
Self-Stabilizing Labeling and Ranking in Ordered Trees

Ajoy K. Datta1 Stéphane Devismes2 Lawrence L. Larmore1

Yvan Rivierre2

1 School of Computer Science, University of Nevada Las Vegas
2 VERIMAG UMR 5104, Université Joseph Fourier

Abstract

We propose two self-stabilizing algorithms for tree networks. The first one computes a special label,
called guide pair of each process P in O(h) rounds (h being the height of the tree) using O(δP log n)
space per process P , where δP is the degree of P and n the number of processes in the network. Guide
pairs have numerous applications, including ordered traversal or navigation of the processes in the tree.
Our second self-stabilizing algorithm, which uses the guide pairs computed by the first algorithm, solves
the ranking problem in O(n) rounds and has space complexity O(b + δP log n) in each process P , where
b is the number of bits needed to store a value. The first algorithm orders the tree processes according
to their topological positions. The second algorithm orders (ranks) the processes according to the values
stored in them.

Keywords: Self-stabilization, tree networks, tree labeling, ranking problem.

1 Introduction

Self-stabilization [Dij74, Dol00] is a versatile property, enabling an algorithm to withstand transient faults
in a distributed system. A distributed algorithm is self-stabilizing if, after transient faults hit the system
and place it in some arbitrary global state, the system recovers without external intervention in finite time.

An ordered tree T is a rooted tree, together with an order (called a left-to-right order) on the children
of every node. In this paper, we give two self-stabilizing distributed algorithms for ordered trees. None
of the two algorithms assumes knowledge of the size of the network n, or of a known upper bound of n,
although, as it is usual in the literature, we assume that each process can store an integer in the range
1..n, using O(log n) space. We choose the ordered tree topologies because results in such topologies can be
easily extended to arbitrary rooted networks by composing our solutions with any existing self-stabilizing
spanning tree construction algorithm (see [Dol00] for the literature). However, the meaning of “traversing”
or “ranking” processes in a general network is not clear.

Our first algorithm, GUIDE, computes a guide pair for each process P , which we write as P.guide =
(P.pre ind , P.post ind), where P.pre ind and P.post ind are the rank of P in the preorder and reverse pos-
torder traversal, respectively, of the ordered tree. Figure 1 shows an example of ordered tree labeled with
guide pairs. The guide pairs provide a labeling scheme that can be used for various applications [FEP+06].
In this work, we use these labels to navigate in the tree T . We can define a partial ordering on the guide
pairs as follows: We say (i, j) ≤ (k, ℓ) if i ≤ k and j ≤ ℓ. Then, A process Q is a member of the subtree TP
rooted at P if and only if P.guide ≤ Q.guide. The guide pairs can be used to implement routing between
any two processes of the tree. If the two nodes satisfy the above partial ordering, then the routing path
simply follows the list of ancestors/descendants. Otherwise, the routing must be established via the nearest
common ancestor.

Our second algorithm, RANK, uses GUIDE, hence shows another application of guide pairs. The input
of our second algorithm is a value P.weight , of some ordered type, for each process P . RANK computes the
rank of each process, which is defined to be the index of that process if all processes were sorted by their
weights.

1

(1,1)

(2,9)
(8,2)

(4,12)

(5,13)

(6,14)

(7,10)

(14,3)

(9,4)

(10,5)

(13,6)(11,7)

(12,8)

(3,11)

Figure 1: Guide pairs.

1.1 Contributions

GUIDE has time complexity O(h) rounds, where h is the height of T . The time complexity of RANK is
O(n) rounds. The space complexity of GUIDE in each process P is O(δP logn), where δP is the degree of P .
RANK, which uses GUIDE as a subroutine, has space complexity O(b + δP logn) in each process P , where
b is the number of bits needed to store a value. GUIDE and RANK are self-stabilizing. GUIDE is silent,
that is, it eventually reaches a terminal configuration where all actions of all processes are disabled. RANK
correctly computes the rank of every process within O(n) rounds. Unless the weights change, the ranking do
not change once the system stabilizes. However, the algorithm repeatedly computes them to detect possible
change of weights. If the weights do not change, the repeated computation of RANK will be transparent to
the application that uses the output of RANK.

1.2 Related Work

The notion of guide pairs appeared first in [FEP+06], but that solution is not self-stabilizing. To the best of
our knowledge, there exist no self-stabilizing algorithms for computing the guide pairs.

The only self-stabilizing solution to the ranking problem was given in [BDN95]. This algorithm works in
rooted trees. Like ours, that algorithm is not silent. Moreover, it assumes that each process has a unique
identifier in the range 1..n. The algorithm stabilizes in Ω(n2) rounds using O(log n) space per process. The
ranking problem is related to the sorting problem. There exist numerous self-stabilizing solutions to sorting
in a tree, e.g., [HP01, HM01, BDV05]. However, all those previous problems are quite different than ours.

1.3 Roadmap

In the next section, we present the model we use throughout this paper. In Section 3, we present our self-
stabilizing silent algorithm for computing guide pairs. In Section 4, we present our self-stabilizing algorithm
for the ranking problem, which uses the guide pairs.

2 Preliminaries

Let G = (V,E) be an undirected graph, where V is a set of nodes and E is a set of undirected edges linking
nodes. Two nodes P,Q ∈ V are said to be neighbors if {P,Q} ∈ E. The set of P ’s neighbors is denoted by
N(P). The degree of P i.e., |N(P)|, is denoted by δP . G = (V,E) is a tree if it is connected and acyclic. A

2

tree T can be rooted at some node, meaning that one of its nodes Root is distinguished as the root (all other
nodes are anonymous). In a rooted tree T , we denote by P.par , the parent of node P in T : If P = Root ,
then P.par = P ; otherwise P.par = Q, where Q is the neighbor of P that is the closest from the root (in
this case, P is said to be a child of Q in T). Let Chldrn(P) = {Q ∈ N(P) : Q.par = P}, the children of P
in the tree T . An ordered tree is a rooted tree T , together with an (local) order (called a left-to-right order)
on the children of every node. We denote by ≺P the local order relation among the children of node P . Let
P1, P2, . . . Pm be the children of the root of T in the left-to-right order. We denote by Ti be the subtree
rooted at any Pi. Finally, we denote by Q ∈ Ti the fact that node Q is a node of Ti.

We model our network topology as an ordered tree T = (V,E), where V is a set of n nodes representing
processes and E is a set of edges, each representing the ability of two processes to communicate directly.
(We will use the terms “node” and “process” interchangeably.) We denote by h(P) the height of process P
in T , i.e., its distance to the root. We denote by h the height of T , i.e., maxP∈V h(P).

2.1 Computational Model

We consider the locally shared memory model, introduced by Dijkstra [Dij74]. In this model, communications
are carried out by locally shared variables. Each process has the finite set of shared variables (henceforth,
referred to as variables) whose domains are finite. A process P can read its own variables and that of
its neighbors, but can write only to its own variables. We assume that every process P can read the
local names of its neighbors, so that if Q ∈ N(P), P can tell, for example, whether Q.par = P . Each
process writes its variables according to its (local) program. A distributed algorithm is a collection of n
programs, each one operating on a single process. The program of each process is a finite set of actions
〈label〉 :: 〈guard〉 7→ 〈statement〉. Labels are only used to identify actions in the discussion. The guard
of an action in the program of a process P is a Boolean expression involving the variables of P and its
neighbors. The statement of an action of P updates one or more variables of P . An action can be executed
only if it is enabled , i.e., its guard evaluates to true. A process is said to be enabled if at least one of its
actions is enabled.

