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ABSTRACT
In [4], the authors look at probabilistic bounds and solutions
for the exploration of anonymous unoriented rings of any size
by a cohort of robots. Considering identical, oblivious, and
probabilistic robots, they show that at least four of them are
necessary to solve the problem. Moreover, they give a ran-
domized protocol for four robots working in any ring of size
more than eight.

Here we close the question of optimal (w.r.t. the cohort size)
ring exploration by probabilistic robots. Indeed, we propose a
protocol for four robots working in any ring of size less or
equal to eight. Composing this protocol with the one in [4],
we obtain a protocol for any ring-size.
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1. INTRODUCTION
We consider autonomous robots that are endowed with vis-

ibility sensors (but that are otherwise unable to communicate)
and motion actuators. However, we assume they have weak
capacities: they are anonymous, oblivious (that is, they cannot
remember the past), and have no compass whatsoever.

Those robots must collaborate to solve a collective task,
here exploration. In our context, the exploration task requires
every possible location to be visited by at least one robot, with
the additional constraint that all robots stop moving after task
completion.

The vast majority of literature on robots considers that they
evolve in a continuous two-dimentional Euclidian space and
use visual sensors with perfect accuracy that permit to locate
other robots with infinite precision, e.g., [2, 11].

Several works investigate restricting the capabilities of both
visibility sensors and motion actuators of the robots In [1, 8],
robots visibility sensors are supposed to be accurate within a
constant range, and sense nothing beyond this range. In [8,
3], the space allowed for the motion actuator is reduced to a
one-dimentional continuous one: a ring in [8], an infinite path
in [3].

A recent trend is to shift from the classical continuous model
to the discrete model. In the discrete model, space is parti-
tioned into a finite number of locations. This setting is repre-
sented by a graph, where nodes represent locations that can be
sensed, and where edges represent the possibility for a robot to
move from one location to the other. Thus, the discrete model
restricts both sensing and actuating capabilities of robots. For
each location, a robot is able to sense if the location is empty
or if robots are positioned on it. Also, a robot is not able to
move from a position to another unless there is explicit indica-
tion to do so (i.e., the two locations are connected by an edge
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in the representing graph). The discrete model permits to sim-
plify many robot protocols by reasoning on finite structures
rather than on infinite ones. However, as noted in most related
papers [10, 9, 6, 7], this simplicity comes with the cost of
extra symmetry possibilities, especially when the authorized
paths are also symmetric (indeed, techniques to break forma-
tion such as those of [5] cannot be used in the discrete model).

Assuming visibility capabilities, the two main problems that
have been studied in the discrete robot model are gathering [10,
9] and exploration [6, 7]. For gathering, both breaking symme-
try [10] and preserving symmetry are meaningful approaches.
For exploration, the fact that robots need to stop after explor-
ing all locations requires robots to “remember” how much of
the graph was explored, i.e., be able to distinguish between
various stages of the exploration process since robots have
no persistent memory. As configurations can be distinguished
only by robot positions, the main complexity measure is then
the number of robots that are needed to explore a given graph.
The vast number of symmetric situations induces a large num-
ber of required robots. For tree networks, [7] shows that Ω(n)
robots are necessary for most n-sized tree, and that sublin-
ear robot complexity (actually Θ(logn/ log log n)) is possible
only if the maximum degree of the tree is 3. In uniform rings,
[6] proves that the necessary and sufficient number of robots
is Θ(logn), although it proposes an algorithm that works with
an additional assumption: the number k of robots and the size
n of the ring are coprime. Note that all previous approaches in
the discrete model are deterministic, i.e., if a robot is presented
twice the same situation, its behavior is the same in both cases.

In [4], the authors initiate research on probabilistic bounds
and solutions for the exploration of anonymous unoriented
rings of any size. By contrast with [6] while similar settings,
they show that four identical probabilistic robots are necessary
to solve the same problem, also removing the coprime con-
straint between the number of robots and the size of the ring.
In the same paper, they present a randomized protocol for four
robots in any ring of size more than eight.

