
Framework CIL Oracles

CIL: A Proof System for Computational
Indistinguishability

Gilles Barthe3, Marion Daubignard2, Bruce Kapron1 and
Yassine Lakhnech2

1University of Victoria
2VERIMAG, Université de Grenoble, CNRS

3IMDEA, Madrid

19th June, 2009
This work is partially supported by the ANR project SCALP

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Aim

Provable security provides guarantees, but...

Problems : nowadays, one scheme = one proof, proofs are
intricate, and therefore somewhat unreliable...

Our long-term goal is to prove cryptographic systems
secure by enabling

Computer-Aided Cryptographic Proofs
at the level of abstract constructions and their
implementations.

Existing approaches: game-based techniques, Hoare logics,
applied pi-calculus...

Most security criteria rely on the concept of
indistinguishability.
Hence our current subgoal: designing a versatile system of
inference rules to prove indistinguishability.

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Indistinguishability of Distributions

Advantage of an adversary in distinguishing D0 and D1

Adv(η,A) = |Pr[AOi(D1) = 1]− Pr[AOi(D0) = 1]|

Indistinguishability of two distributions

D0 and D1 are indistinguishable i� supA(Adv(η,A)) is a
negligible function in η.

This is denoted D0 ∼ D1.

def. : f(η) negligible i� ∀k ≥ 0, ηk × f(η)
η:∞−→ 0

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Outline

1 Our Framework: Computational Frames

2 CIL: The Inference System

3 Reasoning With Oracles

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Outline

1 Our Framework: Computational Frames

2 CIL: The Inference System

3 Reasoning With Oracles

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

What de�nes the distributions we are interested in?

The IND-CPA game for a scheme (K, E ,D)

1 keys are drawn : (pk, sk) r← K(η),
2 A1(pk) choses a pair of messages and outputs them plus

some state information: (s,m0,m1),
3 b is chosen at random, mb is ciphered: y = E(mb),
4 A2(s, pk,m0,m1, y) decides which message was encrypted.

fresh random values are drawn � (key pairs)

adversary calls are made � (A1)

A2 gets as an input a tuple (s,m0,m1, y), depending on the
previous computations

A1 and A2 can query oracles.

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Introduction To Computational Frame Syntax

A frame is a distribution denoted

s = ν~x.ν~a.(u1, . . . , um)|I1/O1, . . . , In/On

where:

1 ~x stands for x1
r← U1, . . . , xk

r← Uk. Those represent fresh
drawings in independent distributions.

2 ~a represents a list of adversary calls ai
r← A~Oi (ini). The

inputs (ini's) can depend on xk's and preceding aj 's.

3 (u1, . . . , um) are expressions depending on ~x and ~a.

4 Ij is the implementation of oracle Oj .

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Interaction with an adversary

input
queries

Implementation of
oracle O1

(u1, . . . , um)| I1/O1, . . . , In/On

Adversary A

Frame s

ν~x.ν~y.

Fresh draws

Adversary calls

output R

output (TO1, . . . , TOn)

ex. : event R=1.
Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Formal Computational Frame Semantics

Let s = ν~x.ν~a.(u1, . . . , um)|I1/O1, . . . , In/On be a frame, and
~A = (A1, . . . ,Ap,A).
They de�ne ~A||s, the resulting distribution on
(~x,~a, ~I, ~u,R, ~TO), as follows:

1 For each i, a value x̂i is drawn in Ui and assigned to xi.

2 For each j, aj
r← A~Oj (inj) means ˆinj is computed, Aj gets it

as an input, possibly calls oracles ~O (implemented following
~I), and outputs an answer âj , which is assigned to aj .

3 Calls to oracles: anytime an adversary queries Ok(bs), it
gets Ik(bs) and as a side e�ect, TO := ˆTO :: [(k, bs, Ik(bs))].