Let A be a distributed algorithm operating of a network of topology G. The values of A’s variables at
some process P define A’s (local) state of P in G. A configuration of A in G is an instance of A’s states of
all processes in G. In the following, if there is no ambiguity, configurations of A in G will be simply denoted
by configurations.

Let 7→ be the binary relation over configurations of A in G such that γ 7→ γ′ if and only if it is possible for
the network of topology G to change from configuration γ to configuration γ′ in one step of A. An execution
of A is a maximal sequence of configurations ̺ = γ0γ1 . . . γi . . . such that γi−1 7→ γi for all i > 0. The
term “maximal” means that the execution is either infinite, or ends at a terminal configuration in which no
action of any process is enabled. Each step γi 7→ γi+1 consists of one or more enabled processes executing
an action. The evaluations of all guards and executions of all statements of those actions are presumed to
take place in one atomic step; this model is called composite atomicity [Dol00].

We assume that each step from a configuration to another is driven by a scheduler , also called a daemon.
If one or more processes are enabled, the scheduler selects at least one of these enabled processes to execute
an action. We assume that the scheduler is weakly fair , meaning that, every continuously enabled process
P is selected by the scheduler within finite time.

We say that a process P is neutralized in the step γi 7→ γi+1 if P is enabled in γi and not enabled in
γi+1, but does not execute any action between these two configurations. The neutralization of a process
represents the following situation: at least one neighbor of P changes its state between γi and γi+1, and this
change effectively makes the guard of all actions of P false.

We use the notion of round. The first round of an execution ̺, noted ̺′, is the minimal prefix of ̺ in which
every process that is enabled in the initial configuration either executes an action or becomes neutralized.
Let ̺′′ be the suffix of ̺ starting from the last configuration of ̺′. The second round of ̺ is the first round
of ̺′′, the third round of ̺ is the second round of ̺′′, and so forth.

3

2.2 Self-stabilization and Silence

In the following, we define a specification as a set of executions. We said that an execution ̺ satisfies the
specification SP if ̺ ∈ SP .

A distributed algorithm A is self-stabilizing with respect to the specification SP in a network of topology
G if and only if there exists a set of configurations C such that:

1. Every execution of A in a network of topology G starting from a configuration in C satisfies SP
(closure).

2. Every execution of A in a network of topology G eventually reaches a configuration in C (convergence).

All configurations of C are said to be legitimate, all other configurations are said to be illegitimate.
We say that an algorithm is silent [DGS96] if each of its executions is finite. In other words, starting from

an arbitrary configuration, the network will eventually reach a configuration where no process is enabled.

2.3 Composition

To simplify the design of our algorithms, we use a variant of the well-known collateral composition [Tel00].
Roughly speaking, when we collaterally compose two algorithms A and B, A and B run concurrently and B
uses the outputs of A in its executions. In the variant we use, we modify the code of B so that a process
executes an action of B only when it has no enabled action in A.

Let A and B be two algorithms such that no variable written by B appears in A. The hierarchical
collateral composition [DDH+11] of A and B, noted B ◦ A, is the algorithm defined as follows:

1. B ◦ A contains all variables of A and B.

2. B ◦ A contains all actions of A.

3. For every action “Li :: Gi 7→ Si” of B, B ◦ A contains the action “Li :: ¬D ∧Gi 7→ Si” where D
is the disjunction of all guards of actions in A.

The following sufficient condition is given in [DDH+11] to show the correctness of the composite algorithm:

Theorem 1 The composite algorithm B ◦ A self-stabilizes to specification SP in a network of topology G
assuming a weakly fair scheduler if the following conditions hold: (i) in a network of topology G, Algorithm
A is a silent algorithm under a weakly fair scheduler; (ii) in a network of topology G, Algorithm B stabilizes
to SP under a weakly fair daemon, starting from any configuration where no action of A is enabled.

3 Computing Guide Pairs

3.1 Guide Pairs

Given an ordered tree T , the guide pair of a node P in T is the pair of integers i and j such that i and j
are, respectively, the rank of P in the preorder and reverse postorder traversal of T . Below, we define these
notions. Recall that we denote by P1, P2, . . . Pm the children of the root of T in the left-to-right order, and
we denote by Ti be the subtree rooted at any Pi. The preorder traversal of T is defined, recursively, as
follows:

1. Visit the root of T .

2. For each i from 1 to m in increasing order, visit the nodes of Ti in preorder.

Postorder traversal T is similarly defined:

1. For each i from 1 to m in increasing order, visit the nodes of Ti in postorder.

2. Visit the root of T .

4

Preorder traversal is top-down, while postorder traversal is bottom-up. However, we can also traverse T in
reverse postorder , which is top-down, as follows.

1. Visit the root of T .

2. For i from m to 1 in decreasing order, visit the nodes of Ti in reverse postorder.

If a node P is the ith node of T visited in a preorder traversal of T , we say that the preorder rank of P is i.
If a node P is the jth node of T visited in a reverse postorder traversal of T , we say that the reverse postorder
rank of P is j. Write pre ind(P) and post ind(P) for the preorder rank and reverse postorder rank of P ,
respectively. We define the guide pair of P to be the ordered pair guide(P) = (pre ind(P), post ind(P)).
Figure 1 shows an ordered tree where each process is labeled with its guide pair.

If (i, j) and (k, ℓ) are guide pairs, we write (i, j) ≤ (k, ℓ) if i ≤ k and j ≤ ℓ. Thus, the set of guide pairs
is partially ordered by ≤.

Remark 2 [Property 2 in [FEP+06]] If P and Q are nodes of an ordered tree T , then guide(P) ≤ guide(Q)
if and only if P is an ancestor of Q.

3.2 Algorithm GUIDE

Algorithm GUIDE is a hierarchical collateral composition of two algorithms: GUIDE = CGP ◦ COUNT,
where both COUNT and CGP (for Compute Guide Pairs) use P.par as input in the program of every process
P . Note that P.par either designates the actual parent link of P or is computed by a distributed spanning
tree algorithm with which GUIDE must be composed using the hierarchical collateral composition.

3.2.1 Algorithm COUNT.

COUNT acts as a bottom-up wave that computes the number of processes in each subtree. In COUNT, each
process P has only one variable: P.subcount . Moreover, each process P can compute the following function:
Subcount(P) = 1 +

∑
Q∈Chldrn (P) Q.subcount. Thus, the program of P consists of the following action:

SetCnt :: P.subcount 6= Subcount(P) 7→ P.subcount ← Subcount(P)

Lemma 3 COUNT is self-stabilizing and silent, converges within h + 1 rounds from an arbitrary initial
configuration to a legitimate configuration where P.subcount = |{Q ∈ TP }| for all processes P , and works
under the weakly fair scheduler.

Proof: For any process P , define D(P) to be the maximum distance from P to any leaf of TP . Then
D(Root) = h, the height of T .

Claim: For any d ≥ 0 and any process P such that D(P) = d, P.subcount = Subcount(P) = |{Q ∈ TP }|
if at least d+ 1 rounds have elapsed.