In this paper, after formally defining the model we use (Sec-
tion 2), we close the question of optimal (w.r.t. the cohort
size) ring exploration by probabilistic robots. Indeed, we pro-
pose (in Section 3) a protocol for four robots working in any
ring of size less or equal to eight. Composing this protocol
with the one of [4], we obtain a protocol for any ring-size.
In the last section (Section 4), we gives some concluding re-
marks. Note that, for space consideration, several technical
proofs have been omitted.

2. MODEL



Distributed System.
Autonomous mobile entities called robots evolve in a graph.

We assume the graph to be a ring of n nodes, u0,. . . , un−1,
i.e., ui is connected to both ui−1 and ui+1 (computations over
indices are assumed to be modulus n). The indices are used for
notation purposes only: the nodes are anonymous and the ring
is unoriented, i.e., given two neighboring nodes u, v, there is
no kind of explicit or implicit labelling allowing to determine
whether u is on the right or on the left of v. Operating in the
ring are k ≤ n anonymous robots.

A protocol is a collection of k programs, one operated by
each robots. The program of a robot consists in executing
Look-Compute-Move cycles infinitely many times. That is, the
robot first observes its environment (Look phase). Based on
its observation, it then (probabilistically or deterministically)
decides to move or stay idle (Compute phase). When a robot
decides a move, it moves to its destination during the Move
phase.

Robots do not communicate in an explicit way; however
they see the position of the other robots and can acquire knowl-
edge from this information. Robots are oblivious, i.e., they
cannot remember any previous observation nor computation
performed in any previous step. The robots are also uniform
and anonymous, i.e., they all have the same program using no
local parameter allowing to differentiate them.

Computations.
We consider a semi-synchronous model where time is repre-

sented by an infinite sequence of instants 0, 1, 2, . . . At every
instant t ≥ 0, a non-empty subset of robots is activated to
execute a cycle. The execution of each cycle is assumed to
be atomic: Every robot that is activated at instant t instanta-
neously executes a full cycle between t and t + 1. Atomicity
guarantees that at any instant robots are on some nodes of the
ring but not on edges. That is, during a Look phase, a robot
cannot see another robot on edges.

We assume that during the Look phase, every robot can per-
ceive whether several robots are located on the same node or
not. This ability is called Multiplicity Detection. Let di(t) be
the state of a node ui at instant t defined as follows: given
a time instant t, di(t) is equal to either ◦, ⊥, or > accord-
ing to ui contains no, one or several robots, respectively. If
di(t) = ◦, then we say that ui is free at instant t. Other-
wise (di(t) ∈ {⊥,>}), ui is said occupied at instant t. If
di(t) = >, then we say that ui is overcrowded at instant t.

For an arbitrary orientation of the ring and a node ui, γ+i(t)
(respectively, γ−i(t)) denotes the sequence 〈di(t)di+1(t) . . .
di+n−1(t)〉 (resp., 〈di(t)di−1(t) . . . di−(n−1)(t)〉). The se-
quence γ−i(t) is called mirror of γ+i(t) and conversely. Since
the ring is unoriented, agreement on only one of the two se-
quences γ+i(t) and γ−i(t)) is impossible. The (unordered)
pair {γ+i(t), γ−i(t)} is called the view of node ui at instant t.
The view of ui is said to be symmetric if and only if γ+i(t) =
γ−i(t), asymmetric, otherwise.

By convention, we state that the configuration of the sys-
tem at instant t is γ+0(t). Any configuration from which
there is a probability 0 that a robot moves is said to be ter-
minal. Let γ = 〈x0x1 . . . xn−1〉 be a configuration. The
configuration 〈xixi+1 . . . xi+n−1〉 is obtained by rotating γ
of i ∈ [0 . . . n−1]. Two configurations γ and γ′ are said to be
indistinguishable if and only if γ′ can be obtained by rotating
γ or its mirror. Two configurations that are not indistinguish-
able are said to be distinguishable. We designate by initial
configurations the configurations from which the system can

start at instant 0.
During the Look phase, it may happen that both edges inci-

dent to a node v currently occupied by the robot look identical
in the snapshot, i.e., v lies on a symmetric axis of the con-
figuration. In this case, if the robot decides to move, it may
traverse any of the two edges. We assume the worst case de-
cision in such cases, i.e., that the decision to traverse one of
these two edges is taken by an adversary.

