
On Probabilistic Snap-Stabilization

Karine Altisen and Stéphane Devismes

VERIMAG UMR 5104, Université de Grenoble
{Karine.Altisen,Stephane.Devismes}@imag.fr

http://www-verimag.imag.fr

Abstract. In this paper, we introduce probabilistic snap-stabilization. We re-
lax the definition of deterministic snap-stabilization without compromising its
safety guarantees. In an unsafe environment, a probabilistically snap-stabilizing
algorithm satisfies its safety property immediately after the last fault; whereas its
liveness property is only ensured with probability 1.
We show that probabilistic snap-stabilization is more expressive than its deter-
ministic counterpart. Indeed, we propose two probabilistic snap-stabilizing algo-
rithms for a problem having no deterministic snap- or self-stabilizing solution:
guaranteed service leader election in arbitrary anonymous networks. This prob-
lem consists in computing a correct answer to each process that initiates the ques-
tion “Am I the leader of the network?”, i.e., (1) processes always computed the
same answer to that question and (2) exactly one process computes the answer
true.
Our solutions being probabilistically snap-stabilizing, the answers are only deliv-
ered within an almost surely finite time; however any delivered answer is correct,
regardless the arbitrary initial configuration and provided the question has been
properly started.

Keywords: Snap-stabilization, probabilistic algorithms, leader election.

1 Introduction

Self-stabilization [14] is a versatile technique to withstand any transient fault in a dis-
tributed system: a self-stabilizing algorithm is able to recover, i.e., reach a legitimate
configuration, in finite time, regardless the arbitrary initial configuration of the system,
and therefore also after the occurrence of transient faults. Thus, self-stabilization makes
no hypotheses on the nature or extent of transient faults that could hit the system, and
recovers from the effects of those faults in a unified manner. Such versatility comes at a
price. After transient faults, there is a finite period of time, called the stabilization phase,
before the system returns to a legitimate configuration. During this phase, there is no
safety guarantee at all. In addition, a process cannot locally detect whether the system
is actually in a legitimate configuration. Moreover, self-stabilizing algorithms may re-
quire a large amount of resources, e.g., extra memory is usually required to crosscheck
inconsistencies. Finally, symmetries occurring in the initial configuration could cause a
problem to be impossible to solve, e.g., leader election [27] and token passing [21] have
no deterministic self-stabilizing solutions in anonymous networks. To cope with those

2 Altisen and Devismes

issues, two categories of variants of self-stabilization have been introduced: weakened
and strengthened forms of self-stabilization.

Related Work. Weakened forms of self-stabilization have been introduced to cope with
impossibility results, reduce the stabilization time, or limit the resource consumption.
Weak stabilization [20] stipulates that starting from any initial configuration, there exists
a run that eventually reaches a legitimate configuration. Unlike for self-stabilization,
token passing and leader election have weak stabilizing solutions in anonymous net-
works [13]. k-stabilization [3] prohibits some of the configurations from being initial, as
an initial configuration may only be the result of at most k faults. There are k-stabilizing
token passing algorithms that guarantee small convergence time depending only on
k [3]. Probabilistic self-stabilization [22] weakens the convergence property: starting
from any initial configuration, the system converges to a legitimate configuration with
probability 1. Problems such as token passing and leader election in anonymous net-
works have probabilistic self-stabilizing solutions [22, 15].

Strengthened forms of self-stabilization have been mainly introduced to offer strin-
gent safety guarantees. A fault containing self-stabilizing algorithm [19] ensures that
when few faults hits the system, the faults are both spatially and temporally contained.
“Spatially” means that if only few faults occur, those faults cannot be propagated further
than a preset radius around the corrupted nodes. “Temporally” means quick stabiliza-
tion when few faults occur. A superstabilizing algorithm [16] is self-stabilizing and
has two additional properties. In presence of single topological change, it recovers fast,
and a safety predicate, called a passage predicate, should be satisfied along the stabi-
lization. Finally, (deterministic) snap-stabilization [8] offers strong safety guarantees:
regardless of the configuration to which transient failures drive the system, after the fail-
ures stop, a snap-stabilizing system immediately resumes correct behavior. Precisely, a
snap-stabilizing algorithm guarantees that any computation started after the faults will
operate correctly. However, we have no guarantees for those executed all or a part dur-
ing faults. Actually, snap-stabilization is often used to offer user-centric guarantees:
the problems considered consist of executing finite tasks called services: a service is
started by some initiating process and terminates by providing a result to that initiator.
The goal is to ensure that, starting from any configuration, a service eventually starts
if requested by some process; and every started service is computed correctly. We call
those problems guaranteed service problems.

Contribution. We introduce a new property called probabilistic snap-stabilization, a
probabilistic variant of (deterministic) snap-stabilization. Just as for the probabilistic
extension of self-stabilization, we choose to adopt a “Las Vegas” approach and relax
the definition of snap-stabilization without altering its safety guarantees. Considering
a specification as the conjunction of safety and liveness properties, a probabilistically
snap-stabilizing algorithm immediately satisfies the safety property at the end of the
faults, whereas the liveness property is ensured with probability 1.

We show that probabilistic snap-stabilization is strictly more expressive than its
deterministic counterpart, as we give two probabilistic snap-stabilizing algorithms for
a problem having no deterministic self- or snap-stabilizing solution: guaranteed ser-
vice leader election in anonymous networks. This problem consists in computing a
correct answer to each process that initiates the question “Am I the leader of the net-

On Probabilistic Snap-Stabilization 3

work ?”, i.e., (1) processes always computed the same answer to that question and (2)
exactly one process computes the answer true. Our solutions being probabilistically
snap-stabilizing, the answers are delivered within an almost surely finite time; how-
ever, any delivered answer is correct, regardless the arbitrary initial configuration and
provided that the question has been properly started.