We prove the previous claim by induction on d. If d = 0, then P is a leaf, and Subcount(P) = 1. In one
round, P executes Action SetCnt if necessary.

If d > 0, then, by the inductive hypothesis, all processes in TP , except possibly P itself, have calculated
their correct values of subcount, if at least d rounds have elapsed. In one more round, P.subcount will have
the correct value.

With d = h, we can deduce that under a weakly fair scheduler, COUNT converges within h+1 rounds to
a legitimate configuration from an arbitrary initial configuration. Finally, as in a legitimate configuration,
all values of subcount are correct, no process can execute Action SetCnt. Thus, COUNT is silent. �

3.2.2 Algorithm CGP.

Using the values of subcount computed by COUNT, each process P evaluates in CGP for each of its children
Q the number of processes before Q in the preorder and reverse postorder traversal of the tree T , respectively
(using Actions SetChldPrePred and SetChldPostPred, respectively). Then, reading these values from its
parent, each process, except the root, can compute its guide pair (using Actions SetPreInd and SetPostInd).
The guide pair of the root is (1, 1) (see Actions SetPreInd and SetPostInd for the root).

5

Variables of CGP. In CGP, each process maintains several variables. First, the following array variable
enables each non-root process to know its index in the local left-to-right order of its parent:

1. P.chld [i] ∈ N(P) ∪ {⊥}, for all 1 ≤ i ≤ δP . This array is maintained by Action SetChld. For all
1 ≤ i ≤ |Chldrn(P)|, P.chld [i] is set to the ith child in P ’s local ordering of N(P), while for all
|Chldrn(P)| < i ≤ δP , P.chld [i] is set to ⊥.

∗

Then, CGP uses the following additional variables:

2. P.pre ind , P.post ind , integers. In stabilized state, they contain the preorder and reverse postorder
ranks of P , respectively. Thus, we will write P.guide = (P.pre ind , P.post ind), the guide pair of P .

3. P.chld pre pred [i], P.chld post pred [i], integer, defined for all 1 ≤ i ≤ |δP |:

• For all 1 ≤ i ≤ |Chldrn(P)|, P.chld pre pred [i] is set to the number of predecessors of the ith child
of P (that is, P.chld [i]) in the preorder traversal of T ; and P.chld post pred [i] is set to the number
of predecessors of the ith child of P in the reverse postorder traversal of T .

• For all |Chldrn(P)| < i ≤ δP , P.chld pre pred [i] and P.chld post pred [i] are set to 0.

Hence, each process P computes its guide pair to be

(P.par .chld pre pred [j] + 1, P.par .chld post pred [j] + 1)

where P is the jth child of its parent in left-to-right order.

Functions of CGP. Based on the previous variables, each process P can compute the following functions:

• my order (P). If P is not the root and there exists i, 1 ≤ i ≤ δP.par , such that P.par .chld[i] = P , then
my order (P) returns i. If the values of P.par .chld did not stabilize, my order (P) returns 1.

Once the system has stabilized, my order (P) returns the index of the non-root process P in the local
left-to-right order of its parent.

• Chld index(Q) = |{Q′ ∈ Chldrn(P) : Q′ ≺P Q}|+ 1. It returns the index of the child Q of process P
in the local left-to-right order of P .

• Eval chld(i) returns the local name of the ith child of P . That is, if ∃Q ∈ Chldrn(P) such that
Chld index(Q) = i, then Eval chld(i) returns Q; otherwise, Eval chld(i) returns ⊥.

• Eval chld pre pred(i). If i = 1, then Eval chld pre pred(i) returns P.pre ind ; else if 2 ≤ i ≤
|Chldrn(P)|, then Eval chld pre pred(i) returns P.chld pre pred [i− 1] + P.chld [i− 1].subcount; other-
wise it returns 0.

Once the system has stabilized, Eval chld pre pred(i) returns the number of predecessors of the ith

child of P in the preorder traversal of T .

• Eval chld post pred(i). If i = |Chldrn(P)|, then Eval chld post pred(i) returns P.post ind ; else if
1 ≤ i < |Chldrn(P)|, then Eval chld post pred(i) returns P.chld post pred [i+1]+P.chld [i+1].subcount;
otherwise Eval chld post pred(i) returns 0.

Once the system has stabilized, Eval chld post pred(i) returns the number of predecessors of the ith

child of P in the reverse postorder traversal of T .

∗Actually, cells from index |Chldrn(P)| + 1 to δP are useless. However, as the tree may be obtained by a spanning tree
construction, we cannot know the number of children of P in advance, but this number is bounded by δP .

6

Actions of CGP. Actions of CGP are given below. To simplify the presentation, we assume priorities
on actions, and list them below in the order from the highest to the lowest priority. If several actions are
enabled simultaneously at a process, only the one of the highest priority can be executed. In other words,
the actual guard of any action “L :: G 7→ S” of process P is ¬D ∧ G, where D is the disjunction of the
guards of all actions at P that appear before in the text.

For every process P :

SetChld :: ∃i ∈ [1..δP], 7→ ∀i ∈ [1..δP],
P.chld[i] 6= Eval chld(i) P.chld[i]← Eval chld(i)

SetChldPrePred :: ∃i ∈ [1..δP], 7→ ∀i ∈ [1..δP],
P.chld pre pred[i] 6=Eval chld pre pred(i) P.chld pre pred[i]←Eval chld pre pred(i)

SetChldPostPred :: ∃i ∈ [1..δP], 7→ ∀i ∈ [1..δP],
P.chld post pred[i] 6=Eval chld post pred(i) P.chld post pred[i]←Eval chld post pred(i)

For the root process Root only:

SetPreInd :: Root.pre ind 6= 1 7→ Root.pre ind ← 1

SetPostInd :: Root.post ind 6= 1 7→ Root.post ind ← 1

For every non-root process P only:

SetPreInd :: P.pre ind 6=1+P.par .chld pre pred[my order(P)] 7→ P.pre ind←1+P.par .chld pre pred[my order(P)]

SetPostInd :: P.post ind 6=1+P.par .chld post pred[my order(P)] 7→ P.post ind←1+P.par .chld post pred[my order(P)]

Overview of CGP. We now give an intuitive explanation of how CGP computes the values of P.pre ind
for all P . The values of P.post ind are computed similarly.

Suppose that P is the ith process visited in a preorder traversal of T . Then i is the correct value of
P.pre ind . CGP works by computing the number of predecessors of P , i.e., the number of processes visited
before P is visited. Let us call that number Num Preorder Predecessors(P). It is the correct value of
P.pre ind − 1.

Num Preorder Predecessors(Root) = 0; otherwise, Num Preorder Predecessors(P) is computed by P.par
and stored in the variable P.par .chld pre pred [j], where P is the jth child of P.par in left-to-right order. In
order to compute these values for all its children, P.par must have computed its own value of pre ind , as well
as the sizes of all of its subtrees. If j = 1, then Num Preorder Predecessors(P) = P.par .pre ind , since P.par
is the immediate predecessor of its leftmost child in the preorder visitation. Thus, P.par .chld pre pred [1]←
P.par .pre ind . P.par .chld pre pred [2] is obtained by adding the size of the leftmost subtree of P.par to
P.par .chld pre pred [1], since all members of that subtree are predecessors of the second child of P.par .

