Maximum number of points that can be obtained is 5.5.

Problem 1 (2.0 pts.)

In this exercise, $\langle _, _ \rangle$ represents concatenation, $[_]_$ represents a symmetric encryption scheme, $sign_{\{_\}}$ a digital signature, pr(u) is the inverse secret key associated to pk(u). Consider the following protocol:

The goal of this protocol is to provide both secrecy and authentication: at the end of a session between two honest participants a and b, $k = g^{xy} \mod p$ should be a new shared secret value known only by a and b. This target session between honest participants a and b may be part of a richer scenario containing other running sessions in parallel where the active adversary i can be involved.

We assume that the parties have agreed on a (g; p) pair for Diffie-Hellman key exchange, that each user has keys for digital signatures and that they have agreed on a symmetric encryption scheme for use in subsequent encryption. Furthermore, $[m]_{sk}$ denotes the (symmetric) encryption of a message m using the key sk and $sign_{pr(A)}\{_\}$ and $sign_{pr(B)}\{_\}$ denote A's and B's signature operations, respectively. Describe in details (as a list) A's and B's actions at receipt of messages 2 and 3 and what beliefs they have at that stage. Are A and B successfully authenticated to each other after a protocol session ?

Problem 2 (2.0 pts.)

In this exercise, $\langle _, _ \rangle$ represents concatenation, $[_]_$ represents a symmetric encryption scheme, $\{_\}_$ an asymmetric encryption scheme, pr(u) is the inverse secret key associated to pk(u) and \oplus denotes the usual bitwise xor over equal-length bitstrings, e.g. $0011 \oplus 1110 = 1101$. Consider the following protocol:

1.
$$A \rightarrow B : \{ \langle \langle A, B \rangle, N_a \rangle \}_{pk(B)}$$

2. $B \rightarrow A : \langle \{ \langle B \oplus N_a, `1' \rangle \}_{pk(A)}, \{ \langle N_a \oplus K, `2' \rangle \}_{pk(A)} \rangle$
3. $A \rightarrow B : \{ \langle \langle A, B \rangle, K \rangle \}_{pk(B)}$

The goal of this protocol is to provide both secrecy and authentication: at the end of a session between two honest participants a and b, k (the instantiation of the variable K in the specification of the protocol) should be a new shared secret value known only by a and b. This target session between honest participants a and b may be part of a richer scenario containing other running sessions in parallel where the active adversary i can be involved. If you think that the protocol is correct, then give a justification. Otherwise,

- give an attack on the target session between honest participants a and b where the intruder i will learn k;
- propose a correction of the protocol.

Problem 3 (1.5 pts.)

- 1. What risks arise when using the same key to encrypt both directions of a communication channel, that aren't present if using different keys for the different directions?
 - (a) Message tampering by flipping bits in the ciphertext.
 - (b) Reflection attacks.
 - (c) Hash collisions.

- (d) Eavesdropping attacks.
- (e) Denial-of-service.
- (f) None of the above.
- 2. Which of the following properties must a cryptographic hash function provide?
 - (a) Key revocation.
 - (b) Collision resistance.
 - (c) A deterministic mapping from input to output.
 - (d) One-to-one mapping of input to output.
 - (e) Difficulty of finding an input that matches a given hash.
 - (f) None of the above.
- 3. Which of the following equations/properties must a cryptographic hash function h provide in a Tamarin encoding?
 - (a) $x1 = x2 \Rightarrow h(x1) = h(x2)$.
 - (b) $h(x1) = h(x2) \Rightarrow x1 = x2.$
 - (c) h(x, y) = h(y, x).
 - (d) No equation at all.
 - (e) None of the above.