The Quasi-Synchronous Approach to Distributed Control Systems

Paul CaspiVerimag Laboratorycaspi@imag.frhttp://www-verimag.imag.frCrisys Esprit Projecthttp://borneo.gmd.de/~ap/crisys/

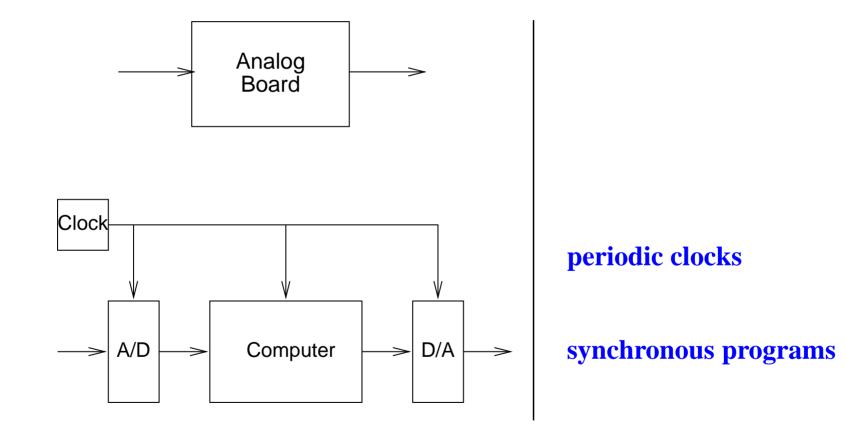
The Quasi-Synchronous Approach to Distributed Control Systems

Paul CaspiVerimag Laboratorycaspi@imag.frhttp://www-verimag.imag.frCrisys Esprit Projecthttp://borneo.gmd.de/~ap/crisys/

- Where does it come from ?
- How to simulate it ?
- How to understand it ?
- Fault-tolerance

Where does it come from ?

From analog boards to computers



Synchronous Programming

General

initialize state;

loop each input event

read other inputs; compute outputs and state; emit outputs

end loop

Several styles (imperative, data-flow,...)

Allow multiple simultaneous event : no performance problems

Synchronous Programming

Periodic

initialize state;

loop each clock

read other inputs; compute outputs and state; emit outputs

end loop

Synchronous Programming

Periodic

initialize state;

loop each clock

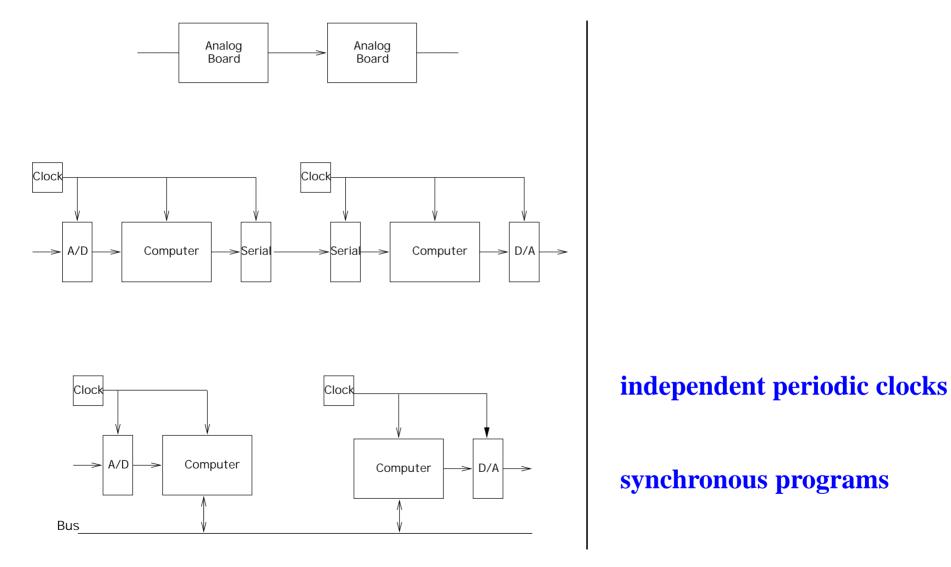
read other inputs; compute outputs and state; emit outputs

end loop

most applications of synchronous programming are actually periodic ones. hybridity: sampling differential equations require periodicity!

Where does it come from ?