In general, the number of predecessors of P is equal to P.par .pre ind plus the sum of the sizes of the
leftmost j − 1 subtrees of P.par . The values of the array P.par .chld post pred are computed from right to
left, similarly. P then executes:

P.pre ind ← P.par .chld pre pred [j] + 1

P.post ind ← P.par .chld post pred [j] + 1

Theorem 4 GUIDE is self-stabilizing and silent, computes the guide pairs of all processes in O(h) rounds
from an arbitrary initial configuration, and works under the weakly fair scheduler.

Proof: According to Theorem 1 and Lemma 3, to show that GUIDE is self-stabilizing, it is sufficient to
show that CGP stabilizes from any silent legitimate configuration of COUNT.

From such configurations, the values of subcount ’s variables are correct. The variables of CGP are then
computed in a top-down wave which takes O(h) rounds. (We can prove this by induction on the height of
processes in the tree, similar to the proof for COUNT.) Once a legitimate configuration is reached, no action
is enabled.

Finally, the round convergence time of GUIDE is equal to the round convergence time of COUNT (O(h)
rounds) plus the number of rounds for CGP to reach a terminal configuration from any configuration where
the values of subcount variables are correct (O(h) rounds). �

7

4 Rank Ordering

In this section, we give an algorithm, RANK, that uses guide pairs to solve the ranking problem on an
ordered tree, T . We are given a value P.weight for each process P in T . (For convenience, we assume that
the weights are integers.) The problem is to find the rank of each P . If P1, P2, . . . , Pn is the list of processes
in T sorted by weight, then i is the rank of Pi. We allow ties to be broken arbitrarily, but deterministically.

Our algorithm RANK is a hierarchical collateral composition of two algorithms: RANK = CRK ◦GUIDE.
RANK computes the rank of each process P in T , and sets the variable P.rank to that value. RANK is
self-stabilizing, and requires O(n) rounds and O(b + δP logn) space for each process P .

4.1 Overview of CRK

4.1.1 Flow of Packages.

The key part of the algorithm CRK is the flow of packages . Each package is an ordered pair x =
(x.value , x.guide), where x.value is its value and x.guide is its guide pair . We identify a package with
its guide pair . Moreover, for every two packages, x and y, we have x ≥ y (resp. x > y) if and only if
x.value ≥ y.value (resp. x.value > y.value).

Each package has a home process (the node from which the package is originally issued), although its
location can be at any process in the chain between its home and the root. The guide pair of a package is
the same as the guide pair of its home process, and its value is either the weight of its home process or the
rank that CRK will assign to its home process.

Each process P initiates its flow of packages by creating an up-package whose value is P.weight . This
up-package then moves to the root by successive copying. The flow of packages is organized so that packages
with smaller weights reach the root before packages with larger weights, in a manner similar to the standard
technique for maintaining min-heap order in a tree.

After the root copies an up-package from a child, it creates a down-package with the same home process
as the up-package, but whose value is a number (a rank) in the range 1..n. The root maintains a counter
so that the first down-package it creates has value 1, the second value 2, and so forth. Each down-package
then moves back to its home process by copying. When its home process copies a down-package, it assigns,
or re-assigns, its rank to be the value of that package.

The purpose (in fact even the name) of the guide pair is now obvious. It is used to guide the down-package
to its home process.

Since the root copies up-packages in weight order, it creates down-packages in that same order. The ith

down-package created by the root will carry rank i and will use the same guide pair as the ith up-package
copied by the root. Its home process will then be the process whose weight is the ith smallest in T .

When the root detects that it has created all down-packages, it initiates a broadcast wave which resets
the variables of CRK (except the rank and weight variables) and starts a new epoch.

4.1.2 Redundant Packages.

In our model of computation, if a variable of a process P is copied by a neighbor Q, it also remains at P . In
the algorithm CRK, each process P can be home to at most one package, but we cannot avoid the existence
of multiple copies of that package (up and/or down). We handle that problem by defining a package variable
currently held by a process (not necessarily its home process, rather any process on the chain from its home
to the root) as being either active or redundant . A redundant package can freely be overwritten, but not an
active package.

If x is an up-package currently held by some process Q which is not the root, then x is redundant if x
has already been copied by Q.par . If x is an up-package currently held by the root, then x is redundant if
the root has already created a down-package with the same guide pair as x. Any other up-package is active.

If x is a down-package held by some process Q which is not its home process, then Q is redundant if it
has been copied by some child of Q. (The child that copies x must be the process whose subtree contains
the home process of x.) If x is a down-package held by its home process P , then x is redundant if P.rank is
equal to the value of x. This indicates that P has already copied its rank from x, or that P.rank was correct
before x arrived. Any other down-package is active.

8

4.1.3 Status Waves.

As it is typical for distributed algorithms which are self-stabilizing, but not silent, CRK endlessly repeats the
calculation of the ranks of the processes in T . We call one (complete) pass through this cycle of computations
an epoch. At the end of each epoch, the variables of CRK at all processes, other than the variables for weight
and rank, are reset for the next epoch. If an epoch has a clean start, it will calculate the correct rank for
each process. Subsequent epochs will simply recalculate the same value, and P.rank will never change again.

On the other hand, in case of an arbitrary initial configuration, it is possible for incorrect values of rank
to be calculated, but eventually a configuration will be reached when the next epoch will get a clean start.

This system is controlled by the status variables of the processes. At the beginning of an epoch, a
broadcast wave starting from the root changes the status of every process from either 0 or 4 to 1, and all
variables of CRK except rank and weight are set to their initial values. When this wave reaches the leaves of
T , a convergecast wave changes the status of all processes to 2. All computation of the ranking algorithm, as
discussed above, takes place while processes have status 2. After the root has created the last down-package,
it initiates a broadcast wave where the status of all processes changes to 3. The return convergecast wave
then changes the status of all processes to 4, and when this wave reaches the root, the new epoch begins.

Status zero is used for error correction. If any process detects that the current epoch is erroneous, it
changes its status to 0. Status 0 spreads down the tree, as well as up the tree unless it meets a process whose
status is 1. If Root .status becomes 0 (and all its children have status 0 or 4), then Root initiates a status 1
broadcast wave starting a new epoch. However, this may cause an endless cycle of 0 and 1 wave, going up
and down the tree, respectively. We solve this problem by adding a special rule for the non-root processes.
If P.status = 0 and P.par .status = 1, the status 0 wave cannot move up; instead, the status 0 wave moves
down followed by status 1 wave.

4.2 Formal Definition of CRK

4.2.1 Variables of CRK.

Let P be any process. P.par , P.guide , and P.weight are inputs of CRK. Then, the output of CRK is P.rank ,
an integer. To compute this output, P maintains the following additional variables:

1. P.up pkg and P.down pkg are respectively of package type (that is, a guide pair and an integer) or ⊥
(undefined).

If P.up pkg (resp. P.down pkg) is defined, then its home process is some Q ∈ TP .

2. P.started , Boolean.

This variable indicates whether P has already generated its up-package during this epoch. (P.up pkg
may or may not still contain that up-package.)

3. P.up done, Boolean.

It indicates whether all processes in TP have created their own up-package in the current epoch and
whether TP contains no active up-package. (Active up-packages whose home processes are in TP could
exist at processes above P .)