Our two algorithms work in the locally shared memory model. The first solution,
SGSLE , assumes a synchronous daemon. The second, AGSLE , assumes an unfair (dis-
tributed) daemon, the most general daemon of the model. Both algorithms need an
additional assumption:1 the knowledge of a bound B such that B < n ≤ 2B, where n
is the number of processes. The memory requirement of both algorithms is in O(log n)
bits per process. The expected delay, response, and service times of SGSLE are each
O(n) rounds, while these times areO(n2) rounds forAGSLE . If we add the assumption
that processes know an upper bound, D, on the diameter of the network, the expected
time complexity of AGSLE can be made O(D.n) rounds.
Roadmap. In the next section we define the computational model. In Section 3, we
introduce probabilistic snap-stabilization. In the same section, we formally define the
guaranteed service problem, and give one example, namely guaranteed service leader
election. In Section 4, we propose our two probabilistic snap-stabilizing algorithms. We
conclude in Section 5.

2 Preliminaries

Below, we define a general model to handle probabilistic algorithms in anonymous net-
works. It settles the formal context in which probabilistic snap-stabilization is defined.
Distributed Systems. We consider distributed systems of n ≥ 2 anonymous processes,
i.e., they all have the same program, and have no parameter (such as an identity) permit-
ting them to be differentiated. Each process p can directly communicate with a subset
of other processes, called its neighbors. Communication is bidirectional. We model a
distributed system as a simple undirected connected graph G = (V,E), where V is the
set of processes and E is a set of edges representing (direct) communication relations.
Every processor p can distinguish its neighbors using a local labeling. All labels of p’s
neighbors are stored into the setNp. Moreover, we assume that each process p can iden-
tify its local label in the set Nq of each neighbor q. By an abuse of notation, we use p
to designate both the process p itself, and also its local labels.
Computational Model. We assume the locally shared memory model [14], where each
process communicates with its neighbors using a finite set of locally shared registers,
henceforth called simply variables. A process can read its own variables and those of
its neighbors, but can write only to its own variables. Each process operates according
to its program. A (distributed) algorithm A is defined to be a collection of n programs,
each operating on a single process. The program of each process consists of a finite
set of actions of the form: 〈guard〉 −→ 〈statement〉. The guard of an action in the
program of a process p is a Boolean expression involving the variables of p and its
neighbors; the statement updates some variables of p. An action can be executed only

1 We otherwise prove that our problem is probabilistically unsolvable.

4 Altisen and Devismes

if its guard evaluates to true. The state of a process p is the vector consisting of the
values of all its variables. The set of all variables of p is noted Varp, and for a variable
v ∈ Varp, Domp(v) denotes the set of all possible values of v. A variable v in Varp can
be either a discrete variable, which ranges over a discrete (but possibly infinite) set of
values (namely, Domp(v) is a countable set) or v is a real variable for which Domp(v) is
a given interval of reals.2 The set Sp of all possible states of process p, is defined to be
the Cartesian product of the sets Domp(v), over all v ∈ Varp.

A configuration, γ, consists of one state, γ(p) ∈ Sp for each process p, i.e., γ ∈
C def

=
∏
p∈V Sp, the set of all possible configurations. We denote by γ(p).x the value of

the variable x of process p in γ.
An action in the program of a process p is said to be enabled in γ if and only if its

guard is true in γ, and we say p is enabled in γ if and only if some action in the program
of p is enabled in γ. Let Enabled(γ) be the set of processes which are enabled in γ.

When the system is in configuration γ, a daemon selects a subset φ of Enabled(γ)
to execute an (atomic) step: every process of φ atomically executes one of its enabled
actions, leading to a configuration γ′. So, a daemon is a function d : C+ → 2V : Consid-
ering the finite sequence of configurations ρ = (γ0, ..., γk) through which the system
has evolved, the daemon gives the next chosen subset d(ρ) ⊆ Enabled(γk) of enabled
processes that will execute in the next step. Let Dall be the set of all possible daemons.

Deterministic Algorithms. We model a distributed deterministic algorithm A as a
function FA : C × 2V → C, i.e., the next configuration is only determined by the
current configuration and the set of processes that will execute the next step. A run of a
deterministic algorithmA under the daemon d is an infinite sequence r = (γi)i≥0 ∈ Cω
inductively defined as follows: γ0 ∈ C and ∀i ≥ 0, γi+1 = FA(γi, d(γ0, . . . , γi)), i.e.,
γi+1 is obtained from γi by an atomic step of all processes in d(γ0, . . . , γi).3

Probabilistic Algorithms. The modeling of probabilistic distributed algorithms is a bit
more intricate since it has to handle the interactions between probabilities and non-
determinism, like in Markov Decision Process [25]. In our case, probabilities come
from the use of random functions in process programs, while non-determinism is due
to asynchrony. Below, we provide a concise model and semantics using infinite Markov
chains; alternative models can be found in [4, 17].

Following the literature [18], for every process p and for every variable v ∈ Varp,
we define σp,v , the sigma-field (informally, the set of possible events on the value of v)
associated with v:

– If v is discrete, then σp,v is the discrete sigma-field on Domp(v) formed by the
power-set of Domp(v).

– If v is real, then σp,v is the Borel sigma-field of Domp(v).
The sigma-field over C, denoted by ΣC , is the minimal sigma-field of C, generated by
the subsets of the form

∏
p∈V

∏
v∈Varp sp,v , where sp,v ∈ σp,v .