From networks of analog boards to local area networks



Interest

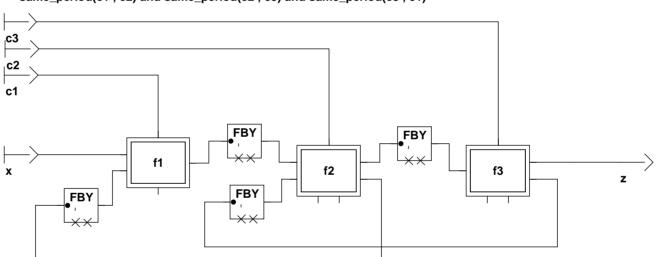
Autonomy, robustness

• Each computer is a complete one, including its own clock and even possibly its own power supply.

• Communication between computers is non-blocking, based on periodic reads and writes, akin to periodic sampling.

How to formalize it

Net View on chain - eq_chain



same_period(c1, c2) and same_period(c2, c3) and same_period(c3, c1)

Synchronous simulation, test and verification tools apply

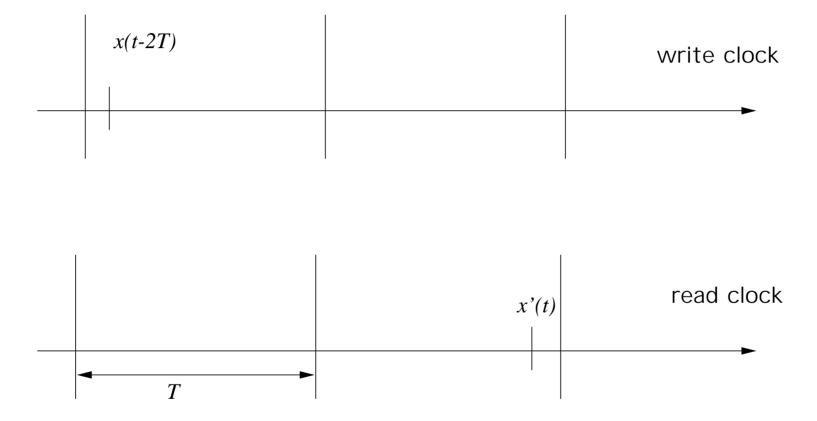
Efficiency issues ?

How to understand it ?

- Communication Abstraction
- Continuous Systems
- Non Continuous Systems
- Mixed Systems