We call computation any infinite sequence of configurations
γ0, . . . , γt, γt+1, . . . such that (1) γ0 is a possible initial con-
figuration and (2) for every instant t ≥ 0, γt+1 is obtained
from γt after some robots (at least one) execute a cycle. Any
transition γt, γt+1 is called a step. A computation c terminates
if c contains a terminal configuration.

A scheduler is a predicate on computations which defines
the set of admissible computations. Here we assume a dis-
tributed fair scheduler. Distributed means that, at every in-
stant, any non-empty subset of robots can be activated. Fair
means that every robot is activated infinitively often during a
computation.

Problem to be solved.
We consider the exploration problem, where k robots col-

lectively explore a n-sized ring before stopping moving for-
ever. More formally, a protocol P deterministically (resp.
probabilistically) solves the exploration problem if and only
if every computation c of P starting from a configuration with
no overcrowded node satisfies: (1) c terminates in finite time
(resp. with expected finite time); (2) every node is visited by at
least one robot during c.

Note that the previous definition implies that every initial
configuration of the system in the problem we consider con-
tains no overcrowded node. Note also that using probabilistic
solutions, termination is not certain, however the overall prob-
ability of non-terminating computations is 0.

3. EXPLORATION PROTOCOL
In this section, we propose a probabilistic protocol for k = 4

robots in a ring of n nodes with 4 < n ≤ 8.
3.1 Definitions

We now give definitions to characterize the configurations.
We call segment any maximal non-empty elementary path

of occupied nodes. The length of a segment is the number
of nodes that compose it. We call x-segment any segment of
length x. In the segment s = ui, . . . , uk (k ≥ i) the nodes ui

and uk are termed as the extremities of s. An isolated node is
a node belonging to a 1-segment.

We call hole any maximal non-empty elementary path of
free nodes. The length of a hole is the number of nodes that
compose it. We call x-hole any hole of length x. In the hole
h = ui, . . . , uk (k ≥ i) the nodes ui and uk are termed as
the extremities of h. We call neighbor of an hole any node that
does not belong to the hole but is neighbor of one of its extrem-
ities. In this case, we also say that the hole is a neighboring
hole of the node. By extension, any robot that is located at a
neighboring node of a hole is also referred to as a neighbor of
the hole.

We call arrow a maximal elementary path ui, . . . , uk of
length at least four such that (i) ui and uk are occupied by
one robot, (ii) ∀j ∈ [i + 1 . . . k − 2], uj is free, and (iii)
uk−1 is overcrowded, the latter meaning occupied by at least
two robots. The node ui is called the arrow tail and the node
uk is called the arrow head. The size of an arrow is the num-
ber of free nodes that compose it, i.e., it is the length of the
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Figure 1: Arrows.

arrow path minus 3. Note that the minimal size of an arrow is
1 and the maximal size is n − 3. Note also that when there is
an arrow in a configuration, the arrow is unique. An arrow is
said to be primary if its size is 1. An arrow is said to be final
if its size is n− 3.

Figure 1 illustrates the notion of arrows: In Configuration
(i) the arrow is formed by the path u4, u5, u0, u1; the arrow
is primary; the node u4 is the tail and the node u1 is the head.
In Configuration (ii), there is a final arrow (the path u2, u3,
u4, u5, u0, u1). Finally, the size of the arrow in Configuration
(iii) (the path u3, u4, u5, u0, u1) is 2.

3.2 Overview
Our protocol is presented in Algorithm 1. Except for two

special cases, it works in three main steps:
1. From an initial (with no overcrowded node) configura-

tion, the robots move along the ring in such a way that
(i) they never form an arrow and (2) they form a unique
(4-)segment in finite expected time. (Lines 2-6;20-32)

2. From a configuration with a unique segment, the four
robots form a primary arrow in finite expected time.
The 4-segment is maintained until the primary arrow is
formed. (Lines 8-12)

3. From a configuration where the four robots form a pri-
mary arrow, the arrow tail deterministically moves to-
ward the arrow head in such way that the length of the
arrow never decreases. The protocol terminates when
robots form a final arrow. At the termination, all nodes
have been visited. (Lines 14-18)

Note that the protocol is probabilistic. As a matter of fact, as
long as possible the robots move deterministically. Random-
ization is used to break the symmetry in some cases: When
the system is in a symmetric configuration, the scheduler may
choose to synchronously activate some robots in such a way
that the system stays in a symmetric configuration. To break
the symmetry despite the choice of the scheduler, the robots
proceed as follows: The activated robots decide either to move
or to stay idle (with a uniform probability) during their Com-
pute phase. We say that the robots try to move. Conversely,
when a robot deterministically decides to move in its Compute
phase, we simply say that the robot moves.

