
The Quasi-Synchronous Approach to Distributed Control

Systems

Paul Caspi Verimag Laboratory

caspi@imag.fr http://www-verimag.imag.fr

Crisys Esprit Project

http://borneo.gmd.de/˜ap/crisys/

The Quasi-Synchronous Approach to Distributed Control

Systems

Paul Caspi Verimag Laboratory

caspi@imag.fr http://www-verimag.imag.fr

Crisys Esprit Project

http://borneo.gmd.de/˜ap/crisys/

� Where does it come from ?

� How to simulate it ?

� How to understand it ?

� Fault-tolerance

Where does it come from ?

From analog boards to computers

Board
Analog

Clock

A/D D/AComputer

periodic clocks

synchronous programs

Synchronous Programming

General

initialize state;

loop each input event

read other inputs;

compute outputs and state;

emit outputs

end loop

Several styles (imperative, data-flow,...)

Allow multiple simultaneous event : no performance problems

Synchronous Programming

Periodic

initialize state;

loop each clock

read other inputs;

compute outputs and state;

emit outputs

end loop

Synchronous Programming

Periodic

initialize state;

loop each clock

read other inputs;

compute outputs and state;

emit outputs

end loop

most applications of synchronous programming are actually periodic ones.

hybridity: sampling differential equations require periodicity!

Where does it come from ?

From networks of analog boards to local area networks

Board
Analog

Board
Analog

Clock

A/D Computer Serial

Clock

D/AComputerSerial

Clock

A/D Computer

Clock

D/AComputer

Bus

independent periodic clocks

synchronous programs

Interest

Autonomy, robustness

� Each computer is a complete one, including its own clock and even possibly its
own power supply.

� Communication between computers is non-blocking, based on periodic reads
and writes, akin to periodic sampling.

How to formalize it

Net View on chain - eq_chain

c1

c2

c3

x
f1

f2 f3
z

FBY

FBY

FBY

FBY

same_period(c1 , c2) and same_period(c2 , c3) and same_period(c3 , c1)

Synchronous simulation, test and verification tools apply

Efficiency issues ?

How to understand it ?

� Communication Abstraction

� Continuous Systems

� Non Continuous Systems

� Mixed Systems

Communication Abstration

Worst situation: reads occur just before writes

read clockx’(t)

T

write clock
x(t-2T)

Bounded communication delays

Uniformly Continuous Signals

η(ε)

ε

x x’

�
ε � 0 � � η � 0 � � t � t � � � t 	 t � �
 ηx � � x � t 	 x � t � �
 ε

Bounded delays yield bounded errors

Uniformly Continuous Systems

System

ε

η(ε)

�
ε � 0 � � η � 0 � � x � x � � � � x � x � � � ∞ � η ��� � f � x � � f � x � � � � ∞ � ε

Bounded errors yield bounded errors

But . . .

Even very simple controllers are not uniformly continuous.

PID for instance

Controller

η

Bounded errors do not yield bounded errors

Stabilized Systems

The closed-loop system computes uniformly continuous signals

ε

η(ε)

Controller
Plant

U X

Z

Y

Bounded delays yield bounded errors

Doubts . . .

This casts a doubt on two wishful thoughts:

� composability

– system properties are the mere addition of sub-system ones

� separation of concerns:

– automatic control people specify

– computer science people implement

Critical control systems require a tight cooperation between both people

Non Continuous Systems

� Combinational Systems

� Robust Sequential Systems

� Sequential Systems

Uniform Bounded-Variability

There exists a minimum stable time Tx associated with a signal x.

x ��
∆ � Tx

�� ∆ � � Tx

The analog of uniform continuity ?

Sampling Tuples

A possible sampling

b

a
X X

Sampling Tuples

Another possible sampling

b

a
X X ! X ! !

Non deterministic bounded delays

But . . .

Delays on tuples do not yield delayed tuples

y

x
x’

y’

∆

δ

Solution : Confirmation functions

Confirmation Functions

When a component of a tuple changes, wait for some ∆max " ∆min time before taking
it into account.

If x# , y# are $ ∆min % ∆max & bounded images of x and y,

then con f irm $ x # % y # & is a delayed image of $ x % y &
allows to retrieve the continuous framework

Confirmation Functions

Net View on confirm - eq_confirm

U

watchdogdifft4

Ud
Idt4

nmax

nmax ' E (∆max) ∆min

Tmin

* +
1

Robust Sequential Systems

idea : avoid critical races

, between state variables : order insensitivity

, between inputs : confluence

Property checker

Can robustness analysis be avoided ?

example : mutual exclusion

Property : always not (y and z)

a non robust solution :

z -

y -

Can robustness analysis be avoided ?

example : mutual exclusion

Property : always not (y and z)

a robust solution :

z .

y .

same answer as for error analysis in continuous systems

Robust solutions are distributable

a robust solution :

z /

y /

z waits for y to go down before going up and conversely.

not y

not z

0 0 1
y
1

not y 2 3 0 1 z
1

not z 2 3 2 3
no critical race !