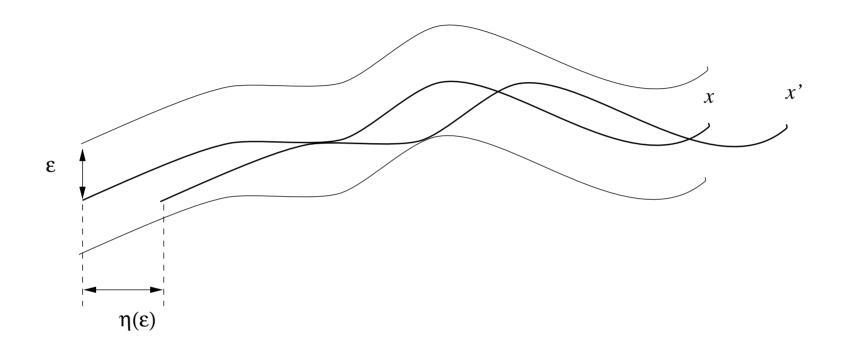
Communication Abstration

Worst situation: reads occur just before writes



Bounded communication delays

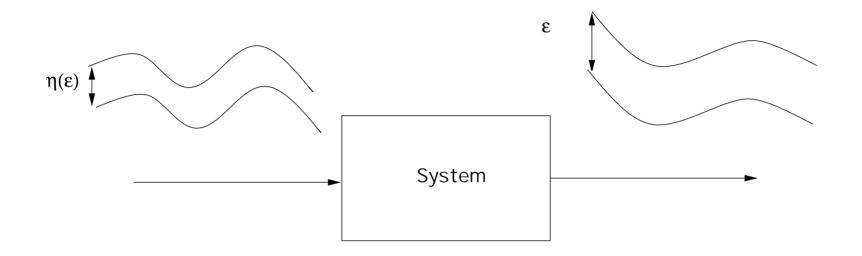
Uniformly Continuous Signals





Bounded delays yield bounded errors

Uniformly Continuous Systems



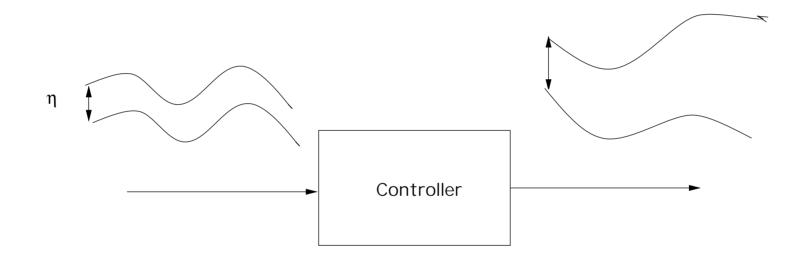
 $\forall \varepsilon > 0, \exists \eta > 0, \forall x, x', ||x - x'||_{\infty} \le \eta \Rightarrow ||f(x) - f(x')||_{\infty} \le \varepsilon$

Bounded errors yield bounded errors

But ...

Even very simple controllers are not uniformly continuous.

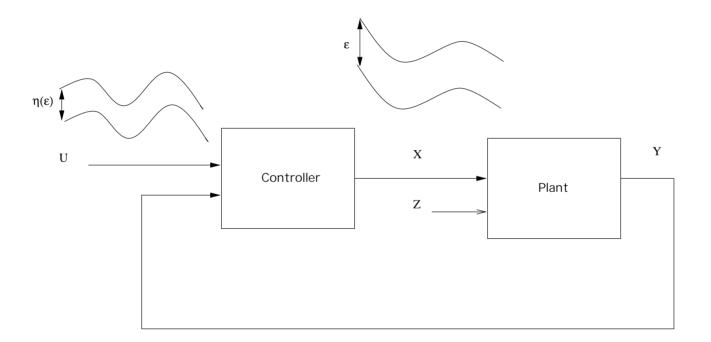
PID for instance



Bounded errors do not yield bounded errors

Stabilized Systems

The closed-loop system computes uniformly continuous signals



Bounded delays yield bounded errors

Doubts ...

This casts a doubt on two wishful thoughts:

• composability

system properties are the mere addition of sub-system ones

- separation of concerns:
 - automatic control people specify
 - computer science people implement

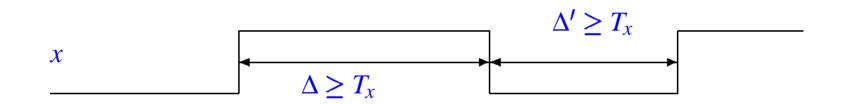
Critical control systems require a tight cooperation between both people

Non Continuous Systems

- Combinational Systems
- Robust Sequential Systems
- Sequential Systems

Uniform Bounded-Variability

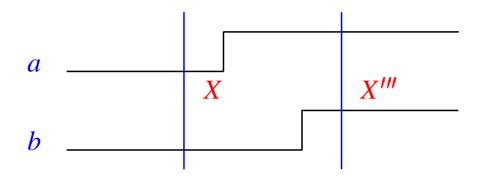
There exists a minimum stable time T_x associated with a signal x.



The analog of uniform continuity ?

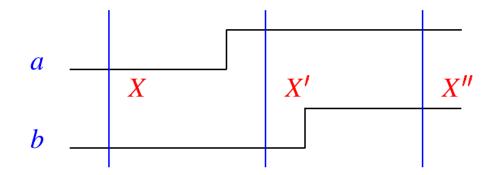
Sampling Tuples

A possible sampling



Sampling Tuples

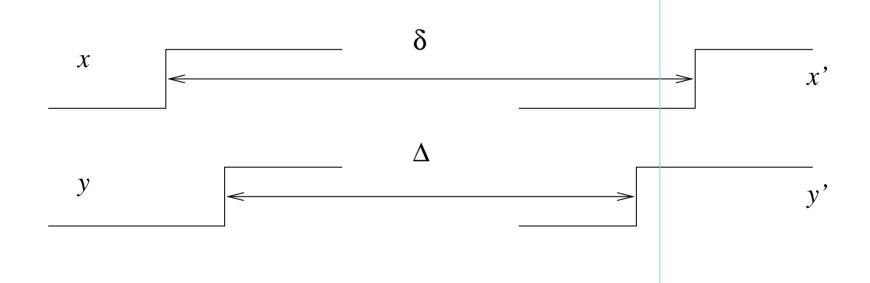
Another possible sampling



Non deterministic bounded delays

But ...