3.3 Detailed Description
We first give some results holding for all rings of size 5 to

8 (Subsection 3.4) and then study the behavior of the protocol

for each specific ring-size (Subsection 3.5 to 3.8). Finally, we
conclude (Subsection 3.9).

3.4 Some Results
Let us first consider the case where there is no symme-

try in the initial configuration: Assume a configuration where
there is either (1) one 3-segment or (2) a unique 2-segment.
Lines 2 to 6 in Algorithm 1 manage these two cases. In the
first case, there is one isolated robot and it deterministically
moves through its smallest neighboring hole until a 4-segment
is formed.1 In the second case, there are two isolated robots:
the isolated robots (deterministically) moves through their neigh-
boring hole having an extremity of the 2-segment as neighbor.
Hence, eventually a 4-segment is formed, leading to the fol-
lowing lemma:

LEMMA 1. Starting from any initial (with no overcrowded
node) configuration containing either a 3-segment or a unique
2-segment, the system reaches in finite time a configuration
containing a 4-segment without creating any overcrowded node
during the process.

Consider now a configuration (initial or not) containing a 4-
segment on nodes ui, ui+1, ui+2, ui+3. In this case, Lines 8-
12 in Algorithm 1 are executed. LetR1 andR2 be the robots
located at the nodes ui+1 and ui+2 of the 4-segment. R1 and
R2 try to move to ui+2 and ui+1, respectively. Eventually
only one of these robots moves and a primary arrow is formed
on nodes ui, ui+1, ui+2, ui+3, and we obtain the two lemmas
below:

LEMMA 2. Let γ be a configuration containing a 4-seg-
ment ui, ui+1, ui+2, ui+3. If γ is the configuration at instant
t, then the configuration at instant t + 1 is either identical to
γ or the configuration containing the primary arrow ui, ui+1,
ui+2, ui+3.

LEMMA 3. From a configuration containing a 4-segment,
the system reaches a configuration containing a primary arrow
in finite expected time.

Once the system reaches a configuration containing a pri-
mary arrow, robots executes Lines 14-18 in Algorithm 1. From
such a configuration, the protocol is fully deterministic: LetH
be the hole between the tail and the head of the primary arrow.
We know that all nodes forming the primary arrow are already
visited. So, the unvisited nodes can only be on H and the
process just consists in traversing H. To that goal, the robot
located at the arrow tail traversesH. When it is done, the sys-
tem is in a terminal configuration containing a final arrow and
all nodes have been visited. Hence, we can conclude with the
following lemma:

LEMMA 4. From any configuration containing a 4-segment,
the system reaches a terminal configuration containing a final
arrow in finite expected time and when it is done, all nodes
have been visited.

3.5 Size 5
Any initial configuration of a ring of size 5 contains a 4-seg-

ment. So, by Lemma 4, we can conclude:
1Note that the first time a robot moves, its two neighboring
holes may have the same length and the adversary decides
which edge to traverse.



Algorithm 1 The protocol.
1: if the four robots do not form a final arrow and

the configuration is distinguishable from Configurations (b) and (d) in Figure 2 then
2: if the largest segment has a size strictly less than four and is unique then
3: begin
4: if I am an isolated robot then
5: Move toward the unique largest segment by the smallest hole having me and an extremity of the segment as neighbors;
6: end
7: else
8: if the configuration contains a 4-segment then
9: begin
10: if I am not located at 4-segment extremity then
11: Try to move toward my neighboring node that is not an extremity of the 4-segment;
12: end
13: else
14: if the configuration contains an arrow then
15: begin
16: if I am the arrow tail then
17: Move toward the arrow head through the hole having me and the arrow head as neighbor;
18: end
19: else
20: if the ring-size is 6 then
21: See Figure 2, Configuration (a);
22: else
23: if the ring-size is 7 then /∗ there are two 2-segments ∗/
24: begin
25: if I am neighbor of the largest hole then
26: Move through my neighboring hole;
27: end
28: else /∗ the ring-size is 8 ∗/
29: if there are two 2-segments then
30: See Figure 4, Configurations (a) and (e);
31: else /∗ there are four isolated robots ∗/
32: See Figure 5, Configuration (a);
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Figure 2: Symmetry breaking in a 6-size ring.

