
University of Wollongong
Research Online

Faculty of Engineering and Information Sciences -
Papers Faculty of Engineering and Information Sciences

2013

CIL security proof for a password-based key
exchange
Cristian Ene
Universite Grenoble, cristian.ene@imag.fr

Clementine Gritti
University of Wollongong, cjpg967@uowmail.edu.au

Yassine Lakhnech
Universite Grenoble, yassine.lakhnech@imag.fr

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Publication Details
Ene, C., Gritti, C. & Lakhnech, Y. (2013). CIL security proof for a password-based key exchange. Lecture Notes in Computer Science,
8209 59-85.

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/eispapers
http://ro.uow.edu.au/eispapers
http://ro.uow.edu.au/eis

CIL security proof for a password-based key exchange

Abstract
Computational Indistinguishability Logic (CIL) is a logic for reasoning about cryptographic primitives in
computational model. It is sound for standard model, but also supports reasoning in the random oracle and
other idealized models. We illustrate the benefits of CIL by formally proving the security of a Password-Based
Key Exchange (PBKE) scheme, which is designed to provide entities communicating over a public network
and sharing a short password, under a session key.

Keywords
cil, security, key, password, exchange, proof

Disciplines
Engineering | Science and Technology Studies

Publication Details
Ene, C., Gritti, C. & Lakhnech, Y. (2013). CIL security proof for a password-based key exchange. Lecture
Notes in Computer Science, 8209 59-85.

This journal article is available at Research Online: http://ro.uow.edu.au/eispapers/1836

http://ro.uow.edu.au/eispapers/1836

CIL Security Proof for a Password-Based Key Exchange

Cristian Ene1, Clémentine Gritti2, and Yassine Lakhnech1

1 Université Grenoble 1, CNRS, Verimag, France
{cristian.ene,yassine.lakhnech}@imag.fr

2Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Australia
cjpg967@uowmail.edu.au

Abstract. Computational Indistinguishability Logic (CIL) is a logic for reasoning about cryptographic
primitives in computational model. It is sound for standard model, but also supports reasoning in the
random oracle and other idealized models. We illustrate the benefits of CIL by formally proving the
security of a Password-Based Key Exchange (PBKE) scheme, which is designed to provide entities
communicating over a public network and sharing a short password, under a session key.

Keywords: Password-Based Key Exchange, Logic, Security Proof.

1 Introduction

Cryptography plays a central role in the design of secure and reliable systems. It consists in the conception and
analysis of protocols achieving various aspects of information security such as authentication. In particulary,
the provable cryptography is defined as the conception of proofs accounting for the exact amount of security
supplied by cryptographic protocols.

In the computational model, Computational Indistinguishability Logic (CIL) supports concise and in-
tuitive proofs accross several models of cryptography. This logic features the notion of oracle system, an
abstract model of interactive games in which adaptative adversaries play against a cryptographic scheme by
interacting with oracles. Moreover, it states a small set of rules that capture common reasoning patterns and
interface rules to connect with external reasoning. To illustrate applicability of CIL, we consider the security
proof of the Password-Based Key Exchange (PBKE) protocol.

1.1 Related Work

About Security of PBKE Protocols: EKE (Encrypted Key Exchange) was introduced by Bellovin and Merritt,
[1]. In their protocol, two users execute an encrypted version of the Diffie-Hellman key exchange protocol, in
which each flow is encrypted using the password shared between these two users as the symmetric key. Due
to the simplicity of their protocol, other protocols were proposed in the literature based on it, each with its
own instantiation of the encryption function such that OEKE (One-Encryption Key-Exchange) protocol.

Since 2003, E. Bresson et al., [3], have been working on the analysis of very efficient schemes on password-
based authenticated key exchange methods, but for which actual security was an open problem. In 2012, B.
Blanchet have focused on a crytpgraphic protocol verifier, called CryptoVerif, to mechanically prove OEKE.

About CIL: DCS (Distributed and Complex Systems) is working on the logic CIL for proving concrete
security of cryptographic schemes. It enables reasonning about schemes directly in the computational settings.
The main contribution is to support the design of proofs at a level of abstraction which allows to bridge the
gap between pencil-and-paper fundamental proofs and existing pratical verification tools (see article [7]).

1.2 Contributions and Contents

For the first time, we bring out the applicability of CIL for formalizing computational proofs. The tool CIL
allows us to give a new kind of analysis that has advantages over the traditional as in [3] and [9]. As we use

a tool based on general and extended logic rules, the proofs are well constructed and easy to understand,
and achieve good results.

The paper begins with a recall of the framework to capture cryptographic games(Section 2). The main
technical contributions of the paper are: i) an extension of reasoning tools for oracle systems (Section 3); ii)
a formal proof in CIL of an efficient PBKE protocol (Section 4).

2 Oracle systems

2.1 Preliminaries

ICM: An ideal block cipher is a totally random permutation from l-bit strings to l-bit strings.
ROM: A random oracle is a mathematical function mapping every possible query to a uniformly random

response from its output domain.
Miscellaneous: Let 1 to denote the unit type and (x,y) to denote pairs. For a set A, U(A) defines the

set of uniform distributions over A. Let to denote arguments that are not used or elements of tuples whose
value is irrevelant in the final distribution.

2.2 Semantics

The interaction between an oracle system and an adversary proceeds in three successive phases:
– the initialization oracle sets the initial memory distributions of the oracle system;
– the adversary performs computations, updates its state and submits a query to the oracle system; the

oracle system performs computations, updates its state, and replies to the adversary, which updates its
state;

– the adversary outputs a result calling the finalization oracle.

During his attack, the adversary has access to the oracles, which modelize his capacities to obtain (partial)
information or to execute some party of the protocol in the reality. His resources are bounded by two
parameters: the number of queries he performs to the oracles and his running time.

2.3 Oracle systems and adversaries

Oracle systems and adversaries are modeled as stateful systems meant to interact with each another. An
oracle system O is a stateful system that provides oracle access to adversaries and given by:
– sets of oracle memories and of oracles;
– a query domain, an answer domain and the related implementation;
– a distinguished initial memory, and distinguished oracles oI for initialization and oF for finalization.

Oracle systems O and O′ are compatible iff they have the same sets of oracle names and the query and the
answer domains of each oracle name coincide in both oracle systems. We build compatible systems out of
systems we have already defined by modifying the implementation of one of the oracles.

2.4 Events

The interaction between oracle system and adversary seems as this of the pattern consisting in the query of
an oracle, the computation of an answer by the oracle, and the update of its state by the adversary. This is
formalized as a transition system, where a step consists in one occurence of the pattern.

Security properties abstract away from the state of adversaries and are modeled using traces. A trace is
an execution sequence from which the adversary memories have been erased. The subset of traces verifying
the predicate is considered to assign a probability to an event defined by a predicate.

For a step-predicate φ, let the event ”eventually φ” be denoted by Fφ and correspond to φ satisfied at
one step of the trace. Furthermore, the event ”always φ”, denoted by Gφ, is true iff φ is satisfied at every
step of the trace. You can find an example of this concept in Appendix A.3.

For more details and examples, you can see the Appendix A or refer to the article [7].

2

3 Computational Indistinguishability Logic

3.1 Statements: judgments
For an event E, a statement O :ε E is valid iff for every (k,t)-adversary A, Pr(A | O : E) ≤ ε(k,t). For O
and O′ compatible oracle systems which expect a boolean as result, a statement O ∼ε O′ is valid iff for
every (k,t)-adversary A, | Pr[A | O : R = True]−Pr[A | O′ : R = True] |≤ ε(k,t). Let E be an event of
compatible systems O and O′. A statement O E∼ε O′ is valid iff for every (k,t)-adversary A, | Pr[A |O :R=
True∧E]−Pr[A | O′ : R = True∧E] |≤ ε(k,t) . As O ∼ε O′⇔ O

True∼ ε O
′, we write O ∼ε O′ for the two

statements. See Appendix B.1 for details.

3.2 Rules and their extensions
We expose briefly the rules used in our proof on Figure (1). You can find more classic and extended rules in
Appendix B.1.

O :ε2 E2 O′ :ε1 F¬ϕ O ≡R,ϕ O′ E1RE2

O′ :ε1+ε2 E1
UpToBad

O :ε Fϕ
Fail

O ≤det,γ O
′ O :ε E◦π

O′ :ε E
B-Det-Left

O :ε E◦C
C[O] :ε′ E

B-Sub

O
E2∼ ε1 O

′ E2⇒E1 O :ε2 E1∧¬E2 O′ :ε2 E1∧¬E2

O
E1∼ ε1+ε2 O

′
URCd

O :ε′ Fϕ′
Fail2

O
E1∧E2∼ ε2 O

′ O :ε1 ¬E1∧E2 O′ :ε1 ¬E1∧E2

O
E2∼ ε1+ε2 O

′
FTr

O
E1∼ ε1 O

′ O′
E2∼ ε2 O”

O
E1∨E2∼ ε1+ε2 O”

TrCd

O :ε1 Fϕ1 ∧Gϕ2 O :ε2 F¬ϕ2 O ≡R,ϕ2 O
′

O′ :ε1+ε2 Fϕ1

B-BisG2
O′ :ε F¬ϕ2 ∧Gϕ1 O

ϕ1≡R,ϕ2 O
′

O
Gϕ1∼ ε O

′
I-BisCd

Fig. 1. Rules used in the proof (classic and extended rules). For compatible oracle systems O, O′ and O”, events E,
E1 and E2 of O, O′ and O”, and step-predicates ϕ, ϕ1 and ϕ2.

3.3 Contexts
A context C is an intermediary between an oracle system O and adversaries. One can compose a O-context
C with O to obtain a new oracle system C[O] and with a C[O]-adversary to obtain a new O-adversary C ‖A.
Procedures for contexts differ of these for oracle systems: one that transfers calls from the adversary to the
oracles and another one that tranfers answers from the oracles to the adversary. See Appendix B.2.