Delays on tuples do not yield delayed tuples



Solution : Confirmation functions

Confirmation Functions

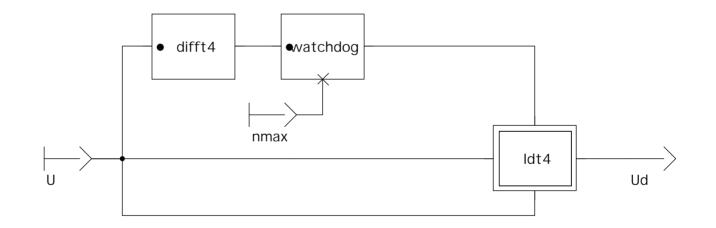
When a component of a tuple changes, wait for some $\Delta_{max} - \Delta_{min}$ time before taking it into account.

If x', y' are $(\Delta_{min}, \Delta_{max})$ bounded images of x and y, then confirm(x', y') is a delayed image of (x, y)

allows to retrieve the continuous framework

Confirmation Functions

Net View on confirm - eq_confirm



$$nmax = E(\frac{\Delta_{max} - \Delta_{min}}{T_{min}}) + 1$$

Robust Sequential Systems

idea : avoid critical races

- between state variables : order insensitivity
- between inputs : confluence

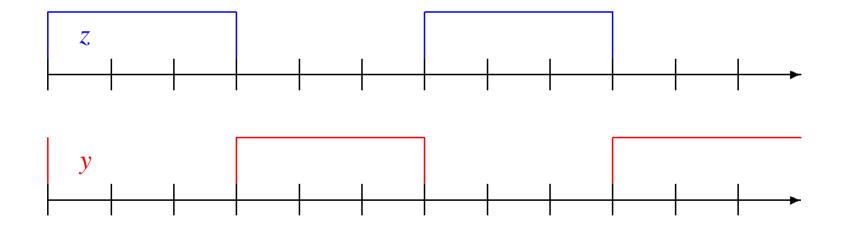
Property checker

Can robustness analysis be avoided ?

example : mutual exclusion

```
Property: always not (y and z)
```

a non robust solution :

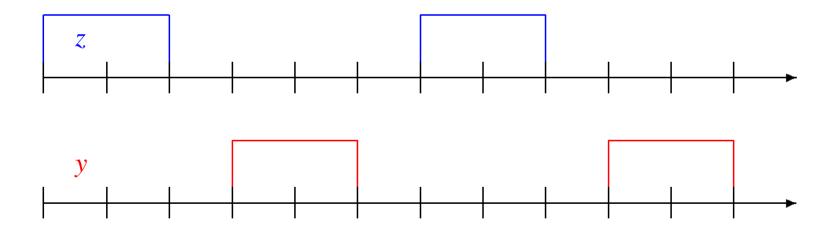


Can robustness analysis be avoided ?

example : mutual exclusion

Property: always not (y and z)

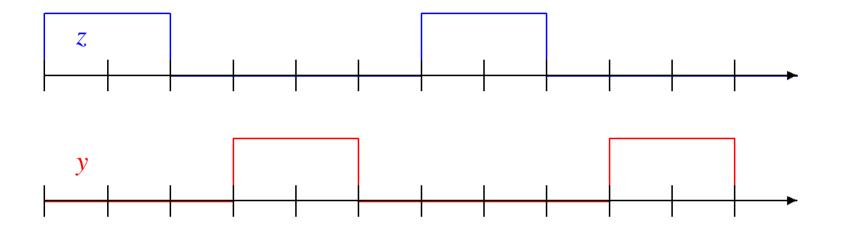
a robust solution :



same answer as for error analysis in continuous systems

Robust solutions are distributable

a robust solution :



z waits for y to go down before going up and conversely.

not y
not z
$$((\rightarrow y \rightarrow not y)^* (\rightarrow z \rightarrow not z)^*)^*$$

no critical race !