4 Values (û1, . . . , ûm) are computed for expressions
(u1, . . . , um), and given as an input to A.

5 After some polytime computation including possible oracle
calls, A outputs a bitstring R̂ assigned to variable R, and
~̂
TO, where ˆTOk is the list of all queries to Ok.

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Conditional Indistiguishability of Frames E → s ∼ t

Conditional Advantage

Let ~A be a list of adversaries. Its advantage in distinguishing s
and t given E is:
Adv(~A, s, t, η) =

|Pr[(~̂x, ~̂a, ~̂u, ~̂I, R̂, ~̂
TO) r← (~A ‖ s) : R̂ = 1|E]−

Pr[(~̂x, ~̂a, ~̂u, ~̂I, R̂, ~̂
TO) r← (~A ‖ t) : R̂ = 1|E]|

E → s ∼ t
s is indistinguishable from t given E i� ∀ ~A, Adv(~A, s, t, η) is
negligible in η.

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Conditional Negligibility of Events E2 → s : E1

We can de�ne negligibility for any event E1 depending on
variables in ~x,~a, ~u,R, ~TO, ~I or ~O.

E2 → s : E1

Let ~A be a list of adversaries. Event A is negligible in s i�
|Pr[α r← (~A ‖ s) : E1(α)|E2(α)]
is negligible in η.

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Outline

1 Our Framework: Computational Frames

2 CIL: The Inference System

3 Reasoning With Oracles

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Two ways of reading a rule

from top to bottom:

v[s/y] ∼ v[t/y]

s ∼ t

the other way round (as for reductionist proofs):

v[s/y] 6∼v[t/y]

s 6∼t

suppose there is an adversary that breaks the conclusion,
then there is a way to modify it to break the premise!

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

The Substitution Rules

Let s be a frame, and let v be a poly-time term with a free
variable y. Substitution of s to y is performed avoiding name
capture (even for oracle implementations).

A→ s ∼ t
Sub

A→ v[s/y] ∼ v[t/y]

A→ s : E1 NegSub
A→ v(s) : E1

Idea of the reduction: the context is polytime simulatable.

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Indistinguishability by Case Study

The use of this rule motivates the introduction of conditional
reasoning.

(captured by an indistinguishability statement)

the scheme is secure

one specific query was made to an oracle ... was not made to the oracle

E → s ∼ t s : ¬E t : ¬E
CSs ∼ t

Intuitively, either E holds and s ∼ t, or ¬E holds, but this
happens with negligible probability.

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Importing External Reasoning : 1.Equality

Def.: s =X t i� [α r← s : ΠX(α)],= [α r← t : ΠX(α)]
where ΠX is the projection on X.

A→ s =R t
UNIV

A→ s ∼ t
...because the advantage of any adversary is null.

A→ s : E(X) A→ s =X t
NegUNIV

A→ t : E(X)

...because E depends exclusively on variables in X.

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Importing External Reasoning : 2.Logical Disjunction

∧p
i=1(Ai[~I/ ~O]→ Bi[~I/ ~O])⇒ (A[~I/ ~O]→ B[~I/ ~O])

A1 → s : B1

...
Ap → s : Bp

UCR
A→ s : B

If ∀i,Pr[Bi|Ai] is negligible, then Pr[B|A] is negligible
(with universal quanti�cation of free variables, except for
oracle names that we replace by implementations).

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Importing External Reasoning : 2.Logical Disjunction

∧p
i=1(Ai[~I/ ~O]→ Bi[~I/ ~O])⇒ (A[~I/ ~O]→ B[~I/ ~O])

A1 → s : B1

...
Ap → s : Bp

UCR
A→ s : B

If ∀i,Pr[Bi|Ai] is negligible, then Pr[B|A] is negligible
∀i,Pr[Bi|Ai] actually is negligible

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Importing External Reasoning : 2.Logical Disjunction

∧p
i=1(Ai[~I/ ~O]→ Bi[~I/ ~O])⇒ (A[~I/ ~O]→ B[~I/ ~O])

A1 → s : B1

...
Ap → s : Bp

UCR
A→ s : B

Useful rules that we can derive from UCR:

A→ s : B
UCR

s : A ∧B

(A→ B)⇒ (A ∧B)

A→ s : B1

...
A→ s : Bp

UCR
A→ s :

∨p
i=1(Bi)

(
∧p
i=1(A→ Bi))⇒ (A→

∨p
i=1(Bi))

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

A Reduction Rule (deducible from others)

v is a probabilistic poly-time term to be exhibited when
applying the rule.