THEOREM 1. Algorithm 1 is a probabilistic exploration
protocol for 4 robots in a ring of 5 nodes.

any initial configuration in rings of size 6 to 8 matches one
of the following cases: (1) the configuration contains a 4-seg-
ment; (2) the configuration contains a 3-segment and one iso-
lated node; (3) the configuration contains a 2-segment and two
isolated nodes; (4) the configuration contains two 2-segments;
(5) the configuration contains four isolated nodes.

In the three first cases, Lines 2-18 in Algorithm 1 are ex-
ecuted and the correctness is obtained by Lemmas 1 and 4.
Finally, note that case (4) is possible for size 6,7, and 8 while
case (5) is only possible in a ring of size 8.

3.6 Size 6
Consider a configuration containing two 2-segments in a

ring of size 6. This configuration is indistinguishable with
Configuration (a) in Figure 2. (In the figure, the symbols ◦,
⊥, or > into a node means that the node contains no, one or
several robots, respectively.) In Configuration (a), any robot
tries to move toward its neighboring hole (dashed arrow). So,
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Figure 3: Symmetry breaking in a 7-size ring.

either the system stayes in the same configuration or the sys-
tem reaches Configuration (b), (c), (d), or (e). However, after a
finite expected number of attempts we have the guarantee that
the system leaves Configuration (a) to Configuration (b), (c),
(d), or (e). In Configuration (e) we retrieve a previous case, the
robots executes Lines 2-18 in Algorithm 1. In case (b) and (d),
we have the guarantee that all nodes are visited and as configu-
ration (b) and (d) cannot be obtained anywhere else, there is no
ambiguity and the process can stop. In Configuration (c), the
two isolated nodes move as shown by the bold arrow and the
system reaches either Configuration (b) or Configuration (d).
Once again, we have the guarantee that all nodes are visited
and as configuration (b) and (d) cannot be obtained anywhere
else, there is no ambiguity and the process can stop. So, we
can conclude with the following theorem:

THEOREM 2. Algorithm 1 is a probabilistic exploration
protocol for 4 robots in a ring of 6 nodes.

3.7 Size 7
Any configuration that contains two 2-segments in a ring of

size 7 is indistinguishable with Configuration (a) in Figure 3.
In this case, robots executes Lines 23-27 in Algorithm 1 and
the system reaches a configuration indistinguishable with con-



4.(a) 7→ 4.(d)
4.(b) = 5.(a) 7→ 5.(c)
4.(c)
4.(d)
4.(e) 7→ 4.(g)
4.(f) = 5.(a) 7→ 5.(c)
4.(g)
5.(a) 7→ 5.(c)
5.(b) 7→ 5.(c)
5.(c)
5.(d) 7→ 5.(c)
5.(e) 7→ 5.(f) 7→ 5.(i) = 4.(a) 7→ 4.(d)
5.(f) 7→ 5.(i) = 4.(a) 7→ 4.(d)
5.(g) 7→ 5.(p) = 4.(e) 7→ 4.(g)
5.(h) 7→ 5.(f) 7→ 5.(i) = 4.(a) 7→ 4.(d)
5.(i) = 4.(a) 7→ 4.(d)
5.(j) 7→ 5.(g) 7→ 5.(p) = 4.(e) 7→ 4.(g)
5.(k) 7→ 5.(l)
5.(l)
5.(m) 7→ 5.(k) 7→ 5.(l)
5.(n)
5.(o)
5.(p) = 4.(e) 7→ 4.(g)

Table 1: Probabilistic Convergence.

figuration (b) in Figure 3, i.e., the configuration contains one
2-segment and two isolated nodes. From that point, robots ex-
ecute Lines 2-18 in Algorithm 1 and by Lemmas 1 and 4, we
have:

THEOREM 3. Algorithm 1 is a probabilistic exploration
protocol for 4 robots in a ring of 7 nodes.