3.4 Bisimulation
Game-based proofs proceed by transforming an oracle system into an equivalent one, or in case of imperfect
simulation into a system that is equivalent up to some bad event. The notion of bisimulation-up-to is defined
as two probabilistic transition systems are bisimilar until the failure of a condition on their tuple states-
transitions. Bisimulations are closely related to obversational equivalence and relational Hoare logic and
allow to justify proofs by simulations. Besides, bisimulations-up-to subsume the Fundamental Lemma of
Victor Shoup. See Appendix B.3.

3

3.5 Determinization

Using the concept of automata determinization technique, the definition is based on the possibility to decom-
pose states of a system into two components and to exhibit a distribution γ allowing to obtain the second
component given the first one. See Appendix B.4.

4 CIL Security Proof for an efficient PBKE

4.1 Preliminaries

In the computational model, messages are bitstrings, cryptographic primitives are functions from bitstrings
to bitstrings and adversary is any Probabilistic Polynomial time Turing Machine.

Scheme: We denote objects describing the model:
– two sets Users and Servers such that u ∈ [Users] and s ∈ [Servers];
– for the arithmetic, G =< g > is a cyclic group of l-bit prime order q and Ḡ = G\1G = {gx | x ∈ Z∗q} (g

is a fixed parameter);
– for i= {0,1}, li is the parameter of data size for Hash function Hi;
– a set Password as a small dictionary (polynomial in the security parameter), of size N , equipped with

the uniform distribution.

Encryption/Decryption: E is the Encryption and D is the Decryption in the Ideal Cipher Model .
Hash Functions: There are two hash functions H0 and H1 in the Random Oracle Model.
We want to bound the probability for an adversary, within time t, and with less than Nu sessions with a

client, Ns sessions with a server (active attacks), and asking qH hash queries and qE Encryption/Decryption
queries, to distinguish the session key from a random key.

4.2 One-Encryption Key-Exchange (OEKE), a password-based key exchange

On Figure (2) (with a honest execution of the OEKE protocol), the protocol runs between a client u and a
server s. The session key space associated to this protocol is {0,1}l0 equipped with the uniform distribution.
u and s initially share a low-quality string pw, the password, from Password.

Client u Server s
pw pw

accept ← false ; terminate ← false accept ← false ; terminate ← false
x← [1..(q−1)] y← [1..(q−1)]

X← gx
u,X−−−→ Y ← gy

Y ←D(pw,Y ?) s,Y ?←−−− Y ?← E(pw,Y)
Ku← Y x ; Auth←H1(Z ‖Ku) ; sku←H0(Z ‖Ku) Ks←Xy

accept ← true Auth−−−−→ Auth
?=H1(Z ‖Ks) ; if true, accept ← true

sks←H0(Z ‖Ks)
terminate ← true terminate ← true

Fig. 2. An execution of the protocol OEKE, run by the client u and the server s. We let Z be equal to u ‖ s ‖X ‖ Y .

The real game O1
0: This game consists of: initialization and finalization oracles, Encryption/Decryption

oracles, Hash oracles, oracles that simulate the protocol (named U1, S1, U2 and S2), Execute oracle, Test
oracle and Reveal oracle. In the initialization oracle, the bit b is equal to 1 and hence, the Test oracle returns
the real value of the session key.

4

Imp(oI)() =
pw← Password; LH0 := []; LH1 := [];
LE := []; Lpw := []; LO := [];
varX :=⊥; varθ :=⊥; varϕ :=⊥; varsk :=⊥;
b := 1
return 1

Imp(E)(pw,x) = Imp(D)(pw,y) =
if (pw,x, ,) /∈ LE then if (pw, ,y,) /∈ LE then
y← Ḡ; LE := LE .(pw,x,y,⊥); φ← Z∗q ; x= gφ ; LE := LE .(pw,x,y,φ);

endif endif
return y such that (pw,x,y,) ∈ LE return x such that (pw,x,y,) ∈ LE

Imp(H0)(x) = Imp(H1)(x) =
if x /∈ LH0 then if x /∈ LH1 then
y← U(l0); LH0 := LH0 .(x,y); y← U(l1); LH1 := LH1 .(x,y);

endif endif
return LH0(x) return LH1(x)

Imp(U1)(u,i) = Imp(S1)((s,j),(u,X)) =
θ← Z∗q ; X = gθ ; varθ[(u,i)] = (θ,X); ϕ← Z∗q ; Y = gϕ; Y ? = E(pw,Y);
return (u,X) varϕ[(s,j)] = (ϕ,Y,Y ?); varX [(s,j)] =X;

Ks =Xϕ

return (s,Y ?)

Imp(U2)((u,i),(s,Y ?)) = Imp(S2)((s,j),u,Auth) =
if varθ[(u,i)]! =⊥ then if varϕ[(s,j)]! =⊥ then
Y =D(pw,Y ?); (θ,X) = varθ[(u,i)]; (ϕ,Y,Y ?) = varϕ[(s,j)]; X = varX [(s,j)];
Ku = Y θ; Ks =Xϕ;
Auth=H1(u ‖ s ‖X ‖ Y ‖Ku); H ′ =H1(u ‖ s ‖X ‖ Y ‖Ks);
varsk[(u,i)] =H0(u ‖ s ‖X ‖ Y ‖Ku) if H ′ =Auth then

endif varsk[(s,j)] =H0(u ‖ s ‖X ‖ Y ‖Ks)
return Auth endif

endif
return 1

Imp(Reveal)(p,k) = Imp(Test1)(p,k) =
if varsk[(p,k)]! =⊥ then if varsk[(p,k)]! =⊥ then
sk := varsk[(p,k)] sk := varsk[(p,k)]

endif endif
return sk return sk

Imp(Exec)((u,i),(s,j)) = Imp(oF)(x) = return 1
θ← Z∗q ; X = gθ; ϕ← Z∗q ;
Y = gϕ; Y ? = E(pw,Y); Ks =Xϕ; Ku = Y θ;
Auth=H1(u ‖ s ‖X ‖ Y ‖Ku);
varsk[(u,i)] =H0(u ‖ s ‖X ‖ Y ‖Ku)
return ((u,X),(s,Y ?),Auth)

The real game O0
0: As for O1

0, this game consists of exactly the same oracles. The differences are in the
initialization oracle where b= 0 and in the Test oracle where is returned a random value for sk.

5

Summary: In a first part, we bound the probabilities that two step-predicates occur. The first one, Cl,
is for formalizing the collisions. The second one, φpw, is for describing the dependence on the password in
the oracles. In a second part, we write the general proof in order to obtain the indistinguishability between
O0

0 and O1
0, considering that the two previous step-prediactes can not occur. For that, we describe the

transformations of the game O1
0, step by step, until finding a simplified game. We notice that we obtain the

same thing for the game O0
0.

These two parts are very similar: the same tranformations are made in order to obtain the wanted result.
Therefore, we explain clearly the first proof and we expose briefly the second one.

N.B.: The list Lpw is created to simulate the oracles E and D in ICM. We suppose that the domain of E
matches with the group generated by g. LO is defined as the list stocking the tuple (oracle o,query q,answer a),
writing as LO = LO · (o,q,a).

4.3 Proof for bounding the probability of the step-predicate φpw

C.1. Eliminating the Collisions :
We want to eliminate collisions during Hash and Encryption/Decryption processes. We formalize the

small probability of that an inappropriate collision could let the adversary to find a sequence without any
required effort.

Let the step-predicate Cl be defined on the triple ((o,q,a),m,) as the conjunction of the clauses:
– for i= 0,1, o=Hi∧ q /∈m ·LHi

∧ (,a) ∈m ·LHi

– o= E∧ (pw,q, ,) /∈m ·LE ∧ (, ,a,) ∈m ·LE
– o=D∧ (pw, ,q,) /∈m ·LE ∧ (,a, ,) ∈m ·LE

To complete and restrict the definition of Cl, let us introduce two other clauses:
– if (pw,Y,Y ?1 ,ϕ) and (pw,Y,Y ?2 ,ϕ) then Y ?1 = Y ?2
– if (pw,Y1,Y

?,ϕ) and (pw,Y2,Y
?,ϕ) then Y1 = Y2

Since Cl can only be satisfied when querying H0, H1, E or D, applying the rule Fail2 (see Appendix
B.1) allows to conclude to:
– on the hash oracles, where l =max(l0, l1) and qH = qH0 + qH1 , we obtain ε1

0 = 1
2 ×

(qH0+qH1)2

2l = q2
H

2l+1 ,

– on the Encryption/Decryption oracles, where qE = qEnc+ qDec, we get ε2
0 = 1

2 ×
(qEnc+qDec)2

q−1 = q2
E

2(q−1) .

Therefore, we obtain that O1
0 :ε0 FCl where ε0 = q2

H
2l+1 + q2

E
2(q−1) . We perform the same analysis for the other

game obtaining O0
0 :ε0 FCl.

For further, at each step, we suppose there is no collision when modifying the game O1
0. We can introduce

a particular equivalence relation under the step-predicate ¬Cl in order to avoid the collisions, since it steps in
over memories. We use the extented notion of bisimulation (for more details, see Appendix B.3). To conclude
the proof, we bound the probability of such collisions (this avoids the repetition of the value ε0 at each
transformation).

C.2. Creating the independence from the password in the oracles:
We want to eliminate dependence on pw in all the oracles. We formalize the probability that the adversary

guesses the good password and succeeds in the acquisition of the session key.
We define the step-predicate φpw = φpw1∨φpw2, where φpw1 and φpw2 are written as follows:

φpw1 = λ(m,). (U2, q,) ∈m ·LO ∧ (m ·pw, ,q,⊥) ∈m ·LE

φpw2 = λ(m,). (S1, ,a) ∈m ·LO ∧ (,a) ∈m ·S1∧ (m ·pw,Y,a,) ∈m ·LE
∧(‖ ‖ ‖ Y ‖ ,a′) ∈m ·LH1 ∧ (S2,a

′,) ∈m ·LO
φpw steps in over memories only. We want to find the value ε1 such that: O1

0 :ε1 Fφpw = Fφpw1∨φpw2 .
We transform the game O1

0 until finding a game wherein the password is sampled in the finalization
oracle. Therefore, we can obtain easily the optimal result Nu+Ns

N . Indeed, this means that the adversary can
test at most one password per session.