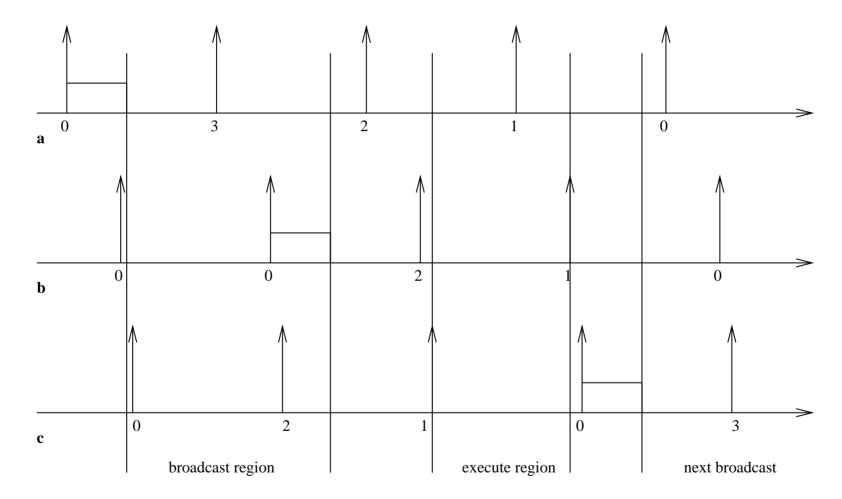
Non Robust Sequential Systems

require either soft or hard synchronization.

Time Triggered Architecture for instance.