3.8 Size 8
In this case, it remains to show that the protocol correctly

operates when the initial configuration contains either two 2-
segments or four isolated nodes. Figures 4 and 5 describe
the behavior of our protocol starting from a configuration that
contains two 2-segments and four isolated nodes, respectively.
These figures can be seen as an automaton:

- Configurations are the states of the automaton.
- Bold arrows between configurations represent possible

transitions. (The transition γ 7→ γ′ means that any con-
figuration indistinguishable with γ′ can be reached from
any configuration indistinguishable with γ.)

- Configurations (a), (e) in Figure 4, and Configuration (a)
in Figure 5 are initial states of the automaton. Any con-
figuration that contains either two 2-segments or four
isolated nodes in a ring of size 8 is indistinguishable
with one of those configurations.

- Below any configuration having no outgoing transition,
we explain what robots have to do.

In any configuration, we show how robots must behave us-
ing arrows: dashed arrows represents Try to move actions.
When there are two possible directions for a robot, this means
that if the robot is activated, the edge it will traverse is chosen
by the adversary.

First, we can observe that there is no ambiguity between
the process described in Figures 4 and 5 and the rest of the
protocol.

We can then remark that starting from Configurations (a),
(e) in Figure 4, or Configuration (a) in Figure 5, the system
leaves configurations of Figures 4 and 5 only when the system
reaches a configuration containing either a 3-segment and one
isolated node or a 2-segment and two isolated nodes: Config-
urations (c), (d), and (g) in Figure 4 as well as Configurations
(c), (l), (n), (o) in Figure 5. Let Cgood the set of all these con-
figurations.

From any configurations in Cgood, robots execute Lines 2-
18 in Algorithm 1 and by Lemmas 1 and 4, the exploration is
achieved a finite expected time.

Consider now a configuration γ in Figures 4 or 5 that is not
in Cgood. In any configuration γ, there is at least one robot
that executes a Try to move if activated and every robot ei-
ther stays idle or executes Try to move if activated. So, in any
configuration, there is a strictly positive probability that only
one robot moves despite the choice of the scheduler. We can
then remark (see Table 1) that from γ, there is path that leads
to a configuration of Cgood and any transition in this path has
a strictly positive probability to occur: these transitions actu-
ally correspond to steps where exactly one robot moves. So,
as the set of configurations in Figures 4 or 5 is finite, the ex-
pected time to reach a configuration of Cgood is finite and we
can conclude:

THEOREM 4. Algorithm 1 is a probabilistic exploration
protocol for 4 robots in a ring of 8 nodes.

3.9 General Result
By Theorems 1 to 4, follows:

THEOREM 5. Algorithm 1 is a probabilistic exploration
protocol for 4 robots in a ring of n nodes with 4 < n ≤ 8.

4. CONCLUSION
Exploring a discrete environment is one of the main prob-

lems in the field of mobile computing. One of the main chal-
lenges is to overcome the weakness of the model by itself,
namely (i) the fact that the robots cannot remember past ac-
tions or positions and (ii) the lack of means to particularize
robots or vertices, nor a mean of orientation. For instance,
the fact that robots need to stop after exploring all locations
requires robots to find an implicit way to “remember” how
much of the graph was explored, i.e., be able to distinguish
between various stages of the exploration process since robots
have no persistent memory. As configurations can be distin-
guished only by robot positions, the main complexity mea-
sure is then the number of robots that are needed to explore a
given graph. The vast number of symmetric situations induces
a large number of required robots. This paper closes the ques-
tion of the optimal number of probabilistic robots to explore
a ring. Indeed, our protocol completes the work in [4], as it
allows four robots to explore any ring of size less or equal to
eight. Overall, it is possible to explore any ring using only four
probabilistic robots.
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Figure 4: 2-segment symmetries in a 8-size ring.
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Figure 5: Isolated nodes symmetry in a 8-size ring.
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