6

Removing the Encryption in the oracle S1 The unique way for the adversary to gain something is to
correctly guess pw, by either sending a Y ? that is really an encryption under it of some well-chosen message
or using it to decrypt Y ?. In O1

1, we change S1 modelizing the Encryption inside this oralce.

Imp(S1)((s,j),(u,X)) = ϕ← Z∗q ; Y = gϕ; Y ?← Ḡ; varϕ[(s,j)] = (ϕ,Y,Y ?);
LE := LE .(pw,Y,Y ?,ϕ) ; varX [(s,j)] =X; Ks =Xϕ;
return (s,Y ?) such that (pw,Y,Y ?,) ∈ LE

In a particular case, we do not receive an exponent ϕ but ⊥: that happens when Y ? has been previously
obtained as a ciphertext returned by an Encryption query. Let the step-predicate Exp be this case:

Exp = λ((o, ,a),m,). o= S1∧ (pw, ,a,⊥) ∈m ·LE

Therefore, O1
0 and O1

1 are in bisimulation-up-to ¬Exp, using as relation R′1 the equality on the common
components of their states in M

O1
i

¬Cl. Indeed, states m,m′ are in relation:
– if m,m′ ∈MO1

0
¬Cl or MO1

1
¬Cl, mR

′
1m
′ iff m=m′

– if m ∈MO1
0
¬Cl and m′ ∈MO1

1
¬Cl, mR

′
1m
′ iff

• ∀(pw,x,y,e) ∈m ·LE \m′ ·LE ⇒ e=⊥ ∧∃(pw,x,y,ϕ) ∈m′ ·LE \m ·LE s.t. x= gϕ

• ∀(pw,x,y,e) ∈m′ ·LE \m ·LE ⇒ e= ϕ s.t. x= gϕ∧∃(pw,x,y,⊥) ∈m ·LE \m′ ·LE
Hence, we apply the rule I-BisG2 to result in:

O1
1 :ε′2 FExp(∧G¬Cl) O1

1 :ε′1 Fφpw (∧G¬Cl) O1
0
¬Cl
≡ R′1,¬Exp∧¬φpw O

1
1

O1
0 :ε′1+ε′2 Fφpw (∧G¬Cl)

I-BisG2

Applying the rule Fail allows to obtain O1
1 :ε′2 FExp, where ε′2 = Ns×qE

q−1 .

Splitting the Hash lists We want to be sure that u will offer a good Authenticator and s will accept it. Therefore,
we modify the oracle U2 in order to get a honest value for Y . We split the lists of the two public hash oracles H0 and
H1 in O1

2, introducing two private hash functions H2 : {0,1}∗→{0,1}l0 and H3 : {0,1}∗→{0,1}l1 .

Imp(oI)() = Imp(U2)((u,i),(s,Y ?)) =
pw← Password if varθ[(u,i)]! =⊥ then
LH0 := []; LH1 := []; LH2 := []; LH3 := []; (θ,X) = varθ[(u,i)]
LE := []; Lpw := []; LO := []; if ∃Y,∃ϕ such that (pw,Y,Y ?,ϕ) ∈ LE
varX :=⊥; varθ :=⊥; varϕ :=⊥; varsk :=⊥; Ku = Y θ ;
b := 1 Auth=H1(u ‖ s ‖X ‖ Y ‖Ku);
return 1 varsk[(u,i)] =H0(u ‖ s ‖X ‖ Y ‖Ku)

else
Y ← Ḡ; Ku = Y θ;
Auth=H3(u ‖ s ‖X ‖ Y ‖Ku);
varsk[(u,i)] =H2(u ‖ s ‖X ‖ Y ‖Ku)

endif
endif
return Auth

O1
1 and O1

2 are R′2-bismilar up to ¬φpw1. The equivalence relation R′2 between states m and m′ is as follows:
– if m,m′ ∈MO1

1
¬Cl or MO1

2
¬Cl, mR

′
2m
′ iff m=m′

– if m ∈MO1
1
¬Cl and m′ ∈MO1

2
¬Cl, mR

′
2m
′ iff m ·LH0 =m′ · (LH0 ∪LH2) and m ·LH1 =m′ · (LH1 ∪LH3)

Then, applying the rule I-BisG2, we find:

O1
2 :ε′3 Fφpw1 (∧G¬Cl) O1

2 :ε′4 Fφpw ∧G¬φpw1 (∧G¬Cl) O1
1
¬Cl
≡ R′2,¬φpw1 O

1
2

O1
1 :ε′3+ε′4 Fφpw (∧G¬Cl)

I-BisG2

such that ε′3 +ε′4 = ε′1. We notice that: Fφpw ∧G¬φpw1 ⇔ Fφpw2 .

7

Randomizing the Hash oracles In O1
3, we sample the value of Y . Therefore, we no longer use the private hash

functions since we internalize the hash functions in another way with the random Y . We modify the oracles U2 and S2.

Imp(U2)((u,i),(s,Y ?)) = Imp(S2)((s,j),u,Auth) =
if varθ[(u,i)]! =⊥ then if varϕ[(s,j)]! =⊥ then
Y ← Ḡ; (,Y,Y ?) ∈ varϕ[(u,i)]; (ϕ,Y,Y ?) = varϕ[(s,j)]; X = varX [(s,j)]; Ks =Xϕ;
(θ,X) = varθ[(u,i)]; Ku = Y θ; H ′ =H1(u ‖ s ‖X ‖ Y ‖Ks);
Auth=H1(u ‖ s ‖X ‖ Y ‖Ku); if H ′ =Auth then
varsk[(u,i)] =H0(u ‖ s ‖X ‖ Y ‖Ku) varsk[(s,j)] =H0(u ‖ s ‖X ‖ Y ‖Ks)

endif endif
return Auth endif

return 1
Let the step-predicate Auth be the conjunction of the following clauses:

– (pw,Y,Y ?,ϕ) ∈ LE ∧X ∈ varθ
– for u and s, u ‖ s ‖X ‖ Y ‖ CDH(X,Y) ∈ LH1

The adversary can not see the link between Y and Y ?, except if he calls E(pw,) or D(pw,).
We notice that the probability that Fφpw2 occurs is very negligible since we suppose that the adversary can not

get the password. Since we have FAuth∨φpw2 = FAuth ∨ (Fφpw2 ∧G¬Auth), we expose that Fφpw2 ∧G¬Auth occurs
with the probability ε′5 and FAuth with ε′6. Using the rule Fail, we get ε′5 = Nu+Ns

q−1 .
We want to establish the indistinguishability between O1

2 and O1
3 up to ¬Auth∧¬φpw2. We exhibit two equiva-

lence relations R′3 between both systems. Indeed, states m and m′ are in relation:

– if m,m′ ∈MO1
2
¬Cl or MO1

3
¬Cl, mR

′
3m
′ iff m=m′

– if m ∈MO1
2
¬Cl and m′ ∈MO1

3
¬Cl, mR

′
3m
′ iff m · (LH0 ∪LH2) =m′ ·LH0 and m · (LH1 ∪LH3) =m′ ·LH1

On the left hand, focusing on the step-predicate φpw1, we apply the rule I-BisG2 to result in:

O1
3 :ε′5+ε′6 FAuth∨φpw2 (∧G¬Cl) O1

3 :ε′7 Fφpw1 ∧G¬Auth∧¬φpw2 (∧G¬Cl) O1
2
¬Cl
≡ R′3,¬Auth∧¬φpw2 O

1
3

O1
2 :ε′5+ε′6+ε′7 Fφpw1 (∧G¬Cl)

I-BisG2

such that ε′5 +ε′6 +ε′7 = ε′3.
On the right hand, since we have FAuth∨φpw2 = [FAuth ∧Gφpw2]∨ [Fφpw2 ∧GAuth∧φpw2] and O1

3 :0 Fφpw2 ∧
GAuth∧φpw2 (∧G¬Cl), we simplify the line. Focusing on the step-predicate φpw2, we apply the rule I-BisG2 to result
in:

O1
3 :ε′6 FAuth∧Gφpw2 (∧G¬Cl) O1

3 :ε′8 Fφpw2 (∧G¬Cl) O1
2
¬Cl
≡ R′3,¬Auth∧¬φpw2 O

1
3

O1
2 :ε′6+ε′8 Fφpw2 (∧G¬Cl)

I-BisG2

such that ε′6 +ε′8 = ε′4.
We focus on the CDH problem to obtain the value of ε′6 (for more details about the Computational Diffie-Hellman

assumption in G, see Appendix B.2). Hence, we write the game O1
4 as a context C of CDH. The oracle system CDH

captures the game played by an adversary to find the Diffie-Hellman instance (A,B).
We define the step-predicate Auth’ as follows:

– o= U1 s.t. (α,X) ∈ LA∧o= S1 s.t. (β,Y) ∈ LB
– for u and s, u ‖ s ‖X ‖ Y ‖ CDH(X,Y) ∈ LH1

The adversary has returned a pair (R1,R2) that is a valid authentication when H1(R1) = R2. Given (α,X) ∈ LA,
(β,Y) ∈ LB and one CDH instance (A,B), we notice that CDH(A,B) = CDH(X,Y)α

−1β−1
.