We model a distributed probabilistic algorithm A as a family of probability kernels
µd : C+×ΣC → [0, 1] indexed on any possible daemon d ∈ Dall. Namely, for any fixed
s ∈ ΣC , the function x → µd(x, s) is ΣC+ -measurable, and for any prefix p ∈ C+,

2 Our algorithms only deal with finite-state variables, whereas our model is more general.
3 Note that FA(γi, ∅) = γi.

On Probabilistic Snap-Stabilization 5

the function x → µd(p, x) is a probability measure. Considering the finite sequence
of configurations ρ = (γ0, ..., γk) through which the system has evolved using the
daemon d, x → µd(ρ, x) describes the probability law for the next configuration. In
particular, µd(ρ, {γk+1}) is the probability of reaching configuration γk+1 after prefix
ρ. The sequence r = (γi)i≥0 ∈ Cω is a run ofA under the daemon d if and only if there
exists a sequence of choices of d, (φi)i≥0 ∈ (2V)ω , such that ∀i ≥ 0, φi = d(γ0, ..., γi)
and there exists s ∈ ΣC such that γi+1 ∈ s and µd(γ0, ..., γi, s) > 0.

Given a daemon d and a probabilistic algorithm A, let Rn be a random variable
over Cn, representing a prefix of size n ∈ N of a run: Rn = Γ0 · · ·Γn, where each Γi+1

is obtained from Γi after one more step of A. Note that the sequence
(
Rn
)
n∈N is a

Markov chain, since the possible values for Rn+1 on R0, . . . , Rn−1, Rn only depends
on Rn. The probability space for the model is naturally derived from the usual Markov
chain theory. Let R be a random variable on Cω and R ⊆ Cω be a measurable set of
runs of A. Let γ0 ∈ C. We denote by Prd,γ0A (R) the probability that a run of R occurs
on R0 = γ0.4

Daemon Families. We only consider here daemons that are proper, namely for every
run (γi)i≥0 of a distributed algorithm A, under a proper daemon d, for every i ≥ 0,
Enabled(γi) 6= ∅ ⇒ d(γ0, . . . , γi) 6= ∅. Daemons are usually classified into families
according to their fairness property. The family of unfair (distributed) daemons, noted
DU , is the set of all proper daemons. A daemon d is said to be synchronous if and
only if for every run (γi)i≥0 under d, for every i ≥ 0, d(γ0, . . . , γi) = Enabled(γi).
We denote by DS the set of all synchronous daemons. We denote by RDA the set of all
possible runs ofA using a daemon of family D. We denote byRD,γ0A the subset of runs
ofRDA starting from configuration γ0.
Rounds. In some run r = (γi)i≥0 of an algorithm A under a daemon d, we say that a
process p is neutralized in the step γi, γi+1 if p is enabled in γi and not enabled in γi+1,
but does not execute any action between these two configurations.

We use the notion of round to evaluate the time complexity of A. This notion cap-
tures the execution rate of the slowest processor in every run. The first round of r, noted
r′, is the minimal prefix of r in which every process that are enabled in γ0 either ex-
ecute an action or become neutralized. Let r′′ be the suffix of r starting from the last
configuration of r′. The second round of r is the first round of r′′, and so forth. Notice
that, by definition, under a synchronous daemon, each round lasts exactly one step.

3 Snap-Stabilization and Guaranteed Service Problems

In this section, we first recall the definition of deterministic snap-stabilization. Then, we
introduce the probabilistic snap-stabilization. Finally, we define the guaranteed service
problems, and we instantiate this notion to define guaranteed service leader election.

Following [1], we express the specification SP of an algorithm as a set of runs, or
equivalently as a predicate that any run should satisfy: SP ⊆ Cω . We use the usual
result [1, 23] that a specification can always be expressed as the conjunction of a safety
property and a liveness property: SP = Safe ∩ Live.

4 We fix γ0, since we do not assume any distribution on the initial configurations.

6 Altisen and Devismes

In (self- or snap-) stabilization, we consider the system right after the occurrence of
the last fault, i.e., we study the system starting from an arbitrary configuration reached
due to the occurrence of transient faults, but from which no additional fault will ever
occur. By abuse of language, this arbitrary configuration is referred to as initial config-
uration of the system. Deterministic snap-stabilization has been defined as follows:

Definition 1 (Deterministic Snap-Stabilization [8]) An algorithmA is snap-stabilizing
w.r.t. a specification SP = Safe ∩ Live and a family of daemons D iff(def) ∀r ∈ RDA,
r ∈ SP (i.e., r ∈ Safe and r ∈ Live).

The idea behind probabilistic snap-stabilization is to weaken deterministic snap-
stabilization without compromising its strong safety guarantees. The safety part remains
unchanged, but, we allow the algorithm to compute for a possibly long, yet almost
surely finite, time.

Definition 2 (Probabilistic Snap-Stabilization) An algorithm A is probabilistically
snap-stabilizing w.r.t. a specification SP = Safe ∩ Live and a family of daemons
D iff(def)
Strong Safety: ∀r ∈ RDA, r ∈ Safe, and
Almost Surely Liveness: ∀γ0 ∈ C,∀d ∈ D,Prd,γ0A (Live) = 1.

Almost all snap-stabilizing solutions proposed so far solve guaranteed service prob-
lems, i.e., problems consisting in executing finite tasks upon the request at some pro-
cess. Propagation of Information with Feedback [10] is an example of such a problem:
when an application at a given process p needs to broadcast some data, the service con-
sists in ensuring that all processes eventually acknowledge the receipt of the data and
that p eventually receives acknowledgment from all processes. Generally, a guaranteed
service problem consists in ensuring three properties:
1. If an application at some process continuously requires the execution of the service,

then the process — called the initiator — eventually starts a computation of the
service (involving the whole or a part of the network).