Non Robust Sequential Systems

require either soft or hard synchronization.

Time Triggered Architecture for instance.

Non Robust Sequential Systems

A soft synchronization algorithm

3

2 3

0 2 1 0

0 0 2 1 0

0 0

broadcast region execute region next broadcast

1
c

b

a

requires a speed-up by 4

Implementation

Net View on SYNCH - eq_SYNCH

u

XN

nu

nx

SCHED

VARNODE1 Idt3

C3

FBY
1

FBY
1

UN

Implementation

State Machine View - SCHED

idle

write1

wait1write2

wait2

execute

NUP
1 : nu and not

2 : NUP

1 : true

1 : true
1 : true

1 : true

NUP
1 : nu and not 2 : NUPnot NUP

nu) and
3 : (not

Mixed Systems

Example : Threshold crossing

S

ε

C

t

τ

Relates errors and delays : τ 4 2ε5
C 6 7 t 8 5

This analysis too should not be skipped

Concurrency

Actual Practices (Airbus)

P1 P1 P2.1P3.1P2.1P1 P2.2 P3.2 P3.3

P3.1 P3.2 P3.3

P2.1 P2.2

6hz

P1 P2 P3

2hz3hz

Concurrency

A Crisys Proposal: earliest deadline preemptive scheduling

P1 P1P1 P2 P3 P3* P2

Schedulability condition

∑
i 9 1 : n

WET i

Ti

; 1

Concurrency

A Crisys Proposal: earliest deadline preemptive scheduling

P1 P1P1 P2 P3 P3* P2

Schedulability condition

∑
i < 1 = n

WET i

Ti

>
1

Generalizes the synchronous program execution condition

WET
>

T

Concurrency

Exact functional semantics is guaranteed as soon as

Slow processes communicate with fast processes through a slow clock unit delay

c t f t f t

x x0 x1 x2 x3 x4

x ? c x0 x2 x4

f @ x ? c A f @ x0 A f @ x2 A f @ x4 A
z B z0∆ f @ x ? c A z0 f @ x0 A f @ x2 A

@ z0 C z A D c z0 z0 f @ x0 A f @ x0 A f @ x2 A

Fault Tolerance

E Continuous Computations : Threshold Voting

– Units differ from more than the maximum normal error

Fault Tolerance

F Continuous Computations : Threshold Voting

– Units differ from more than the maximum normal error

F Combinational : Bounded-Delay Voting

– Units differ from more than the maximum normal delay

Fault Tolerance

G Continuous Computations : Threshold Voting

– Units differ from more than the maximum normal error

G Combinational : Bounded-Delay Voting

– Units differ from more than the maximum normal delay

G Sequential Computations : 2/2 Bounded-Delay Voting

Bounded-Delay Voters

Net View on vote2_2 - eq_vote2_2

X1

X2

watchdog

Idt3

Xinit X

n

T3plus

T3plus

T3plus

n H E I ∆max J ∆min

Tmin

K L
1

Sequential Computations

Idea: vote on input and on state

But Byzantine problems

2 M 2 votes are not sensitive to Byzantine problems:

N a bad unit is only compared with a single good one:

– it agrees: it looks good

– it disagrees: a fault is detected.

Sequential Computations: 2/2 Sequential Voters

Net View on SeqVote - eq_SeqVote

U1

U2

vote2_2T4

Uinit

X2
vote2_2T3

Xinit

T4plus
confirm

T3plus

VARNODE2

FBY
1

T3plus
NX

nu nx

XinitP

nnx

nx O nmaxu P nmaxx nnx O n Q nx

Proof Hints

R
X1 S F T X U U1 V X1 S F T X1 U U1 V

R
τu

W RW
τx

X S F T X U U V X1 S F T X U U1 V X1 S F T X1 U U1 V RR
τu

W RW
τx

Conclusion

X Some insight on techniques used in practice.

X maybe useful for designers and certification authorities

(Crisys Esprit Project)

X An attempt to catch the attention of the Computer Science Community on these
important problems.

Questions

Y When are clock synchronization methods useful and more efficient than the
ones presented here?

Questions

Z When are clock synchronization methods useful and more efficient than the
ones presented here?

Z How to safely encompass some event-driven computations within the approach?

Questions

[When are clock synchronization methods useful and more efficient than the
ones presented here?

[How to safely encompass some event-driven computations within the approach?

[Are there linguistic ways to robustness (synchronous-asynchronous languages)?

Questions

\ When are clock synchronization methods useful and more efficient than the
ones presented here?

\ How to safely encompass some event-driven computations within the approach?

\ Are there linguistic ways to robustness (synchronous-asynchronous languages)?

\ Is there a common framework encompassing both theories?

continuous discrete

uniformly continuous signals uniform bounded variability

uniformly continuous functions robust systems

unstable systems sequential non robust systems

