
UFR-IMAG
Université Joseph Fourier

Programming Language and Compiler Design,
2010/2011

Marion Daubignard
Yassine Lakhnech
Laurent Mounier

Series 1

Exercise 4
We wish to add the following statement to the While language:

repeat S until b

The rules we add to the rules of natural semantics are:

• If B[b]σ′ = ff then

(S, σ)→ σ′ (repeat S until b, σ′)→ σ′′

(repeat S until b, σ)→ σ′′

• If B[b]σ′ = tt then

(S, σ)→ σ′

(repeat S until b, σ)→ σ′

Indeed, the meaning we want to give to this command is that we first perform S and then,
according to whether b is true, we re-enter the repeat command or we stop.

Semantic equivalence proof
We prove that

• repeat S until b

• and S; if b then skip else (repeat S until b).

are semantically equivalent.

To do this, we have to prove that for any states σ, σ′ we have that (repeat S until b, σ)→ σ′

iff (S; if b then skip else (repeat S until b), σ)→ σ′.

We first prove the ⇒ implication. We assume (repeat S until b, σ) → σ′ and have to prove
(S; if b then skip else (repeat S until b), σ) → σ′. Assuming (repeat S until b, σ) → σ′ is as-
suming that there exists a derivation tree T whose conclusion is this statement. Two cases
can arise:

• the tree T can be the following:

(S, σ)→ σ1 (repeat S until b, σ1)→ σ′

(repeat S until b, σ)→ σ′

In this case, we know that σ1 exists and that B[b]σ1 = ff.
We are searching for a tree T’ whose conclusion is (S; if b then skip else (repeat S until b), σ)→ σ′.
The program is the sequence of S and an if command. Such a tree T’ would necessary
look like:

(S, σ)→ σ2

?
(if b then skip else (repeat S until b), σ2)→ σ′

(S; if b then skip else (repeat S until b), σ)→ σ′

1



for some candidate σ2 we have to exhibit. If we look at the tree T, we see that we
know (S, σ)→ σ1. Hence we choose σ2 = σ1. Our tree T’ becomes:

(S, σ)→ σ1

?
(if b then skip else (repeat S until b), σ1)→ σ′

(S; if b then skip else (repeat S until b), σ)→ σ′

We still have to replace ?, which we can do because we know that B[b]σ1 = ff. Hence, we
apply the if-false rule to derive a tree for (if b then skip else (repeat S until b), σ1)→ σ′.
T’ thus looks like:

(S, σ)→ σ1

(repeat S until b, σ1)→ σ3

(if b then skip else (repeat S until b), σ1)→ σ′

(S; if b then skip else (repeat S until b), σ)→ σ′

for some σ3 we have to find. Looking at T, we see that σ3 = σ′ fits.

(S, σ)→ σ1

(repeat S until b, σ1)→ σ′

(if b then skip else (repeat S until b), σ1)→ σ′

(S; if b then skip else (repeat S until b), σ)→ σ′

is the derivation tree we are looking for. QED

• the tree T can be the following:

(S, σ)→ σ′

(repeat S until b, σ)→ σ′

In this case, we know that σ′ exists and that B[b]σ′ = tt.
We are searching for a tree T’ whose conclusion is (S; if b then skip else (repeat S until b), σ)→ σ′.
The program is the sequence of S and an if command. Such a tree T’ would necessary
look like:

(S, σ)→ σ1

?
(if b then skip else (repeat S until b), σ1)→ σ′

(S; if b then skip else (repeat S until b), σ)→ σ′

for some candidate σ1 we have to exhibit. If we look at the tree T, we see that we
know (S, σ)→ σ′. Hence we choose σ1 = σ′. Our tree T’ becomes:

(S, σ)→ σ′
?

(if b then skip else (repeat S until b), σ′)→ σ′

(S; if b then skip else (repeat S until b), σ)→ σ′

We still have to replace ?, which we can do because we know that B[b]σ′ = tt. Hence, we
apply the if-false rule to derive a tree for (if b then skip else (repeat S until b), σ′)→ σ′.
T’ thus looks like:

(S, σ)→ σ′
(skip, σ′)→ σ′

(if b then skip else (repeat S until b), σ′)→ σ′

(S; if b then skip else (repeat S until b), σ)→ σ′

It is the derivation tree we are looking for. QED

We then prove the ⇐ implication. We assume (S; if b then skip else (repeat S until b), σ)→
σ′ and have to prove (repeat S until b, σ) → σ′. Our assumption yields the existence of a
derivation tree T whose conclusion is (S; if b then skip else (repeat S until b), σ) → σ′. It
necessarily looks like:

2



(S, σ)→ σ1

?
(if b then skip else (repeat S until b), σ1)→ σ′

(S; if b then skip else (repeat S until b), σ)→ σ′

with an actual state σ1. ’?’ depends on the truth value of b in state σ1.

Two cases can arise:

• if B[b]σ1 = ff, we know that T is the following tree:

(S, σ)→ σ1

(repeat S until b, σ1)→ σ′

(if b then skip else (repeat S until b), σ1)→ σ′

(S; if b then skip else (repeat S until b), σ)→ σ′

We want to build a tree T’ whose conclusion is (repeat S until b, σ)→ σ′. Such a tree
necessarily ends with the application of one of the rules for the repeat command. We
know that: (S, σ) → σ1, (repeat S until b, σ1) → σ′, and B[b]σ1 = ff. Hence, it is the
repeat-true rule we use to build T’:

(S, σ)→ σ1 (repeat S until b, σ1)→ σ′

(S; if b then skip else (repeat S until b), σ)→ σ′

• Similarly, if B[b]σ1 = tt, we know that T is the following tree:

(S, σ)→ σ1

(skip, σ1)→ σ′

(if b then skip else (repeat S until b), σ1)→ σ′

(S; if b then skip else (repeat S until b), σ)→ σ′

Moreover, according to the skip rule, σ1 = σ′.
We want to build a tree T’ whose conclusion is (repeat S until b, σ)→ σ′. Such a tree
necessarily ends with the application of one of the rules for the repeat command. We
know that (S, σ)→ σ′, and B[b]σ′ = B[b]σ1 = tt. So we can build T’ as follows:

(S, σ)→ σ′

(repeat S until b, σ)→ σ′

3