2. Every started service eventually ends by a decision at its initiator, allowing it to get
back a result.

3. Every result obtained from any started service is correct w.r.t. the service.
To formalize these properties, we use the following predicates, where p ∈ V , s, s′ ∈

Sp, and γ0 . . . γt ∈ C+:
– Request(s) means that the state s indicates to p that some application needs an

execution of the service.
– Start(s, s′) means that p starts a computation of the service by switching its state

from s to s′.
– Result(s, s′) means that p executes the decision event to get back the result of a

computation by switching its state from s to s′.
– Correct-Result(γ0 . . . γt, p) means that the computed result is correct w.r.t. the ser-

vice.

Definition 3 (Specification for Guaranteed Service) A guaranteed service specifica-
tion is a specification Sgs = Safegs ∩ Livegs where Safegs and Livegs are defined
as follows: let r = (γi)i≥0,

On Probabilistic Snap-Stabilization 7

(a) r ∈ Safegs if and only if ∀k ≥ 0,∀p ∈ V,
(
Result(γk(p), γk+1(p)) ∧ ∃l <

k, Start(γl(p), γl+1(p))⇒ Correct-Result(γ0 . . . γk, p)
)
.

(b) r ∈ Livegs if and only if the following two conditions hold:
(1) ∀k ≥ 0,∀p ∈ V,∃l ≥ k,

(
Request(γl(p))⇒ Start(γl(p), γl+1(p))

)
.

(2) ∀k ≥ 0,∀p ∈ V,
(
Start(γk(p), γk+1(p))⇒ (∃l > k,Result(γl(p), γl+1(p)))

)
.

The safety condition (a) means that when a result is delivered, it is correct, provided
that the task that computed the result was started. The liveness condition (b) means that
(1) it cannot happen that an application continuously requests the service without being
served and (2) any started computation eventually delivers a result.

When a guaranteed service solution is snap-stabilizing, this implies that whatever
the initial configuration is, every started service delivers within a finite time a correct
result to its initiator. Considering probabilistic snap-stabilization, when a result is de-
livered, it is correct, provided that the service corresponding to this result has been
properly started (similar to the deterministic case), but the time elapsed between the
starting and the corresponding result is only almost surely finite.

The classical definition of leader election requires that there should be always at
most one leader, and if a process is designated as leader it remains leader forever
(safety), and that eventually there should exist a leader (liveness). This specification
can be turned into a guaranteed service specification. Every process may initiate a
computation (i.e., a question) to know whether it is the leader. The results should be
consistent, i.e, the result from any initiated leader-computation by some process p is
a constant truth value, and exactly one process always obtains the result true to its
initiated leader-computations.

In the following definition, we use the predicate Unique(γ, p), which is true if and
only if there is exactly one process p that designates itself as leader in configuration γ.

Definition 4 (Guaranteed Service Leader Election Specification) The guaranteed ser-
vice leader election specification Sgs,leader is given using Definition 3 of guaranteed
service, where the predicate Correct-Result is instantiated as follows.

Correct-Resultleader(γ0 . . . γk, p) is true if and only if ∃p∗ ∈ V such that:
– Unique(γk, p

∗) and
– ∀i ∈ {i∗, ..., k}, Unique(γi, p∗), where i∗ = min

{
i ∈ {1, ..., k} : ∃q ∈ V ,

Result(γi−1(q), γi(q)) ∧ ∃l < i, Start(γl(q), γl+1(q))
}

.

The first item of the definition ensures that there exists a unique leader at the completion
of a previously started leader-computation. The second item ensures that all results
obtained from started leader-computations are consistent, i.e., the leader is the same.

4 Probabilistic Snap-Stabilizing Guaranteed Service Leader
Election

We now deal with a problem having no deterministic solution: the guaranteed ser-
vice leader election in anonymous networks [2]. We first propose a probabilistic snap-
stabilizing solution, called SGSLE (Synchronous Guaranteed Service Leader Election),

8 Altisen and Devismes

which assumes a synchronous daemon. Then, we slightly modify the solution to obtain a
probabilistically snap-stabilizing algorithm, called AGSLE (Asynchronous Guaranteed
Service Leader Election), which works under an unfair (distributed) daemon.

First, note that, without an additional assumption on the system (e.g., the knowl-
edge of some upper bound on some network global parameter), there is no probabilistic
guaranteed service leader election in our setting. We prove this claim by reducing the
guaranteed service leader election to the ring-size counting problem, which has been
proven to be probabilistically unsolvable in our setting [26]. So, following the ideas
in [24], we assume that the processes know a bound B on n such that B < n ≤ 2B.

4.1 Synchronous Settings

SGSLE is made of three modules — Election, Pulse, and Service — which
run concurrently: at each local step, a process simultaneously executes an action of
each module where it is enabled. Election is the main module. It uses the output
of Pulse to perform probabilistic self-stabilizing leader election. In Election, each
process pmaintains a Boolean variable p.me, which states whether it is candidate for the
election. The module executes in cycles. Each cycle computes a Boolean output oneLdr
at each process, stating whether a unique leader exists; it is computed by testing whether
there is a unique process p∗ which is candidate in the configuration γ ending the cycle,
i.e., if the predicate Unique(γ, p∗) def

= γ(p∗).me ∧ ∀p ∈ V, p 6= p∗ ⇒ ¬γ(p).me holds.
If there is no leader at the end of the cycle, the next cycle attempts to elect a leader

by modifying the variables me. Once a cycle succeeds in electing a leader, all processes
compute the output true in their variable oneLdr and during the remaining cycles their
variable me stays constant: once elected, the leader remains stable.

Conversely, if oneLdr is false at the end of a cycle, then every process p randomly
and synchronously chooses a new value for p.me: p resets p.me to v, where v is a random
Boolean value which is truewith probability αvote, respectively falsewith probability
1−αvote. In other words, the new random Boolean value v of p.me follows a Bernoulli
distribution of constant parameter αvote, noted v ↪→ B(αvote) in the sequel. Hence, if
there is not a leader at the end of a cycle, then a leader is elected during the next cycle
with positive probability.