Therefore, applying the rule B-Sub, we get:

CDH :ε(1k,t) FAuth’ ◦C

O1
4 = C[CDH] :ε′6 FAuth’

B-Sub

where ε′6 = qH ×ε(1k, t) (see Appendix B.2).
Moreover, the games O1

3 and O1
4 are in perfect bisimulation. We define the equivalence relation R′4 between states

m and m′ as follows:

8

– if m,m′ ∈MO1
3
¬Cl or MO1

4
¬Cl, mR

′
4m
′ iff m=m′

– if m∈MO1
3
¬Cl and m′ ∈MO1

4
¬Cl, mR

′
4m
′ iff there is the equality on the common components of their states, knowing

that the added lists LA and LB are completely determinated using the other common tables.

Then, we check the compatibility of FAuth∪FAuth’ withR′4, i.e. that given two states m∈MO1
3
¬Cl and m′ ∈MO1

4
¬Cl

in relation by R′4, FAuth holds in state m iff FAuth’ holds in state m′, which is obvious by the definition of the
relation. Thus, applying the rule UpToBad, we find:

O1
4 :ε′6 FAuth’(∧G¬Cl) O1

3 :0 F¬True O1
3
¬Cl
≡ R′4,True O

1
4 FAuthR′4FAuth’

O1
3 :ε′6 FAuth(∧G¬Cl)

UpToBad

Sorting the password in the finalization oracle We a simplified game such that all the oracles are inde-
pendent of pw. We modify the finalization oracle in order to draw the password only at the end of O1

5.

Imp(oF)(x) = x= pw; return 1

The event Fφpw ◦π on O1
5-traces is defined by Fφpw ◦π(τ) = True iff π(τ) verifies Fφpw , where τ is any O1

5-trace.
Therefore, using the rule Fail, we get O1

5 :ε1 Fφpw , where ε′9 = Nu+Ns
N . Then, applying the rule B-Det-Left, we find:

O1
3 ≤det,γ O

1
5 O1

5 :ε′9 (Fφpw ◦π)∧G¬Cl

O1
3 :ε′9 Fφpw (∧G¬Cl)

B-Det-Left

such that ε′9 = ε′7 +ε′8 = Nu
N + Ns

N . More precisely, we get O1
3 :ε′7 Fφpw1 and O1

3 :ε′8 Fφpw2 .
To conclude, we obtain that O1

0 :ε1 Fφpw where ε1 = Nu+Ns
N + Nu+Ns

q−1 + NsqE
q−1 + 2qH × ε(1k, t). We perform the

same analysis for the other game obtaining that O0
0 :ε1 Fφpw .

For further, at each step, we suppose there is no dependence on the password when modifying the game O1
0. We

can introduce a particular equivalence relation under the step-predicate ¬φpw in order to avoid a query from the
adversary with the good pw, since it steps in over memories using the list LO. From that, E and D no longer give
some evidence about the password to the adversary. This process enables to avoid the repetition of the value ε1 at
each transformation in the general proof.

Proof Tree: We illustrate the proof tree for bounding the probability of the step-predicate φpw on Figure (3). For
convenience, we understand that each event FPredicate is associated to the event G¬Cl and b is the bit randomly
sampled in the initialization oracle.

N.B.: Defining the step-predicate φpw allows us to construct a proof which seems the more general possible.
Indeed, we notice that it can be applied in another password-based protocol proof. From that, we hope to get security
proofs more easily since we have already met the concept.

4.4 General proof for the indistinguishability between the games O0
0 and O1

0

Since the two conditions we described previously seem revelant, we transform the game O1
0 in several steps under

G¬Cl∧G¬φpw . The description of the general proof is less developed since we use the same transformations than for
the proof for bounding the probability of φpw. Indeed, except the last game O1

5 using the concept of determinization,
we will apply in the same order each step using in the previous proof.

Removing the Encryption in the oracle S1 In O1
1, modified S1 modelizes the Encryption inside (refer to page

7). If Y ? exists already then the exponent is equal to ⊥. The step-predicate Exp defines this case (see pagerefexp).
Therefore, O1

0 and O1
1 are in bisimulation-up-to ¬Exp, using as relation R1 the equality on the common compo-

nents of their states in M
O1
i

¬Cl∧¬φpw . Indeed, states m,m′ are in relation:
– if m,m′ ∈MO1

0
¬Cl∧¬φpw or m,m′ ∈MO1

1
¬Cl∧¬φpw , mR1m

′ iff m=m′

– if m ∈MO1
0
¬Cl∧¬φpw , m′ ∈MO1

1
¬Cl∧¬φpw , mR1m

′ iff
• ∀(pw,x,y,e) ∈m ·LE \m′ ·LE ⇒ e=⊥ ∧∃(pw,x,y,ϕ) ∈m′ ·LE \m ·LE s.t. x= gϕ

9

I-BisG2
Ob0

G¬Cl≡ R1,¬Exp∧¬φpw O
b
1 Ob1 :ε′2 FExp

I-BisG2
Tree’1

Ob1 :ε′1 Fφpw
Ob0 :ε′1+ε′2 Fφpw

Tree’1:

I-BisG2
Ob1

G¬Cl≡ R2,¬φpw1 O
b
2
I-BisG2

Tree’2
Ob2 :ε′3 Fφpw1

I-BisG2
Tree’3

Ob2 :ε′4 Fφpw ∧G¬φpw1

Ob1 :ε′1 Fφpw
Tree’2:

I-BisG2
Ob2

G¬Cl≡ R3,¬Auth∧φpw2 O
b
3
I-BisG2

Tree’4
Ob3 :ε′6 FAuth∨φpw2

I-BisG2
Tree’5

Ob3 :ε′7 Fφpw1 ∧G¬Auth∧¬φpw2

Ob2 :ε′3 Fφpw1

Tree’3:

I-BisG2
Ob2

G¬Cl≡ R3,¬Auth∧φpw2 O
b
3
I-BisG2

Tree’4
Ob3 :ε′6 FAuth∧Gφpw2

I-BisG2
Tree’5

Ob3 :ε′8 Fφpw2

Ob2 :ε′4 Fφpw ∧G¬φpw1 = Fφpw2

Tree’4:

Up-To-Bad
Ob3

G¬Cl≡ R4,True O
b
4 Ob3 :0 F¬True FAuthR4FAuth’

B-Sub
CDH :ε(1k,t) FAuth’ ◦C

Ob3 :ε′6 FAuth’

Ob3 :ε′6 FAuth

Tree’5:

B-Det-Left
Ob3 ≤det,γ O

b
5 Ob5 :ε′7 Fφpw1 ◦π

Ob3 :ε′7 Fφpw1

Tree’6:

B-Det-Left
Ob3 ≤det,γ O

b
5 Ob5 :ε′8 Fφpw2 ◦π

Ob3 :ε′8 Fφpw2

Fig. 3. Proof Tree for the probability that the step-predicate φpw occurs

• ∀(pw,x,y,e) ∈m′ ·LE \m ·LE ⇒ e= ϕ s.t. x= gϕ∧∃(pw,x,y,⊥) ∈m ·LE \m′ ·LE

Hence, using the rule Fail, we get O1
1 :
ε2=Ns×qE

q−1
FExp and we apply the rule I-BisCd to result in:

O1
1 :ε2 FExp(∧G¬Cl∧G¬φpw) O1

0
¬Cl∧¬φpw
≡ R1,¬Exp O

1
1

O1
0
G¬Cl∧G¬φpw∼ε2 O1

1

I-BisCd

Splitting the Hash lists In O1
2, we split the lists of the hash functions. For that, we create two private hash

functions H2 and H3 (refer to page 7).
O1

1 and O1
2 are R2-bismilar up to ¬φpw1 (see page 6). We define the equivalence relation R2 between states m

and m′ as follows:
– if m,m′ ∈MO1

1
¬Cl∧¬φpw or m,m′ ∈MO1

2
¬Cl∧¬φpw , mR2m

′ iff m=m′

– if m ∈MO1
1
¬Cl∧¬φpw , m′ ∈MO1

2
¬Cl∧¬φpw , mR2m

′ iff m ·LH0 =m′ · (LH0 ∪LH2)∧m ·LH1 =m′ · (LH1 ∪LH3)

10

We obtain O1
2 :0 Fφpw1 since we consider the independence of the password in the oracles. Then, applying the rule

I-BisCd, we find:

O1
2 :0 Fφpw1 (∧G¬Cl∧G¬φpw) O1

1
¬Cl∧¬φpw
≡ R2,¬φpw1 O

1
2

O1
1
G¬Cl∧G¬φpw∼0 O1

2

I-BisCd

Randomizing the Hash oracles In O1
3, sampling Y modifies the oracles U2 and S2 (refer to page 8).

Auth is defined page 8 and φpw2 page 6. We notice that the event Fφpw2 do not occur since we suppose that
the adversary can not get the password. Using the equality FAuth∨φpw2 = FAuth ∨ (Fφpw2 ∧G¬Auth) = FAuth, we
calculate the value ε3 of the probability that the event FAuth occurs.

We want to establish the indistinguishability between O1
2 and O1

3 up to ¬Auth∧¬φpw2. We exhibit an equivalence
relation R3 between both systems. Indeed, states m and m′ are in relation:

– if m,m′ ∈MO1
2
¬Cl∧¬φpw or m,m′ ∈MO1

3
¬Cl∧¬φpw , mR3m

′ iff m=m′

– if m ∈MO1
2
¬Cl∧¬φpw , m′ ∈MO1

3
¬Cl∧¬φpw , mR3m

′ iff m · (LH0 ∪LH2) =m′ ·LH2 ∧m · (LH1 ∪LH3) =m′ ·LH3

Hence, we apply the rule I-BisCd to result in:

O1
3 :ε3 FAuth∨φpw2 (∧G¬Cl∧G¬φpw) O1

2
¬Cl∧¬φpw
≡ R3,¬Auth∧¬φpw2 O

1
3

O1
2
G¬Cl∧G¬φpw∼ ε3 O

1
3

I-BisCd

In the previous proof, we obtained that O1
3 :ε′6 FAuth(∧G¬Cl). We use classic rule of Logic O :ε A⇒O :ε A∧B such

that A = FAuth(∧G¬Cl) and B =G¬φpw . Therefore, we obtain that O1
3 :ε′6 FAuth(∧G¬Cl∧G¬φpw) where ε3 ≤ ε′6.