Non Robust Sequential Systems

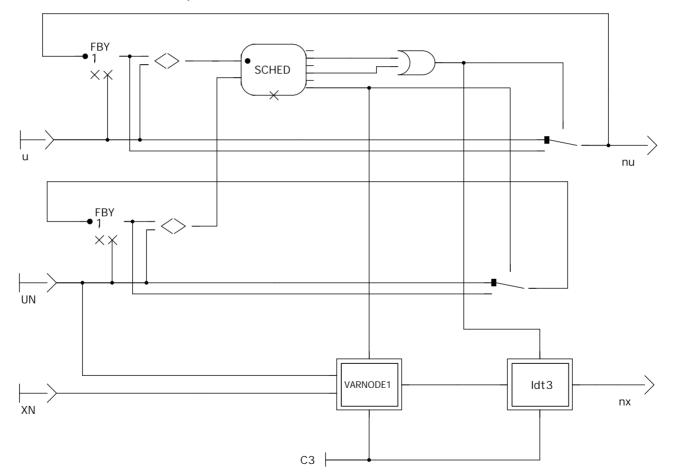
A soft synchronization algorithm



requires a speed-up by 4

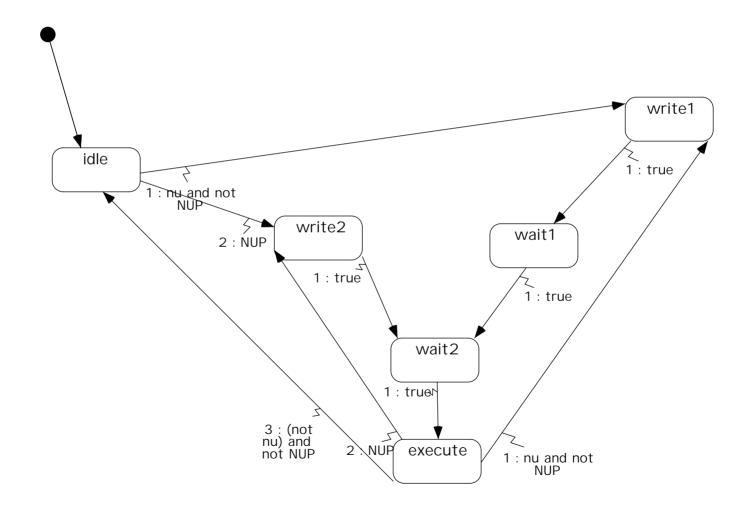
Implementation

Net View on SYNCH - eq_SYNCH



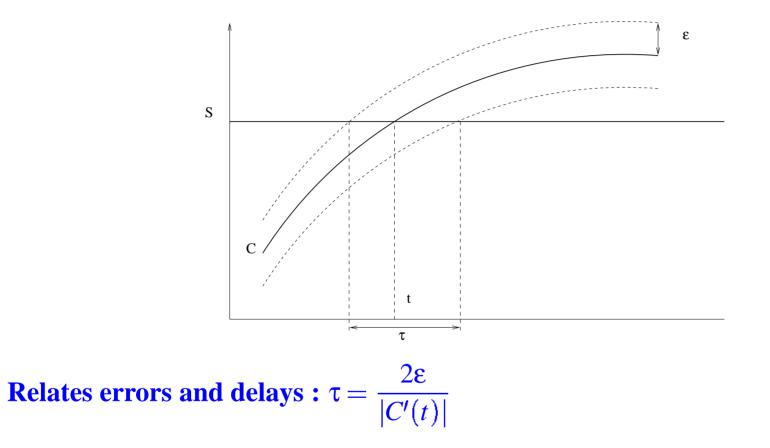
Implementation

State Machine View - SCHED



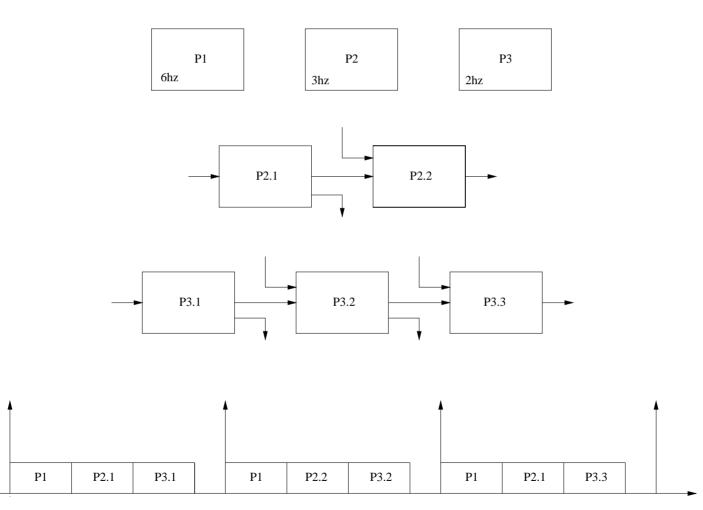
Mixed Systems

Example : Threshold crossing

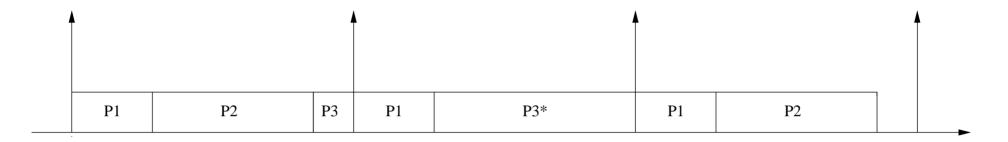


This analysis too should not be skipped

Actual Practices (Airbus)



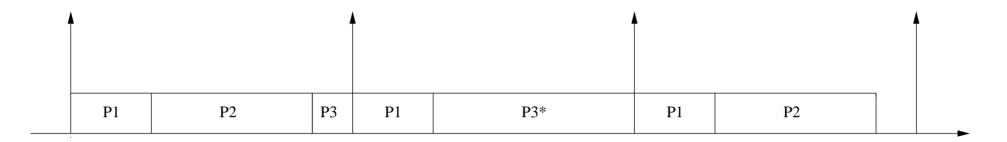
A Crisys Proposal: earliest deadline preemptive scheduling



Schedulability condition

$$\sum_{i=1,n} \frac{WET_i}{T_i} < 1$$

A Crisys Proposal: earliest deadline preemptive scheduling



Schedulability condition

$$\sum_{i=1,n} \frac{WET_i}{T_i} < 1$$

Generalizes the synchronous program execution condition

WET < T

Exact functional semantics is guaranteed as soon as

Slow processes communicate with fast processes through a slow clock unit delay

С	t	f	t	f	t
x	<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
$x \downarrow c$	<i>x</i> ₀		<i>x</i> ₂		<i>x</i> 4
$f(x \downarrow c)$	$f(x_0)$		$f(x_2)$		$f(x_4)$
$z = z_0 \Delta f(x \downarrow c)$	z_0		$f(x_0)$		$f(x_2)$
$(z_0,z)\uparrow c$	z_0	<i>Z</i> 0	$f(x_0)$	$f(x_0)$	$f(x_2)$

Fault Tolerance

- Continuous Computations : Threshold Voting
 - Units differ from more than the maximum normal error