Processes should be synchronized in order to obtain a consistent output at the end
of a cycle. This is the aim of the second module, Pulse, which is actually a self-
stabilizing synchronous unison algorithm. In synchronous systems, a self-stabilizing
unison consists in implementing a logical clock at each process such that, once the
system is in a legitimate configuration, all local clocks have the same value and incre-
ment at each step; we denote by PSU the predicate defining all legitimate configurations
of the synchronous unison. Once Pulse achieves its legitimacy, all processes execute
cycles synchronously. The output oneLdr computed during each cycle started in a con-
figuration satisfying PSU will be both consistent (i.e., all processes will have the same
value for oneLdr), and correct (i.e., oneLdr will be true if and only if there is unique
leader in the system).

The composition of the two aforementioned modules is only probabilistically self-
stabilizing. So, to ensure the safety part of Sgs,leader, we cannot let a process directly

On Probabilistic Snap-Stabilization 9

evaluate its variable me to state whether it is the leader, even if oneLdr is currently
true. To guarantee that, after starting a question, a process delivers a correct result, we
use an additional module, Service. The aim of this module is to delay the processing
of each question (service), so that the initiator is able to consult its variables me and
oneLdr only when they are correctly evaluated. To that end, p should (at least) wait
for the first cycle of Election started after the system has reached a configuration
satisfying PSU . After this waiting time, an initiator p can consult p.me and p.oneLdr
at the end of each cycle; when p.oneLdr is true, it delivers the result p.me. Below, we
give more details about the three modules of SGSLE .

Module Pulse. We consider a slightly updated version of the unison algorithm pro-
posed in [7], which we call U . Actually, we add a local observer into the program of U .
This observer will be used by Module Service to guarantee service.
U is a unison algorithm with a bounded number of clock values: the clock of every

process takes a value in {−κ, ..., ξ − 1}; however the negative values are only used
during the stabilization phase. Once U has stabilized, the values of the clocks increment
using the function Φ from 0 to ξ−1, then back to 0, and so forth. Consequently, PSU

def
=

∀p, q ∈ V, p.clock = q.clock∧ p.clock ≥ 0. In [5], U is shown to be self-stabilizing
for the synchronous unison in any anonymous synchronous network if κ ≥ n − 2 and
ξ ≥ n+ 1. Here, processes do not know n, but they know a value B such that n ≤ 2B.
So, it is sufficient to take κ = 2B−2 and ξ ≥ 2B+1, to guarantee the self-stabilization
of U in any topology. Moreover, the stabilization time of U , called ST , is shown in [5]
to be less or equal to n+ κ+D steps in synchronous settings, where D is the diameter
of the network. So, ST ≤ 6B steps (or equivalently 6B rounds).

We add to U an observer in order to obtain a guaranteed service property: as ex-
plained before, we need a mechanism that allows any process p to locally decide whether
the configuration satisfies PSU . To achieve that, p needs only to wait at least 6B steps,
because ST ≤ 6B. So, we add a variable p.cnt, which takes a value in {0, ..., CMax},
where CMax = 6B. At each step, p.cnt is decremented if it is positive. We also add
two functions that can be called in Module Service: p.init() resets p.cnt to CMax;
and p.OK() returns true if and only if p.cnt equals 0. Note that the local observers do
not disturb the stabilization of U , because they only write to a dedicated additional vari-
able. Furthermore, starting from any configuration, for every process p, if p.init() is
called, p.OK() returns true CMax steps (resp. rounds) later and p has the guarantee that
the configuration satisfies PSU .

Module Election. This module (Algorithm 1) executes in cycles. Processes use their
clocks in order to synchronize. Once all processes are synchronized, each cycle is per-
formed in three phases. Each phase lasts ϕ steps and consists of an initialization step
followed by a computation that is propagated to all processes. So, ϕ should be at least
strictly greater than the diameter of the network: we set ϕ to 2B. To easily distinguish
each phase, we can set the size of the cycle to any value ξ greater or equal to 3ϕ = 6B,
a cycle starts when clocks reset to 0, and every process can determine in which phase
it is thanks to its clock. For time complexity issues, we set ξ to exactly 6B since this
also meets the condition for U , i.e., ξ = 6B ≥ 2B + 1.

Each process p starts the first phase of a cycle (Line 1) by resetting p.me and
p.parent. The new value of p.me depends on the result of the previous cycle: if a

10 Altisen and Devismes

Algorithm 1 Module Election, for every process p
Input: p.clock ∈ {−κ, ..., ξ − 1}: variable from Module Pulse
Variables:
p.me, p.oneLdr: Boolean
p.parent ∈ Np ∪ {null}
p.stSize ∈ {1, ..., 2B}
Macros:
cmpMe = if p.oneLdr then p.me else v ↪→ B(αvote)
branches = {q ∈ Np : q.me ∨ q.parent 6= null}
cmpPar = if p.me ∨ p.parent 6= null ∨ branches = ∅ then p.parent else q ∈ branches

children = {q ∈ Np : q.parent = p}
Actions:
1: p.clock = ξ − 1 7→ p.me← cmpMe; p.parent← null

2: p.clock ∈ {0, ..., ϕ− 2} 7→ p.parent← cmpPar

3: p.clock = ϕ− 1 7→ p.stSize← 1
4: p.clock ∈ {ϕ, ..., 2ϕ− 2} 7→ p.stSize← 1 +

∑
q∈children q.stSize

5: p.clock = 2ϕ− 1 7→ p.me← p.me ∧ p.stSize > B; p.oneLdr← p.me
6: p.clock ∈ {2ϕ, ..., 3ϕ− 2} 7→ p.oneLdr← p.oneLdr ∨