4.5 Digest

Using four steps and the rule TrCd, we find O1
0
G¬Cl∧¬φpw∼ ε2+ε3 O

1
3. Similarly, we get O0

0
G¬Cl∧¬φpw∼ ε2+ε3 O

0
3.

To achieve the conclusion, we compare the games O0
3 and O1

3. At present, the adversary can not discern a
random value from a real value for the session key sk. From that, he can not guess what was the bit sampled in the
initialization oracle. Consequently, the latter discussion implies that the two last modified games O0

3 and O1
3 are in

perfect bisimulation, with as a relation R5 the equality on the common components of their states. To conclude, we
use the rule I-BisCd:

O0
3 :0 F¬True(∧G¬Cl∧G¬φpw) O1

3 :0 F¬True(∧G¬Cl∧G¬φpw) O0
3
¬Cl∧¬φpw
≡ R5,True O

1
3

O0
3
G¬Cl∧G¬φpw∼0 O1

3

I-BisCd

We use the rule TrCd to conclude to: O0
0
G¬Cl∧G¬φpw∼ 2ε2+2ε3 O

1
0. Having Ob0 :ε1 Fφpw and using the rule FTr, we get:

O0
0
G¬Cl∼ ε1+2ε2+2ε3 O

1
0. Since Ob0 :ε0 FCl, applying the rule FTr, we obtain: O0

0 ∼ε0+ε1+2ε2+2ε3 O
1
0, where ε0 + ε1 +

2ε2 + 2ε3 = q2
H

2l+1 + q2
E

2(q−1) + Nu+Ns
N + Nu+Ns

q−1 + NsqE
q−1 + 2qH ×ε(1k, t) + 2NsqE

q−1 + 2qH ×ε(1k, t).
General Proof Tree: We illustrate the proof tree on Figure (4). Most of the time, we use the rules I-BisCd and

TrCd under the condition G¬Cl ∧G¬φpw . For convenience, we understand that each event FPredicate is associated
to the event G¬Cl∧G¬φpw and b is the bit randomly sampled in the initialization oracle.

4.6 Conclusion

We gave a manual formal proof of the OEKE protocol, as the first application of the tool CIL. This proof is well
contructed under two parts; The first proof seems complicated to find the probability of one-step predicate but stays
clear. As this proof is similar to the general proof, therefore the latter is concise, precise and easy to understand.
We obtained a new kind of security proof for OEKE based on general and extended logic rules, instead of “writing”
proofs or “rewriting” proof using CryptoVerif.

11

FTr

FTr

TrCd
Tree1

O0
0
G¬Cl∧G¬φpw∼ 2ε2+2ε3+2ε4 O

1
0

Fail
Ob0 :ε1 Fφpw ∧G¬Cl

O0
0
G¬Cl∼ ε1+2ε2+2ε3+2ε4 O

1
0

Fail2
Ob0 :ε0 FCl

O0
0 ∼ε0+ε1+2ε2+2ε3+2ε4 O

1
0

Tree1:

TrCd

TrCd
Tree2

Ob0
G¬Cl∧G¬φpw∼ ε2+ε3+ε4 O

b
3

I-BisCd
Ob3 :0 F¬True O0

3
¬Cl∧¬φpw
≡ R5,True O

1
3

O0
3
G¬Cl∧G¬φpw∼0 O1

3

O0
0
G¬Cl∧G¬φpw∼ 2ε2+2ε3+2ε4 O

1
0

Tree2:

TrCd

TrCd
Tree3

Ob0
G¬Cl∧G¬φpw∼ ε2 O

b
2

I-BisCd
Ob3 :ε3+ε4 FAuth∨φpw2 Ob2

¬Cl∧¬φpw
≡ R3,¬Auth∧¬φpw2 O

b
3

Ob2
G¬Cl∧G¬φpw∼ ε3+ε4 O

b
3

Ob0
G¬Cl∧G¬φpw∼ ε2+ε3+ε4 O

b
3

Tree3:

TrCd

I-BisCd
Ob1 :ε2 FExp Ob0

¬Cl∧¬φpw
≡ R1,¬Exp O

b
1

Ob0
G¬Cl∧G¬φpw∼ ε2 O

b
1

I-BisCd
Ob2 :0 Fφpw Ob1

¬Cl∧¬φpw
≡ R2,¬φpw O

b
2

Ob1
G¬Cl∧G¬φpw∼ 0 O

b
2

Ob0
G¬Cl∧G¬φpw∼ ε2 O

b
2

Fig. 4. Proof Tree for OEKE

Theorem 1. Let us consider the OEKE protocol, where Password is a finite dictionnary of size N equipped with the
uniform distribution. Let A be a (k,t)-adversary against the security of OEKE within a time bound t, with less than
Nu+Ns interactions with the parties and asking qH hash queries and qE Encryption/Decryption queries. Then we
have:

Advoeke(A)≤ Nu+Ns
N

+ Nu+Ns
q−1 +

q2
E

2(q−1) + 3NsqE
q−1 +

q2
H

2l+1 + 4qH ×ε(1k, t)

We stayed careful of putting realistic hypothesis for elements of the proof, as for functions in ROM and ICM. We
obtained the optimal term Nu+Ns

N .
N.B.: In 2003, the autors of the paper [3] recognized that their results of the reductions proof were not optimal.

For technical reasons, they used a collision-resistant hash function H1. After we began our article, in the paper [9],
they proved the security of OEKE using the tool CryptoVerif. The boundary was improved relative to the former
proof since they reached the optimal result Nu+Ns

N . As in these papers, we obtained the optimal term but using a
new kind of analysis under CIL.

Moreover, the logic CIL is sufficiently developed: it can be used easily and efficiently to construct computational
proofs.

References

1. Steven M. BELLOVIN, Michael MERRITT, Encrypted Key Exchange: Password-Based Protocols Secure Against
Dictionnary Attacks. In Proc. IEEE Computer Society Symposium on Research in Security and Privacy, pages
72-84, 1992.

2. Mihir BELLARE, Philip ROGAWAY, The AuthA Protocol for Password-Based Authenticated Key Exchange. Un-
published contribution to IEEE P1363, 2000.

12

3. Emmanuel BRESSON, Olivier CHEVASSUT, David POINTCHEVAL, Security Proofs for an Efficient Password-
Based Key Exchange. In Proceedings of CCS’03, pages 241-250. ACM Press, 2003.

4. Mihir BELLARE, Phillip ROGAWAY, Code-Based Game-Playing Proofs and the Security of Triple Encryption.
In EUROCRYPT 2006, LNCS volume 4004, 2006.

5. Victor SHOUP, Sequences of games: A Tool for Taming Complexity in Security Proofs. manuscript, 2004.
6. Shai HALEVI, A plausible approach to computer-aid cryptographic proofs. manuscript, 2005.
7. Gilles BARTHE, Marion DAUBIGNARD, Bruce KAPRON, Yassine LAKHNECH, Computational Indistinguisha-

bility Logic. In Proceedings of CCS’10, pages 375-386. ACM Press, 2010.
8. Marion DAUBIGNARD, Formal Methods for Concrete Security Proofs. PhD thesis, 2012.
9. Bruno BLANCHET, Automatically Verified Mechanized Proof of One-Encryption Key Exchange. In CSF’12, 2012.

A Oracle systems

A.1 Oracle systems and adversaries

An oracle system is a stateful system that provides oracle access to adversaries.

Definition 1. An oracle system O is given by:
– sets Mo of oracle memories and No of oracles,
– for each o ∈ No, a query domain In(o), an answer domain Out(o) and an implementation Oo : In(o)×Mo →
D(Out(o)×M0),

– a distinguished initial memory m̄o ∈Mo, and distinguished oracles oI for initialization and oF for finalization,
such that In(oI) =Out(oF) = 1. We let Res= In(oF).

Two oracle systems O and O′ are compatible iff they have the same sets of oracle names, and the query and the
answer domains of each oracle name coincide in both oracle systems. When building a compatible oracle system from
another one, it is thus sufficient to provide its set of memories, its initial memory and the implementation of its
oracles.

Adversaries interact with oracle systems by making queries and receiving answers. An exchange for an oracle
system O is a triple (o,q,a) where o ∈ No, q ∈ In(o) and a ∈ Out(o). We let Xch be the set of exchanges. Initial
and final exchanges are defined in the obvious way, by requiring that o is an initialization and finalization oracle
respectively (the sets of these exchanges are denoted by XchI and XchF respectively). The sets Que of queries and
Ans of answers are respectively defined as {(o,q) | (o,q,a) ∈Xch} and {(o,a) | (o,q,a) ∈Xch}.

Definition 2. An adversary A for an oracle system O is given by a set Ma of adversary memories, an initial memory
m̄a ∈Ma and functions for querying and updating A :Ma→D(Que×Ma) and A↓ :Xch×Ma→D(ma).

Informally, the interaction between an oracle system and an adversary proceeds in three successive phases: the
initialization oracle sets the initial memory distributions of the oracle system and of the adversary. Then, A performs
computations, updates its state and submits queries to O. In turn, O performs computations, updates its state, and
replies to A, which updates its state. Finally, A outputs a result by calling the finalization oracle.

A.2 Semantics

Definition 3. A transition system S consists of:
– a (countable non-empty) set M of memories (states) with a distinguished initial memory m̄,
– a set

∑
of actions with distinguished subsets of

∑
I and

∑
F of initialization and finalization actions,

– a (partial) transition function step :M ⇀D(
∑
×M).