A→ s : E1

A(v(α))⇒ A(α)
A→ s : E2 ∧ ¬E1 ◦ v NegRED

A→ s : E2

Idea: simple reduction by embedding an adversary against the
conclusion and applying v to its output:

Output α satisfying E2|A

Output v(α) satisfying E1|A

E2(α)⇒ E1(v(α))

A(α)⇒ A(v(α))

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Outline

1 Our Framework: Computational Frames

2 CIL: The Inference System

3 Reasoning With Oracles

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Changing Answers to Queries

One often needs to reduce breaking a scheme to solving a
hard problem (e.g., inverting a one-way function).

To trick the adversary against the scheme into solving the
hard problem, replace the answer to some query by some
bitstring related to the challenge to the hard problem.

In our framework, it translates in changing the
implementation of an oracle (say, O1) on one expression e.

For negligibility, two cases: the event we are interested in
has the form e /∈ TO1 ∧ ... or the form e ∈ TO1 ∧

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

If the event contains 'e is not queried'...

e is an expression possibly depending on ~x,~a or ui's or is R.

A→ s|I1/O1 : e /∈ TO1 ∧ E(~x, ~y,R, TO)
q 6= e⇒ I1(q) = I ′1(q) (*)

NegOR∀
A→ s|I ′1/O1 : e /∈ TO1 ∧ E(~x, ~y,R, TO)

with:
(*) q 6= e⇒ I1(q) = I ′1(q) meaning that the implementations
yield the same result on any query but e. All variables occuring
in the statement are quanti�ed universally.

Intuitively, running an adversary in the �rst or second context
leads to the same execution...

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

If the event contains 'e is queried'...

s|I1/O1 : e ∈ TO1 ∧ E(~x, ~y, ~TO)
E is TO-pre�x closed

q 6= e⇒ I1(q) = I ′1(q)
NegOR∃

s|I ′1/O1 : e ∈ TO1 ∧ E(~x, ~y, ~TO)

q = e?
NO

I1/O1

O1(q)

YES

Ok(q)

. . .

A

B

STOP, E holds (pre�x-closed)

e ∈ TO1 is
ascertainable (i.e.
the adversary can
check whether it
holds),

if not, draw when to
stop at random.

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Two More Rules

A→ s|I1/O1 : e ∈ TO1

q 6= e⇒ I1(q) = I ′1(q)
OR

A→ s|I1/O1 ∼ s|I ′1/O1

Idea: querying e has same probability in both contexts.

s : E′ E(TO)⇒ ∃TO′ � TO · E′(TO′)
TEMP

s : E

where TO′ � TO denotes TO′ pre�x from TO.

Idea: stop the execution of adversaries against s : E once E′ is
ful�lled.

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

Framework CIL Oracles

Conclusion

CIL is a system to prove indistinguishability of computational
frames, in which we can prove:

any asymmetric encryption scheme we could prove with the
previous formalism (Hoare logic [CCS08]),

ElGamal, Hashed El-Gamal in the ROM or standard model,

OAEP,

signature schemes (FDH is �nished and PSS is nearly
concluded)

Formalization of CIL in Coq is progressing (SCALP Project).

Barthe, Daubignard, Kapron, Lakhnech Proving Indistinguishability

	Our Framework: Computational Frames
	CIL: The Inference System
	Reasoning With Oracles