∨
q∈Np

q.oneLdr

process p believes that there is no unique leader (i.e., p.oneLdr = false), p randomly
chooses a new value for p.me to decide if it is candidate in the new phase; otherwise,
p.me remains unchanged. The remainder of the phase (Line 2) consists in building a for-
est, where a process r is a tree root if and only if r.me = true. In the second phase of
the cycle (Lines 3 and 4), each candidate (i.e., each process whose variable me is true)
computes the number of nodes in its own tree. Finally, the initialization step of the third
phase (Line 5) is crucial for the candidates, if any. For every candidate p, if p has more
than B nodes in its tree, a majority of nodes are in its tree since n ≤ 2B. In that case,
p is the only candidate in that situation. Consequently p is the leader and it sets both
p.oneLdr and p.me to true. In either case, both p.oneLdr and p.me are set to false. All
non-candidate processes also set their variables oneLdr and me to false in this initial-
ization step. The remainder of the phase (Line 6) allow propagation of the result to all
processes so that when the next cycle begins, every process satisfies oneLdr = true if
and only if a unique leader is elected.

Module Service. Module Service (Algorithm 2) achieves snap-stabilizing guar-
anteed service. When a process p is available (p.status = Out, i.e., p is not currently
processing a service) and when it is requested (i.e., Request(s) def

= s.〈need〉()), it starts
the computation of the service by switching p.status to Wait (i.e., Start(s, s′) def

=
s.status = Out ∧ s′.status = Wait) and resetting the observation in Pulse (Line
7). Then, p waits until p.OK()∧ p.clock = ξ− 1: this waiting phase ensures that p will
only consider cycles fully executed after the stabilization of Pulse. When this period
has elapsed, p switches p.status from Wait to In (Line 8), meaning that it is now
allowed to consider the outputs computed by Module Election, which are available
only at cycle completions. So, p delivers a result (p.me) only when p.oneLdr is true at
the end of such a cycle (Line 9); in this case p switches p.status from In to Out to in-
form the application of the availability of the result (i.e., Result(s, s′) def

= s.status =

On Probabilistic Snap-Stabilization 11

In ∧ s′.status = Out). Note that, from the application point of view, this result is
guaranteed provided that its request has been properly handled and the corresponding
service properly started (Line 7).

Algorithm 2 Module Service, for every process p
Inputs:
p.clock ∈ {−κ, ..., ξ − 1} : variable from Module Pulse
p.me, p.oneLdr: Boolean : variables from Module Election
init(), OK() : functions from Module Pulse
〈need〉(), 〈deliver〉(Boolean) : functions from the application
Variable: p.status ∈ {Out, Wait, In}
Actions:
7: p.status = Out ∧ p.〈need〉() 7→ p.status← Wait; p.init()
8: p.status = Wait ∧ p.OK() ∧ p.clock = ξ − 1 7→ p.status← In

9: p.status = In∧p.clock = 3ϕ−1∧p.oneLdr 7→ p.status← Out; p.〈deliver〉(p.me)

Complexity of SGSLE . The time complexity of a snap-stabilizing algorithm is mea-
sured in terms of delay, response time, and service time. The delay corresponds to the
maximum time, starting from any configuration, before any process p starts a service
(p.status ← Wait). The response time is the maximum time between the start of a
service (p.status ← Wait) and its completion (p.status ← Out), which also cor-
responds to the delivery of the result. The service time is the sum of the delay and
the response time. Since SGSLE is probabilistic, we give expected values for all these
measures.

Assume that an application at process p needs a service, i.e., p.〈need〉() is true, and
that the application is continuously requesting until p starts the service. If p.status =
Out, p starts immediately. If p.status = In, the start is delayed until the completion
of the current service (until p.status ← Out). If p.status = Wait, p should first
switch p.status from Wait to In and then from In to Out before starting. This means
that the delay, response time, and service time are of the same order of magnitude, and
depend on:
T1: The time p spends before switching p.status from Out to Wait, when p.〈need〉() =

true: 1 round.
T2: The time p spends before switching p.status from Wait to In: at most CMax +

ξ − 1 = 12B − 1 rounds.
T3: The expected time p spends before switching p.status from In to Out.
Time T3 is bounded by the stabilization time ST of U plus the length ξ of one syn-
chronized cycle (at the first configuration satisfying PSU , a cycle may already be in
progress), plus the expected number of rounds used to elect a leader once synchroniza-
tion is achieved. This latter number is equal to the product of ξ and the expected number
EC of synchronized cycles that should be executed to elect a leader. Overall, T3 is less
or equal to ST + (1 + EC)ξ rounds with ST ≤ 6B and ξ = 6B.

12 Altisen and Devismes

The value EC depends on αvote. The random choices made in each cycle are in-
dependent, so the number of synchronized cycles needed to elect a leader follows a
geometric distribution with parameter PE, where PE is the probability of electing a
leader in one cycle; andEC = 1

PE . Now, if exactly one process randomly chooses true
in its variable me during a synchronized cycle, then a leader is elected during that cycle.
So, the probability P1 of that event satisfies P1 ≤ PE, and consequently, EC ≤ 1

P1 .
Furthermore, we can show that P1 = nαvote(1 − αvote)n−1, and P1 is maximal for
αvote = 1

n . Considering the knowledge of processes (i.e., B < n ≤ 2B), the best
choice for αvote is in [1

2B ,
1

B+1]. In that case, we can show that 1
P1 ≤

e2

2 , where e is

the Euler constant. So, EC ≤ e2

2 ≤ 3.70 and we can conclude that the expected delay,
response time, and service time are all O(B) rounds, i.e., O(n) rounds.

Theorem 1 SGSLE is probabilistically snap-stabilizing w.r.t. Sgs,leader in anonymous
synchronous networks. If αvote ∈ [1

2B ,
1

B+1], the expected delay, response, and service
times of SGSLE are each O(n) rounds.