4. P.status ∈ [0..4].

Status variables are used to control the order of computation and to correct errors.

Finally, Root contains the following additional variable:

5. Root .counter ∈ N

This incrementing integer variable assigns the rank to packages. It is initialized to be 0 every time a
new epoch begins.

9

4.2.2 Predicates of CRK.

The predicate Clean State(P) below indicates if P is in a good initial or “clean” state.

Clean State(P) ≡ P.up pkg = ⊥ ∧ P.down pkg = ⊥ ∧ ¬P.started ∧ ¬P.up done

The four following predicates are used for error detection:

Is Consistent(P, g) ≡ g = P.guide ∨ ∃Q ∈ Chldrn(P), g ≥ Q.guide

Guide Error(P) ≡ (P.up pkg 6= ⊥ ∧ ¬Is Consistent(P, P.up pkg.guide)) ∨
(P.down pkg 6= ⊥ ∧ ¬Is Consistent(P, P.down pkg.guide))

Status Error(P) ≡ (P.status ∈ {1, 3} ∧ P.par .status 6= P.status) ∨
(P.status ∈ {2, 4} ∧ ∃Q ∈ Chldrn(P), Q.status 6= P.status) ∨
(P.status 6= 0 ∧ P.par .status = 0) ∨
(P.status 6∈ {0, 1} ∧ ∃Q ∈ Chldrn(P), Q.status = 0)

Error(P) ≡ Status Error(P) ∨
(¬Clean State(P) ∧ P.status = 1) ∨
(Guide Error(P) ∧ P.status = 2) ∨
(P.up done ∧ ¬P.started ∧ P.status = 2) ∨
(P.up done ∧ P.status = 2 ∧ ∃Q ∈ Chldrn(P),¬Q.up done)

We say that a guide pair g is consistent with P if the predicate Is Consistent(P, g) is true. If
Is Consistent(P, g) is false, g is the guide pair of no process in the subtree of P . Guide Error (P) = true
means that P holds a package whose home is not in the subtree of P . The predicate Status Error(P) indi-
cates whether P detects that its status is inconsistent with those of its neighbors. Status errors are always
the result of arbitrary initializations; eventually, Status Error (P) will become false and will remain false
forever for all P . Finally, the predicate Error(P) detects error in the context of the current wave.

The four following predicates are used for flow control:

Up Redundant(P) ≡ (P 6= Root ∧ P.up pkg 6= ⊥ ∧ P.par .up pkg 6= ⊥ ∧ P.par .up pkg ≥ P.up pkg) ∨
(P = Root ∧ P.up pkg 6= ⊥ ∧ P.down pkg 6= ⊥ ∧ P.down pkg.guide = P.up pkg.guide)

Down Ready(P) ≡ P.down pkg = ⊥ ∨ (P.down pkg 6= ⊥ ∧
(P.down pkg.guide 6= P.guide ∧ ∃Q ∈ Chldrn(P), Q.down pkg = P.down pkg) ∨
(P.down pkg.guide = P.guide ∧ P.rank = P.down pkg.value))

Can Start(P) ≡ ¬P.started ∧ (P.up pkg = ⊥ ∨ Up Redundant(P)) ∧ ∀Q ∈ Chldrn(P),
(¬Up Redundant(Q) ∨Q.up done) ∧ (Q.up pkg > (P.weight, P.guide) ∨Q.up done)

Can Copy Up(P,Q) ≡ Q ∈ Chldrn(P) ∧ (Q.up pkg 6= ⊥ ∧ ¬Up Redundant(Q)) ∧
(P.up pkg = ⊥ ∨ Up Redundant(P)) ∧
(P.started ∨ (P.weight, P.guide) > Q.up pkg) ∧ ∀R ∈ Chldrn(P),
R.up done ∨ (¬Up Redundant(R) ∧ (R.up pkg ≥ Q.up pkg ∨ R.up done)

P.up pkg is redundant if Up Redundant(P) is true. Down Ready(P) states whether P.down pkg is re-
dundant or undefined, and thus P can create or copy a new down-package. Can Start(P) decides whether
P can create its own package, that is, if P can set P.up pkg to (P.weight , P.guide). Can Copy Up(P) indi-
cates whether P can copy Q.up pkg to P.up pkg . We note that P can evaluate Up Redundant(Q) for any
Q ∈ Chldrn(P).

Predicate Up Done(P) below decides whether all processes in TP have created their own up-package in the
current epoch and whether TP contains no active up-package. The evaluation of Up Done(P) gives the
correct value for P.up done.

Up Done(P) ≡ P.started = true ∧Up Redundant(P) ∧ ∀Q ∈ Chldrn(P), Q.up done

10

4.2.3 Actions of CRK.

Actions of CRK are given below. To simplify the design, we assume that the actions of CRK use the same
priorities as those of CGP.

For the root process Root only:

Err :: Error(Root) 7→ Root.status ← 0

NewEpoch :: Root.status ∈ {0, 4} ∧ 7→ Root.status ← 1; counter ← 0
∀Q ∈ Chldrn(Root), Root.up pkg ← ⊥; Root.down pkg ← ⊥

Q.status ∈ {0, 4} Root.started←false; Root.up done←false

ConvCast :: Root.status = 1 ∧ 7→ Root.status ← 2
∀Q ∈ Chldrn(Root), Q.status = 2

CreateUpPkg :: Root.status = 2 ∧ Can Start(Root) 7→ Root.up pkg.value ← Root.weight

Root.up pkg.guide ← Root.guide
Root.started ← true

CopyUpPkg :: Root.status = 2 ∧ 7→ Root.up pkg ← Q.up pkg,
∃Q ∈ Chldrn(Root), Q = min≺Root

{R ∈ Chldrn(Root),
Can Copy Up(Root, Q) Can Copy Up(Root, R)}

EndUpPkg :: Root.started ∧ Up Redundant(Root) ∧ 7→ Root.up done ← true
∀Q ∈ Chldrn(Root), Q.up done

CreateDownPkg :: Down Ready(Root) ∧ 7→ counter ← counter + 1
Root.up pkg 6= ⊥ ∧ Root.down pkg.value ← counter

¬Up Redundant(Root) Root.down pkg.guide ← Root.up pkg.guide

SetRank :: Root.down pkg 6= ⊥ ∧ 7→ Root.rank ← Root.down pkg.value
Root.down pkg.guide = Root.guide ∧

Root.down pkg.value 6= Root.rank

BroadCast :: Root.status = 2 ∧ 7→ Root.status ← 3
Root.up done ∧Down Ready(Root)

EndEpoch :: Root.status = 3 ∧ 7→ Root.status ← 4
∀Q ∈ Chldrn(Root), Q.status = 4

For every non-root process P only:

Err :: Error(P) 7→ P.status ← 0

NewEpoch :: P.par .status = 1 ∧ P.status ∈ {0, 4} ∧ 7→ P.status ← 1
∀Q ∈ Chldrn(P), Q.status ∈ {0, 4} P.up pkg ← ⊥

P.down pkg ← ⊥
P.started ← false
P.up done ← false

ConvCast :: P.status = 1 ∧ ∀Q ∈ Chldrn(P), Q.status = 2 7→ P.status ← 2

CreateUpPkg :: P.status = 2 ∧ Can Start(P) 7→ P.up pkg.value ← P.weight

P.up pkg.guide ← P.guide

P.started ← true

CopyUpPkg :: P.status = 2 ∧ 7→ P.up pkg ← Q.up pkg,
∃Q ∈ Chldrn(P),Can Copy Up(P,Q) Q = min≺P