Fault Tolerance

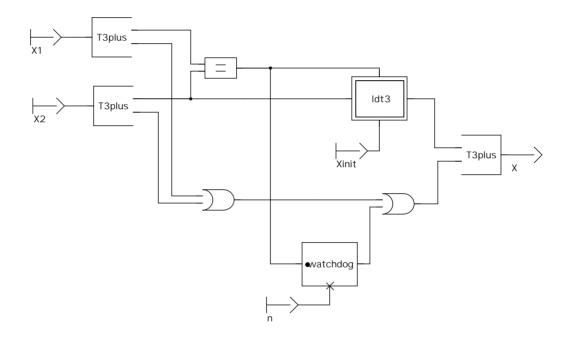
- Continuous Computations : Threshold Voting
 - Units differ from more than the maximum normal error
- Combinational : Bounded-Delay Voting
 - Units differ from more than the maximum normal delay

Fault Tolerance

- Continuous Computations : Threshold Voting
 - Units differ from more than the maximum normal error
- Combinational : Bounded-Delay Voting
 - Units differ from more than the maximum normal delay
- Sequential Computations : 2/2 Bounded-Delay Voting

Bounded-Delay Voters

Net View on vote2_2 - eq_vote2_2



$$n = E\left(\frac{\Delta_{max} - \Delta_{min}}{T_{min}}\right) + 1$$

Sequential Computations

Idea: vote on input and on state

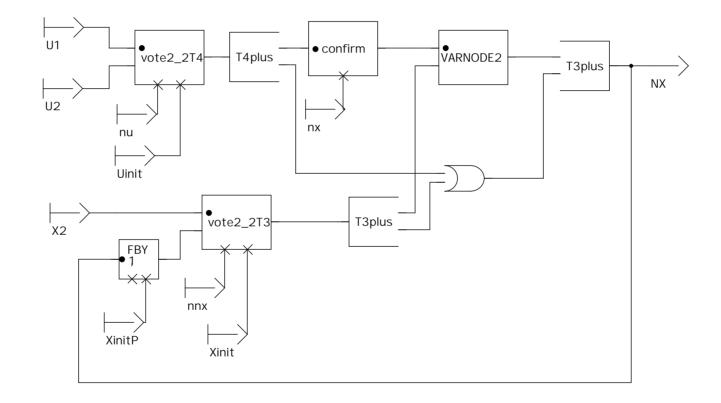
But Byzantine problems

2/2 votes are not sensitive to Byzantine problems:

- a bad unit is only compared with a single good one:
 - it agrees: it looks good
 - it disagrees: a fault is detected.

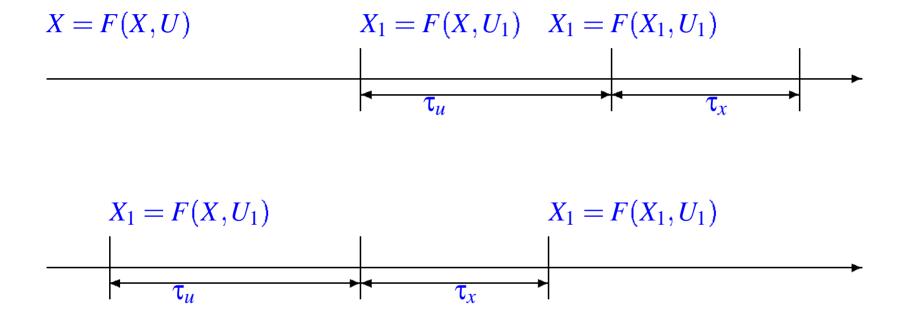
Sequential Computations: 2/2 Sequential Voters

Net View on SeqVote - eq_SeqVote



 $nx = nmax_u + nmax_x$ $nnx = n \times nx$

Proof Hints



Conclusion

- Some insight on techniques used in practice.
- maybe useful for designers and certification authorities
 (Crisys Esprit Project)
- An attempt to catch the attention of the Computer Science Community on these important problems.

• When are clock synchronization methods useful and more efficient than the ones presented here?

- When are clock synchronization methods useful and more efficient than the ones presented here?
- How to safely encompass some event-driven computations within the approach?

- When are clock synchronization methods useful and more efficient than the ones presented here?
- How to safely encompass some event-driven computations within the approach?
- Are there linguistic ways to robustness (synchronous-asynchronous languages)?

- When are clock synchronization methods useful and more efficient than the ones presented here?
- How to safely encompass some event-driven computations within the approach?
- Are there linguistic ways to robustness (synchronous-asynchronous languages)?
- Is there a common framework encompassing both theories?

continuous	discrete
uniformly continuous signals	uniform bounded variability
uniformly continuous functions	robust systems
unstable systems	sequential non robust systems