4.2 Asynchronous Settings

We now assume an unfair daemon: SGSLE should be adapted to take asynchrony into
account, and we call the new version AGSLE . As before, AGSLE is made of the same
three modules, which are slightly modified. The module Pulse uses the same unison
algorithm U , but the parameters and the observers are adapted to handle asynchrony.
The module Election is almost the same (in particular ϕ = 2B), but the reading
of shared variables must be carefully managed in order to emulate the synchronous
executions of the Election cycles. Finally, the module Service is left unchanged.
Asynchronous Unison. In asynchronous settings, the strict clock synchronization can
no longer be assumed. The asynchronous version of the unison specification is relaxed
as follows: the clocks of every two neighboring processes should not differ from more
than one, and each process should increment its clock infinitely often. In [7], U is proven
to be self-stabilizing for this specification under an unfair daemon in any anonymous
network if κ ≥ n − 2 and ξ ≥ n + 1 (the same requirement as for the synchronous
unison). We use the same value of κ as in SGSLE , i.e., 2B − 2. Then, note that in [5]
(Theorem 61, page 104), U is proven to stabilize in at most n + κ ≤ 4B rounds.
Moreover, its legitimate configurations are defined to be all configurations satisfying
PAU

def
= ∀p, q ∈ V, |p.clock− q.clock| ≤ 1 ∧ p.clock ≥ 0.

Emulate Synchronous Cycles. Assume that the system is in a configuration satisfying
PAU . When a process p increments p.clock from x to Φ(x), each neighbor q of p has
either the same clock value (q.clock = x) or is one tick ahead (q.clock = Φ(x)). In
the former case, p can execute a step of Election, making use of the current local
state of q. In the latter case, p should make use of the previous state of q (when q.clock
was equal to x). In order to do so, we modify the reading of variables of Election as
follows. Each process p is now equipped with an additional vector variable p.prev, in
which, at each clock increment, it saves its current local state w.r.t. Module Election
before making any writing in that module. Furthermore, each direct reading of some
process p to any Election variable v of one of its neighbors q is replaced by a call

On Probabilistic Snap-Stabilization 13

to the function p.read(v, q), which returns q.v if p.clock = q.clock; q.prev.v, oth-
erwise.

Local Observers. We also modify the observers in Pulse since (1) waiting for CMax =
6B local steps is no longer sufficient to guarantee that the system has reached a con-
figuration satisfying PAU ; and (2) the result of a full cycle can be guaranteed only if
all processes have reached some synchronization barrier. We can show that this barrier
is reached after any process increments its clock at least 4D times from any legitimate
configuration.

We could used the upper bound given in [12] to ensure that the system reached a
configuration satisfying PAU . However, this bound is in Θ(Dn3) steps. So, this would
drastically impact the time complexity of our algorithm.

Instead, we borrow the ideas given in [6] by using the following result: If p.clock
successively takes values u, u + 1, ..., u + (2D + 1) between configurations γt0 and
γt2D+1

with ∀i ∈ {1, ..., 2D + 1}, u+ i > 0, then every other process executes at least
one step between configurations γt0 and γt2D+1

.
This result provides a mechanism allowing a process to locally observe whether at

least one round has elapsed. Indeed, by definition, if a process observes that all pro-
cesses execute at least one step, then at least one round has elapsed. So, to decide that
the configuration satisfies PAU , a process p should observe that (i) all processes execute
at least n+ κ rounds (the actual stabilization time of U for the asynchronous specifica-
tion). In addition, (ii) p should increment its clock at least 4D times after these rounds.
So, it is sufficient that p counts (2D + 1)× (n+ κ) + 4D ≤ 16B2 + 12B consecutive
positive (local) increments to ensure both (i) and (ii).

We have modified the local observers by first respectively setting ξ and CMax to
16B2+12B+1 and 16B2+12B. The function init() and OK() remain unchanged, but
the way cnt is modified is slightly more complex. Indeed, when cnt reaches 0, CMax
consecutive positive increments of the clock must have occurred. Now, p.clock may
become non-positive for two reasons. (1) During the stabilization phase of U , p may set
p.clock to a negative value; or (2) p may “normally” reset p.clock from ξ − 1 to 0.
To handle Case (1), p also resets p.cnt to CMax each time it sets p.clock to a negative
value (i.e., we add p.cnt ← CMax in the statement of the reset action of U) and p does
not decrement p.cnt while p.clock is negative. For Case (2), p starts decrementing
p.cnt only when p.clock = 0; since ξ > CMax, the case cannot occur. Hence, at each
local tick, p.cnt is decremented only if p.cnt > 0∧ (p.cnt = CMax⇒ p.clock = 0).

Complexity ofAGSLE . As in the synchronous version SGSLE , the delay, response time,
and service time of AGSLE are of the same order of magnitude, and depend on T1, T2,
and T3, as defined in Section 4.1. Again, we assume that when at some process p,
p.〈need〉() is continuously true until p starts the service. So, T1 is performed in at
most one round. Then, to evaluate T2 and T3, we should remark that, contrary to the
synchronous case, a process does not advance its local clock at every round, even when
the asynchronous unison specification is achieved. However, we can use the lemma
given in [11], which claims that once PAU holds, every process advances its clock at
least D ticks during any 2D consecutive rounds.