{R ∈ Chldrn(P),
Can Copy Up(P,R)}

EndUpPkg :: P.started ∧ Up Redundant(P) ∧ 7→ P.up done ← true
∀Q ∈ Chldrn(P), Q.up done

CopyDownPkg :: Down Ready(P) ∧ 7→ P.down pkg ← P.par .down pkg

P.par .down pkg 6= ⊥ ∧
P.par .down pkg 6= P.down pkg ∧

Is Consistent(P, P.par .down pkg)

SetRank :: P.down pkg 6= ⊥ ∧ 7→ P.rank ← P.down pkg.value
P.down pkg.guide = P.guide ∧

P.down pkg.value 6= P.rank

BroadCast :: P.par .status = 3 ∧ P.status = 2 ∧ 7→ P.status ← 3
∀Q ∈ Chldrn(P), Q.status = 2 ∧Down Ready(P)

EndEpoch :: P.status = 3 ∧ ∀Q ∈ Chldrn(P), Q.status = 4 7→ P.status ← 4

The actions above achieve three tasks. They are (1) error correction, (2) epochs, and (3) ranking com-
putation (using the flow packages).

11

Error Correction. Action Err performs the error correction. If one process detects any inconsistency
among its state and that of its neighbors, it initiates a reset of the network by changing its status to 0. This
reset is contagious as previously explained.

Epochs. A new epoch starts by a reset initiated by Action NewEpoch at the root: If Root .status is either 0
or 4, and every child of Root has status 0 or 4, then Root broadcasts the status 1 and resets to a clean state.

When status 1 reaches the leaves, a convergecast wave starts and changes the status of all processes to
2 by Action ConvCast, so that actual ranks computation can begin.

When Root detects that there are no more up-packages in the tree, and it already sent every down-
package, it initializes a broadcast of status 3 by Action BroadCast. Note that there could still be active
down-packages below Root , but there could not be any active up-packages. Thus, Root is finished with its
tasks for the current epoch. Non-root process P propagates the status 3 by Action BroadCast after sending
all its down-packages. There could still be active down-packages below P , but no active up-packages. Since
P.par .status = 3, P knows that its job for this epoch is done.

Once status 3 reaches the leaves, a convergecast of status 4 is initialized and propagated by Action
EndEpoch. When Root changes to status 4, the current epoch is done, and Root initiates a new one.

Ranking computation. The computation of the ranking is bottom-up and starts when the convergecast
of status 2 starts at the leaves. The flow of up-packages is organized using CreateUpPkg and CopyUpPkg,
that is, a process either inserts its own package in the flow or copy some package coming from a child by
ensuring that packages are moved up in ascending order of weight. Once a process P has detected that TP
has no active up-package, it sets P.up done to true by Action EndUpPkg. Root initializes the broadcast of
status 3 only after Root .up done switches to true.

Upon receiving a new up-package (that is, Root .up pkg is active), if Root .down pkg is available (that is,
it is either ⊥ or redundant), Root is enabled to create a new down-package to send down to the home of its
up-package by CreateDownPkg. If counter = i, then Root .up pkg is the ith up-package copied or created by
Root , its weight is the ith smallest weight in the network, and i will become the value of the down-package.

The new active down-package is propagated to its home process by successive copying using Action
CopyDownPkg. When it reaches its home process P , the value field of that package contains the correct value
of the rank of P , so P updates P.rank using Action SetRank, if necessary.

4.2.4 Correctness of CRK.

According to Theorem 1, to show the correctness of RANK, it is sufficient to show that variables of CRK
stabilized to the expected result starting from any silent legitimate configuration of GUIDE. Let γ be such
a configuration.

The first part of the proof deals with error correction.

Lemma 5 After at most one round from γ, the following conditions hold forever for every process P :

(a) ¬Clean State(P) ∧ (P.status = 1) is false.

(b) P.up done ∧ ¬P.started ∧ (P.status = 2) is false.

(c) (P.up done ∧ (P.status = 2), and there is some Q ∈ Chldrn(P) such that ¬Q.up done) is false.

Proof: Let consider the three conditions separately:

(a) Assume ¬Clean State(P) ∧ (P.status = 1) is false. Then, If P.status = 1, P cannot modify its other
variables before changing its status. Moreover, every time P.status is reset to 1, the other variables
are reset to a clean state (see Action NewEpoch). So, ¬Clean State(P) ∧ (P.status = 1) remains false
forever.

Assume ¬Clean State(P)∧(P.status = 1) is true. Then, Action Err is enabled. Moreover, this condition
only deals with local variables of P . So, Action Err is continuously enabled, and P executes P.status ←
0 in at most one round. Then, ¬Clean State(P) ∧ (P.status = 1) is false, and we obtain the previous
case.

12

(b) Assume P.up done ∧¬P.started ∧ (P.status = 2) is false. Then, P always sets P.up done and P.started
to false together in Action NewEpoch. Moreover, P sets P.up done to true only if P.started holds (see
Action EndUpPkg). So, P.up done ∧ ¬P.started ∧ (P.status = 2) remains false forever.

Assume ¬Clean State(P) ∧ (P.status = 1) is true. In this case, Action Err is enabled. Moreover, this
condition only deals with local variables of P . So, Action Err is continuously enabled, and P executes
P.status ← 0 in at most one round. Then, P.up done ∧ ¬P.started ∧ (P.status = 2) is false, and we
reach the previous case.

(c) Assume (P.up done ∧ (P.status = 2), and there is some Q ∈ Chldrn(P) such that ¬Q.up done) is false.
Then, P sets P.up done to true only when every Q ∈ Chldrn(P) satisfies Q.up done = true (see Action
EndUpPkg). Moreover, every Q ∈ Chldrn(P) sets Q.up done to false only when P.up done = false
(see Action NewEpoch). So, (P.up done ∧ (P.status = 2), and there is some Q ∈ Chldrn(P) such that
¬Q.up done) remains false forever.

Assume (P.up done ∧ (P.status = 2), and there is some Q ∈ Chldrn(P) such that ¬Q.up done) is true.
Then, in one round, either every Q ∈ Chldrn(P) satisfies Q.up done = true or P executes Action Err.
In both cases, (P.up done ∧ (P.status = 2), and there is some Q ∈ Chldrn(P) such that ¬Q.up done)
becomes false in at most one round, and we obtain the previous case.

�

Lemma 6 After at most one round from γ, for all process P , if Status Error (P) = true, then P satisfies
one of the following two cases:

• P 6= Root and P.par .status = 0.

• There is some Q ∈ Chldrn(P) such that Q.status = 0.

Proof: First, values 1 and 3 are propagated in the tree following a broadcast wave. Then, values 2 and 4
are propagated in the tree following a convergecast from the leaves. So, by definition of Status Error (P),
if P satisfies Status Error (P) = false at some point, then Status Error(P) will become true only after one
neighbor of P switches its status to 0.

Finally, by Action Err, P cannot satisfy Status Error (P) = true during one round without switching its
status to 0. �

Lemma 7 If a process with status 0 holds an active package, this package remains blocked until it is removed
or cleaned.

