2}
r2
k1
). We have that k1 ≻M k2 and k2 ≻M k1. M

has a cycle of size 2.

245 / 256

Type-0 Scheme - intuition

A type-0 encryption scheme has the following properties:
1 message-hiding: given two messages m and m′ of equal length and a

cipher-text c of one of them, one cannot tell which of m or m′

corresponds to c (IND-CPA)
2 Which-key-hiding: given cipher-texts c , c ′, one cannot tell if they were

encrypted under the same key
3 Message-length-hiding: given cipher-text c , one cannot determine the

length of the corresponding plain-text

246 / 256

Type-0 Scheme - formal definition

Definition

Let Π = (K, E ,D) be an encryption scheme and A be an adversary:

Adv0Π,η(A) = Pr [AO0
1(.),O0

2(.)(η) = 1|k ←R Kη()]

− Pr [AO1
1(.),O1

2(.)(η) = 1|k1, k2 ←R Kη()]

Π is Type-0 secure if Adv0Π,η(A) is negligible, for any ppt A.

AO is an adversary having acces to a (or several) oracle(s) O.
O1

1(.) is an oracle that takes a message m and answers c ←R Ek1(m).

O1
2(.) is an oracle that takes a message m and answers c ←R Ek2(m).

O0
1(.) is an oracle that takes a message m and answers c ←R Ek(0).
O0

2(.) is an oracle that takes a message m and answers c ←R Ek(0).

247 / 256

Soundness

Theorem

Soundness If e1,e2 do not contain encryption cycles, and if encryption is
implemented using a type-0 secure scheme, then

e1 ∼ e2 implies e1 ≈ e2

Proof is by a hybrid reduction-style argument.

From now on we suppose that expressions do not contain
encryption cycles, and that encryption is implemented using a
type-0 secure scheme.

248 / 256

Implementation of formal patterns

For each k ∈ Keys(M) do τK (k)
R←− Kη().

k□
R←− Kη().

For each r ∈ Coins(M) do τR(r)
R←− {0, 1}ω.

[[k]]η = τK (k).

For b ∈ {0, 1}, [[b]]η = b.

[[(e1, e2)]]η = ⟨[[e1]]η, [[e2]]η⟩.

[[{e}rk]]η = EτR (r)(1η, τK (k), [[e]]η).

[[□r]]η = EτR (r)(1η, k□, 0).

249 / 256

Replacing one key

For a key k0 ∈ Keys, define

replace(k, k0) = k .

replace(b, k0) = b.

replace((e1, e2), k0) = (replace(e1, k0), replace(e2, k0)).

replace({e}rk , k0) = {replace(e, k0)}rk if k ̸= k0.

replace({e}rk0 , k0) = □r .

replace(□r , k0) = □r .

250 / 256

Replacing one key is sound

Theorem

Soundness Let e an expression, and k0 a key occuring in e only as
encryption key. Then [[e]] ≈ [[replace(e, k0)]].

Proof.

Assume that B distinguishes [[e]] from [[replace(e, k0)]], and let construct
an adversary AO that wins against the security of the type-0 encryption
scheme. AO(1η) works as follows:

For each k ∈ Keys(e) do τK (k)
R←− Kη().

For each r ∈ Coins(e) do τR(r)
R←− {0, 1}ω.

Let L = {} (the empty mapping).

Compute the “semantics” v of e by invoking SemO(e).

Return B(1η, v).

251 / 256

Replacing one key is sound

Theorem Let e an expression, and k0 a key occuring in e only as
encryption key. Then [[e]] ≈ [[replace(e, k0)]].

Proof.

(Continuation)
SemO(e) is: case e of

k: return τK (k) (note that k ̸= k0).

b: return b.

(e1, e2): Let vi = SemO(ei); return ⟨v1, v2⟩.
□r : return O2(0).

{e}rk : Let w = SemO(e);

If k ̸= k0, then return EτR (r)(1η, τK (k),w).
If k = k0 and L(r) is not defined, then L(r) = O1(w); return L(r).

One can see that SemO
1

(e) = [[e]] and SemO
0

(e) = [[replace(e, k0)]], hence A
distinguishes O0 from O1, with the same advantage that B distinguishes [[e]] from
[[replace(e, k0)]].

252 / 256

Soundness

Theorem If e1,e2 do not contain encryption cycles, and if encryption is
implemented using a type-0 secure scheme, then

e1 ∼ e2 implies e1 ≈ e2

Proof.

If {k1, . . . , kn} = Keys(e), and for all i , j , i < j =⇒ kj ̸≻e ki , then

replace(· · · replace(replace(e, k1), k2) · · · , kn) = pat(e)

Apply the previous lemma to each key in hidden(e), we get

[[e]] ≈ [[pat(e)]]

Permuting the formal keys and coins does not change the generated probability
distribution over bit-strings. If e1 ∼ e2, then pat(e1) = pat(e2σKσR) for some
permutations σk on keys and σR on coins, and by transitivity

[[e1]] ≈ [[pat(e1)]] = [[pat(e2σKσR)]] = [[pat(e2)]] ≈ [[e2]],

hence e1 ≈ e2.

253 / 256

Example

[[(({k4, 0}r1k3 , {k3}
r2
k2
), ({{11}r4k4}

r3
k1
, k1))]]

≈
[[(({k4, 0}r1k3 ,□

r2), ({{11}r4k4}
r3
k1
, k1))]]

≈
[[((□r1 ,□r2), ({{11}r4k4}

r3
k1
, k1))]]

≈
[[((□r1 ,□r2), ({□r4}r3k1 , k1))]]

≈
[[(({1}r1k2 ,□

r2), ({{0}r4k2}
r3
k1
, k1))]]

≈
[[(({1}r1k2 , {k2}

r2
k3
), ({{0}r4k2}

r3
k1
, k1))]]

254 / 256

Abadi Rogaway 2000 Paper

Introduced in [AR 00] M. Abadi et P. Rogaway. Reconciling two views
of cryptography (the computational soundness of formal encryption).
Journal of Cryptology, 15(2):103–127, 2002.

Models security of encryption against a passive computational
adversary

Adversary observes two expressions which have the same pattern
assuming secure encryption – goal is to distinguish them with
non-negligible probability

RESULT:
Symbolic indistinguishability implies computational security

255 / 256

(Some) Extensions

[Micciancio, Warinschi] give completeness for modified
(authenticated) encryption, and also soundness for active adversaries

[Micciancio, Panjwani] give a soundness theorem for an adversary
which can adaptively attack the encryption scheme

[Backes, Pfitzmann, Waidner] give an cryptographic implementation
of Dolev-Yao terms in a general (UC) setting

[Canneti, Herzog] give a formal (automated) approach to universal
composability

256 / 256

	Security Protocols and Properties - definitions and examples
	Motivation
	Formal Models
	Term Rewriting
	Tamarin
	Rewriting-based Protocol Syntax
	Protocol Semantics
	Protocol Security Goals
	Tips and tricks
	Observational Equivalence
	Induction
	Normal deduction
	Automated Verification
	Tamarin workflow
	Precomputation and sources
	Conclusion

	Link between Computational and Symbolic