A partial execution sequence of S is a sequence of ζ of the formm0
x1−−→m1

x2−−→·· · xk−−→mk such that Pr[step(mk−1) =
(ak,mk)] > 0 for i = 1..k and xi = (oi, qi,ai). If k = 1 then ζ is a step. If m0 = m̄, x1 ∈

∑
I and xk ∈

∑
F then ζ

is an execution sequence of length k. A probabilistic transition system S induces a sub-distribution on executions,
denoted S, such that the probability of a finite execution sequence ζ is Pr[S = ζ] =

∏k
i=1Pr[step(mi−1) = (ai,mi)].

A transition system is of height k ∈ N if all its executions have length at most k: in this case, S is a distribution.

13

Definition 4. Let O be an oracle system and A be an O-adversary. The composition A |O is a transition system such
that M =Ma×Mo, the initial memory is (m̄a, m̄o), the set of actions is

∑
=Xch,

∑
I =XchI and

∑
F =XchF , and

stepA|O(ma,mo) = ((o,q),m′a)←A(ma); (a,m′o)←Oo(q,mo) ;m′′a ←A↓((o,q,a),m′a); return ((o,q,a),(m′′a ,m′o))

An adversary is called k-bounded if A | O is of height k. This means that A calls the finalization oracle after
less than k interactions with O. A |O may be ill-defined for unbounded adversaries, since stepA|O(ma,mo) may be a
sub-distribution. Throughout the paper, we only consider bounded adversaries, i.e. that are k-bounded for some k.

A.3 Events

Security properties abstract away from the state of adversaries and are modeled using traces. Informally, a trace τ is
an execution sequence η from which the adversary memories have been erased.

Definition 5. Let O be an oracle system.
– A partial trace is a sequence τ of the form m0

x1−−→ m1
x2−−→ ·· · xk−−→ mk where m0..mk ∈Mo and x1..xk ∈ Xch

such that Pr[Ooi(qi,mi−1) = (ai,mi)] > 0 for i = 1..k and xi = (oi, qi,ai). A trace is a partial trace τ such that
m0 = m̄o, x1 = (oI , ,) and xk = (oF , ,).

– An O-event E is a predicate over O-traces, whereas an extended O-event E is a predicate over partial O-traces.

The probability of an (extended) event is derived directly from the definition of A | O: since each execution
sequence η induces a trace T (η) simply by erasing the adversary memory at each step, one can define for each trace
τ , the set T −1(τ) of execution sequences that are erased to τ , and for every (generalized) event E, the probability:
Pr[A |O : E] = Pr[A |O : T −1(E)] =

∑
{η∈Exec(A|O)|E(T (η))=True}Pr[A |O : η].

Constructions and proofs in CIL use several common operations on (extended) events and traces. First, one
can define the conjunction, the disjunction, etc, of events. Moreover, one can define for every predicate P over
Xch×Mo×Mo the events ”eventually P” FP and ”always P” GP that correspond to P being satisfied by one step
and all steps of the trace respectively.

Reduction-based arguments require that adversaries can partially simulate behaviors. In some cases, adversaries
must test whether a predicate ϕ ⊆Xch×Mo×Mo holds for given values. Since the adversary has no access to the
oracle memory, we say that ϕ is testable iff for all x,m1,m

′
1,m2,m

′
2, we have ϕ(x,m1,m

′
1) iff ϕ(x,m2,m

′
2) (that is ϕ

depends only on the exchange).
Given two traces τ and τ ′, we write τRτ ′ iff for every i∈ [1,k], we have miRm′i, where: τ =m0

x1−−→m1
x2−−→ ·· · xk−−→

mk and τ ′ =m′0
x1−−→m′1

x2−−→ ·· · xk−−→m′k.
Moreover, we say that two events E and E’ are R-compatible, written ERE’, iff E(τ) is equivalent to E’(τ ′) for

every traces τ and τ ′ such that τRτ ′.

B Computational Indistinguishability Logic

B.1 Statements and Rules

As cryptographic proofs rely on assumptions, CIL manipulates sequents of the form ∆⇒ ω, where ∆ is a set of
statements (the assumptions) and ω is a statement (the conclusion). Validity extends to sequents ∆⇒ ω in the usual
manner. Given a set ∆ of statements, |=∆ iff |= ψ for every ψ ∈∆. Then ∆ |= ω iff |=∆ implies |= ω. For clarity and
brevity, our presentation of CIL omits hypotheses and the standard structural and logical rules for sequent calculi.

Theorem 2. Every sequent ∆⇒ ϕ provable in CIL is also valid, i.e. ∆ |= ϕ.

Judgments CIL considers negligibility statements of the form O :ϕ E, where E is an event. A statement O :ϕ E is
valid, written |=O :ϕ E, iff for every (k,t)-adversary A, Pr(A |O : E)≤ ε(k,t).

We also consider indistinguishability statements of the form O ∼ε O′, where O and O′ are compatible oracle
systems which expect a boolean as result. A statement O ∼ε O′ is valid, written |= O ∼ε O′, iff for every (k,t)-
adversary A,

| Pr[A |O :R= True]−Pr[A |O′ :R= True] |≤ ε(k,t)

14

where R= True is shorthand for Fλ(o,q,a).o=oF∧q=True.
Therefore, we formalize the indistinguishability of distributions yielded by systems under condition, the latter

being written as an event of systems. Let E be an event of O and O′. A statement O E∼ε O′ is valid, written |=O
E∼ε O′,

iff for every (k,t)-adversary A,

| Pr[A |O :R= True∧E]−Pr[A |O′ :R= True∧E] |≤ ε(k,t)

As cryptographic proofs rely on assumptions, CIL manipulates sequents of the form ∆⇒ ω, where ∆ is a set of
statements (the assumptions) and ω is a statement (the conclusion). Validity extends to sequents ∆⇒ ω in the usual
manner. Given a set ∆ of statements, |=∆ iff |= ψ for every ψ ∈∆. Then ∆ |= ω iff |=∆ implies |= ω.

Rules On Figures (5), (6) and (7), we expose rules that support equational reasoning and consequence in Hoare
logic, rules that were extended rules found during the conception of the proofs in this article, and rules that are used
mainly in the proofs in this article. Let O, O′ and O” be compatible oracle systems, E, E1 and E2 be events of O,
O′ and O”, and ϕ, ϕ1 and ϕ2 be step-predicates.

O ∼εi Ei(i ∈ I) E⇒
∨
i∈I

Ei

O :∑
i∈I

εi
E

UR
O :ε Fϕ

Fail
O :ε F¬ϕ O ≡R,ϕ O′

O ∼ε O′
I-Bis

O ≤det,γ O
′ O :ε E◦π

O′ :ε E
B-Det-Left

O :ε E◦C
C[O] :ε′ E

B-Sub
O :ε E1∧Gϕ O ≡R,ϕ O′ E1RE2

O′ :ε E2∧Gϕ
B-BisG

O :ε2 E2 O′ :ε1 F¬ϕ O ≡R,ϕ O′ E1RE2

O′ :ε1+ε2 E1
UpToBad

Fig. 5. Classic rules

O
E2∼ ε1 O

′ E2⇒E1 O :ε2 E1∧¬E2 O′ :ε2 E1∧¬E2

O
E1∼ ε1+ε2 O

′
URCd

O :ε′ Fϕ′
Fail2

O
E1∼ ε1 O

′ O′
E2∼ ε2 O”

O
E1∨E2∼ ε1+ε2 O”

TrCd

Fig. 6. Extended rules

O :ε1 Fϕ1 ∧Gϕ2 O :ε2 F¬ϕ2 O ≡R,ϕ2 O
′

O′ :ε1+ε2 Fϕ1

B-BisG2
O′ :ε F¬ϕ2 ∧Gϕ1 O

ϕ1≡R,ϕ2 O
′

O
Gϕ1∼ ε O

′
I-BisCd

O
E1∧E2∼ ε2 O

′ O :ε1 ¬E1∧E2 O′ :ε1 ¬E1∧E2

O
E2∼ ε1+ε2 O

′
FTr

Fig. 7. Rules used in the proof (extended rules)

More precisely, CIL features a rule to compute an upper-bound on the probability of an event from the number
of oracle calls, and from the probability that a single oracle call triggers that event. Let ϕ be a predicate on Xch×

15

Mo×Mo and define, for every o ∈No, the probability εo as max
q∈Que,m∈Mo,
a∈Ans,m′∈Mo

Pr[Oo(q,m) = (a,m′)∧ϕ((o,q,a),m,m′)].

For every o ∈ No, let ko be the maximal number of queries to o and let ε =
∑
o∈No koεo. CIL features the rule

O :ε Fϕ
Fail

. But sometimes, this upper-bound is not enough convenient for the proof. We introduce another rule
which keeps all the previous oracles calls triggerring the event when considering a single oracle call. CIL features the

rule O :ε′ Fϕ
Fail2

, where ε′ = ε×
(
∑

o∈I
ko)2

2 such that:
– ko is the maximal number of queries of the oracle o and n is the cardinal of the set No
– I is the family of oracles that can ensure that the step-predicate ϕ can be satisfied: o can be an oracle in No \ I

such that εo(ko1 , · · · ,kon) = 0 or an oracle in I such that ∃ε, εo(ko1 , · · · ,kon) = ε×
∑
o′∈I ko′

B.2 Contexts

Informally, a context C is an intermediary between an oracle system O and adversaries. One can compose a O-
context C with O to obtain a new oracle system C[O] and with a C[O]-adversary to obtain a new O-adversary C ‖A.
Moreover, one can show that the systems C ‖ A | O and A | C[O] coincide in a precise mathematical sense. Despite
its seemingly naivety, the relationship captures many reduction arguments used in cryptographic proofs and yields
CIL rules that allow proving many schemes.

The definition of contexts is very similar to that of oracle systems, except that procedures are implemented by
two functions: one that transfers calls from the adversary to the oracles and another one that tranfers answers from
the oracles to the adversary (possibly after some computations).

Definition 6. An O-context C is given by:
– sets Mc of context memories, an initial memory m̄c and Nc of procedures
– for every c∈Nc, a query domain In(c), an answer domain Out(c) and two functions C−→c : In(c)×Mc→D(Que×
Mc) and C←−c : In(c)×Xch×Mc→D(Out(c)×Mc).