Proof: If a process P has status 0, then no other process can copy its up or down packages because each of
its neighbors has status 0, is its parent and has status 1, or has Action Err enabled — the action with the
highest priority. Then, the next time P changes its status (Action NewEpoch), its state will become clean. �

Lemma 8 Within O(n) rounds from γ, if process P contains an active package such that there is no process
in its subtree which is the home process of that package, then P.status = 0.

Proof:

Consider any configuration γ′ after one round from γ. Consider an active package PK in γ′ at any
process P such that there is no process in the subtree of P that is the home process of that package.

(*) Assume that there is an ancestor of P with status 0, or a process in the subtree of P with status 0.
Then, in at most h rounds, any process that holds PK as an active package has status 0 (Action Err), and
by Lemma 7, PK cannot by copied anymore, so we are done.

Assume that no ancestor and no descendant of P have status 0. Consider the three following cases,
according to the status of P :

13

(a) P.status = 4. Assume that there is an ancestor Q of P such that Q.status = 1. Then, by Lemma 6
and Definition of Status Error , all descendants of P have status 4, and for every ancestor R of P we
have R.status ∈ {1, 4} and R.status = 1⇒ R = Root ∨R.par .status = 1. So, in at most h rounds, the
subtree of P has been reset to a clean state by Action NewEpoch, and we are done.

Assume that there is no ancestor Q of P such that Q.status = 1. Then, by Lemma 6 and Definition of
Status Error , all descendants of P have status 4, and for every ancestorR of P we haveR.status ∈ {3, 4}
and R.status = 3 ⇒ R = Root ∨ R.par .status = 3. So, in at most h rounds, all ancestors of P have
switched to status 4 by Action EndEpoch, and we reach the previous case.

(b) P.status = 3. If there is a process that has status 4, we reach the previous case, by Lemma 6 and
Definition of Status Error .

Otherwise, every process of the tree has status 2 or 3, and if a process has status 3, then either it is
the Root , or its parent also has status 3, by Lemma 6 and Definition of Status Error . In this case, PK
can only be copied down in the tree (and only if it is a down package). Now, in O(n) rounds, either
(1) PK becomes an active package of a node Q that satisfies Guide Error(Q) ∧ (Q.status = 2) (in the
worst case Q is a leaf), its children cannot copy PK, after one additional round, Q has status 0, and
PK cannot by copied anymore (by Lemma 7), so we are done; or (2) the broadcast wave of status 3
reaches the leaves of the tree, and in at most h additional rounds (the convergecast of status 4), we
reach Case (a).

(c) P.status = 2. If there is a process Q such that Q.status = 3, then Root .status = 3 by Lemma 6 and
Definition of Status Error , and we reach Case (b).

Otherwise, by Lemma 6, every process has status 1 or 2, and if a process has status 1, either it is the
Root or its parent has status 1. By Action ConvCast, in at most h rounds, all processes of T have
status 2.

– If PK is an up-package, it can only be copied up the tree. Either P satisfies Guide Error(P) ∧
(P.status = 2), its parent cannot copy PK, after one round P has status 0, and PK cannot by
copied any more (by Lemma 7), so we are done; or in O(n) rounds, PK becomes a down package
at the Root , which has status 2, and is no longer an active up-package at any process.

– If PK is a down-package, it can only be copied down in the tree. After O(n) rounds, the node Q
where PK is active satisfies Guide Error (Q) ∧ (Q.status = 2) (in the worst case Q is a leaf), its
children cannot copy PK, after one additional round, Q has status 0, and PK cannot by copied
anymore (by Lemma 7), so we are done.

(d) P.status = 1. By Lemma 6 and the definition of Status Error , two cases are possible:

– Every process has status 1 or 2, and if a process has status 1, then either it is the Root or its
parent has status 1. By Action ConvCast, in at most h rounds, P.status = 2 and we reach to
Case (c).

– Every process has status 1 or 4 and if a process has status 1, then either it is the Root or its
parent has status 1. By Action NewEpoch, in at most h rounds, we reach the previous case.

�

Lemma 9 Within O(n) rounds from γ, if process P contains a package, then there is a process in its subtree
which is the home process of that package.

Proof: By Lemmas 7 and 8, after O(n) rounds, every process P holding an active package that does not
have its home in the subtree of P satisfies P.status = 0 and no process copy this package.

Status 0 is propagated in O(h) rounds (Action Err) up in the tree until reaching the root, or a process
with status 1 and all its ancestors with status 1 as well as down to all descendants of P . After that, P and
all its subtree reset its status to 1 in O(h) rounds (Action NewEpoch).

Hence, within O(n) rounds, all inconsistent active packages will be removed from the tree. �

14

By Lemmas 5, 6, and 9, within O(n) rounds from γ, Error (P) is false forever for each process P .
There may still exist processes with status 0, but in that case, by definition of Error , for any process
P , we have: P.status{0, 1, 4}, P.status = 0 ⇒ P = Root ∨ P.par .status ∈ {0, 1}, P.status = 1 ⇒ P =
Root ∨ P.par .status = 1, P.status = 4 ⇒ P 6= Root ∧ P.par .status ∈ {1, 4}. Hence, at the end of the
broadcast of status 1 (O(h) rounds), no process will have status 0. Thus, we have the following lemma:

Lemma 10 Within O(n) rounds from γ, Error(P) is false and P.status ∈ {1, 2, 3, 4} forever, for each
process P .

From Lemma 10, we can deduce that the following invariant holds within O(n) rounds from γ for all P .

1. Error(P) is false and P.status ∈ {1, 2, 3, 4}.

That is, all initial errors will eventually be corrected.

2. If P.status ∈ {1, 3}, then either P = Root or P.par .status = P.status.

The status values 1 and 3 indicate broadcast waves.

3. If P.status ∈ {2, 4}, then Q.status = P.status for all Q ∈ Chldrn(P).

The status values 2 and 4 indicate convergecast waves.

We now show that from any configuration where all previous invariants hold, infinitely many complete
epochs are executed, each of them is performed in O(n) rounds:

• If Root .status = 4, then all processes have status 4 and Root initiates a broadcast of status 1 by Action
NewEpoch.

• If Root .status = 1, then all processes P have either status 1 or 4. Moreover, P.status = 1 ⇒ P =
Root ∨ P.par .status = 1. So, the broadcast wave of status 1 is executed by all processes (Action
NewEpoch), in at most h rounds.

• Then, a convergecast of status 2 is performed from the leaves (Action ConvCast) in at most h rounds.

• Once Root .status = 2, all processes have status 2. The flow of packages starts in parallel at processes
of status 2.

• Then, by Claim 1, for every process P , while P.status = 2, if P.up done, every process Q in its subtree
satisfies Q.up done. Moreover, ¬P.started ⇒ ¬P.up done. Now, by Action CreateUpPkg, the deepest
node satisfying P.status = 2 and ¬P.started , eventually sets its Boolean P.started to true and creates
its own up-package. Then, the up-packages go up in the tree following the ordering on weight. So,
every process P satisfies P.up done after O(n) rounds.

• When each process P satisfies P.up done, Root eventually satisfies Down Ready(Root) because every
package it holds has its home in its subtree (Lemma 9), and so, is eventually copied by the children
having the home in its subtree. Then, Root initiates the broadcast of status 3 by Action BroadCast.