Consider T2. In the worst case, we need that U first stabilizes. Then, p may have
to advance its local clock at most ξ − 1 ticks before starting to decrement p.cnt. This

14 Altisen and Devismes

latter counter reaches 0 at most CMax ticks later. Finally, once p.cnt = 0, p may have
to advance its local clock up to ξ − 1 times before satisfying p.clock = 3ϕ − 1 and
executing p.status ← Out at its next tick. Hence, this complexity is bounded by
n+ κ+ 2D(CMax+2ξ−1)

D = O(n2) rounds.
Consider T3. As in the synchronous case, this expected time is bounded by the

stabilization time of U plus the product between EC + 1 and the number of rounds
to execute a synchronized cycle. Just as in the synchronous case, the best choice is to
choose αvote in [1

2B ,
1

B+1]. In this case, we still have EC ≤ e2

2 ≤ 3.70. Moreover,
each synchronized cycle is executed in at most 2ξ = O(n2) rounds. Hence, the time
complexity of T3 is also O(n2) rounds, and we have the following result.

Theorem 2 With an unfair daemon, AGSLE is probabilistically snap-stabilizing w.r.t.
Sgs,leader for anonymous networks. If αvote ∈ [1

2B ,
1

B+1], its expected delay, response,
and service times are each O(n2) rounds.

If we add the assumption that processes know an upper bound D on the diameter
D of the network, then AGSLE can be modified so that its expected time complexities
are reduced to O(D.n) rounds, by setting ξ and CMax to 8DB + 4B + 4D + 1 and
8DB + 4B + 4D, respectively.

5 Conclusion

We have introduced probabilistic snap-stabilization. Our goal is to relax (deterministic)
snap-stabilization without altering its strong safety guarantees. We adopt a Las Vegas
approach: after the end of faults, a probabilistic snap-stabilizing algorithm immediately
satisfies its safety property; whereas its liveness property is ensured with probability 1.
(It could be worth investigating if the Monte Carlo approach can be interesting.)

We implement this new concept in two algorithms which solve the guaranteed ser-
vice leader election in arbitrary anonymous networks, a problem having neither self-
nor snap deterministic solutions. Our first algorithm assumes a synchronous daemon,
while the second works under a distributed unfair daemon, the weakest scheduling as-
sumption. Note that these two algorithms are also self-stabilizing for the leader election
problem.

These two algorithms show that probabilistic snap-stabilization is more expressive
than its deterministic counterpart. Note that one can easily modify our guaranteed ser-
vice leader election to obtain a guaranteed service algorithm whose result is the guaran-
tee that the whole network has been identified. Then, using this algorithm, we can mimic
the behavior of an identified network and emulate the transformer proposed in [9]. As
a consequence, every (non-stabilizing) algorithm that can be made (deterministically)
snap-stabilizing in an identified network by the transformer of [9] can be also automati-
cally turned into probabilistic snap-stabilizing guaranteed service algorithm working in
an anonymous network.

References

1. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185 (1985)

On Probabilistic Snap-Stabilization 15

2. Angluin, D.: Local and global properties in networks of processors (extended abstract). In:
12th Annual ACM Symposium on Theory of Computing. pp. 82–93. ACM (1980)

3. Beauquier, J., Genolini, C., Kutten, S.: k-stabilization of reactive tasks. In: PODC. p. 318
(1998)

4. Beauquier, J., Gradinariu, M., Johnen, C.: Randomized self-stabilizing and space optimal
leader election under arbitrary scheduler on rings. Dist. Comp. 20(1), 75–93 (2007)

5. Boulinier, C.: L’unisson. Ph.D. thesis, Université de Picardie Jules Verne (2007)
6. Boulinier, C., Levert, M., Petit, F.: Snap-stabilizing waves in anonymous networks. In:

ICDCN. pp. 191–202 (2008)
7. Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In: PODC. pp.

150–159 (2004)
8. Bui, A., Datta, A.K., Petit, F., Villain, V.: Snap-stabilization and PIF in tree networks. Dist.

Comp. 20(1), 3–19 (2007)
9. Cournier, A., Datta, A.K., Petit, F., Villain, V.: Enabling snap-stabilization. In: ICDCS. pp.

12–19 (2003)
10. Cournier, A., Devismes, S., Villain, V.: Snap-stabilizing pif and useless computations. In:

ICPADS. pp. 39–48 (2006)
11. Datta, A., Larmore, L., Devismes, S., Heurtefeux, K., Rivierre, Y.: Self-stabilizing small

k-dominating sets. International Journal of Networking and Computing 3(1) (2013)
12. Devismes, S., Petit, F.: On efficiency of unison. In: TADDS. pp. 20–25 (2012)
13. Devismes, S., Tixeuil, S., Yamashita, M.: Weak vs. self vs. probabilistic stabilization. In:

ICDCS. pp. 681–688 (2008)
14. Dijkstra, E.W.: Self-Stabilizing Systems in Spite of Distributed Control. Commun. ACM 17,

643–644 (1974)
15. Dolev, S., Israeli, A., Moran, S.: Uniform Dynamic Self-Stabilizing Leader Election. IEEE

Trans. Parallel Distrib. Syst. 8, 424–440 (1997)
16. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems (abstract).

In: PODC. p. 255 (1995)
17. Duflot, M., Fribourg, L., Picaronny, C.: Randomized finite-state distributed algorithms as

markov chains. In: DISC. pp. 240–254 (2001)
18. Durrett, R.: Probability, theory and examples. Cambridge (2010)
19. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-containing self-stabilizing algo-

rithms. In: PODC. pp. 45–54 (1996)
20. Gouda, M.G.: The theory of weak stabilization. In: WSS. pp. 114–123 (2001)
21. Herman, T.: Probabilistic self-stabilization. Inf. Proc. Letters 35(2), 63–67 (1990)
22. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-stabilizing

mutual exclusion. In: PODC. pp. 119–131 (1990)
23. Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: PODC. pp. 377–410 (1990)
24. Matias, Y., Afek, Y.: Simple and efficient election algorithms for anonymous networks. In:

WDAG. pp. 183–194 (1989)
25. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.

John Wiley & Sons, Inc., 1st edn. (1994)
26. Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press, 2nd edn. (2001)
27. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part i-characterizing the

solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89 (1996)