– distinguished initialization and finalization procedures cI and cF such that In(cI) = Out(cF) = 1, and for all x
and mc, range(C−→cI (x,mc))(λ((o,),).o= oI) and range(C−→cF (x,mc))(λ((o,),).o= oF). We let Resc = In(cF).

An indistinguishability context is an O-context C such that Resc =Res and C−→cF (r,m) = δ((r,oF),m) for all r and m.

The sets Quec of context queries, Ansc of context answers and Xchc of context exchanges are defined similarly
to oracle systems. An O-context can be composed with the oracle system O or with any O-adversary A, yielding a
new oracle system C[O] or a new adversary C ‖A. We begin by defining the composition of a context and an oracle
system.

Definition 7. The application of an O-context C to O defines an oracle system C[O] such that:
– the set of memories is Mc×Mo and the initial memory is (m̄c, m̄o)
– the oracles are the procedures of C and their query and answer domains are given by C. The initialization and

finalization oracles are the initialization and finalization procedures of C
– the implementation of an oracle c is:
λ(qc,(mc,mo)). ((o,qo),m′c)← C−→c (qc,mc) ; (ao,m′o)←Oo(qo,mo); (ac,m′′c)← C←−c (qc,(o,qo,ao),m′c) ;

return (ac,(m′′c ,m′o))
where ·← · notation is used for monadic composition and ”return” is used for returning the result of the function.

The composition of an adversary with a context is slightly more subtle and requires that the new adversary stores
the current query in its state.

Definition 8. The application of an O-context C to a C[O]-adversary A defines an O-adversary C ‖A such that:
– the set of memories is Mc×Ma×Quec and the initial memory is (m̄c, m̄a,)
– the transition function is:
λ(mc,ma,). ((c,qc),m′a)←A(ma) ; ((o,q),m′c)← C−→c (qc,mc); return ((o,q),(m′c,m′a,(o,q)))

– the update function is:
λ((mc,ma,(oc, qc)),(oo, qo,ao)). (ac,m′c)← C←−c (qc,(oo, qo,ao),mc) ; return (m′c,A↓((oc, qc,ac),ma),)

Context CDH used in the proofs

16

CDH assumption in G

Let G= 〈g〉 be a finite cyclic group of order a l-bit prime number q, where the operation is denoted multiplicatively.
We give an oracle system CDH such that:

– the memories map the variable g to the values in G and the variables α and β to the values [1..(q−1)];
– for one such variable g, the initialization oracle draws uniformly at random values for α and β and outputs

(gα,gβ);
– the finalization oracle takes as input an element of G (in addition to a memory).

Bounding the number of calls of the adversary to the oracles is irrevelant. Let 1k be the function mapping oI and
oF to 1. Given a negligible function ε, the ε−CDH assumption holds for the group G iff for all (1k, t)-adversary, we
have ε−CDH ` oracle CDH :ε(1k,t) R= 1.

Notation: Given g, x← Z∗q and y← Z∗q , let CDH(gx,gy) = gxy.
Formalization of CDH assumption: We define an oracle system CDH to capture the game played by an adver-

sary to find the Diffie-Hellman instance (A,B). We implement this oracle as follows:

ImpCDH(oI)(g) = ImpCDH(oF)(x) =
α0← Z∗q β0← Z∗q ; A := gα0 ; B := gβ0 ; if x= CDH(A,B) then return 1
return (A,B) else return 0

endif

Context of CDH assumption

For this part, we write the game O1
4 as a context C of CDH. We simulate the oracles using the random self-

reducibility of the Diffie-Hellman problem, given one CDH instance (A,B).

C−→cI (x): C←−cI (x,(o,q,(A,B))):
return (oI ,1) pw← Password

LH0 := [] ; LH1 := [] ; LH2 := [] ; LH3 := [] ; LE := [] ; Lpw := [] ; LO := [] ;
LA := [] ; LB := [] ; varX :=⊥ ; varθ :=⊥ ; varϕ :=⊥ ; varsk :=⊥ ;
b := 1
return 1

C−→
E

(pw,x): C←−
E

((pw,x),(o,q,a)):
return (⊥,1) if (pw,x, ,) /∈ LE then y← Ḡ ; LE := LE .(pw,x,y,⊥) endif

return y such that (pw,x,y,) ∈ LE
C−→
D

(pw,y): C←−
D

((pw,y),(o,q,B)):
return (⊥,1) if (pw, ,y,) /∈ LE then φ← Z∗q ; x= gφ ; LE := LE .(pw,x,y,φ) endif

return x such that (pw,x,y,) ∈ LE
C−→
H0

(x): C←−
H0

(x,(o,q,a)):
return (⊥,1) if x /∈ LH0 then y← U(l0) ; LH0 := LH0 .(x,y) endif

return LH0 (x)
C−→
H1

(x): C←−
H1

(x,(o,q,a)):
return (⊥,1) if x /∈ LH1 then y← U(l1) ; LH1 := LH1 .(x,y) endif

return LH1 (x)
C−→
U1

(u,i): C←−
U1

((u,i),(o,q,A)):
return (⊥,1) α← Z∗q ; X =Aα ; varθ[(u,i)] = (α,X); varX [(u,i)] =X ; LA := LA.(α,X)

return (u,X)
C−→
S1

((s,j),(u,X)): C←−
S1

((s,j),(u,X),(o,q,B)):
return (⊥,1) Y ?← Ḡ ; β← Z∗q ; Y =Bβ ; varϕ[(s,j)] = (β,Y,Y ?) ; LB := LB .(β,Y) ; varX [(s,j)] =X

return (s,Y ?)
C−→
U2

((u,i),(s,Y ?)): C←−
U2

((u,i),(s,Y ?),(o,q,a)):
return (⊥,1) if varθ[(u,i)]! =⊥ then Y ← Ḡ ; (,Y,Y ?) = varϕ[(u,i)] ;

(α,X) = varθ[(u,i)] ; Ku = Y α

Auth=H1(u ‖ s ‖X ‖ Y ‖Ku) ; varsk[(u,i)] =H0(u ‖ s ‖X ‖ Y ‖Ku)
endif
return Auth

17

C−→
S2

((s,j),u,Auth): C←−
S2

((s,j),u,Auth,(o,q,B)):
return (⊥,1) if varϕ[(s,j)]! =⊥ then (β,Y,Y ?) = varϕ[(s,j)] ; X = varX [(s,j)] ; Ks =Xβ

H ′ =H1(u ‖ s ‖X ‖ Y ‖Ks)
if H ′ =Auth then varsk[(s,j)] =H0(u ‖ s ‖X ‖ Y ‖Ks) endif

endif
return 1

C−−−→
Exec

((u,i),(s,j)): C←−−−
Exec

((u,i),(s,j),(o,q,(A,B))):
return (⊥,1) α← Z∗q ; X =Aα ; β← Z∗q ; Y =Bβ ; Y ? = E(pw,Y)

Auth=H1(u ‖ s ‖X ‖ Y ‖Ku) ; varsk[(u,i)] =H0(u ‖ s ‖X ‖ Y ‖Ku)
return ((u,X),(s,Y ?),Auth)

C−−−−→
Reveal

(p,k): C←−−−−
Reveal

((p,k),(o,q,a)):
return (⊥,1) if varsk[(p,k)]! =⊥ then sk := varsk[(p,k)] endif

return sk

C−−−→
Test1

(p,k): C←−−−
Test1

((p,k),(o,q,a)):
return (⊥,1) if varsk[(p,k)]! =⊥ then sk := varsk[(p,k)] endif

return sk

C−→cF (x):
u ‖ s ‖X ‖ Y ‖K← LH1

if X = (A,α)∧Y = (B,β) then oF (Kα−1β−1
) endif

return 1

B.3 Bisimulation

Game-based proofs often proceed by transforming an oracle system into an equivalent one, or in case of imperfect
simulation into a system that is equivalent up to some bad event. We reason in terms of probabilistic transition
systems, using a mild extension of the standard notion of bisimulation. More specifically, we define the notion of
bisimulation-up-to, where two probabilistic transition systems are bisimilar until the failure of a condition on their
transitions. The definition of bisimulation is recovered by considering bisimulation-up-to the constant predicate True.

Let O and O′ be two compatible oracle systems. For every oracle name, we let M̂ be Mo +M ′o and for every
o ∈No, we let Ôo be the disjoint sum of Oo and O′o, i.e. Ôo : In(o)×M̂ →D(Out(o)×M̂). We write m

(x,y)
−−−→>0 m

′

iff Pr[Ôo(q,mi) = (a,m′i)]> 0.

Definition 9. Let ϕ ⊆Xch× M̂ × M̂ and let R⊆ M̂ × M̂ be an equivalence relation. O and O′ are bisimilar-up-to
ϕ, written O ≡R,ϕ O′, iff m̄Rm̄′, and for all m1

(o,q,a)
−−−−→>0 m

′
1 and m2

(o,q,a)
−−−−→>0 m

′
2 such that m1Rm2:

– Stability: if m′1Rm′2 then ϕ((o,q,a),m1,m
′
1)⇔ ϕ((o,q,a),m2,m

′
2);

– Compatibility: if ϕ((o,q,a),m1,m
′
1) then Pr[Ôo(q,m1) ∈ (a,C)] = Pr[Ôo(q,m2) ∈ (a,C)] where C is the equiva-

lence class of m′1 under R.

Bisimulations are closely related to obversational equivalence and relational Hoare logic, and allow to justify proofs
by simulations. Besides, bisimulations-up-to subsume the Fundamental Lemma of Victor Shoup. Then, we introduce
an extension of this concept, taking account of a particular equivalence relation included in a more restricted set of
memories.