• When Root .status = 3, the all processes P have either status 2 or 3. Moreover, P.status = 3 ⇒
P = Root ∨ P.par .status3. So, status 3 is broadcast to the whole tree by Action BroadCast. As each
node must wait for its down-package to become redundant before switching to status 3, this phase is
performed in O(n) rounds.

• Finally, once the status 3 reaches a leaf, the convergecast of status 4 is performed by Action EndEpoch

in at most h rounds. Root eventually has status 4 again.

Consider any epoch that starts from a configuration where all previous invariants hold. We define
S = {P : P.status ∈ {1, 2, 3}}. We call S the active portion of T . The following invariants hold for all
P ∈ S.

15

4. If P.status = 1, then P.started and P.up done are false, and P.up pkg = P.down pkg = ⊥.

If the status of P is 1, then P has initialized its variables and has not yet begun the calculations of
the epoch.

Proof: By Claim 1, and definitions of Error(P) and Clean State(P). �

5. If P.up done then P.started , and Q.up done for all Q ∈ Chldrn(P).

If there are no active packages in TP , then there are no active packages in TQ for any child Q. Fur-
thermore, the package whose home is P has already been created and copied up.

Proof: P.up done is initialized to false for all processes P during the broadcast wave of status 1. Then,
all P.up done are set to true in a bottom up fashion by Action EndUpPkg. �

6. P.up done if and only if there is no active package in TP .

Proof: P.up done is initialized to false for all processes P during the broadcast wave of status 1. Then,
all P.up done are set to true in a bottom up fashion by Action EndUpPkg. We can verify this claim by
induction. �

7. If P contains an active up-package, then there is some process Q ∈ T ∩ S that is the home process of
that package.

Proof: By Lemma 9, there is some process Q ∈ T that is the home process of that package. Assume,
by the contradiction, that Q /∈ S. Before Q.status = 4, Q switches its status from 1 to 2, 2 to 3 and
finally 3 to 4. When, Q switches its status to 3, all its ancestors, in particular Root , also have the
status 3. Before switching to 3, Root switches its status to 2. Now, Root switches its status to 2, only
if Root .up done. So, when Q switches its status to 3, there is no up-package in the network by Claim
6. Following a similar reasoning, there is no down-package in the path from the root to P . Hence,
there is no package in the network having Q as its home by Lemma 9, a contradiction. �

8. If P.started is false, then there is no active up-package in S whose home process is P .

Proof: P resets P.started to false during the broadcast wave of status 1. Then, P.started remains
false until P creates its up-package. �

9. If P ∈ S and P.started is true, then there is at most one active package whose home process is P .

Proof: P will create its own package only once, and once a package has been copied, previous copies
become redundant. �

10. If Q ∈ Chldrn(P) and if P.up pkg 6= ⊥, then either Q.up pkg .weight ≥ P.up pkg .weight or Q.up done.

Proof: Min-heap order is maintained, so that up-packages reach Root in weight order. �

11. Let p be the number of processes P such that P.started is false or P.status = 4, and q be the number
of active up-packages. Then p+ q + counter = n, the size of T .

Proof: At the beginning of each epoch, p = n and q = counter = 0. Each time a process exe-
cutes Action CreateUpPkg, p is decremented and q is incremented. Each time Root executes Action
CreateDownPkg, q is decremented and counter is incremented. At the end of the epoch, p = q = 0 and
counter = n. �

12. If P.weight is the ith smallest weight in T , then i > counter if and only if either P.started is false, or
there is an active up-package whose home process is P .

Proof: Follows from the two previous claims. �

13. If P.started is true and P.rank is not the correct rank of P , then there is an active package in S whose
home process is P .

Proof: From the previous claim, the active up-package whose home is P will cause the creation of a
down-package whose home is P with the correct rank value. �

16

14. If P.status = 3, then P.started and P.up done are true, P.up pkg and P.down pkg are both redundant,
and P.rank has the correct value.

If the status of P is 3, then P has completed its role in the epoch.

Proof: Before switching to 3, P switches to status 2, hence, P.up done is true. Moreover, if P.up done,
then P.started and P.up pkg are redundant. P received status 3, only if there is no active down-package
in the path from the root to P , so P.down pkg is redundant too. Finally, by Claim 13, P.rank has the
correct value. �

As infinitely many complete epochs are executed, and during these epochs, all processes switch to status
3, by Claim 14 we have the following theorem:

Theorem 11 RANK is self-stabilizing, computes the ranking of all processes in O(n) rounds from an arbi-
trary initial configuration, and works under the weakly fair scheduler.

References

[BDN95] Brian Bourgon, Ajoy Kumar Datta, and Viruthagiri Natarajan. A self-stabilizing ranking al-
gorithm for tree structured networks. In Proceedings of the First Workshop on Self-Stabilizing
Systems (WSS’95), pages 23–28, 1995.

[BDV05] D. Bein, A.K. Datta, and V. Villain. Snap-stabilizing optimal binary-search-tree. Proceedings of
the 7-th International Symposium on Self-Stabilizing Systems, 2005.

[DDH+11] Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, and Yvan Riv-
ierre. Self-stabilizing small k-dominating sets. Technical report, VERIMAG, 2011. http://

www-verimag.imag.fr/TR/TR-2011-6.pdf.

[DGS96] S. Dolev, MG Gouda, and M Schneider. Memory requirements for silent stabilization. In PODC
’96: Proceedings of the fifteenth annual ACM symposium on Principles of distributed computing,
pages 27–34, 1996.

[Dij74] EW Dijkstra. Self stabilizing systems in spite of distributed control. Communications of the
Association of Computing Machinery, 17:643–644, 1974.

[Dol00] S Dolev. Self-Stabilization. The MIT Press, 2000.

[FEP+06] Paola Flocchini, Antonio Mesa Enriques, Linda Pagli, Giuseppe Prencipe, and Nicola Santoro.
Point-of-failure shortest-path rerouting: Computing the optimal swap edges distributively. IEICE
Transactions, 89-D(2):700–708, 2006.

[HM01] T Herman and T Masuzawa. A stabilizing search tree with availability properties. In Fifth
International Symposium on Autonomous Decentralized Systems (ISADS 2001), pages 398–405,
2001.

[HP01] T. Herman and I. Pirwani. A composite stabilizing data structure. 5th International Workshop on
Self-Stabilizing Systems (WSS 2001), Lecture Notes in Computer Science LNCS 2194, Springer
Verlag, pages 167–182, 2001.

[Tel00] G Tel. Introduction to distributed algorithms (2nd Ed.). Cambridge University Press, 2000.

17

http://www-verimag.imag.fr/TR/TR-2011-6.pdf
http://www-verimag.imag.fr/TR/TR-2011-6.pdf

	Introduction
	Contributions
	Related Work
	Roadmap

	Preliminaries
	Computational Model
	Self-stabilization and Silence
	Composition

	Computing Guide Pairs
	Guide Pairs
	Algorithm GUIDE
	Algorithm COUNT.
	Algorithm CGP.

	Rank Ordering
	Overview of CRK
	Flow of Packages.
	Redundant Packages.
	Status Waves.

	Formal Definition of CRK
	Variables of CRK.
	Predicates of CRK.
	Actions of CRK.
	Correctness of CRK.