Definition 10. Let ϕ′ ⊆ M̂ and let M̂ϕ′ = {m ∈ M̂ | ϕ′(m)}. Let ϕ ⊆Xch× M̂ × M̂ and let R⊆ M̂ϕ′ × M̂ϕ′ be an
equivalence relation.

O and O′ are bisimilar-up-to ϕ, written O
ϕ′

≡R,ϕ O′, iff for all m̄,m̄′,m1,m2,m
′
1,m

′
2 in M̂ϕ′ such that m̄Rm̄′,

and for m1
(o,q,a)
−−−−→>0 m

′
1 and m2

(o,q,a)
−−−−→>0 m

′
2 such that m1Rm2:

– Stability: if m′1Rm′2 then ϕ((o,q,a),m1,m
′
1)⇔ ϕ((o,q,a),m2,m

′
2);

– Compatibility: if ϕ((o,q,a),m1,m
′
1) then Pr[Ôo(q,m1) ∈ (a,C)] = Pr[Ôo(q,m2) ∈ (a,C)] where C is the equiva-

lence class of m′1 under R.

18

B.4 Determinization

Bisimulation is stronger than language equivalence, and can not always be used to hope from one game to another.
In particular, bisimulation can not be used for eager/lazy sampling, or for extending the internal state of the oracle
system. The goal of this section is to introduce a general construction, inspired from the subset construction for
determinizing automata, to justify such transitions. We consider two oracles systems O and O′ and assume that
states m′ ∈Mo′ can be seen as pairs (m,m”) ∈Mo×Mo”. There are two ways to compute the probability to end
up (m,m”) for a fixed m” knowing that the step starts with a state of first component m. The first is to perform
the exchange in O and then draw m” according to a distribution γ. The second is to look at all possible m” which
γ map to m and then to perform the exchange in O′. Imposing the equality between these two ways of computing
probabilities is going to compel the same equality to hold for steps, which in turn propagates to traces.

Definition 11. Let O and O′ be compatible oracle systems. O determinizes O′ by γ :Mo→D(Mo), written O≤det,γ
O′, iff Mo×Mo” =M ′o and there exists m̄o” such that (m̄o, m̄o”) = m̄′o, and γ(m̄o) = δm̄o”, and Pr[γ(m2 =m2”]p1 =∑
m1”∈Mo”Pr[γ(m1 = m1”]p2(m1”) for all m1,m2 ∈Mo, m1”,m2” ∈Mo”, where p1 = Pr[O(oc, q,m1) = (a,m2)]

and p2(m1”) = Pr[O′(oc, q,(m1,m1”)) = (a,(m2,m2”))].

We define a projection function π from O′-traces to O-traces by extending the projection from Mo×Mo” to Mo.

C Proofs for extended rules

C.1 Proof of the rule Fail2

Lemma 1. Rule Fail2 defined as follows is sound: O :ε′ Fϕ
Fail2

where ε′ = ε×
(
∑

o∈I
ko)2

2 and

– ko is the maximal number of queries of the oracle o and n is the cardinal of the set No
– I is the family of oracles that can ensure that the step-predicate ϕ can be satisfied: o can be an oracle in No \ I

such that εo(ko1 , · · · ,kon) = 0 or an oracle in I such that ∃ε, εo(ko1 , · · · ,kon) = ε×
∑
o′∈I ko′

Proof Let A be a (k,t)-adversary for oracle system O. Let ϕ be a step-predicate in Xch×M̂×M̂ . We denote by T
the set of traces satisfying Fϕ. We recall that the event ”eventually ϕ”, written Fϕ, means ϕ being satisfied at
one step of a trace. Let I be the family of oracles o that can ensure that the step-predicate ϕ can be satisfied,
I ⊆ No. We define n as the cardinal of the set No and for one oracle o ∈ No, ko is the maximal number of its
queries.
Let the trace τ in T be the sequence of the form m0

x1−−→m1
x2−−→ ·· · xl−→ml where m0, · · · ,ml ∈Mo and x1, · · · ,xl ∈

Xch such that Pr[Ooi(qi,mi−1) = (ai,mi)]> 0 for i= 1, · · · , l and xi = (oi, qi,ai). Therefore, there exists one mi0
such that ϕ becomes satisfied, where i0 ∈ [1, · · · , l].
We write two hypothesis:

– let o be an oracle in No \ I such that εo(ko1 , · · · ,kon) = 0
– let o be an oracle in I such that ∃ε, εo(ko1 , · · · ,kon) = max

{τ∈T |ko queries}
Pr[Oo(q,ml−1) = (a,ml)] = ε×∑

o′∈I ko′ s.t. we denote ε as the maximal number common to all oracles in I

First, we divide traces of set T in subgroups using equivalence relation. Two traces are related iff ϕ is true for
the first time at step i for a query to oracle o. Classes are denoted C(i,o,j), where j =

∑
o′∈I ko′ is the number

of good queries (i.e. the queries to oracles in I), and realize a partition of T .
Second, we let T be the projection mapping sequences of steps to partial traces (see for more details Section 2.4).
Then, by definition, the probability that a system yields a trace τ is the sum of the probabilities that the system
yields execution η projecting to τ , which we write Pr[A |O : τ] =

∑
{η∈Exec(A|O)|T (η)=τ}Pr[A |O : η].

Let τ ∈ C(i,o,j). We define Pref(η, i) as the prefix of length i of partial execution η, and η[i] its i-th step. Then,
we have:

19

∑
τ∈C(i,o,j)

Pr[A |O : τ] =
∑

{τ∈C(i,o,j)|T (η)=τ}

Pr[A |O : η]≤
∑

{τ∈C(i,o,j)|T (η)=τ}

Pr[A |O : Pref(η, i)]

=
∑

{τ∈C(i,o,j)|T (η)=τ}

Pr[A |O : Pref(η, i−1)].P r[A |O : η[i]]

=
∑

{τ∈C(i,o,j)|T (η)=τ |T (η[i])=((o,q,a),m,m′)}

Pr[A |O : Pref(η, i−1)].P r[Oo(q,m) = (a,m′)]

either
≤

∑
{τ∈C(i,o,j)|T (η)=τ |T (η[i])=((o,q,a),m,m′)}

Pr[A |O : Pref(η, i−1)]× j.ε≤ j.ε if o ∈ I

or
≤

∑
{τ∈C(i,o,j)|T (η)=τ |T (η[i])=((o,q,a),m,m′)}

Pr[A |O : Pref(η, i−1)]×0 = 0 if o /∈ I

Then, we use the fact that equivalence class forms a partition to conclude:

Pr[A |O : Fϕ] =
∑
τ∈T

Pr[A |O : τ]
∑
i,o,j

∑
τ∈C(i,o,j)

Pr[A |O : τ]≤
∑
o∈I,j

j.ε=
∑
o∈I

(∑
o′∈I

ko′

)
.ε≤ ε×

(
∑
o∈I ko)

2

2

C.2 Proof of the rule I-BisCd
Lemma 2. We consider two compatible oracle systems O and O′. Let ϕ1 and ϕ2 be two step-predicates in M̂ and
Xch×M̂ ×M̂ respectively. The following rule is sound:

O′ :ε F¬ϕ2 ∧Gϕ1 O
ϕ1≡R,ϕ2 O

′

O
Gϕ1∼ ε O

′
I-BisCd

Proof We introduce the equivalence relation R such that for two states m and m′ in M̂ϕ1 , we have mRm′ and
ϕ1(m)∧ϕ1(m′), where the step-predicate ϕ1 is in M̂ (i.e. ϕ1 steps in over the memories but not over the
actions in Xch). We recall that R = True∧Gϕ1 ∧Gϕ2 is a compatible event. We decompose the set of traces
created by A | O and A | O′ and verifying Gϕ1 ∧Gϕ2 into distinct classes of equivalence of a finite number of
executions σ1, · · · ,σm, resulting in Pr[A | O : R = True∧Gϕ1 ∧Gϕ2] =

∑m
i=1Pr[A | O : CO(σi)] =

∑m
i=1Pr[A |

O′ : CO′(σi)] = Pr[A |O′ :R= True∧Gϕ1 ∧Gϕ2]. Then, we conclude the rule I-BisCd since:

Pr[A |O :R= True∧Gϕ1]−Pr[A |O′ :R= True∧Gϕ1]
= Pr[A |O :R= True∧Gϕ1 ∧F¬ϕ2]−Pr[A |O′ :R= True∧Gϕ1 ∧F¬ϕ2]
≤max(Pr[A |O :R= True∧Gϕ1 ∧F¬ϕ2],P r[A |O′ :R= True∧Gϕ1 ∧F¬ϕ2])

C.3 Proof of the rule B-BisG2
Lemma 3. We consider two compatible oracle systems O and O′. Let ϕ1 and ϕ2 be two step-predicates in Xch×
M̂ ×M̂ . The following rule is sound:

O :ε1 Fϕ1 ∧Gϕ2 O :ε2 F¬ϕ2 O ≡R,ϕ2 O
′

O′ :ε1+ε2 Fϕ1

B-BisG2

Proof Let ϕ1 and ϕ2 be step-predicates in Xch× M̂ × M̂ . The rule B-BisG2 is obtained from the combination of
the rule B-BisG and a variation of this latter rule:

O :ε1 Fϕ1 ∧Gϕ2 O ≡R,ϕ2 O
′

O′ :ε1 Fϕ1 ∧Gϕ2

B-BisG
O :ε2 True∧F¬ϕ2 O ≡R,ϕ2 O

′

O′ :ε2 True∧F¬ϕ2

B-BisG-variation

We are allowed to conclude since O′ :ε1 Fϕ1 ∧Gϕ2 and O′ :ε2 F¬ϕ2 .

20

	University of Wollongong
	Research Online
	2013

	CIL security proof for a password-based key exchange
	Cristian Ene
	Clementine Gritti
	Yassine Lakhnech
	Publication Details

	CIL security proof for a password-based key exchange
	Abstract
	Keywords
	Disciplines
	Publication Details

	tmp.1392786571.pdf.PjSX0

